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Abstract
Grasslands play an important role in global food security. However, there are increasing 
pressures to improve the sustainability of ruminant farming. Precision nutrient manage-
ment tools (e.g., proximal soil sensors for soil mapping) offer opportunities to improve 
nutrient use efficiency through spatially-variable nutrient application rate maps. Despite 
little research validating these technologies on grasslands, commercial companies promote 
these technologies to grassland farmers. In this study, the accuracy of commercial com-
panies offering these services was evaluated by comparing soil pH, P, K, Mg and SOM 
measurements derived from conventional soil sampling and laboratory analyses to meas-
urements derived from the commercial operators, across a range of soils that are typical 
found in UK grasslands. Results showed that soil mapping services utilising gamma-ray 
spectroscopy (GRS) were not sufficiently accurate to predict soil pH, P, K and Mg on 
grasslands, and subsequently inappropriate for nutrient management planning for vari-
able rate lime and nutrient application. Conversely, both GRS and visible-near infrared 
spectroscopy (Vis–NIR) accurately predicted between-field SOM variations in grassland 
soils but not within-field variation. This study emphasises the need for further research to 
explore the limitations of, and opportunities for, the universal application of these tech-
nologies across different soil types and/or land uses before their commercial application. 
It is therefore highly recommended that commercially-available soil mapping services are 
subject to certification, similar to centralised soil testing laboratories, to ensure data are 
accurate for soil management interpretation. The lack of reliability of such systems risks 
farmers’ confidence in the value of soil mapping, which could severely hinder future adop-
tion of potentially valuable technologies.
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Introduction

Globally, there is increasing pressure on the agricultural sector to adopt good soil man-
agement practices to improve sustainability. These include the maintenance of soil struc-
ture by enhancing soil organic matter (SOM) content, avoidance of soil compaction and 
overworking, promoting soil biodiversity, minimizing water runoff and improving nutrient 
use efficiency (Bronick & Lal, 2005; Goulding et al., 2008). Most approaches for monitor-
ing changes in SOM status (AHDB, 2018) and improving on-farm nutrient use efficiency 
through nutrient management planning (AHDB, 2020) rely on conventional soil testing. 
Typically, this involves the analysis of bulked samples from multiple sites across a field 
to measure SOM and a range of soil quality metrics. The quality metrics measured are 
referred to as standard soil pH and index tests (e.g., P, K & Mg indices), which are glob-
ally recognised and utilised in various guidelines in the UK (AHDB, 2020; Farm Advisory 
Service, 2019), Ireland (Wall & Plunkett, 2021), New Zealand (Fertiliser Association of 
New Zealand, 2018) and several states in the US (e.g. University of Wisconsin- Extension, 
2013). Test results are then used to determine the necessary lime application rates, inor-
ganic fertiliser (P, K, Mg and S) and/or organic inputs (animal manure and/or slurry) for 
optimal plant/crop growth to minimise losses to the environment (e.g., N loss to leaching).

Whilst conventional soil testing remains the most accurate method for measuring these 
soil variables, it can be laborious, and can only provide limited information on spatial and 
temporal variability. In terms of management, this can result in areas within fields being 
over-fertilised, with a risk for nutrient losses to the environment, or areas of fields being 
under-fertilised, resulting in sub-optimal yields (Bönecke et al., 2021; Maleki et al., 2008). 
Improving nutrient use efficiency requires full capture of the intrinsic spatial and tempo-
ral variability in soil properties within a field, which often requires zonation of fields and 
a large number of samples to be taken (ca. 50–100  ha−1; Kerry & Oliver, 2007); which 
is neither time- or cost-effective. To address these issues, precision nutrient management 
tools (e.g., proximal soil sensors) have been developed to map soil properties at high spa-
tial resolutions. Proximal soil sensors, defined as field-based sensors in close proximity to 
the ground (Rossel et al., 2011; Vereecken et al., 2016), use a wide range of measurement 
methods, including electrical and electromagnetic, optical and radiometric, mechanical, 
acoustic, pneumatic and electrochemical technologies (Adamchuk et al., 2004). These data 
are then processed with algorithms based on prior calibrations to compute estimates of a 
wide range of soil properties, including SOM (Shi et  al., 2015), pH (Wang et  al., 2015; 
Wenjun et al., 2014), heavy metals (Kalnicky & Singhvi, 2001), soil texture (Rossel et al., 
2009) and nitrate (Jones et al., 2018). Results can then be used to determine spatially vari-
able organic/inorganic fertiliser (Kassim et al., 2021) and lime application rates (Bönecke 
et al., 2021), which can improve agricultural nutrient use efficiency and reduce the risk of 
nutrient losses to the environment. However, this is only possible if the data collected are 
accurate, sufficiently precise and provide estimates of the target variable (e.g. soil pH) that 
are precise enough to underpin spatially variable management application rates (e.g., lime 
application to correct soil pH).

