
Nature | www.nature.com | 1

Article

Global climate-change trends detected in 
indicators of ocean ecology

B. B. Cael1 ✉, Kelsey Bisson2, Emmanuel Boss3, Stephanie Dutkiewicz4 & Stephanie Henson1

Strong natural variability has been thought to mask possible climate-change-driven 
trends in phytoplankton populations from Earth-observing satellites. More than  
30 years of continuous data were thought to be needed to detect a trend driven by 
climate change1. Here we show that climate-change trends emerge more rapidly in 
ocean colour (remote-sensing reflectance, Rrs), because Rrs is multivariate and some 
wavebands have low interannual variability. We analyse a 20-year Rrs time series from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua 
satellite, and find significant trends in Rrs for 56% of the global surface ocean, mainly 
equatorward of 40°. The climate-change signal in Rrs emerges after 20 years in similar 
regions covering a similar fraction of the ocean in a state-of-the-art ecosystem model2, 
which suggests that our observed trends indicate shifts in ocean colour—and, by 
extension, in surface-ocean ecosystems—that are driven by climate change. On the 
whole, low-latitude oceans have become greener in the past 20 years.

Climate change is causing alterations in marine ecosystems, and 
is expected to increasingly cause such changes in the future3. 
Surface-ocean ecosystems cover 70% of Earth’s surface and are 
responsible for approximately half of global primary production4. 
Such communities are known to be changing at specific locations for 
which long-term data are available5,6. Detecting climate-change-driven 
trends in ocean ecosystems on a global scale, however, is challenging 
because of the difficulties of making oceanographic measurements at 
sufficiently large spatial and long temporal scales.

Satellite remote sensing is the only means to obtain time series of 
marine ecosystems on a global scale, because it is the only way to obtain 
measurements at the required scales. Ocean-colour satellites, which 
measure the amount of light radiating from the ocean and atmos-
phere from Earth’s surface, have been collecting global measure-
ments for decades. A great deal of research has focused on detecting 
long-term trends in ocean-colour data, particularly in chlorophyll a 
(Chl) and primary productivity over large regions7–11. However, several  
studies1,2,12 have found that more than 30 years of data are required to 
detect climate-change-driven trends in satellite-derived Chl (μg l−1), 
the most frequently used product derived from ocean colour, even on 
regional scales. Chl provides information on the abundance of phyto-
plankton (the photosynthesizing microscopic organisms in the ocean), 
and can be estimated from empirically derived ratios and/or differ-
ences of ocean-colour Rrs (ref. 13). Because no single satellite mission 
has lasted a sufficient duration, and the intercalibration of merged 
multi-satellite products for robust, quantitative trend detection is 
challenging12,14–17, it has not so far been possible to determine for a given 
location whether Chl is changing with climate. Advances in statistical 
methods have allowed the detection of trends in large-scale regional Chl 
averages18, but it is difficult to distinguish for a given location whether 
Chl is or is not changing, and to determine whether any trends can be 
attributed to climate change.

That said, the MODIS sensor aboard the Aqua satellite (hereafter, 
MODIS-Aqua) has far surpassed its originally planned mission duration 
of 6 years, having just completed 20 full years collecting high-quality 
global ocean-colour data. The key variable provided by MODIS-Aqua 
(and any ocean-colour sensor) is Rrs, which is the ratio of water-leaving 
radiance to downward irradiance incident on the ocean surface. Rrs is 
derived from MODIS-Aqua measurements in several wavebands within 
the visible spectrum, from 412 nm in the blue part of the spectrum to 
678 nm in the red. Similarly to Chl, Rrs is an indicator of the state of the 
surface-ocean microbial ecosystem; Rrs is therefore considered an 
‘essential climate variable’ by the Global Climate Observing System. 
Again similarly to Chl, trends in Rrs are not trivial to interpret ecologi-
cally or biogeochemically19–23 (Supplementary Information), but do 
reflect changes in surface-ocean ecology. There are persistent uncer-
tainties in converting Rrs to Chl and other ecosystem properties such 
as phytoplankton carbon. Nonetheless, as Rrs does encode combined 
information about surface ecosystems and dissolved and particulate 
organic matter, any trend in Rrs reveals notable changes in the com-
ponents of surface-ocean ecology and biogeochemistry with optical 
signatures. Furthermore, any change in Rrs corresponds to changes in 
the light environment itself, which will affect phytoplankton and thus 
ultimately lead to ecosystem changes.

