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Abstract

Birds are useful indicators of overall biodiversity, which continues to decline

globally, despite targets to reduce its loss. The aim of this paper is to under-

stand the importance of different spatial drivers for modelling bird distribu-

tions. Specifically, it assesses the importance of satellite-derived measures of

habitat productivity, heterogeneity and landscape structure for modelling bird

diversity across Great Britain. Random forest (RF) regression is used to assess

the extent to which a combination of satellite-derived covariates explain wood-

land and farmland bird diversity and richness. Feature contribution analysis is

then applied to assess the relationships between the response variable and the

covariates in the final RF models. We show that much of the variation in farm-

land and woodland bird distributions is explained (R2 0.64–0.77) using monthly

habitat-specific productivity values and landscape structure (FRAGSTATS) met-

rics. The analysis highlights important spatial drivers of bird species richness

and diversity, including high productivity grassland during spring for farmland

birds and woodland patch edge length for woodland birds. The feature contri-

bution provides insight into the form of the relationship between the spatial

drivers and bird richness and diversity, including when a particular spatial dri-

ver affects bird richness positively or negatively. For example, for woodland

bird diversity, the May 80th percentile Normalized Difference Vegetation Index

(NDVI) for broadleaved woodland has a strong positive effect on bird richness

when NDVI is >0.7 and a strong negative effect below. If relationships such as

these are stable over time, they offer a useful analytical tool for understanding

and comparing the influence of different spatial drivers.

Introduction

Despite targets to reduce its loss, global biodiversity has

continued to decline as pressures have increased (Butchart

et al., 2010; D�ıaz et al., 2019; IBPES, 2019). Biodiversity loss

has been linked to large changes in primary productivity,

decomposition, and other ecosystem services (Hooper

et al., 2012). Understanding the spatial drivers of biodiver-

sity patterns is essential to predict how different species

may respond to future environmental changes and inform

the creation of effective conservation strategies. To achieve

this, comprehensive information is required regarding
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species distribution and changes over time, and the spatial

drivers of these changes.

There is a large body of research dedicated to demon-

strating the potential of using remote sensing, including

satellite data, to monitor biodiversity (e.g. Gottschalk

et al., 2005; Kuenzer et al., 2014; Pettorelli et al., 2014; Roc-

chini et al., 2016). Satellite images provide a readily accessi-

ble, global dataset at various spatial and temporal

resolutions from which indicators of bird species diversity—
an important indicator of global biodiversity patterns

(Furness & Greenwood, 2013)—may be derived (e.g. Kerr &

Ostrovsky, 2003; Nagendra, 2001; Tuanmu & Jetz, 2015;

Turner et al., 2003). Previous studies have mapped bird

diversity using satellite-derived measures of two key factors

affecting species diversity: (1) spatial heterogeneity, includ-

ing measures of habitat structure, composition and connec-

tivity (Carrasco et al., 2018; Coops, Wulder, et al., 2009;

Griffiths & Lee, 2000; Luoto et al., 2004), and (2) environ-

mental productivity, measured using fraction of absorbed

photosynthetically active radiation (fAPAR) (Coops, War-

ing, et al., 2009), gross and net primary productivity (GPP/

NPP) (Phillips et al., 2008, 2010) and normalized difference

vegetation index (NDVI) (Duro et al., 2014; Foody, 2005;

Seto et al., 2004). Research has particularly focused on

assessing the impact of different covariates on the accuracy

of bird richness mapping, including assessing the value of

image texture (Hepinstall & Sader, 1997; St-Louis

et al., 2006; Tuanmu & Jetz, 2015), the sensitivity to timing

of MODIS images (Bonthoux et al., 2018), the inclusion of

climate data alongside the satellite-based covariates (Carroll

et al., 2022; Thuiller et al., 2004) and developing new indices

(Coops, Waring, et al., 2009).

In terms of scale, work to date has ranged from global

and national-scale with MODIS (e.g. Coops, Wulder,

et al., 2009; Hobi et al., 2017; Tuanmu & Jetz, 2015),

regions within countries using Landsat (St-Louis et al.,

2014) and recently national-scale mapping with Landsat

(Carroll et al., 2022; Farwell et al., 2020). Use of higher

resolution data, such as Landsat and Sentinel-2, allows

EO-based covariates to be derived at scales more suitable

for detecting smaller-scale, within-habitat variations, thus

potentially improving the accuracy with which bird diver-

sity can be mapped; this is particularly true for countries,

or areas within countries, that have mixed land-cover at

the scale of a MODIS pixel (Hill & Smith, 2005). Histori-

cally, this has been hindered by the computing resources

required for national scale analysis. Now, with recent

advances in machine learning and the advent of cloud

computing platforms such as Google Earth Engine

(Gorelick et al., 2017), this analysis is possible (Carroll

et al., 2022; Farwell et al., 2020). Recent years have also

seen increased quality and consistency of satellite datasets

for automated analysis, with improved georeferencing and

cloud-masking (Roy et al., 2014). These developments

make it timely to assess the spatial drivers of bird richness

and diversity at higher resolution.