Methods used to provide soil mapping services that have been commercialised and intro-
duced to agricultural practices through agribusinesses include visible and near-infrared spec-
troscopy (Vis–NIR) and gamma-ray spectroscopy (GRS). Vis–NIR methods use light sensors 
in the visible near infrared to quantify the reflectance from the soil to correlate with various 
soil geochemical properties (Stenberg et al., 2010) (e.g. SOM), whilst GRS correlates spectral 
features recorded as naturally emitted gamma radiation from the soil (Reinhardt & Herrmann, 
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2019). Unfortunately, their universal use on different soil types and/or agricultural land uses 
can be limited because of factors that interfere with these proximal measurements, which are 
also poorly understood. This is because the relationships between the directly measured vari-
ables (e.g. gamma ray emissions) and soil properties of interest are indirect, and depend on 
associate variables in ways which may differ between sites, soil types and land uses. For exam-
ple, GRS and Vis–NIR measurements can be strongly influenced by soil surface characteris-
tics, mineralogy and chemical properties (Dierke & Werban, 2013; Reinhardt & Herrmann, 
2019). The situations in which the algorithms are calibrated determines in what specific set-
tings it can be accurately applied (e.g. soil type) (Visser et al., 2021). Due to the limited eval-
uation of their universal application in the literature, little is known as to whether they are 
appropriate for soil mapping on less studied soil types and/or land uses such as grasslands.

These commercial products typically involve the use of electromagnetic induction (EMI), 
visible and near-infrared spectroscopy (Vis–NIR) or gamma-ray spectroscopy (GRS) for 
mapping soil properties alongside global navigation satellite systems (GNSS) positioning for 
mapping landscape features (e.g. slopes). Such soil mapping systems are widely promoted to 
grassland farmers, despite a lack of validation of their accuracy compared to other farming 
systems, such as arable and vegetable production (Higgins et al., 2019). This results in a level 
of uncertainty, particularly as there might be greater spatial and temporal variability in soil 
nutrients in grasslands compared to arable systems due to differences in climate (e.g., grass-
lands are typically in areas of higher rainfall), landscape (e.g. steeper slopes), excreta returned 
to the soil from grazing animals (van der Weerden et al., 2020) and selective grazing behav-
iours (Parsons et al., 1991). Further concerns include the lack of commercial regulations to 
ensure reliable and accurate data are provided by soil mapping agribusinesses; particularly as 
commercial soil testing laboratories, that offer the same services without the spatial attribu-
tion, require mandatory ISO accreditation (ISO/IEC 2017). There is also increasing evidence 
to suggest that combining different proximal soil technologies (e.g., GRS, electrical conduc-
tivity and Vis–NIR) significantly improves prediction accuracy, with the potential for more 
universal application (Ji et al., 2019; Vasques et al., 2020), yet many agribusinesses do not 
take this multi-sensor approach.

To the authors’ knowledge, there are no studies to date that have evaluated whether com-
mercially operated soil mapping services provide accurate soil data and variable input rates 
derived from the data to end users (e.g. farmers). In light of this, by comparing soil pH, P, K, 
Mg and SOM measurements derived from conventional soil sampling and laboratory analyses 
to measurements derived from commercial operators, across a range of soils that are typically 
found in UK grasslands, the following objectives were addressed:

(1) Evaluate the accuracy of commercially-available GRS technology for soil index testing 
at high spatial resolutions on grasslands,

(2) Validate the appropriateness for these commercially-available GRS technologies to cal-
culate variable rates for inputs of lime, inorganic fertiliser (P and K) and/or organic resources 
(animal manure and/or slurry), and.

(3) Evaluate the accuracy for commercially-available visible and near-infrared spectros-
copy and GRS technologies to estimate SOM for soil quality monitoring.
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Materials and methods

Study site and sampling fields

The study was carried out across three contrasting grassland fields on a commercial farm 
located at Bangor University’s Henfaes Research Centre (53°14′13.2″N, 4°00′58.3″W) 
in Abergwyngregyn, Wales, UK (Fig. 1). The three grassland fields were chosen to rep-
resent a range of management intensities (e.g., low and medium) and grassland loca-
tions (e.g., upland and lowland) to reflect much of the grasslands used for livestock 
farming across the UK. Differences in management inputs and grazing intensities for 
each are described in Table 1.

Fig. 1   Field and soil sampling locations. Points refer to where physical soil samples were collected (n = 95 
for LL, n = 51 for ML and n = 79 for LUp). Colours differentiate between the fields in which samples were 
collected

Table 1   Field code names, management intensity, location, grazing intensity and nutrient management 
description

No lime was applied to any of the fields. *Grazing intensities are presented in livestock units per hectare 
(LSU ha−1). Conversions followed standard UK format (Welsh Government, 2019)

Field code Management 
intensity

Field location Grazing 
intensity
(LSU* ha−1)

Fertiliser application
(kg ha−1 yr−1)

N P K

Low-Lowland (LL) Low Lowland 1.1 – – –
Medium-Lowland (ML) Medium Lowland 1.6 50 10 10
Low-Upland (LUp) Low Upland 0.8 – – –
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Low management intensity lowland pasture/field (LL)

A lowland field with Eutric Cambisol soils, a mean elevation of 3.8  m (ranging 
2.89–7.0 m) and mean slope of 3.4% (0.2–10.1%). The field is an old permanent pas-
ture (> 25 y), subject to seasonal saline ingression and surface flooding during winter 
months. It has been managed since January 2014 under an agri-environment scheme 
(Welsh Government, 2019) which prohibits application of inorganic fertilisers, slurry 
and lime (Table 1). Some grassland management operations have taken place such as 
topping / cutting rushes. Grazing intensity (Table 1) has been regulated by the require-
ment to maintain specified sward height ranges during defined periods of the year, 
whereby > 20% of the sward must be less than 70 mm in height and > 20% of the sward 
must be greater than 70 mm during the period 31st July to 15th March (Welsh Govern-
ment, 2019).

