Natural Environment Research Council

The sand and gravel resources of the country around Henley-in-Arden, Warwickshire

Description of 1:25000 sheet SP16 and parts of 15, 17, 25, 26 and 27

B. Cannell and R. G. Crofts

Contributor R. J. O. Hamblin

© Crown copyright 1984

ISBN 0 11 884442 3

The first twelve reports on the assessment of British sand and gravel resources appeared in the Report Series of the Institute of Geological Sciences as a subseries. Reports numbered 13 to 139 appeared as Mineral Assessment Reports of the Institute; subsequent reports appear as Mineral Assessment Reports of the British Geological Survey.

Details of published reports appear at the end of this Report.

Any enquiries concerning this report may be addressed to British Geological Survey, Keyworth, Nottingham NG12 5GG.

The asterisk on the front cover indicates that parts of sheets adjacent to that quoted are described in the report.

PREFACE

National resources of many industrial minerals may seem so large that stocktaking appears unnecessary, but the demand for minerals and for land for all purposes is intensifying and it has become increasingly clear in recent years that regional assessments of the resources of these minerals should be undertaken. The publication of information about the quantity and quality of deposits over large areas is intended to provide a comprehensive factual background against which planning decisions can be made.

Sand and gravel, considered together as naturally occurring aggregate, was selected as the bulk mineral demanding the most urgent attention, initially in the southeast of England, where about half the national output is won and very few sources of alternative aggregates are available. Following a short feasibility project, initiated in 1966 by the Ministry of Land and Natural Resources, the Industrial Minerals Assessment Unit (formerly the Mineral Assessment Unit) began systematic surveys in 1968. The work is now being financed by the Department of the Environment and is being undertaken with the co-operation of the Sand and Gravel Association of Great Britian.

This report describes the sand and gravel resources of 300 km^2 of country around Henley-in-Arden, Warwickshire, shown on the accompanying 1:25 000 resource sheet SP 16 and parts of SP 15, 17, 25, 26 and 27. The survey was conducted in 1981 and 1982 by B. Cannell and R. G. Crofts who were assisted in the field by S. J. Booth and A. N. Morigi. B. Cannell and R. G. Crofts compiled the report assisted by R. J. O. Hamblin who contributed the geological account. In addition, invaluable help with software development for interpreting the resistivity depth soundings was provided by K. A. McL. Adlam, M. R. Clarke and J. W. Finch (Institute of Hydrology).

The work is based on 1:10 000 scale geological mapping carried out between 1977 and 1981 by members of the Institute's Field Staff and which is to be published at 1:50 000 scale on New Series Sheet 183 (Redditch).

J. D. Burnell, ISO and G. I. Coleman (Land Agents)were responsible for negociating access to the land for the survey. The ready co-operation of landowners and tenants in this work is gratefully acknowledged.

G. M. Brown Director

British Geological Survey Keyworth Nottingham NG12 5GG

3 January 1984

CONTENTS

1

1

8

8

8

16

16

SUMMARY INTRODUCTION DESCRIPTION OF THE DISTRICT General Topography Geology Composition of the Sand and Gravel Deposits The Map Results Notes on the Resource Blocks List of workings

REFERENCES

Appendix A:	Field and laboratory procedures	18
Appendix B:	Statistical procedure	19
Appendix C:	Classification and description of	
sand and grav	vel	20
Appendix D:	Explanation of the borehole records	22
Appendix E:	Industrial Minerals Assessment Unit	24
borehole reco	ords	24
Appendix F:	Resistivity survey	117
Appendix G:	Summary of the resistivity results	121
Appendix H:	Comparision of resistivity results	
with borehole	e records	134

FIGURES

1	Map showing the location of resource	
	sheet area	2
2	Drift geology of the resource sheet area	5
3	Contour map of the bedrock surface	6
4	Locality map with reference to block boundaries	
	and subdivisions of Block F	9
5	Particle-size distribution for the mineral in	
	Blocks A to E	12
6	Particle-size distribution for the mineral in	
	Blocks A, B, C, D and E	13
7	Electrode configurations of the resistivity	
	arrays	117
8	Frequency distributions of the resistivity results	
	for the Drift deposits	119
9	Frequency distributions of the resistivity results	
	for the Solid deposits	120

MAP The sand and gravel resources of the country around Henley-in-Arden, Warwickshire in pocket Geological sections $Y - Y^{1}$ and $Z - Z^{1}$ in pocket

T	ABLES	
1	Geological sequence	3
2	The sand and gravel resources of the district	10
3	Block A: data from IMAU boreholes	11
4	Block B: data from IMAU boreholes	11
5	Block C: data from IMAU boreholes	11
6	Block D: data from IMAU boreholes	14
7	Block E: data from IMAU boreholes	15
8	Block F: data from IMAU boreholes	15
9	Comparison of the mean thickness of mineral	
	deposits and depth to base of Drift	118

...

The sand and gravel resources of the country around Henley-in Arden, Warwickshire

Description of 1:25 000 sheet SP 16 and parts of 15, 17, 25, 26 and 27

B. Cannell and R. G. Crofts

SUMMARY

The geological maps of the British Geological Survey, pre-existing borehole information, 90 boreholes drilled for the Industrial Minerals Assessment Unit and 406 resistivity depth soundings form the basis of the assessment of the sand and gravel resources in the area around Henley-in-Arden, Warwickshire.

All the deposits in the district that might be potentially workable for sand and gravel have been investigated and a simple statistical method has been used to estimate the volume. The reliability of the volume estimates is given at the symmetrical 95 per cent probability level.

The assessed area is divided into six resource blocks, containing between 7.8 and 16.1 km² of sand and gravel. For each block the geology of the deposits is described, and the mineral-bearing area, the mean thickness of overburden and mineral and the mean gradings are stated. Detailed borehole results and data from the interpretation of resistivity depth soundings are also given. The geology, the position of the boreholes and resistivity depth soundings and the outlines of the resouce blocks are shown on the accompanying map.

Notes

Each borehole registered with the Institute is identified by a four-element code (e.g. SP 16 NE 66). The first two elements define the 10-km square (of the National Grid) in which the borehole is situated; the third element defines a quadrant of that square, and the fourth is the accession number of the borehole. In the text of the report the borehole is normally referred to by the last three elements alone (e.g. 16 NE 66).

All National Grid references in this publication lie within the 100-km square SP unless otherwise stated. Grid references are given to eight figures, accurate to within 10 m, for borehole locations. (In the text, fourand six-figure grid references are used for more extensive location, for example for farms).

Bibliographical reference

CANNELL, B. and CROFTS, R. G. 1984. The sand and gravel resources of the country around Henley-in-Arden, Warwickshire; description of 1:25 000 resource sheet SP 16 and parts of SP 15, 17, 25, 26 and 27. Miner. Assess. Rep. Br. Geol. Surv., No. 142.

Authors and Contributor

B. Cannell, BSc, R. G. Crofts, BSc and R. J. O. Hamblin, BSc PhD British Geological Survey Keyworth Nottingham NG12 5GG

INTRODUCTION

The survey is concerned with the estimation of resources, which include deposits that are not currently exploitable but have a foreseeable use, rather than reserves, which can only be assessed in the light of current, locally prevailing, economic considerations. Clearly, neither the economic nor the social factors used to decide whether a deposit may be workable in the future can be predicted; they are likely to change with time. Deposits not currently economically workable may be exploited as demand increases, as higher-grade or alternative materials become scarce, or as improved processing techniques are applied to them. The improved knowledge of the main physical properties of the resource and their variability, which this survey seeks to provide, will add significantly to the factual background against which planning policies can be decided (Archer, 1969; Thurrell, 1971, 1981; Harris and others, 1974).

The survey provides information at the 'indicated' level "for which tonnage and grade are computed partly from specific measurements, samples or production data and partly from projection for a reasonable distance on geologic evidence. The sites available for inspection, measurement, and sampling are too widely or otherwise inappropriately spaced to permit the mineral bodies to be outlined completely or the grade established throughout" (Bureau of Mines and Geological Survey, 1948, p. 15).

It follows that the whereabouts of reserves must still be established and their size and quality proved by the customary detailed exploration and evaluation undertaken by the industry. However, the information provided by this survey should assist in the selection of the best targets for such further work. The following arbitrary physical criteria have been adopted:

- a The deposit should average at least 1 m in thickness.
- b The ratio of overburden to sand and gravel should be no more than 3:1.
- c The proportion of fines (particles passing the No. 240-mesh B.S. sieve, about μ mm) should not exceed 40 per cent.
- d The deposit should lie within 25 m of the surface, this being taken as the likely maximum working depth under most circumstances. It follows from the second criterion that boreholes are drilled no deeper than 18 m if no sand and gravel has been proved.

A deposit of sand and gravel that broadly meets these criteria is regarded as 'potentially workable' and is described and assessed as 'mineral' in this report. As the assessment is at the indicated level, parts of such a deposit may not satisfy all the criteria.

Pre-Pleistocene rocks, which are usually consolidated and devoid of potentially workable sand and gravel, are referred to as 'bedrock'; 'waste' is any material other than bedrock or mineral; 'overburden' is waste that occurs between the surface and an underlying body of mineral.

For the particular needs of assessing sand and gravel resources, a grain-size classification based on the geometric scale μ mm, $\frac{1}{4}$ mm, 1 mm, 4 mm, 16 mm, 64 mm has been adopted. The boundaries between fines (that is, the clay and silt fractions) and sand, and between sand and gravel material, are placed at μ mm and 4 mm respectively (see Appendix C).

Figure 1 Map showing the location of the resource sheet area and of adjacent areas described in Mineral Assessment Reports (MARs)

The volume and other characteristics are assessed within resource blocks, each of which, ideally, contains approximately 10 km^2 of sand and gravel. No account is taken of any factors, for example roads, villages or land of high agricultural or landscape value, which might stand in the way of sand and gravel being exploited, although towns are excluded. The estimated total volume therefore bears no simple relationship to the amount that could be extracted in practice.

It must be emphasised that the assessment applies to the resource block as a whole; valid conclusions cannot be drawn about mineral in parts of a block, except in the immediate vicinity of the actual sample points.

DESCRIPTION OF THE DISTRICT General

The district extends over 300 km^2 of Warwickshire and the West Midlands from the edge of the Birmingham conurbation around Shirley Heath, southwards to within 2 km of Stratford-upon-Avon, and lies between the 'new town' of Redditch and the old county town of Warwick (Figure 1). Centred on Henley-in-Arden, a small market town, this rural area supports both dairy and arable farming. A number of major northsouth roads cross the area and local railways, mainly providing commuter services, link many of the villages with the city of Birmingham. The Grand Union and Stratford-upon-Avon canals, once of commercial significance but now mainly used for leisure activities, also traverse the area.

The sand and gravel deposits of the district consist mainly of Glacial Sand and Gravel with small areas of River Terrace Deposits in the Alne and Blythe valleys. These sand and gravel deposits are mainly concentrated in the northern half of the resource sheet area (see Resource Map in pocket) and are described in resource blocks A to E. Potentially workable sand and gravel in these blocks cover an area of 63.5 km² and amount to an estimated 254 million m³. The remainder of the district, designated Block F, contains only scattered deposits of sand and gravel, which cover an area of 7.8 km² and contain an estimated 21 million m³ of mineral.

Topography

The land surface is generally plateau-like, falling from about 155 m (510 ft) around Terry's Green [104 735] in the northwest, to about 90 m (295 ft) at Fulbrooke [241 606] in the southeast, on the edge of the Avon valley. The two main river systems of the district, the Blythe and the Alne, dissect this plateau and flow to the north and south respectively, draining away from the main Severn-Trent watershed.

Geology

The area falls largely within Geological Sheet 183 (Redditch), for which both the 1:50 000 geological map and the descriptive memoir are currently in preparation. Locality details have been published as open-file reports (Ambrose 1982a, b, Ambrose and Strange 1982, Old 1982a, b, c, d, Strange and Ambrose 1982), and two further reports (Ambrose 1982c, Old 1982c, Old 1982e) describe the location and distribution of possible sand and gravel resources. The solid and drift deposits are summarised in Table 1, and schematic cross-sections are included with the resource map in the pocket at the back of this report.

The northern half of the area lies at the edge of the Birmingham Plateau. Here glacial drifts of Wolstonian (Pleistocene) age occupy the high ground and certain of the valley bottoms, while Recent deposits occur in the valley bottoms; solid strata crop out along the valley sides. The southern half of the area is more deeply dissected, the Wolstonian glacial deposits being restricted to isolated outlying hilltops and ridges.

 Table 1
 Geological sequence

DRIFT

Recent ar	nd Pleistocene	
		Peat Alluvium Alluvial Fan Deposits River Terrace Deposits (First, Second, Fourth Terraces) Head Till Till, chalky Glacial Lake Deposits Glacial Sand and Gravel
SOLID Jurassic	Lower Lias	Lower Lias, including Blue Lias
Triassic		
	Penarth Group	Westbury Formation
	Mercia Mudstone Group	Mercia Mudstones Arden Sandstone
	Sherwood Sandstone Group	Bromsgrove Sandstone
Upper Cart	coniferous Enville Group	Tile Hill Mudstones

SOLID

Upper Carboniferous The <u>Tile Hill Mudstones</u> of the Enville Group crop out in the northeast corner of the area, where they dip gently to the east. The strata at crop comprise about 40 m of reddish brown mudstones, interbedded with brown sandstones which vary rapidly in thickness and die out locally.

Triassic The <u>Bromsgrove Sandstone</u> of the Sherwood Sandstone Group crops out in the northeast corner of the area, comprising buff micaceous sandstones and redbrown mudstones.

The <u>Mercia Mudstone Group</u> underlies the greater part of the area and is divided into an upper and lower part by the <u>Arden Sandstone</u>. The lower part crops out east of the <u>Meriden-Norton Lindsey Fault [2479-2363]</u>, and is faulted against the Tile Hill Mudstone in the northeast. West of the Meriden-Norton Lindsey Fault, the Arden Sandstone and both mudstone sequences crop out widely, with variable but gentle dips.

The mudstones below the Arden Sandstone vary in thickness from about 130 m around Hatton [24 67] to 245 m at Rowington [20 69], and comprise brick-red silty mudstones, locally brown or purplish brown, with green spots and patches. They include many 'skerries', laterally impersistent greyish green siltstones and fine sandstones, 0.1 to 1.5 m thick. The Spernall Gypsum lies 20 to 25 m below the Arden Sandstone and has been mined near Spernall. The Arden Sandstone comprises a sequence of interbedded pale grey and green sandstones, siltstones and mudstones with subordinate red mudstones, and varies in thickness from about 1.0 m at Snitterfield [20 60] to 11.7 m in a borehole at Umberslade Park [131 717]. Generally, the proportion of sandstone is greatest where the member is thickest. The thickness of mudstones above the Arden Sandstone increases from about 55 m in the south to an estimated 140 m at Knowle the north. The bulk of the mudstones are in indistinguishable from those below, except that there are skerries, while in the Knowle Borehole fewer [1883 7777], a gypsum horizon was proved 48 m below the top of the group. The highest part of the group is termed the Blue Anchor Formation (formerly the Tea Green Marl) and comprises pale greenish grey silty blocky mudstones, varying in thickness from 6.85 m in the Knowle Borehole to 1.4 m in a trial pit at Round Hill [1427 6179].

