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forcing. More integrated modelling, support for observational networks and the use of management
interventions as controlled experimental exercises should now be vigorously pursued.
lsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230155
1. The nature of the challenge
Climate change is driving the hazards of accelerating rates of sea-level rise and changing storminess
while, at the same time, increased use and settlement of low-lying coasts (less than 10 m above mean
sea-level) is raising vulnerability and exposure of coastal habitats, including intertidal sediments,
saltmarshes and wetlands. The usual response to coastal flooding risk, pursued over many centuries,
has been to build fixed defences such as dikes, sea walls and earthen embankments. More recently,
nature-based and eco-engineering solutions have been pursued, such as beach nourishments, sand
dune plantings and tidal wetland creation. However, engineered schemes typically incur continual
and costly maintenance or replenishment regimes, exacerbated by the need to repeatedly heighten and
widen constructions in response to sea-level rise. To retain current levels of coastal risk, modelling
suggests that it will be necessary to raise defence heights by 0.5 m by 2050 and by 1 m by 2100 [1].
In some locations, the continued renewal of hard defences remains the only option. Elsewhere, rising
costs, and the flood and erosion created by interference with natural coastal dynamics, have raised
interest in non-structural responses to coastal change [2]. Yet the paradigm of ‘Working with natural
processes’ raises new challenges. What should be the design rules and implementation practices to
successfully work with natural processes in coastal risk management? And, more fundamentally: how
well do we understand the sediment dynamic processes—including coupled biological–physical
interactions—in the water column, on and within the seabed, and across the water–land interface?

The application of fluid dynamic principles to the entrainment, transport and deposition of coastal
sediments is well established, being refined for almost a century following Shields’s classic formulation of
the 1930s. Similarly, we know a great deal about coastal ecology and the form and function of a range
of micro- to macro-organisms within subtidal, intertidal and littoral environments. However, both
fields of study have developed in isolation and perspectives are seldom merged. Currently, observations
from both approaches are generally piecemeal, biased towards a narrow range of locations (often
temperate mid-latitude) and season (often summer), and there is no common standard for obtaining
and resolving information. Physical science typically concentrates on monitoring (i.e. one spatial point
over time) whereas biological science largely focuses on sampling (one temporal point over space).
There is an urgent need to merge these different perspectives and address coastal dynamics as an
integrated biological–physical problem. Nature-based coastal protection offers the promise of long-term
sustainability as, with adequate sediment supply, coasts have the potential to respond to environmental
forcing, including the tracking of rising sea levels. Understanding, and thus aiding, the trajectory of the
ecosystem’s ability to adapt and maintain functionality is fundamental to long-term maintenance of
natural capital and the delivery of coastal ecosystem services. Setting is everything, both from the
historical perspective (interventions will be unsuccessful in settings where habitats or ecosystems were
clearly not present in the past) and for the future (where there may be opportunities for system migration
into favourable new locations). With global environmental change, the behaviour of the natural system
will change, needing a flexible approach to nature-based solutions that allow for new options to come
into play. There is a need to build a strategy for the long-term observation of ecosystems as they adapt to
change that can then be used to validate and build better biological–physical models that, in turn, will
allow better prediction into the future. We argue, therefore, that there needs to be a paradigm shift
towards the stronger characterization of the spatio-temporal dynamics of coastal systems and that this
change in ethos can be of real value to those that live at, work at, or manage the coast. We illustrate our
argument with reference to the functioning of temperate saltmarsh, mudflat and subtidal environments.
2. Biological–physical interactions: the basis of the challenge
At the level of the individual organism, our knowledge of the interactions between biological elements, fluid
flows and sedimentation processes are well known (figure 1). Biota ranging from microphytobenthos
to macrophytes and sediment-dwelling invertebrates can both biostabilize sediment surfaces or lead to
biodestabilization, either passively (e.g. turbulence generated around plant stems) or actively through
the bioturbation of surficial sediments. The presence of biota can also lead to the mediation of
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Figure 1. Summary of the salient biological–physical interactions that are fundamental to understanding and managing coastal
dynamics, but which are presently poorly constrained as outcomes can be highly dependent on abiotic and biotic context,
seasonal timing and/or socio-economic-ecological setting.
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hydrodynamics through the attenuation of flow, promotion of sediment deposition from suspension
through biofilm-enhanced flocculation, increased boundary shear stress and changes to roughness
through bio-mediated bedform development. Further, vegetation and biogenic structures modify the
benthic boundary layer in a dynamic way, exhibiting both positive and negative feedbacks at a range of
spatial and temporal scales [3]. Consequently, bed roughness, a key parameter in the modelling of
hydrodynamics and sediment dynamics, is difficult to predict and is an important boundary condition,
but is often estimated solely from knowledge of abiotic sediment size distributions or is used as a
calibration parameter to match measurements.
3. Global change and biological–physical interactions: the future
challenge