Random forest regression provides a flexible and robust

method for ecological analysis, dealing with missing val-

ues and complex nonlinear relationships among predictor

variables (Cutler et al., 2007). Random forest regression

(RFR) has been used to assess the response of bird species

richness to environmental heterogeneity (Carrasco

et al., 2018), to predict rare and invasive species presences

(e.g. Cutler et al., 2007; Lawrence et al., 2006; Mi

et al., 2017; Prasad et al., 2006) and in land cover map-

ping (e.g. Gislason et al., 2006; Rodriguez-Galiano

et al., 2012). However, as a black box modelling

approach, additional analysis such as feature contribution

is required to assess the relationships between predictor

and response variables (Kuz’min et al., 2011; Palczewska

et al., 2014), and thus assess the drivers of spatial and

temporal variations in species. Understanding these dri-

vers in different locations and at different scales has the

potential to provide valuable insight into critical factors

affecting species diversity, abundance and richness.

In this paper, we model bird diversity across Great Bri-

tain (GB) using Landsat data and determine the drivers of

observed spatial variation. This builds on previous work

(Bonthoux et al., 2018; Carrasco et al., 2018; Fuller

et al., 2005, 2007) and complements recent studies (Carroll

et al., 2022) by incorporating Landsat-derived measures of

habitat extent, and monthly heterogeneity and productivity

into the modelling. To do this, RFR trained using bird sur-

vey data was used to assess the extent to which a combina-

tion of satellite-derived measures of habitat heterogeneity

and habitat productivity could explain the variation of bird

diversity across GB. Variable selection techniques were

used to reduce the number of variables and produce a set

of refined RFR models. These models were then used to

produce national scale predictive maps of farmland and

woodland bird diversity and richness. Finally, feature con-

tribution analysis was used to demonstrate how the nature

of relationships between the response and predictor vari-

ables in the refined RFR models can be assessed.

Materials and Methods

Figure 1 provides an overview of the method used in this

study, outlining how the bird count data and satellite data

were processed and combined to estimate bird diversity

distributions across GB. Firstly, farmland and woodland

bird species richness and diversity were derived from bird

count data. Then measures of habitat heterogeneity were

derived from United Kingdom (UK) Land Cover Map

2000, while Landsat data were used to derive monthly

and seasonal NDVI metrics, as a proxy for habitat
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productivity. These data were used to train RFR models,

refined using variable selection techniques, which were

used to predict farmland and woodland bird species rich-

ness and diversity and assess spatial drivers using feature

contribution analysis.

Bird data

Bird count data were collected between April and June of

2000 in 335 UK Countryside Survey 2000 (CS2000) squares

(Wilson & Fuller, 2002) distributed across GB. The UK

Countryside Survey squares are a stratified, random sample

of 1 km squares covering GB based on an environmental

stratification to ensure a representative sample (Firbank

et al., 2003). Bird counts were recorded on two separate

visits during the early and late breeding season, using up to

4 km of line transect counts per square. The surveying

methodology followed that of the British Trust for

Ornithology (BTO)/Joint Nature Conservation Committee

(JNCC)/Royal Society for the Protection of Birds (RSPB)

Breeding Bird Survey (Harris et al., 2019). In our study, we

used species richness and the Shannon diversity index as

measures of farmland and woodland bird species diversity,

based on the maximum counts per species across visits.

The designation of farmland and woodland species fol-

lowed the groupings developed for the BTO/JNCC/RSPB

UK Wild Bird Population indicators (Eaton &

Noble, 2018). The indicator for breeding farmland bird

populations includes grassland and grazing pastures in the

definition of farmland. Farmland and woodland bird rich-

ness were calculated for each square by counting the num-

ber of species along the transects.

Habitat heterogeneity variables

There are many measures of environmental heterogeneity

(Stein et al., 2014), however, here the focus is on land

cover heterogeneity, defined as between-habitat hetero-

geneity (Stein et al., 2014), which can be readily calcu-

lated from land cover data. Measures of habitat

heterogeneity, including habitat extent, patch area and

edge length, were derived from the UK Land Cover Map

2000 (LCM2000; Fuller, Smith, Sanderson, et al., 2002)

within each 1 km square using FRAGSTATS v4 (McGari-

gal et al., 2012). LCM2000 was derived from image seg-

mentation of Landsat data and has a minimum mappable

unit of 0.5 ha; as a parcel-based land cover product, it is

well suited for calculating habitat heterogeneity values

Figure 1. Overview of the method used to estimate bird diversity distributions across GB.
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(Fuller, Smith, Sanderson, et al., 2002). To calculate the

landscape variables, the land cover classes were converted

from the original 26 classes into a smaller set of aggre-

gated land cover classes (Table S1 in Appendix S1).

FRAGSTATS metrics were calculated for the arable,

broadleaved, coniferous, grassland and semi-natural

aggregated land cover classes (see Table S2 in

Appendix S1 for a full list of metrics). Descriptions

(adapted from Mcgarigal (2015)) of the key metrics for

the final models can be found in Table 1.