Medium management intensity lowland pasture/field (ML)

A lowland field with Eutric Cambisol soils, a mean elevation of 5.6 m (3.9–7.7 m) and 
mean slope of 2.1% (0.6–3.5%). The grass received 160 kg of N ha−1 annum until 2004. 
Since 2004, a more extensive management has been implemented (Table 1).

Low management intensity upland pasture (LUp)

This land parcel forms part of a unit of enclosed upland grassland with Haplic Podzol 
soils, a mean elevation of 334 m (322–348 m) and mean slope of 27.6% (7.6–35.3%). 
Like many areas of upland Wales, the field was agriculturally improved in the 1950s, 
though routine applications of fertiliser and lime were halted in 1985. After 15 years of 
no inputs, the parcel was included in an agri-environment scheme option (Welsh Gov-
ernment, 2019) that focused on conversion of semi-improved grassland to unimproved. 
This involved taking a crop of hay for the initial 3 years of the agreement (2000–2003) 
with no application of organic/inorganic fertilisers or lime and very low stocking rates 
(Table 1).

Gamma‑ray soil scanning survey

All study fields were scanned with a commercially-available Gamma-ray sensor that 
was installed 0.5 m above the ground on a four wheel drive vehicle. The scanner meas-
ures the decay of natural radioisotopes of uranium (238U), caesium (137Cs), thorium 
(232Th) and potassium (40 K). Measurements were recorded at a rate of 800 data points 
ha−1 by controlling the travel speed, see Fig. S1 for set up. A minimum of four physical 
soil samples (0–100 mm depth) per 10 ha were collected, analysed and utilised for site-
specific calibration. Sample locations were determined through neighbouring search 
analysis to ensure samples represented maximum spatial variability. Raw gamma-ray 
data processing for soil pH, P, K, Mg and SOM estimations were made by the agri-tech 
business; information on this process was not provided due to commercial sensitivity.
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Visible and near‑infrared spectroscopy soil scanning survey

Study fields, except for the LUp, were scanned with an optical module with 660  nm 
red and 940 nm near-infrared wavelengths to estimate SOM. The module was mounted 
between two discs that form a V-shaped slot in the soil which allow for data to be col-
lected approximately 40  mm below the soil surface on 15–20  m transects. Approxi-
mately 180–240 optical data points ha−1 were collected across two of the fields by con-
trolling the travel speed. For further detail on methodology, please refer to Kweon et al. 
(2013). LUp was not scanned due to the rocky terrain which would have damaged the 
module. Data were processed by the agri-tech business; information on this process was 
not provided due to commercial sensitivity.

Soil sampling

To validate the results of scanning against manually collected soil samples, a total of 
225 soil samples were taken across the three study fields (Fig. 1). Ninety percent of the 
sample locations were allocated according to a spatial coverage design which aims to 
minimise the distance between a random location in the field and the nearest sample 
point (Walvoort et al., 2010). This was a suitable sampling design to ensure good cov-
erage of the study area, and to support spatial mapping of measured soil properties by 
the best-linear unbiased predictor from a spatial linear model. The coverage design was 
implemented by the k-means method as encoded in the spcosa package for the R plat-
form (R Core Team, 2019; Walvoort et al., 2010), with the total sample effort divided 
between the fields, to give a uniform sampling density. The distribution of sample 
points is shown in Fig.  1 (mean distance between each sample and its nearest neigh-
bour = 21.8 m, min = 21.7 m and max = 22.1 m). The remaining 10% of sampling loca-
tions were randomly allocated 1 m away from a random subset of the 90% of samples 
allocated (Fig.  1). These are referred to as ‘close pairs’ and help support estimations 
of spatial covariance parameters (Lark & Marchant, 2018). At each location, soil sam-
ples were collected to a depth of 75 mm, in line with national agronomic soil sampling 
guidelines for grasslands as outlined in the UK fertiliser manual, RB209 (AHDB, 2020).

Soil analysis

Soil samples were homogenised by hand prior to analysis, removing vegetation and 
stones. Soil moisture was calculated as the percentage mass loss after oven drying 
(105 °C, 24 h). SOM was calculated through loss-on-ignition at 550 °C for 3 h (Hoog-
steen et  al., 2015). A subsample of each sample was sent to NRM Laboratories Ltd., 
Bracknell, UK (division of Cawood Scientific Ltd.), the largest commercial labora-
tory for agronomic soil analysis in the UK. The laboratories hold ISO/IEC accredita-
tion (ISO/IEC 2017) from UKAS (Staines-upon-Thames, UK). Samples were sent for 
standardised soil agronomic analysis (AHDB, 2020) as recommended by UK nutrient 
management guidelines (AHDB, 2020). Measurements included soil pH and soil indices 
P (Olsen P method, Hislop & Cooke, 1968), Mg and K (ammonium nitrate soil extract, 
BS:3882:2007, British Standards Institute, London, 2007).
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Statistical analyses

For each validation sampling point, the nearest neighbouring point from the GRS and Vis-
ible and near-infrared spectroscopy soil scanning points were determined using the nn2 
function in the RANN package for the R platform (Arya et al., 2019). Exploratory statistics 
were computed for the measured soil properties and for the extracted predictions at the 
nearest neighbouring point on the prediction grid. In no case did this analysis show outly-
ing observations, and in no case were the data skewed to the extent that a transformation 
would normally be required (Webster & Lark, 2019). A plot of the predicted values against 
the measured values was also produced for each variable. A classified post plot was pro-
duced for the predicted and measured values. This shows their spatial distribution with 
the quartiles of the data displayed in different colours to give an initial impression of the 
spatial variation.