At the global scale, some consensus is emerging on the broadscale controls on coastal wetland loss, and
thus how wetland extent may change in the near future, highlighting the importance of not only the rate
of sea-level rise but also sediment supply and accommodation space to survivability. However, within
this framework, the likely magnitude of change remains highly contested, ranging from losses of
20–90% versus low losses, and even some gains, in wetland area by 2100 [4]. One difficulty is that
global-scale modelling struggles to address the role of the intrinsic feedbacks and complexities
described above in modulating external forcing. Thus, for Kirwan et al. [5], ‘marsh vulnerability tends
to be overstated because assessment methods often fail to consider biological–physical feedback
processes’. How will these internal linkages be re-configured in the near future and what
redistributions and reorganizations of fauna and sediment/physical habitats will result?

Single-factor climate change metrics, such as global mean temperature increase or global sea-level rise,
have little meaning for the explanation of future coastal system scale change. These systemic drivers are
subject to spatial variability at the global scale and there are issues of locational downscaling from global
to regional, to local, levels. In reality, species responses [6] and biological–physical interactions in coastal
settings will be subject to concurrent multiple drivers, both known and currently unanticipated, with the
interaction of (i) acute shocks (from changes in tropical and extratropical storminess, associated changes
in storm surge frequency and magnitude, marine heat waves, and freshwater flood inputs from future
climatologies) and (ii) slow onset, chronic changes, not only from sea-level rise but also including
changing rainfall patterns, tides, ocean warming and ocean acidification [7]. These drivers show varying
levels of temporal variability which themselves interact with ‘normal’ process levels. Thus, for example,
micro-tidal wetlands are thought to be more vulnerable to global change because the sea-level rise signal
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becomes a larger component of the overall sea-level variability signal, showing an earlier ‘time to
emergence’ than in meso- to macro-tidal systems [8].

Considerable challenges lie ahead in hypothecating how species, species assemblages and ecosystems
will respond to global change. ‘Step’ models which simply evaluate a future condition against a present
condition fail to recognize how futures are arrived at by compounded effects over time. With such
cumulative change, different initial model states can rapidly diverge into very different futures. Along
any range of pathways, there may be sudden shifts in system state as thresholds are crossed. But it is
hard to know what form these thresholds may take, what the ‘distance to threshold’ might be and
what happens when thresholds are passed. Finally, the notion of cascades of energy and matter tells
us that any kind of climate signal at the coast, and in coastal catchments, is likely to propagate
through the landscape over time. The nature and speed of this propagation will be a function of both
the degree of connectivity in biological–physical interactions and how this connectivity is organized at
the ecosystem scale.

In spite of all these difficulties, some generalizations are possible. A coastal wetland is a three-
dimensional near-horizontal platform that occupies an accommodation space within the intertidal zone;
thus, any discussion of wetland futures needs to consider both vertical and horizontal change and the
possibility of emergent regime shifts (e.g. a shifting balance between vertical keep-up and frontal
erosion). In the vertical, biomass productivity affects both the equilibrium marsh elevation and marsh
resilience to accelerations in sea-level rise. Latitudinal gradients suggest that warming will increase not
only tidal wetland productivity, but also decomposition rates [9]. Mesocosm experiments, observations
and modelling [10,11] suggest that, in the short term, warming leads to enhanced carbon storage and
vertical accretion. Long-term responses, however, may be more complex as a result of species and/or
habitat replacement, as seen in the expansion of tropical mangroves into subtropical salt marshes [12].
For the above-ground canopy, there is evidence that plants are adaptable bio-engineers. Higher shoot
flexibility has been demonstrated in response to increasing salinity and inundation stress [13] and
increased exposure to hydrodynamic forcing [14], although mechanical resistance associated with
enhanced growth under elevated CO2 is unlikely to be maintained over the long term [15].