Time-series data are the best way to identify long-term changes in 
an ecosystem24. Ocean-colour sensors are known to perform quite dif-
ferently to each other—even copies of the same sensor on a different 
satellite platform16. Thus, the 20-year MODIS-Aqua record, as the long-
est single-sensor time series, constitutes a unique dataset. This dataset 
presents an opportunity to revisit the possibility of detecting trends 
in ocean colour from satellite data and attributing them to climate 
change. The principal reasons one might expect this to be possible are, 
first, that Rrs is multivariate, being measured by MODIS-Aqua at several 
wavebands, whereas Chl is univariate, meaning that Rrs potentially 
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encapsulates a stronger signal than Chl (Extended Data Fig. 1); and, 
second, that some Rrs wavebands exhibit lower interannual variability 
than Chl (ref. 2), meaning that Rrs potentially has lower noise. In a model 
of complex global ocean ecosystems, climate-change-driven trends in 
Rrs have been shown to indicate changes in phytoplankton community 
structure and become distinguishable from natural variability more 
rapidly than trends in Chl (ref. 2). However, these multivariate advan-
tages may not be sufficient to permit the detection of trends because 
Rrs is known to be strongly correlated between different wavebands25, 
reducing the effective dimension of the measurement26, and autocor-
relation in Rrs may persist even at the annual timescale, reducing the 
effective sample size of a given Rrs time series. Solutions to both of these 
issues are possible, however. Multivariate regression allows the trends 
(and uncertainties in those trends) in multiple variables to be estimated 
simultaneously, while accounting for correlations between depend-
ent variables27. Methods also exist to account for autocorrelation in 
regression analysis, such as the Cochrane–Orcutt procedure28, which 
estimates and subtracts the autoregressive component. In essence, 
then, such a regression maximizes the signal (number of simultaneous 
variables) used to detect a trend while also minimizing the noise (inter-
annual variability in those variables) and accounting for correlations 
between variables and years.

Observations
To investigate possible trends in ocean colour, we performed such 
an autocorrelation-corrected multivariate regression on the first 20 
years of MODIS-Aqua ocean Rrs data, spanning July 2002–June 2022 
(Methods). We find significant trends, here defined as a signal-to-noise 
ratio (SNR) higher than two, in 56% of the ocean, primarily equator-
ward of 40° (Fig. 1; SNR > 2 corresponds to a confidence level around 
95%). By contrast, only a small fraction of this portion of the ocean 
has significant trends in Chl (12%, black stippling in Fig. 1), such that 
even if the black stippled areas in Fig. 1 are excluded, 44% of the total 
ocean area has a significant trend in the Rrs product of ocean colour. 
These results are insensitive to significance level or spatial resolu-
tion (Methods).

We also note that these trends are not associated with changes in 
sea surface temperature (SST (°C)). When the same analysis is per-
formed for MODIS-Aqua-based SST (Methods), we find significant Rrs 
trends in 58% of the ocean with a significant SST trend. Because 56% 
would be expected if Rrs trends were unrelated to SST trends, this sug-
gests that the detected changes in Rrs are not related to changes in SST. 
Instead, changes in Rrs might be due to other drivers, such as changing 
mixed-layer depth or upper-ocean stratification29. These drivers are 
known to affect plankton community structure and biomass, and are 
expected to change with climate, but are more difficult to detect trends 
in over shorter time periods (that is, 20 years) than SST because they 
are measured less precisely.