Because the sample sites for soil measurement were not selected independently and at 
random, the standard design-based methods for their analysis could not be used (Lark & 
Cullis, 2004). For this reason, linear mixed models were used, firstly to estimate param-
eters of a “null” model for the soil measurements (in which the only fixed effect is a con-
stant mean), and secondly, to estimate parameters of a model in which the measured soil 
properties are treated as a linear function of the nearest-neighbouring predicted value. 
In both cases, the random effects comprised an independent and identically distributed 
between-field Gaussian random variable, a spatially-correlated within-field Gaussian ran-
dom variable of mean zero, and an exponential covariance function, and an independent 
and identically distributed within-field residual component. The parameters of the random 
effects were estimated in each case by residual maximum likelihood, and the fixed effects 
parameters (constant mean in the null model, and the intercept and regression coefficient 
for the second model) were then estimated by generalized least squares, along with stand-
ard errors, as described by Lark and Cullis (2004). The maximum likelihood estimates of 
the variance parameters were obtained by minimization of the negative residual log likeli-
hood, using the simplex algorithm of Nelder and Mead (1965) as encoded in the optim 
function in base R (R Core Team, 2019). Once the second model had been fitted, the null 
hypothesis that the true value of the fixed effect coefficient for the sensor-derived variable 
was zero (i.e., no relationship) was tested by computing the log-likelihood ratio statistic 
L. Because residual likelihoods are not comparable between models with different fixed 
effects structures, this was done following the method of Welham and Thompson (1997) as 
presented by Marchant et al. (2009) under which the null model is refitted with the projec-
tion matrix of the second model. Under the null hypothesis, L is asymptotically distributed 
as chi-squared with degrees of freedom equal to the number of additional fixed effects in 
the second model (1 here).

Soil management calculations

Lime application rates were calculated using the recommended nutrient management 
guidelines (AHDB, 2020). Calculations were based on soil pH and were made for both 
soil pH determined through validation samples and estimated pH measurements from 
GRS scanning; calculations were adjusted with the aim of reaching an optimum pH of 6.5 
through lime application. Phosphate, potassium and magnesium application rates are typi-
cally determined by their soil P, K and Mg indices, respectively. For grassland systems, 
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index 0 represents very low fertility, index 1 is low, index 2 is adequate and index 3 and 
above indicates unnecessarily high fertility (AHDB, 2020). P, K and Mg indices were 
allocated for both validation samples and estimated predictions using ranges detailed in 
Table 2 (See Fig. 2).

Results

There was a weak evidence for a relationship between the predicted and measured values 
of pH, P, K and Mg in grassland systems as shown by the scatter-plots, spatially classi-
fied post-plots and/or differences between management recommendations based on GRS 
predictions compared to validation measures (Table  3 and Figs.  3 & 4). However, both 
GRS and Vis–NIR predictions of SOM were significantly related to the validation meas-
urements, although the predictions did not appear to account for within-field scale varia-
tion (Table 8 and Figs. 4 & 5).

Comparison of soil pH measured either in situ or ex situ

A relationship between the GRS predicted and laboratory measured soil pH across the 
three fields was found (Fig. 3); however, there was much more variation in the validation 
measurements than the GRS-predicted measurements (Fig. 3). There was some evidence to 
suggest that GRS is appropriate for predicting soil pH as there was a positive fixed effect 
coefficient for the sensor-derived pH prediction in the second model for the observed pH 
values (Table 3), and the coefficient is more than twice its standard error, with the P-value 
for the log-likelihood statistic (0.02). However, the correlated within-field variance was 
only reduced by 20% when the GRS derived values were included as a predictor (Table 3), 
resulting in some uncertainty associated with GRS for soil pH predictions. The classified 
post-plots show that both GRS soil pH predictions and validation measures agree that the 
LUp field is dominated by acidic soils (points in the bottom quartile, Fig.  2). However, 
in the other two fields, LL and ML, the soil pH estimated by GRS showed that the more 
neutral samples (the top quartile, Fig. 2) form a continuous block which was not observed 

Table 2   Concentration ranges for 
the classification of soil P, K and 
Mg indices

 Extracted from AHDB (2020)

Index P K Mg
Mg l−1 of dry soil

0 0–9 0–60 0–25
1 10–15 61–120 26–50
2 16–25 121–180 (2−)

181–240 (2 +)
51–100

3 26–45 241–400 101–175
4 46–70 401–600 176–250
5 71–100 601–900 251–350
6 101–140 901–1500 351–600
7 141–200 1501–2400 601–1000
8 201–280 2401–3600 1001–1500
9 Over 280 Over 3600 Over 1500
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by the validation measurements (Fig. 2). In terms of management, the data shows that only 
20% of the liming application rates calculated from soil pH predicted by GRS were the 
same as application rates calculated through physical soil samples (validation measures), 