The <u>Penarth Group</u> (formerly Rhaetic) is represented in the area at outcrop only by the Westbury Formation. About 6.0 m of dark grey or black fissile mudstones crop out at Waterfield Farm [187 776], and 1.3 m of pale bluish grey mudstone are exposed around the base of the Lias outliers between Morton Bagot [11 64] and Aston Cantlow [15 60].

Jurassic The Lower Lias, including the Blue Lias, occurs in a faulted outlier north of Knowle and as a series of outliers between Morton Bagot and Snitterfield. About 25 m at Morton Bagot and 95 m at Snitterfield are preserved, comprising grey mudstones and paper shales, which weather to yellow and grey clay, with interbedded limestones up to 8 to 10 cm in thickness.

DRIFT

The drift deposits of the area were first examined in detail by Tomlinson (1935), and some were re-examined by Shotton (1953, p. 240-242) as part of a study of the Wolstonian type area between Coventry, Rugby and Leamington. However, the conclusions of these authors require revision in the light of recent resurveys of the Warwick (Sumbler, 1983) and Redditch 1:50 000 geological sheets.

During the Wolstonian glaciation, at least two icesheets entered the area, one from the east and northeast and one from the north and northwest. A sequence of glacial lake sediments, boulder clays and glacial sands and gravels was formed, with the erratic content of the deposits reflecting the provenance of the ice-sheets. That from the west brought dominantly 'Bunter' quartzite and vein quartz pebbles, as well as Triassic and Upper Carboniferous sandstones rocks and mudstones, coal, and flints. Welsh igneous rocks also came from the west. The ice-sheet moving in from the east brought erratics including fresh flint and chalk, Jurassic limestone, and Leicestershire igneous rocks, as well as 'Bunter' quartzites, Triassic sandstones and coal.

Before the Wolstonian glaciation, the watershed of England ran across the area from Tanworth to Bearley (Figure 2), with rivers draining north to the Trent, east to the Soar and southwest to the Severn. However, as a result of the glaciation, three glacial channels were cut through this watershed (Figures 2 and 3). One of these forms the Kingswood Gap (Tomlinson 1935, p. 425), and runs from near Chadwick Manor [20 74] past Kingswood to Bushwood [18 68]; it is floored by sand and gravel. The Mere End Channel runs southeastward from Balsall Street [23 76]. The Shrewley buried channel runs from Haseley Knob [23 71] to [22 66] near Pinley, and is connected to the Chadwick End buried valley via the Wroxall col (Figure 3). Both the Mere End and Chadwick End/Shrewley channels are completely filled with a sequence of glacial lake deposits, sands and gravels, and tills. The early history of the channels is not clear, but all must have been at least partly cut before the retreat of the ice, because all contain till.

As ice entered the area from the east, north and west, a pro-glacial lake formed to the north of the area, and apparently overflowed through the Mere End Channel into the proto-Soar to the east. This outlet must have become blocked by ice advancing from the east and the Shrewley channel was then cut, crossing the main pre-glacial watershed and draining into the proto-Alne. Pro-glacial lacustrine deposits at heights up to +116 m OD are, however, found as far south as Snitterfield, partially infilling the Shrewley and Mere End channels and suggesting that the ice advanced to block the outlet of overflow water to the southwest into the Avon and formed a single relatively large lake which drowned the Tanworth-Bearley watershed.

Ultimately, ice covered the whole area of the Henley-in-Arden resource map, and many of the drift deposits are believed to have formed by sub-glacial melting. Thus, as the ice-sheet melted, a considerable pile of pro-glacial and sub-glacial sands, gravels and lacustrine silts and clays was built up over which a sheet of melt-out till was laid down in most of the area. Glacial outwash deposited thick sequences of sands and gravels in the Chadwick End, Shrewley and Mere End channels and the Kingswood Gap, as well as thinner sheets of sand and gravel locally above the till. It is not clear to what extent the channel-fill sequences include sub-glacial deposits, but the Kingswood Gap must have operated as an overflow channel after the Wroxall and Mere End channels became choked with drift, possibly draining a pro-glacial lake to the north during the final retreat phase.

Solifluxion during the later phases of the Wolstonian glaciation and during the subsequent Devensian glaciation have resulted in the deposition of head. Since the end of the Wolstonian there has been extensive fluvial erosion, with the attendant deposition of river terrace and alluvial fan deposits, alluvium and peat.

Glacial Lake Deposits These are soft laminated clays, silts and silty clays, with lenses of reddish brown sand containing some green bands and mottling. East of a line from Knowle to Henley-in-Arden (Figure 2), a suite of lake deposits up to 13 m in recorded thickness with their upper surfaces lying between 101 and 116 m, extends discontinuously from beyond the northern limit of the map area (Cannell, 1982) to near Snitterfield in the south. They are locally the oldest drift deposts, filling valleys in an uneven pre-glacial topography, or else they are locally underlain by or interbedded with glacial sands and gravels. They are rarely underlain in the northeast by deposits interpreted as till, and also pass out laterally into both tills and sands and gravels. It is believed that these lacustrine deposits formed at an early stage of the glaciation in a pro-glacial lake, dammed by ice to the east, west and north and by the Jurassic Uplands to the south. The lake level was at 116 m or higher. Within the area occupied by the sequence, four boreholes sunk between Chessetts Wood [18 73] and Mere End [24 74], revealed lake deposits with their upper surface at 121 to 124 m; these may be part of a larger sequence, as they accord well with the surface level of 125 m given by Shotton (1953) for Lake Harrison, or they may have formed at a later stage than the lake described above, in a small local lake. The lake may have been sub-glacial, or ponded against the northeastern glacier, for the deposits lie close to the western limit of the chalky boulder clay.

West of a line from Knowle to Ullenhall (Figure 2), a further sequence of lake deposits extends northwards from Trap's Green [10 69] to beyond the edge of the area. These appear to form a single continuous sheet up to 5 m or more thick, and rest variously on solid strata, till and sand and gravel. Their top surface levels range between 135 and 154 m, well above any local watershed, so they are likely to have been formed in an ice-locked situation, between the eastern and western ice sheets.

<u>Till</u> Over wide areas, till forms the youngest deposit of the local drift sequence, and hence it crops out widely, capping flat plateau remnants separated by post-glacial river valleys. The till sheet is continuous across the Wroxall buried channel, while in the Kingswood Gap, till mantles the valley sides down to OD +105 m but does not reach the valley bottom. This melt-out till, formed as the stagnant ice sheet melted in place, varies widely in thickness up to recorded maxima of 14 m at Snitterfield Bushes [19 60] and Dickens Heath, [11 76], 17.4 m at Rowington [20 70] and 18.2 m at Shrewley [22 67]. Till found beneath sands, gravels and lake deposits at Earlswood [11 74] and Tanworth [10 70] is likely to be lodgement till formed beneath the advancing ice sheet, as are deposits interpreted as till beneath the lake deposits east of the Kingswood Gap.

Chalky boulder clay occurs east of a line from near Lapworth [15 69] through Baddesley Clinton [20 71] to Holly Grange [23 75]. This comprises greyish brown sandy clay with blocks of white and red chalk, and fresh flint including black tabular blocks, as well as 'Bunter' quartzite pebbles. Near Rowington Coppice [203 706], red flints, generally up to 10 cm and ranging more rarely up to 25 cm in diameter, are scattered across the fields. On the map, chalky boulder clay is only distinguished on constituent quarter sheet SP 26 NW, but throughout its area of outcrop it occurs as patches which commonly overlie flint-free Trias-derived easterly till, the two facies correlating respectively with the Oadby and Thrussington Tills of Sumbler (1983).

Till of northern and western derivation occurs west of the Lapworth-Baddesley Clinton-Holly Grange line, and comprises reddish brown, orange and grey, stiff sandy pebbly clay. The sand fraction is of fine to medium grain-size, while the erratic pebbles are dominated by 'Bunter' quartzite and also include Triassic and Upper Carboniferous sandstones and mudstones. Flints and Welsh igneous rocks are common in the western twothirds of the area (i.e. west of grid easting 20) but are absent in some areas, notably in the northeast: Shotton (1968) recorded neither in a pipe trench from near Chadwick Manor to Holly Grange Farm.

Glacial Sand and Gravel Glacial sands and gravels are widespread in the north and east of the area, but they occur commonly in beds too thin or too clayey to be classified as mineral. They were formed by deposition from glacial meltwater during the advance or retreat of the northwestern and eastern glaciers. During the advance phase many of the deposits must have formed in pro-glacial lakes and are associated with the finer glacial lake sediments described above. These early sands and gravels are generally sheet-like in form and overlain by till, and individual beds are not more than 7 m thick. In the northeast, sands and gravels formed during the advance of the ice-sheets are interbedded with or overlie the glacial lake deposits, overstepping onto solid where the lake deposits occupy depressions in the sub-glacial topography. In the northwest (SP 17 NW), there are distinct suites of sand and gravel up to 5 m thick below and above the lake deposits, while on SP 17 SW, sand and gravel occupies a northwest orientated channel in the pre-glacial topography, and is

overlain by glacial lake deposits and melt-out till. Deposits dating from the retreat and melting of the ice sheet are largely confined to the linear channel-fills in the Kingswood Gap and the Wroxall Channel, although isolated patches of sand and gravel also occur resting on the boulder clay plateau, in particular between Haseley [23 69] and Honiley [24 72]. Although less widespread in area than the earlier deposits, these are generally thicker, reaching 13.7 m in borehole SP 17 SE 79 in the Kingswood Gap, 16.7 m at a non-IMAU borehole at Five Ways [22 69] and 31.3 m similarly at Haseley in the Shrewley Channel, and 10.3 m at Balsall Street (borehole SP 27 NW 31) in the northeast.

The proportions of clay, sand and gravel in these deposits are very varied, but in general the channel-fill deposits include a higher proportion of sand than the sheet-like deposits. The deposits within the Kingswood Gap are dominantly of gravel in the north but of sand and clay in the south. The patches of sand and gravel that locally overlie the melt-out till on quarter-sheet SP 27 SW are lithologically indistinguishable from those that underlie the till. The erratic content of all the deposits reflects that of the ice-sheet from which they were derived, and well rounded 'Bunter' quartzite and quartz pebbles are dominant throughout the area. Upper Carboniferous and Triassic sandstones and mudstones occur widely, and Welsh igneous rocks are found in the western part of the area. Flints occur everywhere except in the northeast, but large flints are restricted to the area of the chalky boulder clay, southeast of a line from the vicinity [15 69] of Pinks Farm through Baddesley Clinton [20 71] to Holly Grange [23 75], where they are associated with clasts of soft white and red chalk. In the southeast of the area, southeastwards from Norton Lindsey, the gravels contain up to 32 per cent of Jurassic limestone pebbles, associated with quartzite, quartz, sandstone, ironstone, flint and mudstone; limestone does not occur elsewhere in the resource sheet area, and apparently this local deposit has been derived from south of the district. It correlates with the Lillington Facies of the Baginton Lillington Gravels of Shotton (1953).

There are not many major exposures in the area. At Cuttle Pool [2015 7535] in the northeast, Tomlinson (1935, p. 429) recorded about 2 m of unstratified gravel overlying 6.1 m (seen) of current-bedded sharp sand and gravel, filling a channel and banked against a steep bluff of mudstone of the Mercia Mudstone Group. Working pits at Pinley Green [209 662] reveal, in a face 70 m long, 1 m of pale brown pebbly sand overlying about 5 m of gravel with pebbles of quartzite, flint, Triassic sandstone and mudstone in a matrix of red medium to coarse sand; pebbles are up to 10 cm in diameter and some show imbrication (Ambrose 1982c). An old quarry [1392 7136] in Umberslade Park exposes about 1 m of poorly sorted gravel, with clasts, up to 200 mm in diameter, of quartzite, dolerite and Triassic sandstone, in a poorly sorted medium to coarse sand matrix. At Tattle Bank [177 634], Tomlinson (1935, p. 432-433) recorded 8.8 m of drift deposits in a channel, banked against Mercia Mudstone to the northwest, and including 4.1 m of clay, sand and loam overlying 4.7 m of current-bedded sandy gravel with large boulders of Triassic sandstone as well as flints, Carboniferous sandstone, Chalk and igneous rocks from Wales and Leicestershire. Finally, 2.2 m of gravels exposed [2356 5964] near High Close Farm are fine-grained, crudely bedded, and contain fossiliferous pebbles of Jurassic limestone as well as 'Bunter' quartzite, the dominant clast material.

<u>Head</u> Small patches of head up to 1.7 m in recorded thickness are shown on the map throughout the area, mainly on the sides and bottoms of valleys. They were derived from the glacial drifts upslope by solifluxion during periglacial freeze-thaw, and probably include deposits of both late Wolstonian and Devensian ages. Their composition reflects the drifts from which they are derived, and includes red and brown sandy pebbly clays and clayey sands.

<u>River Terrace Deposits</u> Fourth Terrace deposits of the River Avon occur in the southeast corner of the district in the parish of Hampton Lucy and also near Hooknell [249 629]. They comprise clayey gravel with quartzite, quartz and flint pebbles.

Small patches of the Second Terrace of the Avon occur in the southeast [241 581, 249 624] in tributary valleys. Second Terrace deposits of the Avon system also occur in the Alne Valley and its tributaries, on uneven slopes 1.5 to 5 m above the alluvium and up to 3.05 m in recorded thickness. The terraces are widest around Aston Cantlow and Wootton Wawen, though east of Wootton Wawen they are probably only 1 to 2 m thick. The deposits of the terrace in those tributaries of the Alne that flow from Bushwood and Rowington, comprise up to about 2 m of orange-brown to grey pebbly clayey sand and sandy clay. Small outcrops occur in Pinley Brook.

First Terrace deposits are associated with all of the significant streams except the Alne and its tributaries, but mostly as small patches. Outcrops in the Inchford Brook on quarter-sheet SP 26 NW comprise gravel dominated by 'Bunter' quartzite pebbles with flints, as exposed for example in river banks near Inchford Brook Farm [250 689]. In the north, insignificant patches of stony clay and clayey gravel flank the Blythe downstream of Monkspath Street [143 757]. These are up to 4.0 m thick and rise to about 1.5 m above the alluvium.

<u>Alluvial Fan Gravels</u> Two small outcrops of sandy gravel up to 1.5 m thick at High Cross [199 672] and north of Bushwood [186 696] are interpreted as alluvial fan deposits, merging respectively into the Second Terrace of the Pinley Brook and the alluvium of the Rowington Brook.