Habitat productivity variables

The NDVI was used as a proxy for habitat productivity,

because it shows a strong positive correlation with net

primary productivity (NPP) at latitudes and habitat types

similar to those in GB (e.g. Boelman et al., 2003; Evans

et al., 2005; Kerr & Ostrovsky, 2003; Tebbs et al., 2017).

NDVI-based habitat productivity metrics were calculated

in Google Earth Engine (Gorelick et al., 2017) using data

from Landsat-5 and Landsat-7. Greenest pixel composites

were produced for each month from March to September

for Landsat images from 1999 and 2000; these were used

to produce monthly NDVI images. The Landsat-5 and

Landsat-7 data were then merged by taking the maximum

NDVI value for each pixel from the monthly NDVIs; cre-

ating monthly maximum value composites (MVCs).

Atmospherically corrected Landsat-5 and Landsat-7

images have been shown to produce similar NDVI mea-

surements (Thieme et al., 2020; Vogelmann et al., 2001);

hence, no cross-calibration was required before merging

the datasets. Combining Landsat-5 and Landsat-7, along

with linear interpolation of NDVI values, to fill cloud-

gaps in individual months, enabled relatively cloud-free

coverage of GB to be produced.

From the monthly MVCs, habitat-specific NDVI metrics

were calculated for each land cover class within each square,

for each month and for the growing season (March–Septem-

ber) as a whole; areas of the different land cover classes were

identified using LCM2000. The metrics calculated were

mean, standard deviation, coefficient of variation, median,

minimum, maximum, range, 20th percentile, 80th per-

centile, interquartile range and sum (growing season only)

of the NDVI values. These metrics were only calculated for

the arable, broadleaved, coniferous, grassland and semi-

natural aggregated land cover classes (Table S1).

RFR models and variable selection

RFR (Breiman, 2001) was used to determine which habitat

productivity and heterogeneity variables provide the high-

est estimation accuracy for farmland and woodland bird

species richness and diversity. Three sets of models were

created: full models, using all available variables; important

variable models, containing variables identified by minimal

depth selection; and refined models, featuring the smallest

sub-set of variables, produced after implementing feature

Table 1. Descriptions of the key FRAGSTATS metrics for the final

richness and diversity random forest model (adapted from McGarigal,

2015).

FRAGSTATS metrics Description of metric

Percentage of

landscape (PLAND)

The percentage of each square comprised

of a particular class.

Effective mesh size

(MESH)

Quantifies habitat fragmentation based on

the probability that two randomly

chosen points in the region under

interest are located in the same non-

fragmented patch. The probability is

multiplied by the total area of the

landscape unit. The more barriers (e.g.

roads, railroads) in the landscape, the

lower the probability that the two

locations will be located in the same

patch, and the lower the effective mesh

size.

Contiguity Index

(CONTIG)

Measure of spatial connectedness/contiguity

of cells within a grid-cell given as the

mean (MN), coefficient of variation (CV)

or area-weighted mean (AM) per class.

An index value of zero represents a

one-pixel patch, increasing to 1 as

connectedness increases.

Related circumscribing

circle (CIRCLE)

Measure of overall patch elongation using

the ratio of patch area to the ratio of

the smallest circumscribing circle given

as mean (MN), coefficient of variation

(CV) or area-weighted mean (AM) per

class. Highly convoluted, but narrow

patches give a low index value, while

narrow and elongated patches have a

high index value.

Patch cohesion

(COHESION)

Provides a measure of the physical

connectedness of the corresponding

class. COHESION approaches zero as the

proportion of the focal class decreases

and becomes increasingly subdivided,

and therefore less physically connected.

Largest Patch Index

(LPI)

Quantifies the percentage of the total

landscape area comprised by the largest

patch of a class. The LPI approaches

zero when the largest patch of the

corresponding type is increasingly small.

An LPI value of 100 indicates the entire

landscape is one patch.

Total edge (TE) Absolute measure of total edge length of a

particular class.

Edge density (ED) Edge length of a particular class

standardized to a per unit area basis (m/ha).
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selection. The randomForest package (Liaw &Wiener, 2002)

in R was used to build and analyse the RFR models with

1000 trees. RFR was chosen because of its ability to handle

non-linear responses and complex interactions between

variables (Breiman, 2001; Prasad et al., 2006).

Minimal depth selection (Ishwaran et al., 2010) was used

to rank the explanatory power of each estimator variable

within the RFR models, using the randomForestSRC pack-

age in R (Ishwaran & Kogalur, 2019). Minimal depth

assumes that variables that split nearest to the root node

have a higher impact on the estimation than variables that

split nodes further down the tree. While it is possible for

non-estimative variables to split close to the root node and

not impact estimation, such occurrences are rare in a large

forest of trees and averaging minimizes their effects (Ish-

waran et al., 2010). Variables not deemed important by

minimal depth selection were excluded from the models.