Table 3   Summary validation statistics for linear mixed models estimating parameters of the “null” model 
and model with estimations based on soil pH, P, K and Mg estimations obtained from in situ gamma-ray 
spectroscopy (GRS)

Null model Regression 
scanning esti-
mation

pH
 Random effects Between-field variance 0.00 0.00

Correlated within-field variance 0.20 0.16
Distance parameter, ∅/m 214.5 16.9
Uncorrelated within-field variance 0.13 0.13

 Fixed effects Estimate St error Estimate St error
Constant 5.9 0.2 2.1 1.6
Regression coefficient 0.63 0.26
Log-likelihood ratio test L = 5.6 P = 0.02

P
 Random effects Between-field variance 0.00 0.00

Correlated within-field variance 347.3 312.8
Distance parameter, ∅/m 70.3 62.51
Uncorrelated within-field variance 0.00 0.00

 Fixed effects Estimate St error Estimate St error
Constant 22.3 5.3 11.5 8.3
Regression coefficient 0.50 0.33
Log-likelihood ratio test L = 2.1 P = 0.15

K
 Random effects Between-field variance 4.3 4057.0

Correlated within-field variance 6672.3 6088.9
Distance parameter, ∅/m 20.7 16.9
Uncorrelated within-field variance 970.8 872.9

 Fixed effects Estimate St error Estimate St error
Constant 139.7 11.6 -26.9 75.2
Regression coefficient 1.2 0.46
Log-likelihood ratio test L = 3.55 P = 0.06

Mg
 Random effects Between-field variance 560.0 397.5

Correlated within-field variance 3240.9 3242.1
Distance parameter, ∅/m 10.8 10.8
Uncorrelated within-field variance 38.4 37.9

 Fixed effects Estimate St error Estimate St error
Constant 109.7 14.7 66.2 37.4
Regression coefficient 0.33 0.27
Log-likelihood ratio test L = 1.44 P = 0.23
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24% of GRS samples overestimated liming application rates and 56% underestimated 
(Table 4).

Comparison of soil P measured either in situ or ex situ

As with soil pH, the classified post-plots for GRS predicted and validation measured 
soil P show that the predicted values in the top two quartiles occurred exclusively in LL 
and ML (Fig. 5). The measured soil P- values in the top two quartiles occurred predomi-
nantly, but not exclusively, in these fields. There is a positive fixed effect coefficient for the 
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Fig. 5   Correlation between soil organic matter (SOM) estimated by a in  situ gamma-ray spectroscopy 
(GRS) across, and b in  situ visible and near-infrared spectroscopy (Vis–NIR) across two fields against 
measurements made ex situ in a centralised soil testing laboratory. Points represent combined sampling 
locations across three separate fields for GRS (LL n = 95, ML n = 51 and LUp n = 79) and two separate 
fields for Vis–NIR (LL n = 95 and ML n = 51). The red line represents a theoretical 1:1 relationship between 
the in situ and ex situ measurement approaches

Table 4   Matrices demonstrating the number of validation sample points for liming application rates calcu-
lated in-situ from gamma-ray spectroscopy (GRS) and soil samples analysed ex situ in a centralised testing 
laboratory

Italics denote where in-situ GRS predictions and soil samples analysed ex situ in a centralised testing labo-
ratory are the same

Lime requirement based on pH estimations from in situ GRS (t ha−1)

0–1 1–2 2–3 3–4 4–6 6–11

 Lime requirement based on pH measure-
ments from ex situ soil analysis (t ha−1)

 0–1 10 36 4 2 0 0
 1–2 18 17 3 3 0 0
 2–3 22 7 1 4 1 0
 3–4 13 7 0 7 0 0
 4–6 10 5 7 11 9 0
 6–11 3 0 0 7 15 2
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sensor-derived P prediction in the second model for the observed values, but the coefficient 
is less than twice its standard error, and the P-value for the log-likelihood statistic (0.15), 
indicating that GRS is not suitable for predicting soil P (Table 3) nor useful for evaluating 
within-field variation. For grasslands, the target soil P indices for optimal grass growth is 
2. Soil P indices are used to determine phosphate application rates; here only 27% of soil P 
indices calculated from soil P predicted by GRS were the same as soil indices determined 
from physical soil samples (validation measures) resulting in the same recommendations 
for P applications (Table 5). However, 48% of the GRS samples overestimated soil P indi-
ces, resulting in a potential under-application of phosphorus (only applicable when GRS 
estimations are higher that soil P indices equal to or below 2) and 25% underestimated 
resulting in an over-application of P (Table 5).