<u>Alluvium</u> Strips of alluvium up to at least 4.4 m thick flank most of the streams of the area, most notably the Alne and its tributary from Rowington. A continuous strip of alluvium joins the Alne and Blythe through the Kingswood Gap. The alluvium is generally composed of soft silty clay, grey to blue when fresh but weathering brown, and often pebbly with 'Bunter' quartzite, quartz and flint pebbles derived from earlier drift deposits. It commonly has a basal bed of gravel or very gravelly clay, up to 2 m thick.

<u>Peat</u> Peat up to a metre thick overlies alluvium northeast of Warren Farm [217 728].

Composition of the Sand and Gravel Deposits

Within the resource sheet area, glacial sand and gravel, river terrace and alluvial fan deposits constitute potentially workable sand and gravel.

<u>Glacial Sand and Gravel</u> This deposit is widely distributed over the northern half of the district but occurs only as small scattered patches in the south. It occupies an estimated total area of 60.7 km^2 . Its composition ranges from gravel to 'very clayey' sand. Most of the more gravelly deposits are concentrated in the northwest (see Blocks A and B) while generally sandy deposits cover the eastern half of the resource sheet area (see Blocks C to E). Overall, the mean grading for glacial sand and gravel is 17 per cent fines, 65 per cent sand and 18 per cent gravel. The fines content ranges from 2 per cent (borehole 27 NW 30) to 33 per cent (borehole 27 SW 20).

The pebbles are dominantly subrounded to well rounded quartzite, quartz and sandstone with minor amounts (usually totalling less than 5 per cent) of igneous rocks, limestone, flint, ironstone and mudstone. Exceptionally, 8 per cent of flint was recorded in borehole 26 SW 50 while a high concentration, 34 per cent, of Jurassic limestone and ironstone was present in boreholes 25 NW 64 and 26 SW 71. The sand fraction is dominated by fine and medium quartz.

<u>River Terrace Deposits</u> These deposits cover approximately 8 km^2 , a relatively small area in comparison with that of the glacial sand and gravel. Where samples have been taken, they show that the deposits range from gravel to 'very clayey' gravel. The fines content ranges from 7 to 27 per cent and the percentage of gravel from 49 to 74 per cent.

Subrounded to well rounded quartzite, quartz, sandstone and, locally, flint make up the major part of the gravel fraction. Minor amounts of igneous rocks, mudstone, ironstone and limestone may also be present.

Fine, medium and coarse sand is found in roughly equal amounts in the sand fraction, with quartz dominant in all grades.

Alluvial Fan Deposits

These deposits occur at two localities around Bushwood. Borehole 16 NE 67 proved the deposit to be a 'clayey' sandy gravel comprising rounded to well rounded quartzite, quartz and sandstone in the gravel fraction and fine and medium quartz in the sand fraction.

The Map

The sand and gravel resource map is folded into the pocket at the end of this report. The base map is the Ordnance Survey 1:25 000 Outline Edition in grey, on which the geological data are shown in black, the mineral resource information in shades of red and geophysical data in purple.

<u>Geological data</u> The geological lines are from a survey on the 1:10 000 scale by R. A. Old, K. Ambrose and P. J. Stange. Copies of the constituent 1:10 000 geological sheets can be obtained from the Institute's offices at Keyworth, Nottinghamshire. The geological boundaries represent the best interpretation of the information available at the time of survey. However, it is inevitable that local irregularities and discrepancies will be revealed as new evidence from boreholes and excavations becomes available.

Borehole data, which include the stratigraphic relations, thicknesses and mean particle size distribution of the sand and gravel samples collected during the assessment survey, are also shown on the map.

Data on the thickness of the drift deposits derived from resistivity depth soundings (Appendix F), are shown conventionally on the map; deduced thicknesses used in the assessment of the sand and gravel resources are underlined. Detailed comparisons between data derived from depth soundings and from boreholes are included in Appendix H.

<u>Mineral resource information</u> The mineral-bearing ground is divided into resource blocks (see Appendix A). Within a resource block the mineral is subdivided into areas where it is exposed, that is where the overburden averages less than 1 m in thickness, and areas where it is present in continuous, or almost continuous, spreads beneath overburden. The recognition of these categories is dependent upon the importance attached to the proportion of boreholes which did not find potentially workable sand and gravel and the distribution of barren boreholes within a block. The mineral is described as 'almost continuous' if it is present in 75 per cent or more of the boreholes in a resource block.

Areas where bedrock crops out, where boreholes indicate absence of sand and gravel beneath cover and

where sand and gravel beneath cover is interpreted to be not potentially workable, are uncoloured on the map; where appropriate, the relevant criterion is noted. In such cases it has been assumed that mineral is absent except in infrequent and relatively minor patches that can neither be outlined nor assessed quantitatively in the context of this survey. Areas of unassessed sand and gravel, for example in built-up areas, are indicated by a red stipple.

The area of the mineral-bearing ground is measured, where possible, from the mapped geological boundary lines. The whole of this area is considered as mineralbearing, even though it may include small areas where sand and gravel is not present or is not potentially workable. Inferred boundaries have been inserted to delimit areas where sand and gravel beneath cover is interpreted to be not potentially workable or absent. Such boundaries (for which a distinctive zigzag symbol is used) are drawn primarily for the purpose of volume estimation. The symbol is intended to indicate an approximate location within a likely zone of occurrence rather than to represent the breadth of the zone, its size being determined only by cartographic considerations. For the purpose of measuring areas the centre line of the symbol is used.

Results

The statistical results are summarised in Table 2. Fuller grading particulars are shown in Figures 5 and 6 and Tables 3 to 8.

Accuracy of results Of the six resource blocks, five, designated A to E, have been assessed statistically and for these the accuracy of the results is indicated by the confidence limits of between 17 and 72 per cent at the 95 per cent probability level (that is, on average nineteen out of every twenty sets of limits constructed in this way contain the true value for the volume of mineral) (Appendix B). However, the true volumes are more likely to be nearer the figure estimated than either of the limits. Moreover, it is probable that roughly the same percentage limits would apply for the statistical estimate of mineral volume within a very much smaller parcel of ground (say 100 hectares) containing similar sand and gravel deposits, if the results from the same number of sample points (as provided by, say, ten boreholes) were used in the calculation. Thus, if closer limits are needed for quotation of reserves, data from more sample points would be required, even if the area were quite small. This point can be illustrated by considering the whole of the potentially workable sand and gravel in blocks A to E. The total volume (254 million m³) can be estimated to limits of $\frac{1}{2}$ 14 per cent at the 95 per cent probability level by a calculation based on the data from the 291 sample points spread across the five resource blocks. A series of inferred assessments is offered for block F.

However, it must be emphasised that the quoted volume of mineral has no simple relationship with the amount that could be extracted in practice, as no allowance has been made in the calculations for any restraints (such as existing buildings and roads) on the use of the land for mineral working.

Notes on the Resource Blocks

The district has been divided into five major resource blocks, A to E, for which statistical assessments have been carried out; a sixth resource block, block F, has been divided into six sub-blocks for the purposes of assessment and description (Figure 4). In resource blocks A to E the potentially workable sand and gravel is dominantly glacial sand and gravel, associated mainly with drift-filled channels. The more gravelly deposits are included mainly in blocks A, B and C while mineral in blocks D and E comprises mainly fine sand. Sub-block F2

Figure 4 Locality map with reference to block boundaries (solid lines) and sub-divisions of block F (broken lines). An assessment of the resources in the West Midlands County is given for parts of blocks A, B, D and E in Table 2.

covers river deposits of the River Alne, while the other five sub-blocks contain many small scattered patches of glacial sand and gravel. The assessment of block F relies heavily on thickness data derived from resistivity depth soundings and for each of the sub-blocks an inferred assessment (see Appendix B) is given.

<u>Block A</u> covers an area of 32.8 km^2 between the urban area around Shirley Heath [120 778] and Nuthurst [147 719]. Eight IMAU boreholes (Table 3), 131 other boreholes and eight interpreted resistivity values have been used to assess the sand and gravel which comprises 12.5 km^2 of glacial sand and gravel and 0.6 km^2 of river terrace deposits of the River Blythe.

Much of the glacial mineral is hidden beneath younger glacial deposits and in many places the limits of

the potentially workable mineral is delineated by inferred boundaries, for example, between Dicken's Heath [111 761] and Nuthurst. In several places, glacial sand and gravel appears to be limited to narrow driftfilled valleys (Old 1982e, p.6), for example, at Monkspath Street [142 761] and Shelly Green [145 767]. Locally, the extent of the mineral in these drift-filled channels can be ascertained from the site investigation boreholes sunk for the M42, but in most places the limits of mineral have had to be shown by inferred boundaries.

Although sand and gravel was found to be thin in two of the IMAU boreholes, 1.6 and 0.8 m (in 17 NW 176 and 17 NW 177, respectively), and should be regarded as nonmineral, the recorded values have been included in the volume calculations nevertheless, because it is not possible to delineate the area of non-mineral with any accuracy, particularly as nearby boreholes or interpreted resistivity values demonstrate the presence of considerable thicknesses of mineral: for example, compare the data from borehole 17 NW 109 with those from 17 NW 177, and from borehole 17 NW 176 with the interpretation of resistivity depth sounding HY 14.

Sandy gravel or pebbly sand were encountered in all the IMAU boreholes proving mineral, with the amounts of fines ranging from 8 per cent (borehole 17 SW 196) to 25 per cent (borehole 17 NE 192). The overall mean grading for this block is 15 per cent fines, 63 per cent sand and 22 per cent gravel (Figures 5, 6). Recorded mineral thicknesses range up to 8.3 m in borehole 17 NE 192, while interpreted resistivity values at site HY 5 (Cleobury Pool [107 752]) indicate that a maximum of 8.5 m of sand and gravel may be present. The mean thickness of glacial sand and gravel is 3.4 m and the estimated volume of 45 million m³ \pm 17 per cent.

Overburden covering the glacial sand and gravel has a mean thickness of 3.2 m and ranges from a sandy soil less than 1 m thick where the deposit is exposed, to a maximum recorded thickness of 8.8 m in borehole 17 SW 123, a non-IMAU borehole. Overburden commonly consists of stiff to hard till or glacial lake deposits. A waste parting of 1.4 m was recorded in borehole 17 NE 192.

No IMAU information is available for the river terrace deposits, and the assessment is therefore based entirely on other boreholes from which information on the composition (quality) of the deposits is commonly not available. These boreholes indicate that upstream from Shirley Race Course [136 758], sand and gravel is thin or absent in the Blythe valley and its tributaries. Where present, sand and gravel ranges in thickness from less than 1.0 to 2.2 m (borehole 17 NW 29 and 17 NW 90) and has a mean thickness of 1.2 m. The estimated volume of sand and gravel in this deposit is 0.7 million m³. Overburden is generally thin and consist of silts and clays. The maximum recorded thickness of overburden associated with the river terrace deposits was 2.1 m in borehole 17 NE 149. The mean thickness of the overburden is 0.6 m.

<u>Block B</u> This block covers an area of 32.1 km^2 , extending from Tanworth [113 705] in the southwest, through Lapworth [164 711] to Knowle [177 767] in the north. The sand and gravel consists of 9.9 km^2 of glacial sand and gravel and has been assessed using data from eight IMAU boreholes (Table 4), six other boreholes and 10 interpreted resistivity soundings.

The potentially workable sand and gravel has a patchy distribution. Although much of it is concealed beneath glacial clays, well exposed glacial sand and gravel can be found around Lapworth, northwest of Knowle and south of Dorridge [173 753]. Where concealed mineral has been encountered, its limits have been delineated by inferred boundaries, for example, west of Dorridge and north of Gilbert's Green [102 711].

Boreholes 17 NE 193 and 194, sunk into exposed glacial sand and gravel, proved no potentially workable material. However, since the area of barren ground around these boreholes cannot be delineated, nil thicknesses have been included in the volume calculations. Borehole 17 SW 193 also failed to prove

Resource block/sub-	Area		Mean thickne	55	Volume of and grave	sand l		Mean grading percentage		Gravel +4 mm 22 30 23 7 7 18
	Block	Mineral	Over- burden	Mineral	- <u>,</u> ,,	Limits probat	s at the 95% pility level	Fines	Sand	Gravel
	km²	km²	m	m	Million m [°] x 10 ⁶	<u>+</u> %	Million <u>+</u> m [®] x 10 ⁶	–iemm	+ 16- 4 mm	+4 mm
A	32.8	13.1	2.9	3.4	45	17	8	15	63	- <u></u> 22
B	32.1	9.0	1.8	3.7	33	42	14	15	55	30
Ē	24.5	12.5	1.4	2.8	35	72	25	18	59	23
D	23.5	12.8	1.7	5.7	73	29	21	16	77	7
Е	39.1	16.1	1.9	4.3	69	28	19	20	73	7
A to E	152.0	63.5	1.9	4.0	254	14	36	17	65	18
Inferred assess	ment – Bloci	(F								
F1	48.0	1.0	*	3.8	4					
F2	6.4	2.9	*	1.7	5					
F 3	14.3	0.4	*	2.9	1	Limits	5			
F4	26.8	0.5	*	1.5	1	specul	ative			
F5	32.9	1.2	*	3.5	4	•				
F6	12.9	1.8	*	3.6	6					
F1 to F6	141.3	7.8	*	2.8	21					
The resources of	of parts of t	he district	lving wit	hin the We	st Midlands	countvi	ł			
A (part)	20.6	8.7	2.7	3.5	30	26	8	19	61	20
B (part)	6.6	3.0	1.2	3.9	12	specul	ative	16	53	31
C**	24.5	12.5	1.4	2.8	35	72	25	18	59	23
D (part)	6.1	3.3	0.4	6.3	21	specul	ative	16	66	18
E (part)	0.4	0.3	1.0	2.5	0.7	specul	ative	no data		
A to E	58.2	27.8	1.3	3.8	98.7	specul	ative	17^{+}	61+	22+

Table 2 The sand and gravel resources of the district.