We thus find that a vast swathe of the ocean has a significant trend 
in Rrs, when considering many wavebands at the same time. Significant 
trends tend to occur in low-‘noise’ (that is, weak interannual variabil-
ity) subtropical and tropical regions, rather than high-‘signal’ regions 
(Extended Data Fig. 2). The likelihood of SNR exceeding 2 and a trend 
being detectable increases with decreasing noise levels, but does not 
increase with increasing signal levels. Significant trends are also nei-
ther spectrally narrow (that is, linked to any particular waveband) nor 
spectrally flat (that is, lacking a spectral signature) (Extended Data 
Figs. 3 and 4).

Model
A key question is whether the identified trends are driven by climate 
change. To test this, we performed the same analysis on MODIS-like 
Rrs data simulated by a numerical model of a complex global ocean 
ecosystem and associated biogeochemical cycles2,30. The model simu-
lates the changes to the marine ecosystem and optics over the course 
of the twenty-first century under a scenario of high greenhouse-gas 
emissions (Methods). By also considering a control simulation (that 
is, without perturbation from increased emissions), we can attribute 
changes to climate change. We analysed this model in terms of the time 
of emergence (ToE (years))31, which quantifies how long it takes for the 
climate-change-driven trend in a simulation with climate change (that 
is, a forced simulation) to emerge (with a SNR of 2) from the natural 
variability in a simulation without climate change (that is, a control 
simulation), both over the period 2000–2105. For the model Rrs, the 
ToE is 20 years or less in 46% of the ocean, a comparable fraction to the 
56% of the ocean for which we find a significant trend in MODIS-Aqua Rrs 
(Fig. 2a,b). The (area-weighted) median ToE across the entire model sur-
face ocean is 22 years. By comparison, the ToE is 20 years or less for less 
than 10% of the ocean for Chl2, underscoring that climate-change-driven 
trends in Rrs can emerge much faster than those for Chl, and on a similar 
timescale to the observational period investigated here. Given the 
coarse resolution of the model, it only crudely captures some of the 
features of the physical circulation in the ocean, such as narrow cur-
rent systems (for example, the Gulf Stream or equatorial currents). As 
such, direct comparisons of finer-scale features between model and 
satellite observations should be done with care. Nonetheless, similar 
broad regions in both cases are responsible for the significant trends 
after 20 years, notably the North Atlantic and the subtropical Pacific. 
Although this is, arguably, the only numerical model suitable for such 
investigations, which limits the strength of any attribution statement 
that can be made from it, the consistency in the overall extent and the 
general location of significant trends in the observations and emerged 
climate-change-driven trends in the model suggest that the observed 
trends are indeed driven by climate change. In the model, because 
changes in community structure emerge much faster than those of Chl 
or other optically relevant properties, the early emergence of Rrs trends 

2

4

8

S
N

R

16

Fig. 1 | Map of locations where the ocean-colour trend SNR is higher than 2 for a 20-year annual time series. The intensity of the purple colour indicates the 
SNR. Black stippling indicates regions with significant trends in Chl as well (12% of the ocean). MODIS-Aqua data from July 2002 to June 2022.
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is linked to phytoplankton community structure, which influences food 
webs, biogeochemical cycles and marine biodiversity.

Discussion
Changes to the surface-ocean ecosystem will affect Rrs (see idealized 
examples provided in the Supplementary Information). From these 
considerations, the changes in Rrs and the spatial patterns seen in 
Extended Data Fig. 3 are complex, likely to be multifaceted and defy 
simple description. In the broadest terms, increases in Rrs are more 
frequent than decreases, and increasingly so for intermediate wave-
lengths, suggesting that the ocean is on the whole becoming greener. 
This greening could result for instance from an increase in detrital 
particles, which would increase backscattering at all wavelengths and 
absorption at shorter wavelengths. However, it could also result from 
other possible ecosystem shifts, such as a simultaneous increase in 
zooplankton and coloured dissolved material. Nonetheless, and regard-
less of any comparison with model trends, the observed changes in Rrs 
will necessarily have ecological implications. Irrespective of which 
optical constituent(s) in the surface ecosystem changed to produce a 
trend in Rrs, any such optical change will alter the light environment. 
Because light is a key driver of phytoplankton communities, any change 
in the light environment—whether due to changes in in-water optical 
constituents or changes in light availability entering the ocean—will 
lead to a change in the surface-ocean ecosystem.