Comparison of soil K measured either in situ or ex situ

There was a notable spatial pattern in the predicted values, with all observations in the bot-
tom quartile occurring in LUp and all the values in the top quartile, and all but one in the 
third, occurring in LL and ML (Fig. 2). The spatial pattern of the observed values is quite 
different, with all but two of the observations in the bottom quartile occurring in LL and 
ML (Fig S1). There is a positive fixed effect coefficient for the sensor-derived K predic-
tion in the second model for the observed values, the coefficient is just in excess of twice 
its standard error, but the P- value for the log-likelihood statistic (P = 0.06) indicates that 
there is very weak evidence to suggest GRS is suitable for predicting soil K concentrations 
(Table 3). As with soil P and pH, these results do not suggest that the sensor-derived pre-
dictions of soil K are useful for evaluating within-field variation. Target soil K indices for 
optimal grass growth is 2-; the data shows that only 23% of soil K indices calculated from 
soil K predicted by GRS scanning were the same as soil indices determined from physi-
cal soil samples (validation measures) resulting in the same recommendations for potash 
applications (Table  6). However, 48% of GRS predictions overestimated soil K indices, 
resulting in a potential under-application of K (only applicable when GRS soil scanning 
estimations are higher that soil K indices equal to or below 2 + and 29% underestimated 
resulting in an over-application of K (Table 6).

Table 5   Matrices demonstrat-
ing the number of validation 
sample points for soil P indices 
calculated from in-situ gamma-
ray spectroscopy (GRS) and soil 
samples analysed ex situ in a 
centralised testing laboratory

Italics denote where in-situ GRS and soil samples analysed ex situ in a 
centralised testing laboratory are the same

Soil P index based on P estimations 
from in situ GRS

0 1 2 3

Soil P index measured by soil samples
 0 8 18 12 7
 1 19 27 23 19
 2 7 11 15 29
 3 2 1 11 11
 4 0 0 0 0
 5 0 0 2 2
 6 0 0 0 1
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Comparison of soil Mg measured either in situ or ex situ

Neither the post-plots nor the scatter plots suggest a strong relationship between the pre-
dicted and measured soil Mg concentrations (Figs. 2 and 3). The fixed effect coefficient 
for the predicted Mg in the model for the measured values is positive, but only slightly 
larger than its standard error, and the P-value for the null hypothesis that the coefficient 
is zero (P = 0.26) shows that GRS is not suitable for predicting soil Mg (Table 3). As 
before, these results do not suggest that the GRS-derived predictions of soil Mg are use-
ful for evaluating within-field variation, as reflected through the discrepancies seen in 
the quartile plots (Fig. S1) and soil Mg indices which are used to determine Mg appli-
cation rates. The data shows that 43% of soil Mg indices calculated from soil Mg esti-
mated from in situ GRS were the same as soil indices from soil samples analysed ex situ 
in a centralised testing laboratory (Table  7). However, 49% of samples overestimated 
soil Mg indices, and 8% underestimated.

Table 6   Matrices demonstrating 
the number of validation 
sample points for soil K indices 
calculated from in-situ gamma-
ray spectroscopy (GRS) and soil 
samples analysed ex situ in a 
centralised testing laboratory

Italics denote where in-situ GRS and soil samples analysed ex situ in a 
centralised testing laboratory are the same

Soil K index based on K estimations from in situ GRS

0 1 2 − 2 + 

Soil K index measured by 
soil samples

 0 0 0 16 3
 1 0 27 79 7
 2 − 0 23 24 3
 2 +  0 6 11 0
 3 0 10 7 4
 4 0 0 4 0
 5 0 0 1 0

Table 7   Matrices demonstrating 
the number of validation sample 
points for soil Mg indices 
calculated from in-situ gamma-
ray spectroscopy (GRS) and soil 
samples analysed ex situ in a 
centralised testing laboratory

Italics denote where gamma-ray in-situ soil scanning and soil samples 
analysed ex situ in a centralised testing laboratory are the same

Soil Mg index based on Mg estimations from in situ GRS

1 2 3 4

Soil Mg index measured 
by soil samples

 1 0 1 3 0
 2 0 4 100 2
 3 0 0 92 4
 4 0 0 14 0
 5 0 0 1 0
 6 0 0 4 0
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Comparison of soil organic matter measured either in situ or ex situ

This study provides strong evidence to show that both GRS and Vis–NIR technology can 
estimate SOM accurately as the scatterplot shows evidence of strong relationships between 
predicted and measured SOM for both GRS (Fig.  5) and Vis–NIR (Fig.  5). This is also 
confirmed by the positive fixed effects coefficient, four times its standard error for GRS and 
three times for Vis–NIR (Table 8). Note, however, that while the between-field variance 
components are markedly smaller for the regression models than the null models, the other 
variance components are little-changed, as are the distance parameters of the within-field 
variance components for both GRS and Vis–NIR. This indicates that the predictive capac-
ity of the GRS and Vis–NIR effectively capture the differences between the fields, but do 
not provide significant information about the within-field variation as the magnitude and 
spatial structure of the within-field variation of the errors of the regression model is very 
similar to that in the null model.

Comparisons between GRS and Vis–NIR should not be made as the Vis–NIR dataset 
is smaller due to issues associated with the terrain (see Sect.  2.3). The GRS post-plots 
show that, for both the SOM estimated through GRS and measured SOM levels, the more 
organic soils are found in LUp, where LL soils are more organic than ML (Fig. 3). The 
Vis–Nir post plots show that the ML field has higher SOM than the LL field.