* Generally thin

** Resources in block C are, within the limits of error, virtually wholly within the West Midlands County

+ Grading data for A to D only

[†] Complementary figures for area and volume of the resources in the parts of blocks A, B, D and E lying in Warwickshire, may be obtained by subtraction

Table 3	Block A:	data from	IMAU	boreholes
---------	----------	-----------	------	-----------

Borehole	Recorded	d thickness	Mean gi	ading perce	ntage			
	Mineral	Over-	Fines	Sand			Gravel	
	m	m	- 1 mm	Fine +16-4 mm	Medium +뉰 -1 mm	Coarse +1 -4 mm	Fine +4 -16 mm	Coarse +16 mm
17 NW 176 17 NW 177	Absent							
17 NW 179	2.8	2.2	14	11	39	6	15	15
17 NE 192 17 SW 186	8.3* 6.9	0.3 6.6	25 14	17 24	36 43	3 4	9 9	10 6
17 SW 188	3.3	5.4	15	10 12	44	7	16	8
17 SW 191 17 SW 196	4.0	2.4	8	26	47	3	18 9	18

* excluding waste parting of 1.4 m

 Table 4
 Block B: data from IMAU boreholes

Borehole	Recorded	d thickness	Mean gi	rading perce	ntage			
	Mineral	Over-	Fines	Sand		Gravel		
m	m	- <u>1</u> 6 mm	Fine + 1 6-4 mm	Medium +뉰 -1 mm	Coarse +1 -4 mm	Fine +4 -16 mm	Coarse +16 mm	
16 NE 66 17 NE 193 17 NE 194	2.3 Absent	1.7	22	17	44	4	10	3
17 NE 198 17 SW 193	6.2* Absent	1.5	12	11	32	4	15	26
17 SW 194 17 SW 195 17 SE 74	2.5 5.0** 5.8	3.5 3.2 4.0	15 9 20	9 8 11	31 38 44	5 12 5	21 20 13	$\begin{array}{c} 19\\ 13\\ 7\end{array}$

* excluding waste parting of 3.5 m

** excluding waste parting of 0.8 m

 Table 5
 Block C: data from IMAU boreholes

Borehole	Recorded	d thickness	Mean grading percentage					
	Mineral	Over-	Fines	Fines Sand			Gravel	
m	m	m	- <u>16</u> mm	Fine +16 - वे mm	Medium + चे -1 mm	Coarse +1 -4 mm	Fine +4 -16 mm	Coarse +16 mm
17 NE 195 17 NE 196 17 NE 197 17 NE 197 17 NE 199 27 NW 27	1.5 Absent Absent Absent Absent	0.5	21	9	18	9	25	18
27 NW 28 27 NW 29	5.3* Absent	0.4	22	20	32	4	13	9
27 NW 30 27 NW 31 27 NW 32 27 NW 33 27 NW 33 27 NW 34 27 NW 35 27 SW 13	2.5 10.3 12.8** Absent 8.4† 2.6 Absent	1.0 0.4 0.4 0.2 6.0	2 18 23 12 14	3 22 27 33 46	14 28 38 22 39	$ \begin{array}{r} 10 \\ 5 \\ 2 \\ 3 \\ 1 \end{array} $	34 12 3 12 0	37 15 7 18 0
27 SW 15	Absent							

* excluding waste parting of 0.6 m

** excluding waste parting of 3.3 m

t excluding waste partings of 1.5 and 1.4 m.

Block	Percen	tage by	weight p	passing		
	i∉ mm	4 mm	1 m m	4 mm	16 mm	64 mm
A	85	67	26	22	10	0
В	85	74	36	30	15	0
С	82	57	27	23	13	0
D	84	46	9	7	4	0
Е	80	52	9	7	3	0

Figure 5 Mean particle size distribution for the mineral in resource blocks A to ${\rm E}$

mineral, but the recorded thickness of sand and gravel (0.5 m) has been included in the calculation of resources because the interpretation of resistivity sounding HY 16, indicates that 3.9 m of sand and gravel may be present in Alderhanger Wood [101 699].

All IMAU boreholes encountering mineral contained sandy gravel, except borehole 16 NE 66, the samples from which graded as pebbly sand. The fines content of the mineral ranges from 9 per cent in borehole 17 SW 195 to 22 per cent in borehole 16 NE 66, while the overall mean grading for the block is 15 per cent fines, 55 per cent sand and 30 per cent gravel (Figures 5, 6). Recorded mineral thicknesses range from 1.3 m in borehole 16 NE 17 (a non-IMAU borehole) to 6.2 m in borehole 17 NE 198, while interpreted resistivity values at site HY 43 indicate that a maximum thickness of 7.8 m of sand and gravel may be present. The mean thickness of mineral in this block is 3.7 m and the estimated volume 33 million m³ \pm 42 per cent.

Overburden has a mean thickness of 1.8 m, ranging from thin sandy soil up to a recorded thickness of 4.0 m of glacial lake clays and till in borehole 17 SE 74. However, a maximum of 5.9 m of clayey overburden is indicated from the results of resistivity depth sounding HY 18, at Kemps Green Farm [143 706]. Waste partings of 3.5 and 0.8 m were recorded in boreholes 17 NE 198 and 17 SW 195, respectively.

<u>Block C</u> This block stretches from the eastern outskirts of Knowle and Dorridge to Needlers End [243 768] and

BLOCK C FINES SAND GRAVEL 0 10 retained 20 30 40 igh Ve 50 à Percentage t 90 l₁₀₀ 1/16 1/4 4 16 64 1 Aperture size in millimetres

Figure 6 Particle-size distribution for mineral in blocks A, B, C, D and E. The continuous curve represents the weighted mean grading of the block; the broken lines delimit the envelope within which the mean grading curves for the individual boreholes fall

13

covers an area of 24.5 m². The potentially workable sand and gravel consists of 10.3 km^2 of glacial sand and gravel and 2.2 km² of river terrace deposits and alluvium of the River Blyth and its tributary the Cuttle Brook [195 753]. The assessment of sand and gravel resources in this block is based on data from 15 IMAU (Table 5) and three other boreholes. Much of the sand and gravel is associated with the Mere End Buried Channel (Figure 2) which is filled with a complex sequence of sands, gravels and clays. The exact distribution of the mineral in the block is not clear, for much is concealed beneath considerable thicknesses of glacial lake deposits and till. The extent of the mineral is considered to be coincident with the edge of the mapped drift, except around Needlers End, where boreholes proved mineral to be absent beneath much of the till.

Several boreholes (Table 5), for example, 17 NE 199 and 27 NW 27, located in areas mapped as glacial sand and gravel at the surface, proved only thin sequences of sand and gravel or were barren. Only thin sand and gravel was found beneath the glacial lake deposits proved in borehole 27 NW 13. In both the above situations, the area of barren ground cannot be accurately defined on the available information and consequently, nil thicknesses have been used in the assessment of resources, although the areas in question have been coloured by the appropriate shade of pink on the resource map.

The mean grading of the mineral ranges from 'clayey' sand to gravel, with the fines content ranging from 23 per cent in borehole 27 NW 32 to 2 per cent in borehole 27 NW 30. The overall mean grading for this block is 18 per cent fines, 59 per cent sand and 23 per cent gravel (Figures 5, 6). Recorded mineral thicknesses range from 1.5 m (borehole 17 NE 195) to 12.8 m (borehole 27 NW 32) and the mean thickness is 2.8 m. The estimated volume of sand and gravel is 35 million m³ \pm 72 per cent at the 95 per cent confidence level.

Overburden ranged in thickness from 0.2 to 6.0 m. The maximum was recorded in borehole 27 NW 35, where the overburden, elsewhere including silt, consisted of stony and laminated clay. The calculated mean thickness is 1.4 m.

Little sub-surface information on the sand and gravel is available from any of the river terrace deposits in this block; borehole 17 NE 197 proved to be barren. However, taking note of information from block A and from boreholes drilled for the Solihull sand and gravel survey (Cannell, 1982), potentially workable sand and gravel may be present in the main valley of the River Blythe and Cuttle Brook. Elsewhere, sand and gravel is either thin or absent from the river terrace deposits.

<u>Block D</u> This block covers an area of 23.5 km² and contains 12.8 km² of potentially workable sand and gravel.

 Table 6
 Block D: data from IMAU boreholes

It stretches from Temple Balsall [208 757] in the north to Finwood [193 683] in the south. The assessment of the sand and gravel resources is based on information from nine IMAU boreholes (Table 6), 16 other boreholes and eight interpreted resistivity soundings.

Much of the sand and gravel is associated with driftfilled channels which may be somewhat less than 1 km wide, as typified by the Kingswood Gap (Figures 2 and 3), or broader, as in the Chadwick End valley. The extent of the sand and gravel in the Kingswood Gap can be easily defined because it is well exposed. In the Chadwick End valley, however, the extent of the potentially workable sand and gravel is not clear and inferred boundaries have been used to separate ground containing mineral from areas with excessive overburden or barren ground.

Sand and gravel was encountered in all the IMAU boreholes except 27 SW 19, which proved only silts and clays in an area mapped as glacial sand and gravel. However, resistivity depth sounding HY 35, sited nearby, proved 4.8 m of mineral and both this figure and the nil thickness proved in the borehole have been taken into account in the assessment of resources.

All of the IMAU boreholes proved either sand or pebbly sand, except borehole 27 SW 11, the mineral from which graded as 'very clayey' gravel. The fines content ranged from 11 per cent in borehole 17 SE 79 to 25 per cent in borehole 27 SW 11; the mean grading for the block as a whole is 16 per cent fines, 77 per cent sand and 7 per cent gravel. Recorded thicknesses of mineral ranged from 1.2 m in borehole 16 NE 36 (a non-IMAU borehole) to 13.2 m in borehole 27 SW 14, while the interpretation of resistivity depth soundings indicates an inferred maximum thickness of 16.0 m of sand and gravel at site HY 29. The mean thickness of mineral for this block is 5.7 m and the estimated volume is 73 million m³ \pm 29 per cent.

Overburden thicknesses range from 0.3 m of sandy soil over exposed mineral in the Kingswood Gap (borehole 17 SE 76) to 9.6 m of till and laminated clays in borehole 27 SW 21. Overall, the mean thickness of overburden is 1.7 m. A waste parting of 0.5 m was encountered in borehole 17 SE 75.

<u>Block E</u> This block covers an area of 39.1 km^2 and extends from Mere End [245 741] in the north to Claverdon [197 648] in the south. The assessment is based on information from seven IMAU boreholes (Table 7), 24 other boreholes and 14 resistivity depth soundings. As in blocks C and D, much of the mineral is found in drift-filled channels, with the limits of much of the sand and gravel being concealed beneath younger drift deposits. It is estimated that the block includes at least 16.1 km² of glacial sand and gravel.

Borehole	Recorded	d thickness	Mean gr	ading perce	ntage			
	Mineral	Over-	Fines	Sand			Gravel	
	m	m	- 1 6 m m	Fine +15 - 4 mm	Medium +뉰 -1 mm	Coarse +1 -4 mm	Fine +4 -16 mm	Coarse +16 mm
16 NE 67	5.6	0.7	13	44	34	3	5	1
17 SE 64	6.2	1.5	13	44	38	1	1	3
17 SE 75	2.9*	5.5	23	58	18	1	0	0
17 SE 76	7.6	0.3	15	29	35	4	6	11
17 SE 79	11.9	2.1	11	48	35	2	2	2
27 SW 11	3.6	0.4	25	10	16	7	20	22
27 SW 14	13.2	2.8	19	33	45	1	1	1
27 SW 19	Absent							
27 SW 21	6.8	9.6	21	35	43	1	0	0

* excluding waste parting of 0.5 m

Table 7	Block E	: data	from	IMAU	boreholes
---------	---------	--------	------	------	-----------

Borehole	Recorded	d thickness	Mean gi	ading perce	ntage				
	Mineral	Over-	Fines	Sand		Gravel			
	m	m	- <u>1</u> 6 mm	Fine +1ह - दे mm	Medium +ᇻ -1 mm	Coarse +1 -4 mm	Fine +4 -16 mm	Coarse +16 mm	
26 NW 85 26 NW 86 26 NW 87 26 NW 88 26 NW 88 26 SW 57	14.3 Absent Absent Absent Absent	5.7	19	27	52	1	1	0	
27 SW 20 27 SW 23*	5.0 7.9	3.0 1.6	33 15	$\begin{array}{c} 55\\12\end{array}$	11 47	1 6	0 11	0 9	

* excluding waste parting of 6.8 m.

 Table 8
 Block F: data from IMAU boreholes

Borehole	Recorded	d thickness	Mean grading percentage					
	Mineral	Over-	Fines	Sand		Gravel		
	m	m	- <u>1</u> 6 m m	Fine + 1 6 - 4 mm	Medium +냨 -1 mm	Coarse +1 -4 mm	Fine +4 -16 mm	Coarse +16 mm
16 SW 17	1.2	0.5	7	4	7	7	25	50
16 SE 8	1.3	1.6	7	4	7	9	40	33
25 NW 64	5.0	1.2	11	34	29	10	10	6
26 SW 49	Absent							•
26 SW 50	4.7	0.3	24	6	33	8	13	16
26 SW 53	1.1	0.2	11	7	8	10	38	26
26 SW 54	4.0	0.7	19	14	31	8	18	10
26 SW 58	1.1	0.6	21	36	38	1	1	3
26 SW 60	3.3	2.0	11	8	9	13	39	20
26 SW 61	1.3	0.4	12	7	16	11	29	25
26 SW 62	1.2	0.6	27	6	10	8	29	20
26 SW 64	3.9	0.3	14	7	17	14	35	13
26 SW 65	2.2	0.3	26	20	27	7	12	8
26 SW 66	6.0	0.4	10	58	29	1	1	1
26 SW 67	2.9	4.4	27	37	34	1	1	0
26 SW 68	3.0	0.3	11	10	42	8	19	10
26 SW 69	2.5	0.3	17	9	25	6	21	22
26 SW 71	2.8	0.4	12	19	27	14	12	16
26 SW 72	0.7	0.4	9	7	33	15	19	17

The distribution of potentially workable sand and gravel beneath overburden is very uncertain, and inferred boundaries have had to be drawn in many places. Three of the seven IMAU boreholes proved mineral. Only clays and silts were present in borehole 28 NW 85 (at Little Shrewley) which was drilled in an area mapped as glacial sand and gravel, while resistivity sounding HY 85, close by, indicated that up to 9.0 m of sand and gravel may be present (see also boreholes 26 NW 57 and 26 NW 88). Where areas of barren ground cannot be delineated or information shows rapid changes in thickness or lithology, nil thicknesses have been taken into account and included in the assessment of resources, and the areas in question have been coloured with the appropriate shade of pink on the map.

Of the three IMAU boreholes encountering mineral, two proved 'clayey' or 'very clayey' sand while the third, 27 SW 23, proved 'clayey' pebbly sand. The overall mean grading for the block is 20 per cent fines, 73 per cent sand and 7 per cent gravel (Table 2, Figures 5, 6). Recorded thicknesses of sand and gravel ranged from 1.2 m in borehole 26 NW 34 (a non-IMAU borehole) to 14.3 m in borehole 26 NW 85; the mean thickness is 4.3 m. The estimated volume of mineral in the block is 69 million m³ \pm 28 per cent, at the 95 per cent confidence level.

The overburden ranges from thin sandy soil to sandy clays and silts up to 5.7 m thick (as proved in borehole 26 NW 85). A waste parting consisting of till and glacial lake deposits 6.8 m thick was encountered in borehole 27 SW 23.