Altogether, these results suggest that the effects of climate change 
are already being felt in surface marine microbial ecosystems, but have 
not yet been detected because previous studies have considered Chl 
or other univariate approaches. Rrs facilitates the early detection of 
climate-change signals by integrating, and being sensitive to, changes in 
the properties of surface-ocean ecosystems. Rrs, and thus surface-ocean 
ecology, has changed significantly over a large fraction of the ocean in 
the past 20 years. The changes in Rrs that we have identified have poten-
tial implications both for the role of plankton in marine biogeochemical 
cycles and thus ocean carbon storage, and for plankton consumption 
by higher trophic levels and thus fisheries. Our findings therefore might 
be of relevance for ocean conservation and governance. For instance, 
knowledge of where the surface-ocean microbial ecosystem is chang-
ing might be useful for identifying regions of the open ocean in which 
to establish marine protected areas under the United Nations high 
seas treaty on the biodiversity of areas beyond national jurisdiction. 
The identified locations with changes in Rrs are consistent with where 
changes are expected in drivers such as upper-ocean stratification, 
but might be more easily detectable on the global scale—as we have 

done here—thanks to the multivariate and low-interannual-variability 
nature of Rrs. This highlights the value of long-term satellite missions 
like MODIS-Aqua and of space agencies maintaining missions for as 
long as is feasible. That significant trends occur primarily where inter-
annual variability is low means that a similar signal may be expected 
to emerge in other portions of the ocean in coming years, although 
the MODIS-Aqua mission is scheduled to end in the near future. Thus 
for future work, merged multi-satellite products, as well as work that 
is currently underway to improve them, are essential. Ongoing work32 
interpreting Rrs could shed light on what the trends found here indicate 
about precisely how surface-ocean ecology is changing33,34; we hope 
that the results presented here will spur further work to this end. Given 
the key role of plankton ecosystems in marine food webs, global bio-
geochemical cycles and carbon cycle–climate feedbacks, detecting 
change in these ecosystems is of great utility.
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Fig. 2 | The modelled Rrs ToE of 20 years or less is similar to the location  
and extent of the observed 20-year data where SNR is higher than 2.  
a, Cumulative distribution function of the ToE of the ocean-colour trend in  
the model simulation. The orange point indicates the fraction of the total 
surface-ocean area with a significant trend in the 20-year MODIS-Aqua time 
series. Compare this with Fig. 10 in ref. 2, which shows less than 10% of the 

ocean with an emerged Chl trend after 20 years. b, Map of the ToE in the model 
simulation (median = 22 years). Grid cells are coloured by percentile, with white 
at 20 years, such that all white and red grid cells have a ToE of 20 years or less, 
and all blue grid cells have a ToE of more than 20 years. Grey grid cells do not 
have significant Rrs trends over the twenty-first century. See ref. 2 for a similar 
plot for Chl.
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Methods

We generated a 20-year annual time series of MODIS-Aqua Rrs and Chl by 
extracting the monthly level-3, 4-km Rrs and Chl values from July 2002 
to June 2022 from https://oceancolor.gsfc.nasa.gov/l3/. We use the first 
240 months of the standard monthly 9-km MODIS-Aqua 7 ocean wave-
bands of Rrs, centred at 412 nm, 443 nm, 488 nm, 531 nm, 547 nm, 667 nm 
and 678 nm (https://modis.gsfc.nasa.gov/about/specifications.php). 
The 2022 reprocessing of Rrs and Chl was used, which reduces atmos-
pheric correction errors and, crucially, minimizes any instrumental drift 
through updated sensor calibrations. Monthly data were aggregated 
into years each beginning in July, and data were averaged spatially to 
2° resolution, resulting in a 90-by-180-by-20-by-7 array (respectively  
latitude, longitude, year and waveband), and a 90-by-180-by-20 array for 
Chl. Years beginning in July were used because the earliest MODIS-Aqua 
output available is from July 2002, so our dataset represents the first 
20 years of MODIS-Aqua data. Regression is performed on annual data 
because performing a regression on monthly data would provide neg-
ligible benefit in terms of distinguishing a multidecadal trend, while 
coming at the cost of having to estimate additional parameters to rep-
resent the seasonal cycle and while imposing additional assumptions 
about the annual cycle. MODIS-Aqua was selected because it is now 
a 20-year record, the longest single-satellite Rrs product available at 
present. Merged products were not considered because although they 
incorporate additional data and reduce the risk of possible sensor deg-
radation issues, there are known issues with satellite intercalibration 
that are challenging to deal with quantitatively in detecting significant 
trends over time12,14–16. MODIS-Aqua also provides a daytime SST (°C) 
product, for which we generated a comparable time series (that is, 20 
July–June years at 2° spatial resolution).