Table 8   Summary validation statistics for linear mixed models estimating parameters of the “null” model 
and model with estimations based on SOM estimations obtained from in  situ gamma-ray spectroscopy 
(GRS) and in situ visible and near-infrared spectroscopy (Vis–NIR)

Samples sizes are different for GRS and Vis–NIR data sets due to terrain issues for the Vis–NIR module, 
resulting in the Vis- NIR scanning two fields and the GRS three (gamma-ray n = 225 and Vis–Nir n = 146, 
see Sect. 2.3)

Scanning sensor SOM Null model Regression 
scanning esti-
mation

GRS Random effects Between-field variance 38.2 10.5
Correlated within-field 

variance
9.3 7.5

Distance parameter, ∅/m 29.7 22.1
Uncorrelated within-field 

variance
2.9 2.9

Fixed effects Estimate St error Estimate St error
Constant 15.9 3.6 8.8 2.6
Regression coefficient 0.7 0.2

Visible and 
near-infrared 
spectroscopy

Random effects Between-field variance 11.8 3.6
Correlated within-field 

variance
12.4 12.0

Distance parameter, ∅/m 41.3 41.2
Uncorrelated within-field 

variance
1.2 1.2

Fixed effects Estimate St error Estimate St error
Constant 12.6 2.6 7.1 2.7
Regression coefficient 0.5 0.2
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Discussion

In situ versus ex situ soil testing for nutrient status

This study determined that the commercially-available GRS soil mapping services that 
were examined are not currently accurate enough to replace conventional soil index testing 
on grassland soils. They were not able to accurately measure between-field and within-field 
variations for the quantification of soil pH, P, K and Mg across three contrasting pastures 
that were representative of most of the UK agricultural grasslands. Although these findings 
are not in line with other studies that demonstrate the potential for GRS technologies to 
measure soil pH, P, K and Mg (Reinhardt & Herrmann, 2019; Wong & Harper, 1999), this 
disparity may be due to the focus on grassland soils and evaluating the technology within a 
commercial context. These findings suggest that commercial soil mapping services widely 
used in an arable setting require further development and specific calibration for grass-
land soils to avoid providing poor-quality information. Inaccurate mapping services can 
have major implications, including inappropriate soil management decisions (See 4.3) and 
poor precision agriculture technology adoption due to negative farmer perceptions (See 
4.4). Because this study focussed on soil mapping services from agribusinesses as an end 
user (e.g., grassland farmer), the mechanisms that contributed to the observed inaccuracies 
could not be explored. These findings suggest that further research on the calibration of 
these sensor technologies for grassland soils is needed, explicitly comparing and contrast-
ing the proxy relationships between the measured and target variables in arable and pasture 
soils.

It is clear that commercial organizations offering soil-mapping services based on proxi-
mal sensing technologies must pay careful attention to whether the conditions in which 
the services are applied are close enough to the development and calibration environments 
to ensure that predictions are of adequate quality. Implementing truly independent valida-
tion of technologies in independent locations, as in this reported study here, are necessary 
if over-confidence in technologies is to be avoided by assuming that the translation from 
the development to the implementation environment can be done without loss of accuracy 
or precision. The implementation environment may be more heterogeneous and complex 
than the development and calibration environment (Sumberg, 2012), and care is needed to 
ensure that the calibrations translate across what Visser et al. (2021) call the implementa-
tion gap. Another factor which these results on SOM highlight is the scaling effect. When 
developing a technology to predict soil properties, it is important to examine the scale-
dependence of the relationship between the target property and the proxy measurement. 
These results showed that sensor-predictions of SOM captured the large-scale (between-
field) variations. However, within-field variation (which the technology is promoted for) 
was not captured. Validation of a technology for use at within-field scale must be done at 
that scale.

In situ versus ex situ soil testing for soil organic matter

This study showed that the commercially-available GRS and Vis–NIR technologies evalu-
ated in this study can effectively and sufficiently monitor between-field variations of SOM 
in grassland systems, although the calibrations used to process the data were biased. This 
is in line with the wider literature that has shown GRS and Vis–NIR spectra to successfully 
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predict SOM (Hummel et al., 2001; Rossel et al., 2006; Wenjun et al., 2014). Gamma-ray 
signals are not sensitive to SOM changes due to the relatively high signal/noise ratio (Rein-
hardt & Herrmann, 2019), suggesting that the existing algorithms used are sophisticated 
enough to predict SOM measurements on grassland soils. However, it must highlight that 
this was only achieved at between-field scales as both GRS and Vis–NIR did not effectively 
predict the within-field variation. Nonetheless, these findings show that commercial tools 
pose promising opportunities to meet the increasing demand for SOM monitoring tools, 
particularly for when new policies and/or agri-environment schemes that reward farmers 
for their efforts to conserve and improve SOM are implemented (Lal et al., 2015; Montan-
arella & Panagos, 2021).

Implications for soil management

These findings demonstrate that the GRS soil mapping services examined are not currently 
accurate enough to replace conventional soil index testing for calculating variable lime and 
organic/inorganic fertilisers application rates on grassland soils (Tables  4, 5, 6, 7). The 
inaccurate estimations for soil pH, P, K and Mg can have major consequences on farm 
productivity and profit, as well as implications for nutrient losses to the environment. In 
instances where the sensors underestimate variable lime and/or fertiliser application rates, 
reduced grass yields may result in the need to import additional feedstock and its associ-
ated costs. In cases where the sensors overestimate fertiliser application rates, there are 
significantly increased risks for nutrient losses to the environment, which contradicts the 
primary purpose for adopting these tools.