<u>Block F</u> This block covers 141.3 km^2 in the south of the resource sheet area and contains some 7.8 km^2 of potentially workable sand and gravel. The largest single spread of mineral is around High Close Farm [231 598]; other major deposits are found around Norton Lindsey [225 632], northwest of Ullenhall [124 673] and in the valley of the River Alne. Elsewhere, sand and gravel occurs only as small scattered patches, which vary in area from less than 0.01 km^2 , to over 0.3 km^2 and average 0.02 km^2 . The assessment is based mainly on 73 resistivity depth soundings of which 44 indicated the presence of sand and gravel; in addition, 19 IMAU boreholes (Table 8), mainly on quarter sheet SP 26 SW, and 26 other boreholes were used.

Because the mineral in this block occurs in small isolated deposits, spread over a large area, inferred assessments are offered for six sub-blocks, designated F1 to F6 (Table 2, Figure 4).

<u>Sub-block F1</u> To the west of the River Alne, the major deposit of sand and gravel is part of the glacial deposits northwest of Ullenhall. Several smaller deposits have been indentified elsewhere, for example, at Poole's Wood [109 663]. An area of alluvium at Barrells Park [125 664] is also shown to be potentially workable. Till has been mapped northwest of Ullenhall but the interpretation of resistivity depth sounding HY 46 suggests that up to 3.6 m of sand and gravel may lie beneath. Interpreted resistivity values indicate that thicknesses of sand and gravel in this sub-block may range from 1.2 m (site HY 91) to 5.3 m (site HY 48). Potentially workable sand and gravel occupies 1.0 km^2 , with a mean thickness of 3.8 m, and the estimated volume of the resource is, therefore, 3.8 million m³.

<u>Sub-block F2</u> The potentially workable deposits of the River Alne include areas of Second Terrace downstream from Henley-in-Arden and in the tributary valley that passes through Preston Bagot [175 658], as well as the alluvium upstream from Henley-in-Arden to Danzey Green [125 695]. Fifteen resistivity depth soundings indicated the presence of sand and gravel, ranging in inferred thickness from 1.0 to 3.6 m. In addition, two IMAU boreholes, 16 SW 17 and 16 SE 8, proved 1.2 and 1.3 m of gravel, respectively. Potentially workable sand and gravel in the fluvial deposits of the River Alne cover an area of 2.9 km^2 , have a mean thickness of 1.7 m and an estimated volume of 4.9 million m³. Overburden is generally thin.

<u>Sub-block F3</u> Between Bredon House [178 702] and Preston Bagot, small patches of glacial sand and gravel cover a total area of 0.4 km^2 . Borehole 17 SE 4 proved 6.0 m of sand and gravel, while resistivity depth soundings suggest that mineral thicknesses may range from 0.4 m (site HY 72 to 4.7 m (site HY 60). The mean thickness of mineral is in the order of 2.9 m and it has an estimated volume of 1.2 million m³.

<u>Sub-block F4</u> In an area located between the River Alne and the railway line running south from Claverdon Station [208 644], there exist more than 20 isolated patches of glacial sand and gravel. The largest of these, at Mill Mound [205 645], covers no more than 0.06 km^2 , and the total area of mapped sand and gravel is 0.5 km^2 . The mineral is very variable in thickness, ranging from 0.7 to 5.1 m, with a calculated mean of 1.5 m. The estimated volume of mineral is 0.8 million m^3 . Sand and gravel has been worked in the past at Tattle Bank [186 638].

<u>Sub-block F5</u> Scattered deposits of glacial sand and gravel, including extensive spreads around Norton Lindsey, are found to the north of Sherbourne Brook [242 617]. In addition, three small areas of river terrace deposits are located around New Barn Buildings [246 625]. Fourteen IMAU and four other boreholes proved mineral thicknesses ranging from 1.1 to 6.0 m. The composition of the sand and gravel is very variable, ranging from 'clayey' gravel (borehole 26 SW 53) to 'very clayey' sand (borehole 26 SW 67). Mineral is known to be concealed beneath till at two localities in this sub-block: northwest of Norton Lindsey and at Oak Farm [207 604]. In both cases, the limit of potentially workable sand and gravel is in part delineated by an inferred boundary. The total area of mineral-bearing ground is estimated to be 1.2 km². The mean mineral thickness of 3.5 m gives an estimated sand and gravel volume of 4.2 million m³. <u>Sub-block F6</u> The remaining part of block F covers the southeastern corner of the resource sheet south of Sherbourne Brook. Two-thirds of the total of 1.8 km^2 of mineral is found in one continuous deposit around High Close Farm. Here, IMAU boreholes 25 NW 64 and 26 SW 71 proved 5.0 m of 'clayey' pebbly sand and 2.8 m of 'clayey' sandy gravel, respectively. Elsewhere, 12.6 m of sand and gravel were recorded in borehole 25 NW 34 (a non-IMAU borehole), and borehole 26 SW 72 proved only thin sand and gravel. The calculated mean thickness of sand and gravel in this area is 3.6 m and the estimated volume is 5.9 million m³.

List of workings

Active and abandoned pits in the district are listed below. All are sited on Glacial Sand and Gravel.

Location	Grid Reference
Active Pits	
Brown's Lane Pinley Green	165 768 209 662
Abandoned Pits	
Tattle Bank Big Spring Coppice Rileys Pit	180 635 145 727 201 753

REFERENCES

- ALLEN, V. T. 1936. Terminology of medium-grained sediments. Rep. Natl. Res. Counc., Washington, 1935-1936, App. 1, Rep. Comm. Sediment., 18-47.
- AMBROSE, K. 1982a. Geological notes and local details for 1:10 000 sheet SP 17 SW (Tanworth-in-Arden). Keyworth: Institute of Geological Sciences.
- 1982b. Geological notes and local details for 1:10 000 sheet SP 17 SE (Lapworth). Keyworth: Institute of Geological Sciences.
- 1982c. Quaternary deposits of sheets SP 16 and SP 26W (Henley-in-Arden and Shrewley). Keyworth: Institute of Geological Sciences.
- --- and STRANGE, P. J. 1982. Geological notes and local details for 1:10 000 sheets SP 26 NW, NE, SW, SE and parts of SP 25 NW and NE (Warwick and Hatton). Keyworth: Institute of Geological Sciences.
- ARCHER, A. A. 1969. Background and problems of an assessment of sand and gravel resources in the United Kingdom. Proc. 9th Commonw. Min. & Metall. Congr., 1969, Vol. 2: Mining and petroleum geology, 495-508.
- 1970a. Standardisation of the size classification of naturally occurring particles. Geotechnique, Vol. 20, 103-107.
- 1970b. Making the most of metrication. Quarry Managers' J., Vol. 54, No. 6, 223-227.
- ATTERBERG, A. 1905. Die rationelle Klassifikation der Sande und Kiese. Chem. Z., Vol. 29, 195-198.
- BARKER, R. D. 1981. The offset system of electrical resistivity sounding and its use with a multicore cable. Geophys. Prospect. Vol. 29 (1), pp. 128-143.
- BRITISH STANDARDS INSTITUTION. 1967. B.S.1377: Methods of testing soils for civil engineering purposes. (London: British Standards Institution.)
- BUREAU OF MINES AND GEOLOGICAL SURVEY.
 1948. Pp. 14-17 in Mineral resources of the United States. (Washington, DC: Public Affairs Press.)
- CANNELL, B. 1982. The sand and gravel resources of the country east of Solihull, Warwickshire.
 Description of parts 1:25 000 resource sheets SP 17, 18, 27 and 28. Miner. Assess. Rep. Inst. Geol. Sci., No. 115.

- CLARKE, M. R., BOOTH, S. J., CANNELL, B., CARRUTHERS, R. M. and CROFTS, R. G., 1982. The resource assessment of scattered drift deposits – a feasibility study in the Redditch-Solihull area. Industrial Minerals Assessment Unit, Internal Report., No. 82/1, (unpublished). Institute of Geological Sciences, Nottingham.
- HARRIS, P. M., THURRELL, R. G., HEALING, R. A., and ARCHER, A. A. 1974. Aggregates in Britain. **Proc. R. Soc.**, Ser. A, Vol. 339, 329-353.
- HULL, J. H. 1981. Methods of calculating the volume of resources of sand and gravel. Appendix (pp. 192-193) to THURRELL, R. G. 1981. Quarry resources and reserves: the identification of bulk mineral resources: the contribution of the Institute of Geological Sciences. Quarry Management, for March 1981, 181-193.
 LANE, E. W., and others. 1947. Report of the sub-
- LANE, E. W., and others. 1947. Report of the subcommittee on sediment terminology. **Trans. Am. Geophys. Union**, Vol. 28, 936-938.
- OLD, R. A. 1982a Geological notes and local details for 1:10 000 sheet SP 17 NW (Shirley). Keyworth: Institute of Geological Sciences.
- 1982b. Geological notes and local details for 1:10 000 sheet SP 17 NE (Solihull and Knowle). Keyworth: Institute of Geological Sciences.
- 1982c. Geological notes and local details for 1:10 000 sheet SP 27 SW (Wroxall). Keyworth: Institute of Geological Sciences.
- 1982d. Geological notes and local details for 1:10 000 sheet SP 27 NW (Berkswell and Balsall Common). Keyworth: Institute of Geological Sciences.
- . 1982e. Quaternary deposits of sheets SP 17 and SP 27W (Solihull and Balsall Common). Keyworth: Institute of Geological Sciences.
- PETTIJOHN, F. J. 1975. Sedimentary rocks. 3rd edition. (London: Harper and Row.)
- SHOTTON, F. W. 1953. The Pleistocene deposits of the area between Coventry, Rugby and Learnington and their bearing upon the topographic development of the Midlands. Phil. Trans. R. Soc. London, Ser. B, Vol. 236, 209-260.
- 1968. The Pleistocene sequence in a pipe trench between Chadwick End and Gibbet Hill, south of Coventry, Warwickshire. Proc. Coventry Nat. Hist. and Sci. Soc., Vol. 4, 53-59.
- STRANGE, P. J. and AMBROSE, K. 1982. Geological notes and local details for 1:10 000 sheets SP 16 NW, NE, SW, SE and parts of SP 15 NW and NE (Henley-in-Arden). Keyworth: Institute of Geological Sciences.
- SUMBLER, M. G. 1983. A new look at the type Wolstonian glacial deposits of Central England. **Proc. Geol. Ass.**, Vol. 94 (1), 23-31.
- THURRELL, R. G. 1971. The assessment of mineral resources with particular reference to sand and gravel. **Quarry Managers' J.**, Vol. 55, 19-25.
- 1981. Quarry resources and reserves: the identification of bulk mineral resources: the contribution of the Institute of Geological Sciences.
 Quarry Management, for March 1981, 181-193.
- TOMLINSON, M. E. 1935. The superficial deposits of the country north of Stratford-on-Avon. Q. Jl. Geol.
 Soc., London. Vol. 91, 423-462.
- TWENHOFEL, W. H. 1937. Terminology of the finegrained mechanical sediments. **Rep. Natl. Res. Counc., Washington, 1936-37,** App. 1, Rep. Comm. Sediment., 81-104.
- UDDEN, J. A. 1914. Mechanical composition of clastic sediments. Bull. Geol. Soc. Am., Vol. 25, 655-744.
- WENTWORTH, C. K. 1922. A scale of grade and class terms for clastic sediments. J. Geol., Vol. 30, 377-392.

- --- 1935. The terminology of coarse sediments. Bull. Natl. Res. Counc. Washington, No. 98, 225-246.
- WILLMAN, H. B. 1942. Geology and mineral resources of the Marseilles, Ottawa and Streator quadrangles. Bull. Illinois State Geol. Surv., No. 66, 343-344.
- Offset sounding cable systems. Technical Information Sheet. Barker Geophysical Soundings.

APPENDIX A

FIELD AND LABORATORY PROCEDURES

Trial and error during initial studies of the complex and variable glacial deposits of East Anglia and Essex showed that an absolute minimum of five sample points evenly distributed across the sand and gravel are needed to provide a worthwhile statistical assessment, but that, where possible, there should be not less than ten. Sample points are any points for which adequate information exists about the nature and thickness of the deposit and may include boreholes other than those drilled during the survey and exposures. In particular, the cooperation of sand and gravel operators ensures that boreholes are not drilled where reliable information is already available; although this may be used in the calculations, it is held confidentially by the Institute and cannot be disclosed.

The mineral shown on each 1:25 000 sheet is divided into resource blocks. The arbitrary size selected is a compromise to meet the aims of the survey by providing sufficient sample points in each block. As far as possible the block boundaries are determined by geological boundaries so that, for example, glacial and river terrace gravels are separated. Otherwise division is by arbitrary lines, which may bear no relationship to the geology. The blocks are drawn provisionally before drilling begins.

A reconnaissance of the ground is carried out to record any exposures and inquiries are made to ascertain what borehole information is available. Borehole sites are then selected to provide an even pattern of sample points at a density of approximately one per square kilometre. However, because broad trends are independently overlain by smaller-scale characteristically random variations, it is unnecessary to adhere to a square grid pattern. Thus such factors as ease of access and the need to minimise disturbance to land and the public are taken into account in siting the holes; at the same time it is necessary to guard against the possibility that ease of access (that is, the positions of roads and farms) may reflect particular geological conditions, which may bias the drilling results.

The drilling machine employed should be capable of providing a continuous sample representative of all unconsolidated deposits, so that the in-situ grading can be determined, if necessary, to a depth of 30 m (100 ft) at a diameter of about 200 mm (8 in), beneath different types of overburden. It should be reliable, quiet, mobile and relatively small (so that it can be moved to sites of difficult access). Shell and auger rigs have proved to be almost ideal.

The rigs are modified to enable deposits above the water table to be drilled 'dry', instead of with water added to facilitate the drilling, to minimise the amount of material drawn in from outside the limits of the hole. The samples thus obtained are representative of the insitu grading, and satisfy one of the most important aims of the survey. Below the water table the rigs are used conventionally, although this may result in the loss of some of the fines fraction and the pumping action of the bailer tends to draw unwanted material into the hole from the sides or the bottom.

A continuous series of bulk samples is taken throughout the sand and gravel. Ideally samples are composed exclusively of the whole of the material encountered in the borehole between stated depths. However, care is taken to discard, as far as possible, material which has caved or has been pumped from the bottom of the hole. A new sample is commenced whenever there is an appreciable lithological change within the sand and gravel, or at every 1 m (3.3 ft) depth. The samples, each weighing between 25 and 45 kg (55 and 100 lb), are despatched in heavy-duty polythene bags to a laboratory for grading. The grading procedure is based on B.S. 1337 (British Standards Institution, 1967). Random checks of the accuracy of the grading are made in the Institute's laboratories. All data, including mean grading analysis figures calculated for the total thickness of the mineral, are entered on standard record sheets, abbreviated copies of which are reproduced in Appendix E.