Feature selection was then used to reduce model com-

plexity further and simplify interpretation of the final mod-

els. To identify the number of variables to include in each

model, lower importance variables, as determined by the

minimal depth selection, were excluded progressively and

the change in variance explained by the model assessed.

After removing all of the variables one by one, this pro-

duced accuracy curves (Fig. 2; Ishwaran et al., 2010). The

number of variables included in each of the final refined

RFR models was determined based on the point at which a

decrease in accuracy (variance explained) was first observed

in the accuracy curves following the addition of another

estimator variable to the model.

The refined models were used to estimate farmland

and woodland bird species richness and diversity across

GB at 1 km resolution. All models were trained using

data from the 335 CS2000 squares with bird count data.

In the training data, the maximum percentage of urban

cover was 54.6%; therefore, the final models were not

applied to squares exceeding this level. A tendency was

observed for RFR to underestimate the maximum value

and overestimate the minimum value for each of the

response variables. This was resolved by applying a linear

regression-based correction, to the maps produced by

RFR, to adjust for the bias (Zhang & Lu, 2012).

The performance of the models built at each different

stage of the variable selection process were compared

using R2 values calculated in two different ways: (i) inter-

nal validation carried out by the randomForest package,

Figure 2. Variance explained (%) for the models including different number of predictors (by ranking), for (A) farmland bird richness, (B)

farmland bird diversity, (C) woodland bird richness and (D) woodland bird diversity. The red dot indicates the point immediately before a decrease

in accuracy is first observed as another predictor is added, indicating the number of predictors to be included in each refined model.
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and (ii) a separate 10-fold cross-validation using the full

training dataset.

Feature contribution

To assess the relationship between the estimator and

response variables in each of the final models, we used fea-

ture contribution analysis (Palczewska et al., 2014) using

the forestFloor package in R (Welling et al., 2016). Feature

contribution analysis reveals the magnitude and direction

of influence (positive or negative) that estimator variables

have on the response. This enables the feature contribution

to be plotted for each estimator variable to understand the

circumstances and extent to which it affects the response

variable (Palczewska et al., 2014). Using forestFloor, we pro-

duced a series of plots, where the y-axis represents the

change of estimated bird richness for a given variable value,

and the x-axis represents the studied variable. A positive

value on the y-axis indicates a positive effect on richness or

diversity, while a negative value indicates a negative effect;

zero indicates no contribution.

Results

Model accuracies and predictive maps

The initial RFR models using all variables had 10-fold

cross validation R2 values between 0.64 and 0.77 for farm-

land and woodland bird richness and diversity; while

models containing only the important variables (identified

using minimal depth selection) produced R2 values

between 0.65 and 0.80 (Table 2). A full list of the vari-

ables selected by minimal depth can be found in Table S3

in the Appendix S1, with Table S1 showing the level of

correlation between variables.

These models were then refined with feature selection to

produce the final refined models used to understand the

spatial drivers of bird diversity and richness and produce

the final maps. This analysis revealed that the top 4 most

important variables, according to minimal depth selection,

were required for estimating farmland bird richness, the

top 6 for farmland bird diversity, and top 3 for both wood-

land bird richness and diversity. Table 3 shows the variables

included in each refined model. Subsequent analyses are

based on these refined RFR models. The refined models

had 10-fold cross validation R2 values between 0.52 and

0.78 (Table 2). The refined models all contain a mix of

FRAGSTATS heterogeneity metrics, highlighting the

importance of landscape configuration and extent, and

habitat-specific monthly vegetation productivity metrics.

The refined RFR models were used to produce maps of

farmland (Fig. 3) and woodland (Fig. 4) bird richness and

diversity in 2000 for GB at a 1 km resolution. Figure 3A

and B shows that farmland bird richness and diversity is

highest in the east of England and lower in the west of Eng-

land and in Scotland, a pattern which broadly matches the

distribution of arable land across the UK. Figure 4A and B

shows that levels of woodland bird richness and diversity

appear to be more widely distributed around the UK,

although there appears to be a prevalence for higher species

richness and diversity in lowland areas and lower richness

and diversity in highland areas.

Although a bias correction was applied, this did not

completely account for the under-estimation of maximum

values and over-estimation of minimum values. For

example, the minimum value of woodland bird richness

in the observed data was 0, while the lowest predicted

value was 3. The fact that the predicted values do not

currently fully reflect what we see in the bird count data

may suggest that the current predictor variables do not

Table 2. R-squared values for (i) full RFR models containing all variables, (ii) important RFR models containing variables categorized as important

by the minimal depth selection, and (iii) the final refined RFR models after applying feature selection to further reduce variable number. R-squared

values are given for the internal RFR validation and a separate 10-fold cross validation.