For each 2°-by-2° grid cell, we then performed a multivariate regres-
sion of Rrs versus time. All analyses were performed in MATLAB 2021b. 
In essence, we calculate the trend, represented by a vector b, in the 
seven-dimensional Rrs space, while accounting for correlations between 
years and wavelengths. The uncertainties in the trends are the result of 
interannual variability, and are represented by a covariance matrix C.  
The off-diagonal elements of this matrix correspond to the covari-
ance of uncertainties in the trends of different wavelengths, because 
if two wavelengths are correlated, the uncertainties in their trends 
will also be correlated. Before performing the regression, the serial 
autocorrelation in the signal was removed using the Cochrane–Orcutt 
procedure28. This works by iteratively estimating then subtracting the 
autocorrelated component of a signal until the autocorrelation is not 
statistically significant. For locations with significant autocorrelation 
(42% of grid cells), one iteration was applied, and then a second itera-
tion was applied for grid cells whose autocorrelation continued to be 
significant (8% of grid cells). No more than two iterations were applied 
to any grid cell because 1% of grid cells had significant autocorrela-
tion at the 5% level after the application of zero-to-two iterations. Our 
conclusions are not affected by this choice; for instance, applying one 
iteration to all grid cells equally yielded a negligible difference. The 
same approach is applied to the Chl time series. We then calculate the 
SNR in each case according to
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where b is the vector of trend estimates for each waveband and C is the 
variance-covariance matrix of b. In other words, SNR is the magnitude 
of the multivariate trend vector (see Extended Data Fig. 1), divided 
by the projection along this vector of the multivariate uncertainty 
of this multivariate trend. This is analogous to a z-score, or the num-
ber of standard uncertainties away from zero that a slope of a linear 

regression is in one-dimensional ordinary least squares regression.  
The only differences here are (i) we remove the autocorrelated compo-
nent of each signal before performing the regression; and (ii) we have 
multiple dependent and correlated variables, so our trend is a vector 
rather than a scalar, and our uncertainty in that vector is a matrix owing 
to the correlations between the dependent variables, so we need to 
project that uncertainty matrix along that trend vector to get the ratio 
of the trend’s magnitude to its uncertainty.

For Chl, that is, the univariate case, this reduces to b CSNR = / , where  
b is the magnitude of the trend and C is the uncertainty of this trend. 
Note that uncertainty in these trends is effectively entirely due to 
interannual variability; a 2° × 2° annual measurement represents the 
aggregation of a vast amount of data, so by the law of large numbers 
there is negligible uncertainty in the sample average, and therefore 
trend uncertainty is dominated by interannual variability and the 
statistical method described above is justified. (For future work on 
small spatial scales, considering the uncertainty in the average of small 
numbers of data points might be important for robust uncertainty 
quantification). When computing fractions of the ocean with a sig-
nificant trend, we account for the difference in surface area of differ-
ent grid cells. We use the standard SNR = 2 as a threshold because this 
corresponds to a significance level of around 95% (strictly, 95.45%). 
Our conclusions are not sensitive to this choice: for a SNR ≥ 1.645, 
corresponding to a 90% confidence level, we find significant Rrs trends 
over 63% of the ocean (of which 19% has a Chl trend), whereas for a 
SNR = 2.576, corresponding to a 99% confidence level, we find sig-
nificant Rrs trends over 47% of the ocean (of which 5% has a Chl trend). 
Note that our results are also not sensitive to the choice of spatial 
resolution; if we use a 1° or 4° resolution, we still find a significant Rrs 
(Chl) trend in 56% (12%) of the ocean using a SNR = 2 threshold. (We 
report all values to two significant digits because the third significant 
digit is resolution-dependent.) Similarly, our results with respect to 
SST are not sensitive to choice of SST product; when using the 
COBE-SST product35, we find the same lack of relatedness between 
SST and Rrs trends, with 59% of locations with significant SST trends 
having significant Rrs trends (56% expected if they are perfectly unre-
lated; cf. 58% with MODIS-Aqua SST).