Resistivity depth sounding, using the Offset Wenner electrode configuration with multi-core cable and switching box in conjunction with an ABEM SAS 300 Terrameter measuring instrument, was deployed extensively; the data were manipulated using a fieldbased micro-computer system, which enabled semiautomatic curve fitting to be undertaken, whereby geoelectric models were generated and compared with the field resistivity data. Iterative adjustments of the initial model allowed the best fit with the field data to be achieved, assuming uniform horizontal layering of the deposit. The system also enabled unaccepted or spurious readings to be checked and if necessary repeated without delay.

Detailed records may be consulted at the appropriate offices of the Institute, upon application to the Head, Industrial Minerals Assessment Unit.

Example of resource block assessment: map of a fictitious block

APPENDIX B

STATISTICAL PROCEDURE

Statistical assessment

A statistical assessment is made of an area of 1 mineral greater than 2 km², if there are at least five evenly spaced boreholes in the resource block (for smaller areas, see Paragraph 12 below).

2 The simple methods used in the calculations are consistent with the amount of data provided by the survey (Hull, 1981). Conventional symmetrical confidence limits are calculated for the 95 per cent probability level, that is, on average nineteen out of every twenty sets of limits constructed in this way contain the true value for the volume of mineral.

3 The volume estimate (V) for the mineral in a given block is the product of two variables, the sampled areas (A) and the mean thickness (\overline{l}_m) calculated from the individual thicknesses at the sample points. The standard deviations for these variables are related such that

$$S_V = \sqrt{(S_A^2 + S_{\bar{l}m}^2)}$$
 [1]

The above relationship may be transposed such that 4

$$S_V = S_{\bar{l}m} \sqrt{(1 + S_A^2 / S_{\bar{l}m}^2)}$$
 [2]

From this it can be seen that as $S_A^2/S_{\bar{l}_m}^2$ tends to 0,

 S_V tends to $S_{\bar{l}m}$. If, therefore, the standard deviation for area is small with respect to that for thickness, the standard deviation for volume approximates to that for mean thickness.

5 Given that the number of approximately evenly spaced sample points in the sampled area is n with mineral thickness measurements $l_{m_1}, l_{m_2}, \ldots l_{m_n}$, then the best estimate of mean thickness, \bar{l}_m , is given by

$$\sum (l_{m_1} + l_{m_2} \dots l_{m_n}) / n$$

For groups of closely spaced boreholes a discretionary weighting factor may be applied to avoid bias (see note on weighting below). The standard deviation for mean thickness S_{l_m} , expressed as a proportion of the mean thickness, is given by

$$S\bar{l}_{m} = (1/\bar{l}_{m})\sqrt{[\Sigma(l_{m} - \bar{l}_{m})^{2}/(n-1)]}$$

where $l_{\rm m}$ is any value in the series $l_{\rm m1}$ to $l_{\rm mn}$.

6 The sampled area in each resource block is coloured pink on the map. Wherever possible, calculations relate to the mineral within mapped geological boundaries (which may not necessarily correspond to the limits of a deposit). Where the area is not defined by a mapped boundary, that is, where the boundary is inferred, a distinctive symbol is used. Experience suggests that the errors in determining area are small relative to those in thickness. The relationship $S_A / S\bar{l}_m \leq 0.3$ is assumed in all cases. It follows from Equation [2] that

$$S\bar{l}_{m} \leq S_{V} \leq 1.05 S\bar{l}_{m}$$
^[3]

7 The limits on the estimate of mean thickness of mineral, $L\bar{l}_{m}$, may be expressed in absolute units

$$\frac{1}{2}$$
 (t/ \sqrt{n}) $\times S\bar{l}_m$ or as a percentage

 $\frac{1}{2}$ (t/ \sqrt{n}) × $S\bar{l}_{m}^{m}$ × (100/ \bar{l}_{m}) per cent, where t is Student's t at the 95 per cent probability level for (n-1)degrees of freedom, evaluated by reference to statistical tables. (In applying Student's t it is assumed that the measurements are distributed normally).

Values of t at the 95 per cent probability level for 8 values of n up to 20 are as follows:

n	t	n	t
1	infinity	11	2.228
2	12.706	12	2.201
3	4.303	13	2.179
4	3.182	14	2.160
5	2.776	15	2.145
6	2.571	16	2.131
7	2.447	17	2.120
8	2.365	18	2.110
9	2.306	19	2.101
10	2.262	20	2.093

(from Table 12 in Biometrika Tables for Statisticians, Volume 1, Second Edition, Cambridge University Press, 1962). When n is greater than 20, 1.96 is used (the value of t when n is infinity).

9 In calculating confidence limits for volume, L_V , the following inequality, corresponding to Equation [3], is applied:

 $L\bar{l}_{\mathrm{m}} \leq L_{V} \leq 1.05 L\bar{l}_{\mathrm{m}}$

10 In summary, for values of n between 5 and 20, L_V is calculated as

 $[(1.05 \times t)/\bar{l}_{\rm m}] \times [\sqrt{\Sigma}(l_{\rm m} - \bar{l}_{\rm m})^2/n (n-1)] \times 100$

per cent.

and when n is greater than 20, as

 $[(1.05 \times 1.96)/\bar{l}_{\rm m}] \times [\sqrt{\Sigma}(l_{\rm m} - \bar{l}_{\rm m})^2/n (n - 1)] \times 100$ per cent.

11 The application of this procedure to a fictitious area is illustrated in the accompanying Figure and example of a block calculation.

Inferred assessment

12 If the sampled area of mineral in a resource block is in the region of 2 km², an assessment is inferred on the basis of geological and topographical information, usually supported by the data from one or two boreholes. The volume of mineral is calculated as the product of the area, measured from field data, and the estimated thickness. Confidence limits are not calculated.

13 In some cases a resource block may include an area left uncoloured on the map, within which mineral (as defined) is interpreted to be generally absent. If there is reason to believe that some mineral may be present, an inferred assessment may be made.

14 <u>Note on weighting</u> The thickness of a deposit at any point may be governed solely by the position of the point in relation to a broad trend. However, most sand and gravel deposits also exhibit a random pattern of local, and sometimes considerable, variation in thickness. Thus the distribution of sample points needs to be only approximately regular and in estimating the mean thickness only simple weighting is necessary. In practice, equal weighting can often be applied to thicknesses at all sample points. If, however, there is a distinctly unequal distribution of points, bias is avoided by dividing the sampled area into broad zones, to each of which a value roughly proportional to its area is assigned. This value is then shared between the data points with the zone as the weighting factor.

Block calculation

Scale: 1:25 000 Block: Fictitious

Area	
Block:	11.08 km²
Mineral:	8.32 km²

Mean thickness Overburden: Mineral:

Volume	
Overburden:	21 million m [®]
Mineral:	54 million m [°]

2.5 m

6.5 m

Confidence limits of the estimate of mineral volume at the 95 per cent probability level: ± 20 per cent That is, the volume of mineral (with 95 per cent probability): 54 ± 11 million m³

<u>Thickness estimate</u> (measurements in metres) l_0 = overburden thickness l_m = mineral thickness

Sample	Weight-	Overl	burden	Mineral		Remarks	
point	ing w	lo	wlo	ι _m	wlm		
SE 14	1	1.5	1.5	9.4	9.4		
SE 18	1	3.3	3.3	5.8	5.8		
SE 20	1	nil	-	6.9	6.9		
SE 22	1	0.7	0.7	6.4	6.4	IMAU	
SE 23	1	6.2	6.2	4.1	4.1	boreholes	
SE 24	1	4.3	4.3	6.4	6.4		
SE 17	12	1.2	-16	9.8	7 9		
123/45	12	2.0_	1.0	4.6	(.4	Hydrogeology Unit record	
1	1 4	2.7		7.3		Close group	
2	4	4.5	-0.0	3.2	F 0	of four	
3	14	0.4	2.6	6.8	. 2.8	boreholes	
4	4	2.8		5.9		(commercial)	
Totals	$\Sigma w = 8$	Σwlo	= 20.2	Σwlm	= 52.0		
Means		$\overline{wl}_0 =$	2.5	wl _m =	= 6.5		

Calculation of confidence limits

wl _m	$ (wl_m - \overline{wl}_m) $	$(wl_{\rm m} - \overline{wl}_{\rm m})^2$
9.4	2.9	8.41
5.8	0.7	0.49
6.9	0.4	0.16
6.4	0.1	0.01
4.1	2.4	5.76
6.4	0.1	0.01
7.2	0.7	0.49
5.8	0.7	0.49

 $\Sigma(wl_{\rm m}-\overline{wl}_{\rm m})^2=15.82$

n = 8

t = 2.365

 L_V is calculated as

1.05 $(t/\overline{wl}_m) \checkmark [\Sigma(wl_m - \overline{wl}_m)^2 / n(n-1)] \times 100$ = 1.05 × (2.365/6.5) $\checkmark [15.82/(8 \times 7)] \times 100$

- = 20.3
- ≃ 20 per cent.

APPENDIX C

CLASSIFICATION AND DESCRIPTION OF SAND AND GRAVEL

For the purposes of assessing resources of sand and gravel a classification should take account of economically important characteristics of the deposit, in particular the absolute content of fines and the ratio of sand to gravel.

The terminology commonly used by geologists when describing sedimentary rocks (Wentworth, 1922) is not entirely satisfactory for this purpose. For example, Wentworth proposed that a deposit should be described as a 'gravelly sand' when it contains more sand than gravel and there is at least 10 per cent of gravel, provided that there is less than 10 per cent of material finer than sand (< $\frac{1}{16}$ mm) and coarser than pebbles (> 64 mm in diameter). Because deposits containing more than 10 per cent fines are not embraced by this system, a modified binary classification based on Willman (1942) has been adopted.

When the fines content exceeds 40 per cent the material is considered to be not potentially workable and falls outside the definition of mineral. Deposits which contain 40 per cent fines or less are classified primarily on the ratio of sand to gravel but qualified in the light of the fines content, as follows: less than 10 per cent fines – no qualification; 10 per cent or more but less than 20 per cent fines – 'clayey'; 20 to 40 per cent fines – 'very clayey'.

The term 'clay' (as written, with single quote marks) is used to describe all material passing $\frac{1}{16}$ mm. Thus it has no mineralogical significance and includes particles falling within the size range of silt. The normal meaning applies to the term clay where it does not appear in single quotation marks.

The ratio of sand to gravel defines the boundaries between sand, pebbly sand, sandy gravel and gravel (at 19:1, 3:1 and 1:1).

Thus it is possible to classify the mineral into one of twelve descriptive categories (see the accompanying Figure). The procedure is as follows:

Classify according to the ratio of sand to gravel.
 Describe the fines.

For example, a deposit grading 11 per cent gravel, 70 per cent sand and 19 per cent fines is classified as 'clayey' pebbly sand. This short description is included in the borehole log (see Appendix D)

Many differing proposals have been made for the classification of the grain size of sediments (Atterberg, 1905; Udden, 1914; Wentworth, 1922; Wentworth, 1935; Allen, 1936; Twenhofel, 1937; Lane and others, 1947). As Archer (1970a, b) has emphasised, there is a pressing need for a simple metric scale acceptable to both scientific and engineering interests, for which the class limit sizes correspond closely with certain marked changes in the natural properties of mineral particles. For example, there is an important change in the degree of cohesion between particles at about the te-mm size, which approximates to the generally accepted boundary between silt and sand. These and other requirements are met by a system based on Udden's geometric scale and a simplified form of Wentworth's terminology (see the accompanying table), which is used in the Report.

The fairly wide intervals in the scale are consistent with the general level of accuracy of the qualitative assessments of the resource blocks. Three sizes of sand are recognised, fine $(+\frac{1}{16} - \frac{1}{4} \text{ mm})$, medium $(+\frac{1}{4} - 1 \text{ mm})$ and coarse (+1 - 4 mm). The boundary at 16 mm distinguishes a range of finer gravel (+4 - 16 mm), often characterised by abundance of worn tough pebbles of vein quartz, from larger pebbles, often of notably different materials. The boundary at 64 mm distinguishes pebbles from cobbles. The term 'gravel' is used loosely to denote both pebblesized and cobble-sized material. The size distribution of borehole samples is determined by sieve analysis, which is presented by the laboratory as logarithmic cumulative curves (see, for example, British Standards Institution, 1967). In this report the grading is tabulated on the borehole record sheets (Appendix E), the intercepts corresponding with the simple geometric scale $\frac{1}{16}$ mm, $\frac{1}{4}$ mm, 1 mm, 4 mm, 16 mm and so on as required. Original sample grading curves are available for reference at the appropriate office of the Institute.

Each bulk sample is described, subjectively, by a geologist at the borehole site. Being based on visual examination, the description of the grading is inexact, the accuracy depending on the experience of the observer. The descriptions recorded are modified, as necessary, when the laboratory results become available.

The relative proportions of the rock types present in the gravel fraction are indicated by the use of the words 'and' or 'with'. For example, 'flint and quartz' indicates roughly equal proportions with neither constituent accounting for less than about 25 per cent of the whole; 'flint with quartz' indicates that flint is dominant and quartz, the principal accessory rock type, comprises 5 to 25 per cent of the whole. Where the accessory material accounts for less than 5 per cent of the whole, but is still readily apparent, the phrase 'with some' has been used. Rare constitutents are referred to as 'trace'.

The terms used in the field to describe the degree of rounding of particles, which is concerned with the sharpness of the edges and corners of a clastic fragment and not the shape (after Pettijohn, 1975), are as follows.

Angular: showing little or no evidence of wear; sharp edges and corners.

Subangular: showing definite effects of wear. Fragments still have their original form but edges and corners begin to be rounded off.

Subrounded: showing considerable wear. The edges and corners are rounded off to smooth curves. Original grain shape is still distinct.

Rounded: original faces almost completely destroyed, but some comparatively flat surfaces may still remain. All original edges and corners have been smoothed off to rather broad curves. Original shape is still apparent.

Well rounded: no original faces, edges or corners left. The entire surface consists of broad curves; flat areas are absent. The original shape is suggested by the present form of the grain.