Response variable

R2 values

Full RFR model (all variables)

Model containing only important

variables (# of variables) Refined RFR model (# of variables)

Internal RFR

validation

10-fold cross

validation

Internal RFR

validation

10-fold cross

validation

Internal RFR

validation

10-fold cross

validation

Farmland bird

richness

0.73 0.77 0.75 (20) 0.73 0.73 (4) 0.78

Farmland bird

diversity

0.65 0.64 0.65 (16) 0.69 0.64 (6) 0.59

Woodland bird

richness

0.70 0.72 0.68 (18) 0.65 0.55 (3) 0.52

Woodland bird

diversity

0.76 0.77 0.79 (37) 0.80 0.63 (3) 0.63
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capture all the important environmental factors affecting

bird species richness and diversity. For example, linear

landscape features, such as hedgerow habitats, are known

to be important (Aue et al., 2014; Hinsley & Bel-

lamy, 2000; Morelli et al., 2014; Sullivan et al., 2017), but

were not included here.

Feature contribution (for the refined
models)

The feature contribution analysis showed different

response shapes for the different habitat productivity and

heterogeneity measures, included in the refined models,

for each response variable (Figs. 5–8). The following sec-

tion summarizes the feature contribution for each of the

explanatory variables, in each refined model, for farmland

bird richness and diversity, and woodland bird richness

and diversity in turn. Feature contribution values above 0

indicate that a predictor value has a positive effect on the

response variable; feature contribution values below 0

indicate a negative effect.

Farmland bird richness

The feature contribution analysis (Fig. 5) suggests that for

farmland bird richness, the presence of high productivity

grassland in March and April (NDVI maxMar > 0.65;

NDVI p80Apr > 0.6) contributes positively towards rich-

ness (Fig. 5A and C), with richness peaking at NDVI val-

ues of around 0.8. Habitat fragmentation, as measured by

the effective arable mesh size (see section 2.2 for details),

has a positive effect on richness (Fig. 5B), with the inten-

sity increasing rapidly at low values before plateauing

from 20–30 onwards. The variation in arable NDVI in

July is also important, with an NDVI range > 0.3 associ-

ated with higher bird richness.

Farmland bird diversity

The feature contribution analysis (Fig. 6) suggests that for

farmland bird diversity, grassland productivity at key points

through the year is crucial. Specifically, the presence of high

productivity grassland throughout the growing season

(NDVI p80Apr > 0.6; NDVI maxMar/maxApr/maxJun > 0.7–
0.8) contributes positively towards diversity (Fig. 6). The

relationships tend to increase rapidly towards a maximum

before fluctuating, but generally maintain a positive influ-

ence on diversity. The pattern of arable in the landscape is

also important (Figs. 6E and F), with large contiguous

patches of arable land (CONTIG >0.8) promoting diversity,

while very long elongated and narrow arable patches (CIR-

CLE >0.7) have a negative impact.

Woodland bird richness

The feature contribution analysis (Fig. 7) suggests that total

broadleaved woodland edge length > 2000 m and edge den-

sity > 20 m/ha contribute positively towards richness,

reaching peak intensity around 6000 m and 60 m/ha respec-

tively, and flattening or reducing thereafter (Fig. 7A and B).

This may indicate that the presence of more, smaller patches

of broadleaved woodland or patches with more complex

shapes helps to promote high richness. Broadleaved produc-

tivity in June also affects woodland richness having a nega-

tive influence below NDVI values of 0.8 and a positive,

linearly increasing relationship afterwards (Fig. 7C).

Woodland bird diversity

For woodland bird diversity, the feature contribution anal-

ysis (Fig. 8) suggests that the presence of high productivity

broadleaved woodland in May (NDVI p80May > 0.7) had a

positive effect on diversity, peaking around NDVI

p80May = 0.7 and then decreasing slightly (Fig. 8A). Addi-

tionally, it appears that having some semi-natural land

Table 3. Variables used for the final refined RFR models after apply-

ing feature selection to further reduce variable number (see also

Table 2).

Response

variable

Variables (from most to least

important)

Variables in

final model

Farmland bird

richness

March maximum NDVI for

grassland

Effective arable mesh size

April 80th percentile NDVI for

grassland

July NDVI range for arable

FRAGSTATS: 1

NDVI: 3

Farmland bird

diversity

April 80th percentile NDVI for

grassland

March maximum NDVI for

grassland

April maximum NDVI for

grassland

June maximum NDVI for grassland

Arable contiguity index

Arable related circumscribing

circle

FRAGSTATS: 2

NDVI: 4

Woodland bird

richness

Total broadleaved woodland edge

length

Broadleaved woodland edge

density

June maximum NDVI for

broadleaved woodland

FRAGSTATS: 2

NDVI: 1

Woodland bird

diversity

May 80th percentile NDVI for

broadleaved woodland

Semi-natural largest patch index

Broadleaved woodland

percentage cover

FRAGSTATS: 2

NDVI: 1
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Figure 3. Predicted farmland bird (A) richness and (B) diversity (Shannon Index) maps at 1 km resolution, and (C) the distribution of arable land

across GB according to LCM2000.