For Extended Data Fig. 3 we performed the same procedure as above 
for each individual MODIS-Aqua waveband of Rrs. Extended Data Fig. 4 
is identical to Extended Data Fig. 3 but with locations where SNR < 2 
for all wavebands removed, to show that individual wavebands have 
significant trends in small and overlapping regions, underscoring 
that the detected trends are due to the multivariate nature of Rrs and 
not associated with any individual waveband. We also performed this 
analysis for SST to compute the overlap between significant trends in 
Rrs and SST as described in the main text.

The biogeochemical model is the same as that used in a previ-
ous study2. Model output was taken from https://doi.org/10.7910/
DVN/08OJUV. This is a complex ocean ecosystem and biogeochemistry 
model, resolving the major elemental cycles and eight types of phyto-
plankton. The ecosystem and biogeochemical cycles are forced with 
output from an earth system model of intermediate complexity36. From 
an 1860 spin-up, two simulations are performed: one is a control simula-
tion run with constant 1860 concentrations of greenhouse gases, and 
a second is run with a high-emissions scenario with increasing concen-
trations of greenhouse gases (similar to Representative Concentration 
Pathway 8.5). Thus, the differences between the simulations indicate 
anthropogenically driven climate change. Each simulation is run for 
250 years, nominally 1860 to 2110, and the analysis described here was 
performed on the last 106 years (that is, nominally from 2000 to 2105). 
The model resolves radiative transfer as described previously30 to gen-
erate Rrs at 25-nm resolution from 400–700 nm. We refer to previous 
work2,30 and references therein for further details and model valida-
tion. We linearly interpolate model Rrs to the MODIS-Aqua spectral 
waveband peaks (412, 443, 469, 488, 531, 547, 555, 645, 667 and 678 nm). 

https://oceancolor.gsfc.nasa.gov/l3/
https://modis.gsfc.nasa.gov/about/specifications.php
https://doi.org/10.7910/DVN/08OJUV
https://doi.org/10.7910/DVN/08OJUV
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Linearly interpolating the spectra to 1-nm resolution and convolving 
with the MODIS-Aqua spectral response functions did not affect the 
result. The model’s spatial resolution is 2° by 2.5° with 22 vertical layers. 
The ocean physics shows a realistic year-to-year variability in surface 
temperature and produces interannual variability (for example,the  
El Niño–Southern Oscillation) with frequency, seasonality, magnitude 
and patterns in general agreement with observations. Because of the 
high computational demand of this model, we use a single climate 
simulation from an ensemble of perturbed physics, perturbed initial 
conditions and varied emissions scenarios, with a medium effective 
climate sensitivity of approximately 3.0 °C (ref. 36). The control simula-
tion showed that there were no significant drifts in the ecological or 
optical properties discussed here.

Using this model, we perform the same multivariate regression as 
above. Note that we perform this regression on the full model time 
series, rather than the first 20 years, because the utility of the model 
for our study is to test whether it is possible for climate-change-driven 
Rrs trends to emerge from interannual variability faster than Chl trends, 
and over a similar timescale to the period for which we have observa-
tions. We then calculate, following previous work2, the ToE for each 
grid cell according to ToE = 2 × (standard deviation)/(trend), where 
the standard deviation is that of the annual means at any grid location 
in the control run and the trend is that of the full forced simulation. 
Calculating and removing any drift in the control simulation negligibly 
affected this calculation.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Remote-sensing data are available from https://oceancolor.gsfc.nasa.
gov/l3; the specific data product names are the first 240 months of the 

monthly 9-km standard MODIS-Aqua Rrs at 412, 443, 488, 531, 547, 667, 
and 678 nm. Model outputs are available from https://doi.org/10.7910/
DVN/08OJUV.