Classification of gravel, sand and fines

Size limits	Grain-size	Qualification	Primary		
	description	quamoution	classification		
<u> </u>	Cobble				
04 MM	Debble	Coarse	Gravel		
10 11111	Pebble	Fine			
4 mm		Coarse			
1 mm	Sand	Medium	Sand		
ł mm		Fine			
ត់ ៣៣	Fines (silt and clay)	Fines		

Diagram showing the descriptive categories used in the classification of sand and gravel

Appendix D

EXPLANATION OF THE BOREHOLE RECORDS

Annotated fictitious example

CK 65 NW 5 ¹	6191 6962 ²	Northfields ³	Blo	ock	в
Surface level (+49 Water struck at +4 October 1972 ⁶	.7m) +163 ft ⁴ 45.9m ⁵		Overburden ⁷ 2 Mineral Waste Mineral B e drock	2.8 5.4 1.1 1.4 0.7	m m m m m+8

LOG

Geological classification	Lithology ⁹	Thickness m	Depth m
	Soil	0.2	0.2
Alluvium	Clay, silty, dark brown	2.6	2.8
River Terrace Deposits	a Gravel Gravel: fine to coarse, with cobbles towards base, angular to rounded flint and limestone with ironstone and some quartz and chalk Sand: medium with coarse and some fine, quartz and limestone	5.4	8.2
Boulder Clay	Clay, sandy and pebbly, red-brown	1.1	9.3
Glacial Sand and Gravel	b Sand, 'clayey' in part: fine, subangular to rounded, with some coal	1.4	10.7
Lias	Mudstone, blue-grey, fossiliferous	0.7+	11.4

GRADING¹⁰

	Mean for deposit percentages		Depth below surface (m)	Percentages							
	Fines	Sand	Gravel		Fines	Sand			Gravel		
					- <u>1</u> - <u>1</u> 5	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
a	5	46	49	2.8-3.9	20	14	62	2	2	0	0
				3.8-4.8	2	2	12	18	42	24	0
				4.8-5.8	1	3	24	13	35	24	0
				5.8-6.8	0	4	21	20	26	29	0
				6.8-8.2	4	3	23	10	23	30	7
				Mean	5	5	28	13	25	22	2
b	5	95	0	9.3-10.3	3	73	23	1	0	0	0
				10.3-10.7	9	85	5	1	0	0	0
				Mean	5	77	17	1	0	0	0
a+b	5	56	39	Mean	5	20	26	10	20	17	2

COMPOSITION¹¹

Depth below	percentages by weight in the +4-64 mm fraction
surface (m)	

SULAGE UND							
Surface (iii)	Flint	Quartz	Limestone	Chalk	Ironstone		
3.8-4.8	41	5	50	1	3		
4.8-5.8	39	3	45	5	8		
5.8-6.8	45	2	42	5	6		
6.8-8.2	19	6	61	3	11		
Mean	35	4	51	3	7		

The numbered paragraphs below correspond with the annotations given on the specimen record opposite.

Borehole Registration Number

Each Industrial Minerals Assessment Unit (IMAU) borehole is identified by a Registration Number. This consists of two statements.

- a The number of the 1:25 000 sheet on which the borehole lies, here CK 66.
- b The quarter of the 1:25 000 sheet on which the borehole lies and the number of the borehole in a series for that guarter, here NW 5.

Thus the full Registration Number is CK 66 NW 5.

2 National Grid Reference

All National Grid Reference fall in the 100 km square identified by the first two letters of the Registration Number. Grid references are given to eight figures, accurate to within 10 m.

3 Location

1

The position of the borehole is generally referred to the nearest named locality on the 1:25 000 base map and the resource block in which the borehole lies is stated.

4 Surface level

The surface level at the borehole site is given in metres and feet above Ordnance Datum. All measurements were made in metres; approximate conversions to feet are given in brackets.

5 Groundwater conditions

If groundwater was present the level at which it was encountered is normally given (in metres relative to Ordnance Datum).

6 Type of drill and date of drilling

The type of rig used, the diameter of the casing and the month and year of completion of drilling are stated.

7 Overburden, mineral, waste and bedrock

Mineral is sand and gravel which, as part of a deposit, falls within the arbitrary definition of potentially workable material (see p.1). Bedrock is the 'formation', 'country rock' or 'rock head' below which potentially workable sand and gravel will not be found. Waste is any material other than bedrock or mineral. Where waste occurs between the surface and mineral it is classified as overburden.

8 The plus sign (+) indicated that the base of the deposit was not reached during drilling.

9 Lithological description

When sand and gravel is recorded a general description based on the grading characteristics (for details see Appendix C) is followed by more detailed particulars of the gravel and/or sand fraction. Where more than one bed of mineral is recognised each is designated by a letter, e.g. a, b, etc. The description of other deposits is based on visual examination in the field.

10 Grading data

A continuous series of bulk samples is taken throughout the thickness of sand and gravel. A new sample is commenced whenever there is an appreciable lithological change or at every 1 m of depth.

For each bulk sample the percentages of fines (mm), fine sand (+ $-\frac{1}{4}$ mm), medium sand (+ $\frac{1}{4}$ -1 mm), coarse sand (+1 -4 mm), fine gravel (+4 -16 mm), coarse gravel (+16 -64 mm) and cobble gravel (+64 mm) are stated. The mean grading of groups of samples making up an identified bed of mineral are also given in detail and in summary. Where more than one bed is recognised the mean grading for the whole of the mineral in the borehole may be given. Where necessary, in calculating mean gradings, data for individual samples are weighted by the thickness represented. If, exceptionally, grading results are not available for a sample, an attempt may be made to estimate the grading by comparing the grading and field descriptions of adjacent samples with the sample in question. Such estimates are shown in square brackets. Alternatively, in calculating means, the sample may be allotted the mean grading of other samples in the deposit.

Fully representative sampling of sand and gravel is difficult to achieve, particularly where groundwater levels are high. Comparison between boreholes and adjacent exposures commonly suggests that in borehole samples the proportion of sand may be higher and the proportion of fines and coarse gravel may be lower.

11 Composition

Details of the composition of selected samples or groups of samples may be given.

APPENDIX E

INDUSTRIAL MINERALS ASSESSMENT UNIT BOREHOLE RECORDS

Surface level $\pm 128.1 \text{ m}$ ($\pm 452.6 \text{ ft}$) Overburden 1	ek B
Water struck at +134.3 mMineral2September 1982Bedrock0	.7 m .3 m .2 m+

LOG

Geological classification	Lithology	Thickness m	Depth m	
	Soil	0.5	0.5	
Till	Sandy clay, light brown; pebbles of sandstone, quartzite, quartz, flint and chalk	1.2	1.7	
Glacial Sand and Gravel	'Very clayey' pebbly sand Gravel: fine and coarse, rounded to well rounded quartzite and quartz with yellow sandstone and trace igneous rocks Sand: fine and medium, subangular to subrounded quartz Fines: silty clay, strong brown	2.3	4.0	
Mercia Mudstone Group	Mudstone, moderate reddish brown with green spots	0.2+	4.2	

GRADING

Mean 1 percen	for depo Itages	sit	Depth below surface (m)	Percent	Percentages								
Fines	Sand	Gravel		Fines	Sand			Gravel					
				$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 - 1	+1 -4	+4 -16	+16 -64	+64 mm			
22	65	13	1.7-2.7 2.7-4.0	22 22	17 17	39 47	4 4	14 7	4 3	0 0			
			Mean	22	17	44	4	10	3	0			

Depth below surface (m)	percentage	percentages by weight in 8-16 mm fraction									
Surrace (m)	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others		
2.7-4.0	51	38	10	-	trace	-	trace	1	-		

SP 16 NE 67 1861 6957

High Chimneys

Surface level +95.1 m (+312 ft) Water struck at +92.1 m August 1982 Block D

Overburden	0.7	m
Mineral	5.6	m
Bedrock	1.2	m۱

LOG

ſ

1

ł

{ {

Geological classification	Lithology	Thickness m	Depth m
	Soil and brown sandy pebbly clay	0.7	0.7
Alluvial Fan	a 'Clayey' sandy gravel Gravel: fine with coarse, rounded to well rounded quartzite and quartz with sandstone and trace igneous rocks Sand: fine to coarse, subangular to subrounded quartz	0.6	1.3
Glacial Sand and Gravel	 b 'Clayey' sand Sand: fine and medium, subangular to subrounded quartz; coal fragments from 5.3-6.3 m Fines: silty, light brown 	5.0	6.3
Mercia Mudstone Group	Silty clay, soft to firm, reddish brown with green marbling	1.2+	7.5

GRADING

	Mean i percen	for depo Itages	sit	Depth below surface (m)	Percentages							
	Fines	Sand	Gravel		Fines	Sand			Gravel	Gravel		
					-15	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 - 1	+1 -4	+4 -16	+16 -64	+64 mm	
a	11	46	43	0.7-1.3	11	21	19	6	32	11	0	
Ь	13	86	1	1.3-2.3	24	37	38	1	0	0	0	
				2.3-3.3	15	52	32	1	0	0	0	
				3.3-4.3	11	57	31	1	0	0	0	
				4.3-5.3	7	75	17	1	0	0	0	
				5.3-6.3	8	18	59	7	7	1	0	
				Mean	13	48	36	2	1	trace	0	
a+b	13	81	6	0.7-6.3	13	44	34	3	5	1	0	

SP 16 SW 17 1481 6184 Pennyford Hall

(+105 f+) nfo

Block F₂

Surface level +56.2 m (+185 ft)	Overburden	0.5 m
Water struck at +54.7 m	Mineral	1.2 m
January 1983	Bedrock	1.3 m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.5	0.5
River Terrace Deposits	Gravel Gravel: coarse with fine, well rounded sandstone and quartzite Sand: fine to coarse, angular quartz and quartzite	1.2	1.7
Mercia Mudstone Group	Clay and mudstone, red with green spots	1.3+	3.0

GRADING

· •′

I.

Mean for deposit Depth belo percentages surface (m				Percent	ages						
Fines	Sand	Gravel		Fines	Sand			Gravel			
			$-\frac{1}{16}$	 <u>1</u> 6	$+\frac{1}{16} - \frac{1}{4}$	$+\frac{1}{4}$ -1	+1 -4	+4 -16	+16 -64	+64 mm	
7	18	75	0.5-1.7	7	4	7	7	25	48	2	

.

SP 10 SE 0	1933 0441	Recomes rarm		BIOCK E			
Surface level + Water not enco September 1983	126.7 m (+416 ft) untered 2		Waste Bedrock	2.0 m 1.0 m			
LOG							
Geological clas	sification	Lithology	Thickness m	Depth m			
		Soil	0.3	0.3			
Till		Clay, light brown; pebbles of quartzite, quartz, sandstone, flint, chalk and green mudstone	1.7	2.0			
Mercia Mudstor	ne Group	Mudstone, reddish brown and yellow-green	1.0+	3.0			

SP 16 SE 7 1927 6064 **Snitterfield Bushes**

Surface level +115.2 m (+378 ft) Water struck at +111.7 and +99.7 m January 1983

LOG Geological classification Lithology Thickness Depth m m Made ground 1.3 1.3 Till Clay, reddish brown to brown; pebbles of quartzite, 12.7 14.0 quartz, flint and red marl Clay, brown with thin pale brown silty partings, laminated 2.0+ 16.0

28

Block F₂ **Pettiford Bridge** SP 16 SE 8 1610 6387 Overburden Surface level +64.1 m (+210 ft) 1.6 m Mineral Water struck at +62.4 m 1.3 m January 1983 Bedrock 1.1 m+ LOG Thickness Depth Geological classification Lithology m m 1.1 Soil and made ground 1.1 0.5 1.6 Alluvium Clay, grey, gravelly 1.3 2.9 **River Terrace Deposits** Gravel Gravel: fine and coarse, well rounded quartzite and quartz with sandstone and trace flint Sand: fine to coarse, angular to subrounded, quartz and quartzite

quartz and quartziteMercia Mudstone GroupMudstone and siltstone, grey-green1.1+4.0

GRADING

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines Sand Gravel		Fines	Fines Sand				Gravel			
		-15	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm		
7	20	73	1.6-2.9	7	4	7	9	40	31	2

Depth below surface (m)	percentages by weight in 8-16 mm fraction									
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
 		<u> </u>								
1.6-2.9	58	32	9	-	1	-	-	-	-	

SP 17 NW 176 1105 7763

Waste	10.2	m
Bedrock	0.3	m+

LOG			
Geological classification	Lithology	Thickness m	Depth m
	Soil and fill	0.3	0.3
Till	Clay, reddish brown to moderate brown, pebbly; pebbles of quartzite, quartz, sandstone and grey siltstone	5.3	5.6
	Clay, sandy, yellowish orange, pebbly; pebbles of quartzite, quartz and sandstone with many sand-sized fragments as above	1.7	7.3
Glacial Sand and Gravel	'Clayey' sandy gravel Gravel: fine and coarse, rounded to well rounded, quartzite, quartz with sandstone and trace igneous rocks and mudstone Sand: fine to coarse, subangular quartz	0.8	8.1
Glacial Lake Deposits	Clay, reddish brown and brown, with thin bands of quartz sand	1.3	9.4
Glacial Sand and Gravel	Gravel Gravel: fine and coarse, rounded to well rounded quartzite and quartz with sandstone and trace green igneous rocks Sand: medium and coarse, subangular to subrounded quartz and angular quartzite	0.8	10.2
Mercia Mudstone Group	Silty clay, reddish brown with olive banding	0.3+	10.5

GRADING

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines	Fines Sand Gravel		Fines	Sand			Gravel			
		<u>1</u> <u>1</u> 5	$+\frac{1}{16}$ $-\frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm		
18	53	29	7.3-7.5	19	16	29	5	16	12	3
			7.5-8.1 Mean	17 18	9 11	39 35	8 7	16 16	11 12	0 1
5	31	64	9.4-10.2	5	3	19	9	28	36	0

Depth below surface (m)	percentages by weight in 8–16 mm fraction									
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
7.5-8.1	55	28	15	-	_	1	_	1	-	
9.4-10.2	50	35	14	-	-	0	-	1	-	

SP 17 NW 177 1037 7642 WI

Whitlock's End

Surface level +148.2 m (+486 ft) Water struck at +140.2 m August 1982

Waste	10.0	m
Bedrock	0.5	m+

Block A

LOG

Geological classification	Lithology	Thickness m	Depth m	
	Soil	0.2	0.2	
Till	Clay, yellowish orange and yellowish grey, sandy and laminated below 2.5 m	2.8	3.0	
	Clay, reddish brown, pebbly; pebbles of quartzite, quartz, red and green mudstone and coal	3.4	6.4	
	Clay, yellowish orange, pebbly; pebbles of quartzite, quartz and rare flint	1.8	8.2	
Glacial Sand and Gravel	Gravel Gravel: fine and coarse, rounded to well rounded quartzite and quartz with sandstone and trace mudstone and igneous rocks Sand: medium and coarse, subangular to subrounded quartz	0.8	9.0	
Till	Clay, reddish brown, pebbly; pebbles of quartzite, quartz and coal	0.5	9.5	
	Silt, olive grey with coal fragments	0.5	10.0	
Mercia Mudstone Group	Silty clay, reddish brown with green spots	0.5+	10.5	

GRADING

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines Sand Grave		Fines	Sand			Gravel				
			$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
5	29	66	8.2-9.0	5	4	13	12	29	37	0

	Depth below surface (m)	percentages by weight in 8-16 mm fraction									
		Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
<u></u>	8.2-9.0	51	31	15	-	-	1		2	_	

SP 17 NW 178 1306 7688 Lodge Farm

Surface level +139.9 m (+459 ft) Water struck at +137.4 m and +131.4 m August 1982

T	OC.	
L	JUG.	