Figure 4. Predicted woodland bird (A) richness and (B) diversity (Shannon Index) maps at 1 km resolution, and (C) the distribution of broadleaved

and coniferous woodland across GB according to LCM2000.
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(largest semi-natural patch index (LPI) < 10%) has a posi-

tive impact on woodland diversity, whilst very high values

have negative impact, with values in-between (LPI 10% to

80%) having little impact on diversity (Fig. 8B). The per-

centage cover of broadleaved woodland is also important,

with cover above 5% exhibiting an increasingly positive

effect on diversity, reaching a plateau at about 20%–30%.

Discussion

Satellite-derived covariates

The importance of satellite imagery timing has been

assessed by using individual images for different dates

through the year (Bonthoux et al., 2018; Sheeren

et al., 2014), whilst the temporal granularity of the satel-

lite data has been assessed using composite images aggre-

gated across different units of time, for example, growing

season percentiles (Carroll et al., 2022) or annual values,

including minimum annual NDVI (Nieto et al., 2015) or

gross primary productivity (Phillips et al., 2010). There is

a difference between smaller spatial scale studies (includ-

ing this paper) where identifying a best time-period may

be meaningful (Bonthoux et al., 2018; Sheeren

et al., 2014) and large-scale or global studies, where it is

important to produce annual globally consistent variables

(Radeloff et al., 2019; Tuanmu & Jetz, 2015).

We used monthly NDVI composites, which enabled the

importance of vegetation productivity at key phases of

the year to be explored. For woodland birds, the NDVI

for broadleaved woodland was important, with May and

June being the key months. This is similar to Haw-

kins (2004) who found summer vegetation-indexes better

for predicting bird richness than annual values, whereas

other studies have found autumn best for woodland bird

species richness (Bonthoux et al., 2018; Sheeren

et al., 2014). However, neither of these studies used habi-

tat specific NDVI values; instead, they used coarser reso-

lution, pixel data (250 m or 1 km), which will primarily

reflect the dominant habitat (Bonthoux et al., 2018).

For farmland birds, we found that April and March

grassland NDVI were the most important covariates.

Figure 5. FC plots for the farmland bird richness prediction model variables: (A) March maximum NDVI for grassland, (B) arable effective mesh size,

(C) April 80th percentile NDVI for grassland, and (D) July NDVI range for arable. The y-axis represents the change of predicted bird richness for a

given variable value, measured with the cross-validated FC. The x-axis represents the studied variable. The fitted line is based on the k-nearest neigh-

bour (knn) estimations. The red line indicates the point of zero FC. Zero values on the x-axis denote the absence of the metric from the square.
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Figure 6. FC plots for the farmland bird diversity prediction model variables: (A) April 80th percentile NDVI for grassland, (B) March maximum

NDVI for grassland, (C) April maximum NDVI for grassland, (D) June maximum NDVI for grassland, (E) arable contiguity index, and (F) arable

related circumscribing circle. The y-axis represents the change of predicted bird richness for a given variable value, measured with the cross-

validated FC. The x-axis represents the studied variable. The fitted line is based on the k-nearest neighbour (knn) estimations. The red line indi-

cates the point of zero FC. Zero values on the x-axis denote the absence of the metric from the square.

Figure 7. FC plots for the woodland bird richness prediction model variables: (A) broadleaved total edge, (B) broadleaved edge density, and (C)

June maximum NDVI for broadleaved. The y-axis represents the change of predicted bird richness for a given variable value, measured with the

cross-validated FC. The x-axis represents the studied variable. The fitted line is based on the k-nearest neighbour (knn) estimations. The red line

indicates the point of zero FC. Zero values on the x-axis denote the absence of the metric from the square.
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Yamaura et al. (2010) also found that spring greenness

was important for bird species mapping in Japan, whereas

Bonthoux et al. (2018) found that satellite data from early

March produced the least accurate predictions, with

images from the end of June best for farmland birds. Pre-

vious work has shown strong correlations between the

NDVI for spring green-up of grassland and annual grass-

land productivity (Tebbs et al., 2017) and with arthropod

abundance (Fern�andez-Tiz�on et al., 2020) suggesting links

to energy/food resources (Bonn et al., 2004). The number

of studies looking into monthly/seasonal satellite data for

bird mapping is still relatively limited, and many of the

existing studies are coarse scale (250 m or larger pixel

size). Further work is required to assess the stability of

our results to see whether the types of metrics, habitats

and months that were important here remain consistent

between years.

The spatial granularity used in biodiversity studies is

often the individual pixel, with spatial context provided

by image texture (St-Louis et al., 2006) or landscape

structure metrics (Atauri & de Lucio, 2001). Information

on landscape structure (including composition and con-

figuration) is included in bird mapping to improve esti-

mates of biodiversity patterns and to test ecological

hypotheses, such as understanding the relative roles of

habitat configuration and extent (Basile et al., 2021;

Su�arez-Castro et al., 2022). Here, we used 1 km squares

as our modelling resolution, with higher resolution data

to quantify landscape composition and configuration,

along with habitat-specific NDVI to provide information

on habitat quality. The use of higher resolution data is

important as previous work has shown that higher spatial

resolution data tends to produce better estimates of bird

biodiversity (Hurlbert & Haskell, 2003; Sheeren

et al., 2014), possibly by enabling more precise estimates

of the environmental conditions that affect birds.