These findings also demonstrate how field maps are useful tools to highlight fields with 
lower SOM content, allowing farmers to link SOM with grass yields and the opportunity to 
identify fields that have been vulnerable to losses through erosion, compaction and/or over-
grazing. For example, in this study, it was not possible to determine that SOM content was 
lower in the ML field compared to the LL field, a likely result of the LL having variable 
drainage and experiencing seasonal flooding in comparison to ML. These tools therefore 
go beyond just monitoring trends in SOM and they could be used to monitor the success 
of soil management practices that aim to improve carbon sequestration, SOM content and 
deliver national and global soil initiatives, such as the 4 per 1,000 initiative (Minasny et al., 
2017).

Implications on soil mapping technology adoption by grassland farmers

Commercially-available soil mapping technologies that are not fully reliable present a 
large amount of risk to farmers for future adoption. This could have economic impacts on 
farm businesses, and erode relationships between farmers and agribusinesses (Eastwood & 
Renwick, 2020). Uptake of soil testing is already low amongst grassland farmers (Rhymes 
et al., 2021) therefore encouraging the adoption of new soil mapping technologies that are 
not ready for use on grassland farms can exacerbate the issue of low soil testing uptake and 
jeopardise the future uptake of precision agriculture technologies.

To foster and encourage the uptake of soil mapping and precision farming technologies, 
the data provided from these services must provide additional value to the conventional soil 
testing methods used. Evidence for poor within-field SOM predictions is provided meaning 
the soil scanning data are in essence of no additional value to the data obtained from con-
ventional soil testing. In turn, there are concerns for its economic viability as conventional 



916	 Precision Agriculture (2023) 24:898–920

1 3

soil testing is substantially cheaper to implement (~ £10 per field) than soil mapping ser-
vices (~ £20 per ha).

Commercial recommendations

The lack of methodological transparency from commercial soil mapping agribusinesses 
raise difficulties for end users to critically assess the reliability and suitability of these ser-
vices for their intended purposes (Padarian et al., 2020). To address this issue, it is highly 
recommend that soil mapping services are made certifiable, similar to the existing ISO 
accreditation scheme (ISO/IEC 2017) for laboratories that provide soil analysis services. 
However, this will be challenging as the existing ISO accreditation is not suitable for in situ 
methods and is likely to come at an additional cost. A potential solution to this could 
include a network of trial sites that represent a wide range of soil conditions and land uses 
where the technologies can be evaluated for quality assurance purposes. Agribusinesses 
can then be issued a certification based on successful predictions that evaluate within and 
between-field accuracies. It is highly recommend that agribusinesses provide independent 
accuracy estimates for each report they deliver (e.g., per field scanned), which will allow 
end-users to critically assess the maps provided to them.

Extensive site-specific instrument calibration is integral in generating more refined and 
usable data (Rehman et  al., 2019). This is where conventional soil ‘validation’ samples 
are taken across the digitally mapped field, and analysed in the laboratory for site-specific 
calibration of the algorithms used. Therefore enforcing a minimum number of validation 
samples to be taken per farm/field/soil type is also recommended. Typically these recom-
mendations are quite high (ca. 40 for predicting Mg; Li et al., 2019) in comparison to sam-
ples that are actually taken within a commercial context (in the region of 4 per ha); further 
research would be required to determine a cost-effective threshold.

Lastly, there is emerging evidence to suggest that combining different proximal soil 
technologies (e.g., GRS, electrical conductivity and Vis–NIR) has the potential to sig-
nificantly improve prediction accuracy (Ji et al., 2019; Vasques et al., 2020). It is recom-
mended that these data fusion techniques are therefore considered by commercial contrac-
tors and appropriately validated for different systems, including grasslands.

Conclusions

This study showed that there are some companies operating commercially that are provid-
ing inaccurate soil mapping services to predict soil pH, P, K and Mg on temperate grass-
lands that reflect most of the UK agricultural grasslands. Subsequently, these methods were 
not appropriate for calculating variable lime and organic/inorganic fertilisers’ application 
rates, which could lead to negative environmental and/or economic implications. These 
findings suggest that there is a poor understanding around the limitations of these technolo-
gies, and that further research is required to evaluate their universal application. It is highly 
recommended that existing and future commercialised soil mapping technologies are certi-
fied for quality assurance and are required to obtain a minimum number of validation sam-
ples to ensure site-specific data accuracy. This is particularly important as negative farmer 
experiences could jeopardise the future adoption of technology that facilitates sustainable 
agriculture.
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Both the GRS and Vis–NIR soil scanning technologies studied here were able to pre-
dict SOM with good accuracy at between-field scales on these grassland fields. How-
ever, this raises concerns for its economic viability as the technologies were unable 
to appropriately identify the within-field variation. It is therefore essential that these 
technologies are critically evaluated for both within-field and between-field predictions, 
which is not often accounted for by the scientific community. Nonetheless, with farmers 
likely to be rewarded for SOM maintenance and improvements under future schemes, 
these soil scanning tools represent an important opportunity to support and validate 
such programmes. Moreover, farmers monitoring their soils fosters better soil-farmer 
relations and consequently the adoption of more sustainable soil management practices.
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