Code availability
Code (in MATLAB 2021b) is available at https://doi.org/10.5281/
zenodo.4441150.
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36. Monier, E., Scott, J. R., Sokolov, A. P., Forest, C. E. & Schlosser, C. An integrated 
assessment modeling framework for uncertainty studies in global and regional climate 
change: the MIT IGSM-CAM (version 1.0). Geosci. Model Dev. 6, 2063–2085 (2013).
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Extended Data Fig. 1 | Schematic to illustrate multivariate trend detection. 
Here a two-dimensional case is shown. Teal and purple points and error bars 
indicate estimates and uncertainties (for example, 2 − σ if SNR ≥ 2 is of interest) 
of trends in two different variables, β1 and β2. Black point and orange ellipse 
indicate estimate and uncertainty in the two-dimensional variable β = (β1, β2). 

Dotted arrow indicates correlation (ρ) between uncertainties of estimates in 
each variable, which determines the angle made by the ellipse. In this graphical 
illustration, estimated trends in β1 and β2 are not significant, but the estimated 
trend in β is, because the orange ellipse does not contain the origin, but the 
purple and teal error bars cross through the x-axis and the y-axis, respectively.
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Extended Data Fig. 2 | SNR > 2 regions are low noise, not high signal.  
Scatter plot of the fraction of grid cells with SNR > 2 versus the percentile of 
grid cell ‘signal’ (the magnitude of the trend, empty green points) and ‘noise’ 
(the uncertainty in the trend, filled orange points). Lower-‘noise’ regions more 

often have SNR > 2, whereas high-‘signal’ regions more often have SNR < 2, 
indicating that places with significant trends are those with the lowest trend 
uncertainty, owing to low interannual variability, rather than because they have 
the strongest trends.



Extended Data Fig. 3 | SNR changes are spectrally broad and variable. Maps of the SNR of univariate regressions of each wavelength, Chl and SST, with 
Cochrane–Orcutt procedure applied. Blue or red indicate a negative or a positive trend, respectively, and the intensity of colour indicates SNR.
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Extended Data Fig. 4 | SNR > 2 changes are spectrally broad and variable. Same as Extended Data Fig. 3 but in which only locations with SNR > 2 are coloured.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
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Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection No software was used for data collection.

Data analysis Matlab 2021b was used for data analysis. Code is available at doi:10.5281/zenodo.4441150.
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Remote sensing data area available from https://oceancolor.gsfc.nasa.gov/l3; the specific data product names are the first 240 months of the Monthly 9km 
Standard MODIS-Aqua Remote sensing reflectance at 412/443/488/531/547/667/678nm. Model outputs are available from https://doi.org/10.7910/DVN/08OJUV.



2

nature portfolio  |  reporting sum
m

ary
April 2023

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We analyzed the MODIS-Aqua satellite's remote sensing reflectance data for 20-year trends. We found significant trends over much 
of the ocean. The location and extent of these trends corresponds closely with the forced trends in the first 20-years of a simulation 
with a complex ecosystem model, indicating that these trends may be due to climate change.

Research sample The data used here are remote sensing reflectance from NASA's MODIS-Aqua satellite, over the first 20 full years of its mission. These 
are chosen because this is the longest ocean color satellite mission and therefore most suitable for our research question 
investigating climatic trends.

Sampling strategy Data were measured by NASA's MODIS-Aqua satellite.

Data collection Data were taken from NASA's ocean color website and coarsened to 2° spatial resolution according to standard methods.

Timing and spatial scale Data are global (over the ocean) in spatial extent and span from July 2002 – June 2022 at monthly resolution in time.

Data exclusions No data were excluded.

Reproducibility No experiments were conducted.

Randomization Randomization was not relevant as data are spatially explicit and analyzed at 2° resolution.

Blinding Blinding was not relevant as we were investigating trends in global satellite records.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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