Although key scales may vary with species and habitat, as

the processes that regulate species richness are scale

dependent (Hurlbert & Haskell, 2003; Luoto et al., 2007).

To quantify within habitat productivity and heterogene-

ity, we used NDVI metrics, that included a subset of the

first order image texture metrics (e.g. range, standard devia-

tion), which many studies have found important for biodi-

versity mapping (Farwell et al., 2021; St-Louis et al., 2006;

Tuanmu & Jetz, 2015). The spatial extent of texture metrics

is typically defined by a filter window around a central pixel

(see for example St-Louis et al., 2006 who test windows

from 3 9 3 to 101 9 101 pixels). Image texture calculated

for a filter window covering a single habitat captures within

class heterogeneity (Culbert et al., 2012; Farwell

et al., 2021); however, metrics calculated over a mixed pixel,

or mixed filter window, will mainly reflect the dominant

habitat type (Bonthoux et al., 2018). In areas with more

fragmented land cover like the UK (Hill & Smith, 2005),

land cover specific metrics may be useful to prevent mixing

signals from different land cover types. So, here we used

habitat-specific monthly NDVI values to capture within

habitat heterogeneity and productivity. In our results

habitat-specific productivity was the most important vari-

able in all the final models, except for woodland bird rich-

ness. Habitat-specific NDVI values are not often calculated

for biodiversity mapping; however, our results show they

are important in some landscapes and so should be

explored more widely, including in comparison with the

more widely used image texture methods. Habitat hetero-

geneity is strongly influenced by scale (Rocchini, 2007), so

Figure 8. FC plots for the woodland bird diversity prediction model variables: (A) May 80th percentile broadleaved NDVI, (B) semi-natural largest

patch index, and (C) percentage cover of broadleaved woodland. The y-axis represents the change of predicted bird richness for a given variable

value, measured with the cross-validated FC. The x-axis represents the studied variable. The fitted line is based on the k-nearest neighbour (knn)

estimations. The red line indicates the point of zero FC. Zero values on the x-axis denote the absence of the metric from the square.
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the relative importance of habitat-specific metrics versus

image texture is likely to be context dependent.

Remote sensing for biodiversity mapping is an active,

well-established area of research. However, considerable

development is still required to produce operational inte-

grated biodiversity monitoring systems covering compre-

hensive spatial and taxonomic extents (Jetz et al., 2019).

Part of this development is improved understanding of

the covariates that are important for different species.

However, in the literature, it is difficult to separate gen-

eral results from specific results, especially when compar-

ing studies with different sets of covariates, across

different species, ranges of species and different spa-

tiotemporal extents. This is compounded by the spatial

and temporal variability in the quality of satellite-derived

covariates. Therefore, to consolidate work in this area it

may be timely for a comprehensive review of environ-

mental covariates for avian biodiversity to identify knowl-

edge gaps building on earlier work (Gottschalk

et al., 2005), broader reviews (e.g. Jetz et al., 2019; W€uest

et al., 2019) and initiatives like the development of

biodiversity-focused indices (Radeloff et al., 2019) and the

essential biodiversity variables (Jetz et al., 2019).

Influence of landscape heterogeneity and
productivity on bird diversity

There is ongoing debate about the relative roles of habitat

quantity versus habitat structure (fragmentation/connec-

tivity) for biodiversity (Fletcher et al., 2018). In this study

we calculated habitat heterogeneity (FRAGSTATS),

including metrics of habitat extent and habitat configura-

tion for 1 km squares. Habitat extent was only important

in the woodland bird diversity model, but measures of

habitat configuration were important in all the final mod-

els, suggesting that, at least in this case, habitat arrange-

ment is more important. Like previous work (Tu

et al., 2020), the habitat extent and configuration vari-

ables used in the final richness and diversity models are

different (Table 3). From a conservation perspective, this

suggests that different interventions might be required

depending on whether the aim is to increase bird diver-

sity or bird richness. Here, we used aggregated groups of

birds, however, to produce evidence on specific spatial

drivers for conservation interventions, modelling individ-

ual species might provide more insight.

The woodland bird richness model is the only one

where habitat heterogeneity variables are more important

than the productivity variables. The feature contribution

analysis shows that woodland bird richness was higher in

areas with longer woodland edges, supporting previous

studies showing bird richness and diversity is greatly

enhanced by open habitats within woodlands and

woodland edges (Fuller, Smith, et al., 2007; Terraube

et al., 2016). Higher plant diversity and composition, and

habitat structural diversity at woodland edges, have been

proposed as possible drivers of bird diversity within these

habitats (Carrasco et al., 2019; Terraube et al., 2016).