In the lateral cross-shore sense, low, unvegetated mudflats and high, vegetated marshes represent a
coupling of two alternative stable states while areas at intermediate elevations are inherently unstable
[16]. How will these mudflat–marsh relations evolve with changes in water depth and wave power
consequent upon sea-level rise? Modelling for the Venice lagoon suggests that this bipolar system
shifts to a permanent non-vegetated state at a rate of sea-level rise of greater than 3.9 mm year−1 (for
a mixed species marsh) to greater than 5.9 mm year−1 (for a marsh dominated by Spartina sp.); at
greater than 10.6 mm year−1, even tidal flats cannot be maintained [17]. Such dynamics will, however,
be very location specific as equilibrium elevations will vary with local tidal range, sediment supply,
compensatory vegetation growth and wave climate.

Finally, at the present time, wetland dynamics often most strongly reflect the impact of human-
induced habitat degradation, fragmentation and restricted landward migration, resulting in reduced
adaptive potential to climate-induced change [5]. In estuaries, channel deepening, weir construction,
subsidence by ground water extraction and wetland reclamation have altered local bathymetry and
significantly changed the hydrodynamics. There have been major implications for shifts in sediment
transport/trapping, salinity intrusion, water quality and ecosystem properties [18].
4. Solutions and ways forward: meeting the challenge
Interest in the application of nature-based solutions to maintain ecosystem services and mitigate the effects
of climate change in support of coastalmanagement challenges is strong. However, the ability to implement
such strategies is hampered by the lack of understanding of coupled biological–physical dynamics in
littoral, intertidal and subtidal environments [2]. These shortcomings become magnified when trying to
predict future biological–physical linkages under new modes of near-future environmental forcing that
also require the consideration of concomitant changes in the relative abundance and diversity of
functionally important species [19].

It is clear that there is a need to supplant compartmentalism in expertise and promote interdisciplinary
solutions, including the use of languages that talk across the environmental disciplines. First, within this
broad framework, coastal science needs to better mine existing datasets (e.g. using machine learning),
identify and prioritize observations and monitoring to calibrate existing models, and develop new
parametrizations of key bio-physical interaction processes. Second, more thoughts could usefully be
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given to early warning systems, indicators and/or observation networks across key habitats/locations and
time scales (including monitoring, which is often curtailed as it is viewed as low priority) to establish
the spatio-temporal variations of biological–physical interactions. Third, interventions to reverse the
degradation and loss of coastal habitats—such as the managed realignment of low-lying shorelines—
should be seen as experimental opportunities in which to learn more about how the biological–physical
system works. Thus, for example, modelling of emergent wetland habitats following natural/artificial
breaching of coastal defences points to the importance of the interactions between bed elevation (and its
control of hydroperiod), hydrodynamics (in terms of both inputs (inlet morphodynamics) and outputs
(drainage channel networks)) and sediment erosion/deposition, and also the role of vegetation cover
and root depth/structure [20]. As the outcomes of these experiments emerge, it will be important to
merge such interdisciplinary information with theory, observation, experiments and replication across
systems, so as to establish generality and provide opportunity to minimize the time lag from theory
through to evidence-based adoption in practice [21].

The better understanding and more accurate predictions of coupled biological–physical systems have
important implications for the maintenance of biodiversity and natural capital and the delivery of
ecosystem services, with follow-on benefits and dis-benefits to human livelihoods and well-being. As
competing socio-economic and policy demands complicate any decision-making process, we recognize
that there is a requirement to probabilistically determine the likelihood and contribution of non-
biological–physical variables known to influence coastal dynamics, including anthropogenic feedback
loops and trade-offs, to support and feed into the decision-making process. It is well within the
potential of the coastal science community—including relevant academia, industry, government and
non-government organizations—to deliver these returns if the research framework outlined here can
be put in place.
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