The feature contribution indicates that farmland bird

richness is higher in areas where arable land is less frag-

mented (i.e. higher values of effective mesh size, although

this positive effect stabilizes at an effective mesh size of

around 30). However, for both the farmland richness and

diversity models, the first variable is grassland

productivity-based illustrating the importance of grassland

habitats in supporting GB farmland birds. This reflects

earlier work on the habitat preferences of bird species,

which found that links between farmland birds and arable

habitats alone were relatively weak (Fuller et al., 2005). In

part, because farmland birds showed associations with

arable areas, but also with other lowland habitats (Fuller,

Devereux, et al., 2007), providing additional ecological

niches (Fuller et al., 2004). However, such effects are

likely to be scale-dependent and influenced by landscape

structure beyond the 1 km square (Robinson et al., 2001).

Broader implications for conservation

Conservationists have a range of tools that can be deployed

to protect species, however, they need to be supported by

accurate evidence. In the UK, this evidence-base has been

provided by the Breeding Bird Survey data, which shows the

spatial and temporal changes in bird populations. From a

conservation perspective, it is important to be able to identify

where birds are stable and where they are declining, which

then informs decisions about when and where to intervene.

The methods here provide a useful tool for understanding

how different spatial drivers influence bird distributions.

However, to be of operational use for conservation science,

the method needs to be applied slightly differently and devel-

oped further, specifically through the following:

Assessing stability over time

In the example here, the method was applied to data for

2000. However, it is likely that the quality of the satellite

data and the bird data will vary from year to year. So it is

important to assess the stability of the results over time

and quantify the uncertainty in the models to give a more

robust understanding of both the key spatial drivers and

their relationship with bird richness and diversity. Whilst

some stability over shorter time-scales will confer credibil-

ity on the model outputs, on longer time-scales the spa-

tial drivers would be expected to change, as bird species

respond to climate change and to large-scale landscape

changes like afforestation.
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Increasing model interpretability

Recent developments in machine learning have stressed

the importance of increasing the interpretability of

machine learning models, including their inputs (Zytek

et al., 2022). Machine learning models typically use data

collected by sensors or satellites; however, this data is

not always readily understandable by users in the field.

In our case, one model shows that June maximum

broadleaved NDVI is important, however, it would be

more beneficial to conservationists if we used known

sites to develop a taxonomy (or dictionary) that trans-

lated this into a set of likely traits for such woodland,

for example in terms of likely tree maturity, tree canopy

cover and possibly species mix. The same is true for the

grassland variables, for instance, intense management of

grasslands can reduce the suitability of grassland habitats

to provide breeding and foraging resources for birds

(Vickery et al., 2001), but evidence is needed to link

such management to the NDVI metrics seen in the

models. This is also likely to highlight the similarity in

some of the variables.

Machine learning and big data techniques have a role

to play in biodiversity and conservation science (W€uest

et al., 2019). In this study, we used feature importance

to identify the most important features in the four final

models and then feature contribution to provide insight

into the relationship between individual covariates and

bird richness and diversity. The feature contribution

enables the identification of thresholds and ranges in key

variables that strongly positively (or negatively) affect

bird richness and diversity. For example, the June maxi-

mum NDVI feature contribution result shows that whilst

NDVI >0.8 has a positive effect on farmland bird diver-

sity, this peaks at NDVI ~0.9, but then drops for higher

values. This potentially provides more insight into the

features, and crucially the level of a particular feature,

that positively affect bird richness and diversity than has

typically been provided by machine learning based meth-

ods (e.g. the threshold-based outputs from individual

decision trees (Coops, Wulder, et al., 2009)). Feature

contribution provides a useful tool for exploring the

variables important to modelling bird richness or diver-

sity, but it will be crucial to assess the stability of these

relationships over time, and for other regions, to

understand to what extent they can inform conservation

activities.

Developing data and tools for conservation

Advances such as Google Earth Engine (Gorelick

et al., 2017) make it timely to reconsider how best to

facilitate wider use of satellite data in bird distribution

modelling. For example, this might be through the pro-

duction and curation of key satellite metrics, like monthly

NDVI, or easy to use tools to derive them. The metrics

could be routinely created (in the same way that climate

variables are) for conservationists and ecologists to use in

their models. Additionally, whilst the maps here have

been validated at GB-level, it would be beneficial to con-

duct a landscape-level validation, to quantify how well

the maps detect spatial patterns in bird distributions at a

fine-scale.

Conclusion

This study shows that habitat-specific monthly NDVI val-

ues, alongside landscape structure (FRAGSTATS) metrics,

are useful for predicting farmland and woodland bird

diversity and richness (R2 0.64 to 0.77) in GB. The vari-

able selection highlights a number of important spatial

drivers of bird species richness and diversity including

high productivity grassland during spring for farmland

birds and woodland patch edge length for woodland

birds. Meanwhile, feature contribution provides informa-

tion on the form (magnitude and direction) of the rela-

tionships between these environmental variables and bird

richness and diversity. This work demonstrates that

machine learning tools, like feature contribution, have the

potential to provide insights into the spatial drivers of

wildlife community structure.
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