Geological classification	Lithology	Thickness m	Depth m	
	Soil	0.5	0.5	
Till	Silty clay, yellowish orange with layers of silty sand; pebbly below 3.3 m	3.7	4.2	
	Clay, reddish brown, pebbly; pebbles of quartzite, quartz, sandstone, red and green mudstone and coal	3.8	8.0	
	Clay, yellowish orange with pebbles as above	0.5	8.5	
Glacial Sand and Gravel	'Clayey' gravel Gravel: fine and coarse, rounded to well rounded, quartzite, quartz, sandstone and green igneous rocks Sand: fine to coarse, angular to subrounded quartz	0.6	9.1	
Glacial Lake Deposits	Silty clay, moderate brown to reddish brown; laminated below 10.0 m	1.2	10.3	
	Silty clay, yellowish brown	0.2	10.5	
Mercia Mudstone Group	Silty mudstone, yellowish brown and moderate brown with pale green spots and streaks	0.5+	11.0	

GRADING

.

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines Sanc	Sand	Gravel		Fines	Sand			Gravel		
				$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 - 1	+1 -4	+4 -16	+16 -64	+64 mm
15	25	60	8.5-9.1	15	4	15	6	26	34	0

Block A

10.5 m 0.5 m+

Waste

Bedrock
SP 17 NW 179 1228 7509

Bedsworth Farm

Surface level +138.4 m (+454 ft) Water struck at +134.5 m August 1982 Block A

Overburden	2.2	m
Mineral	2.8	m
Bedrock	0.3	m+

T.	O	G
L	v	u

Geological classification	Lithology	Thickness m	Depth m	
	Soil	0.3	0.3	
Till	Clay, reddish brown, pebbly; pebbles of quartzite, quartz and red siltstone	1.9	2.2	
Glacial Sand and Gravel	a 'Clayey' sand Sand: mainly medium, subangular to subrounded quartz Fines: silty, yellowish orange	0.9	3.1	
	 b 'Clayey' sandy gravel Gravel: fine and coarse, rounded to well rounded quartzite, quartz with sandstone and angular to subrounded red siltstone Sand: mainly medium, subangular to subrounded quartz 	1.9	5.0	
Mercia Mudstone Group	Silty clay, red and greenish grey, marbled	0.3+	5.3	

GRADING

1

| | | | ..

l

	Mean for deposit percentages		Depth below surface (m)	Percent	Percentages							
	Fines	Sand	and Gravel	Sand Gravel		Fines	Sand			Gravel		
					$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
a	17	81	2	2.2-3.1	17	14	66	1	2			
b	13	44	43	3.1-4.1 4.1-5.0 Mean	14 12 13	13 5 9	31 22 27	7 9 8	19 24 21	16 25 21	0 3 1	
a+b	14	56	30	2.2-5.0	14	11	39	6	15	14	1	

Overburden	0.3	m
Mineral	3.7	m
Waste	1.4	m
Mineral	4.6	m
Bedrock	0.5	m+

LOG

Geological classification	Lithology	Thickness m	Depth m	
	Soil	0.3	0.3	
Glacial Sand and Gravel	a 'Very clayey' pebbly sand Gravel: fine, subangular to well-rounded, mainly quartzite with quartz Sand: fine and medium	3.7	4.0	
	Silt, sandy, stonefree, brown	1.4	5.4	
	b 'Very clayey' pebbly sand Gravel: fine and coarse, subangular to well-rounded, mainly quartzite with quartz Sand: medium	3.1	8.5	
	c Gravel Gravel: fine and coarse with cobbles, subangular to well-rounded, quartzite with quartz and some sandstone Sand: medium and coarse	1.5	10.0	
Mercia Mudstone Group	Mudstone, reddish brown with green sandstone	0.5+	10.5	

GRADING

1

, ...

	Mean for deposit percentages		Depth below surface (m)	Percentages							
	Fines	Sand	Gravel		Fines	Sand			Gravel		
					$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 4 - 1	+1 -4	+4 -16	+16 -64	+64 mm
a	29	67	4	0.3-2.0	34	19	42	2	3	0	0
				2.0-3.0	23	28	33	4	11	1	0
				3.0-4.0	26	39	35	0	0	0	0
				Mean	29	27	38	2	4	0	0
b	27	63	10	5.4-7.0	21	9	53	3	9	5	0
				7.0-8.5	34	18	42	2	2	2	0
				Mean	27	13	47	3	6	4	0
c	8	18	74	8.5-10.0	8	3	8	7	27	34	13
b+c	21	49	30	Mean	21	10	35	4	13	13	4
a-c	25	56	19	Mean	25	17	36	3	9	8	2

SP 17 NE 193 1706 7767

Longdon Hall

Block 1	B
---------	---

Waste	3.3	m
Bedrock	2.2	m+

LOG

Geological classification	Lithology	Thickness m	Depth m	
	Soil	0.1	0.1	
Glacial Sand and Gravel	Clay, sandy, yellow-brown with blue-grey gleying; rare subrounded to well-rounded pebbles, mainly quartzite and quartz	2.7	2.8	
	'Very clayey' sand with a few pebbles, brown; mainly medium	0.5	3.3	
Mercia Mudstone Group	Mudstone, red-brown with green sandstone	2.2+	5.5	

GRADING

1

,

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines San	Sand	nd Gravel	Gravel	Fines	Fines Sand			Gravel		
			-	-16	$+\frac{1}{16} - \frac{1}{4}$	+ 1 -1	+1 -4	+4 -16	+16 -64	+64 mm
22	77	1	2.8-3.3	22	27	48	2	1	0	0

SP 17 NE 194 1013 7082	widney Cottage	1	BIOCK R
Surface level +135.0 m (+443 ft) Water not encountered 203 mm shell December 1980		Waste Bedrock	1.8 m 2.7 m
LOG			
Geological classification	Lithology	Thickness m	Depth m
	Soil	0.4	0.4
Glacial Sand and Gravel	Clay, sandy, stony, mottled grey to reddish brown; scattered, subangular to well-rounded pebbles, mainly quartzite and quartz	1.4	1.8
Mercia Mudstone Group	Mudstone, red-brown with green sandstone	2.7+	4.5

SP 17 NE 195 1851 7701

Kixley Wharf

Surface level +119 m (+390 ft) Water struck at +117 m 203 mm shell December 1980

Overburden	0.5	m
Mineral	1.5	m
Bedrock	3.5	m+

Block C

LOG

4. 4.2

ł

Geological classification	Lithology	Th ickness m	Depth m
	Soil	0.5	0.5
Glacial Sand and Gravel	'Very clayey' gravel Gravel: fine and coarse, subangular to well-rounded, mainly quartzite with quartz Sand: mainly medium	1.5	2.0
Mercia Mudstone Group	Mudstone, red and green	3.5+	5.5

GRADING

Mean for deposit percentages		Depth below surface (m)	Percent	Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel			
				-16	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
21	36	43	0.5-1.5 1.5-2.0 Mean	24 16 21	11 5 9	15 24 18	11 6 9	28 18 25	11 31 18	0 0 0	

SP 17 NE 196	1918 7662	Elvers Green Farm	1	Block C
Surface level +1: Water not encour 203 mm shell December 1980	19 m (+390 ft) ntered		Waste Bedrock	2.9 m 1.1 m-
LOG				
Geological class	ification	Lithology	Thickness m	Depth m
		Soil	0.5	0.5
Glacial Sand and	Gravel	Clay, sandy, stony, mottled reddish brown to grey-green; scattered subrounded to well-rounded pebbles, mainly quartzite with quartz	2.4	2.9
Mercia Mudston	e G rou p	Mudstone, red-brown with green sandstone	1.1+	4.0

Hall Farm

LOG

Waste	3.6	m
Bedrock	0.9	m+

Geological classification	Lithology	Thickness m	Depth m
<u> </u>	Made ground	0.4	0.4
River Terrace Deposits	Clay, stony, mottled yellow-brown to grey-brown; scattered subangular to well-rounded pebbles, mainly quartzite and quartz	0.6	1.0
	'Very clayey' sandy gravel Gravel: fine and coarse with cobbles, subrounded to well-rounded, mainly quartzite with quartz Sand: fine and medium	0.5	1.5
	Clay, silty, blue-grey becoming brown with depth; rare well-rounded quartzite pebbles	1.5	3.0
	Clay, silty, black; scattered subrounded to well-rounded pebbles, mainly quartzite and quartz	0.6	3.6
Arden Sandstone	Mudstone, red-brown with green sandstone	0.9+	4.5

GRADING

. • *

ł

Mean f percen	for depos itages	sit	Depth below surface (m)	Percent	ages					
Fines	Fines Sand Grave		-	Fines	Sand			Gravel		
				- <u>1</u> 5	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
23	54	23	1.0-1.5	23	21	31	2	6	6	11

Surface level +133 m (+436 ft) Water struck at +126.7 m 203 mm shell December 1980

LOG

Overburden	1.5	m
Mineral	1.3	m
Waste	3.5	m
Mineral	4.9	m
Bedrock	1.3	m+

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.5	0.5
Till	Clay, sandy, mottled yellow-brown to reddish brown; scattered subangular to well-rounded pebbles, mainly quartzite	1.0	1.5
Glacial Sand and Gravel	 a 'Very clayey' sand with a few pebbles, reddish brown; medium 	1.3	2.8
Till	Clay, sandy, yellowish brown to brown; rare subangular to well-rounded pebbles, mainly quartzite	1.3	4.1
?Glacial Lake Deposits	Clay, silty, sand lenses, stonefree, red-brown	2.2	6.3
Glacial Sand and Gravel	b Gravel Gravel: fine and coarse, subangular to well-rounded, quartzite with quartz and some mudstone, sandstone and igneous rock Sand: medium	4.9	11.2
Mercia Mudstone Group	Mudstone, red-brown with green sandstone	1.3+	12.5

GRADING

1

¢

ŧ

	Mean for deposit D percentages su		Depth below surface (m)	Percentages							
	Fines	Sand	Gravel	-	Fines	Sand			Gravel		
					- <u>1</u> - <u>1</u> 5	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
8	23	75	2	1.5-2.8	23	16	59	0	2	0	0
Ъ	9	39	52	6.3-7.5 7.5-8.5 8.5-11.2 Mean	12 2 11 9	5 1 14 9	19 6 34 25	3 5 5 5	18 31 15 19	43 55 21 33	0 0 0
a+b	12	47	41	Mean	12	11	32	4	15	26	0

	Depth below surface (m)	percentages by weight in 8-16 mm fraction									
	,	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Other	
b	6.3-11.2	75	21	1	_	-	2	1	1	_	

SP 17 NE 199 1900 7529

Waste	3.8	m
Bedrock	4.2	m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Made ground	2.0	2.0
Glacial Sand and Gravel	'Clayey' gravel Gravel: mainly fine, subangular to well-rounded, mainly quartzite with quartz Sand: fine to coarse, angular to well-rounded	0.8	2.8
Till	Clay, silty, stony, mottled reddish-brown to grey; scattered subangular to well-rounded pebbles, mainly quartzite	1.0	3.8
Mercia Mudstone Group	Mudstone, sandy to 7.0 m, reddish brown with green sandstone	4.2+	8.0

GRADING

1

1

Mean f percen	for deposit 1tages	Depth below surface (m)	Percentages								
Fines	Sand Grave			Fines	Sand			Gravel			
					$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
17	33	50	2.0-2.8	17	8	15	10	33	17	0	

Manor Farm

Surface level +147.3 m (+483 ft) Water struck at +139.3 m September 1982

Block A

6.6 m 6.9 m 0.3 m+ Overburden Mineral Bedrock

LOG

ſ

1 1

1

1

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.4	0.4
Till	Clay, sandy, reddish brown, pebbly; pebbles of quartzite, quartz, red and green mudstone and coal	6.2	6.6
Glacial Sand and Gravel	 a 'Clayey' pebbly sand Gravel: fine and coarse, rounded to well rounded quartzite and quartz with sandstone and trace mudstone Sand: fine and medium, subangular to subrounded quartz 	5.0	11.6
	 b Sandy gravel Gravel: fine and coarse, rounded to well rounded quartzite and quartz with sandstone and trace flint and mudstone Sand: mainly medium, angular to subrounded quartz 	1.9	13.5
Mercia Mudstone Group	Mudstone, reddish brown with green spots	0.3+	13.8

GRADING

	Mean for deposit percentages		Depth below surface (m)	Percentages							
	Fines	Sand	Gravel		Fines	Sand		· · · · · · · · · · · · · · · · · · ·	Gravel		
					- <u>1</u>	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 - 1	+1 -4	+4 -16	+16 -64	+64 mm
a	18	73	9	6.6-7.6	24	26	22	7	18	3	0
				7.6-8.6	15	26	49	2	5	3	0
				8.6-9.6	14	26	58	2	0	0	0
				9.6-11.6	18	31	40	3	4	4	0
				Mean	18	28	42	3	6	3	0
b	4	63	33	11.6-12.6	3	12	30	8	22	25	0
				12.6-13.5	6	14	58	6	10	6	0
				Mean	4	13	43	7	17	16	0
a+b	14	71	15	6.6-13.5	14	24	43	4	9	6	0

Depth below surface (m)	percentages by weight in 8-16 mm fraction									
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
9.6-11.6 11.6-12.6	47 49	43 37	8 13	-	0 1	2 trace	-	-	-	

SP 17 SW 187 1023 7306 Small Lane

Surface level +154.9 m (+508 ft) Water struck at +148.0 m September 1982

Bloc	ek	A
٥	٥	-

Waste	9.9	m
Bedrock	0.8	m+

LOG

i

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Till	Clay, sandy, yellowish orange, laminated below 1.2 m; small quartzite pebbles and coal fragments	3.7	4.0
	Clay, moderate brown to greyish brown, pebbly; small pebbles of quartzite, quartz, red and green siltstones and coal	2.9	6.9
Glacial Sand and Gravel	'Very clayey' sand Sand: mainly medium, quartz Fines: silty clay, moderate brown	1.1	8.0
Till	Clay, moderate brown, sandy with sporadic small pebbles	1.9	9.9
Mercia Mudstone Group	Mudstone, moderate brown with greenish grey spots	0.8+	10.7

GRADING

ł

ſ

i

r

Mean f percen	for depo Itages	sit	Depth below surface (m)	Percent	Percentages								
Fines	Fines Sand Gravel			Fines	Sand			Gravel					
				$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 - 1	+1 -4	+4 -16	+16 -64	+64 mm			
21	79	0	6.9-8.0	21	12	63	4	0		•			

SP 17 SW 188 1200 7354

Moat House Farm

Surface level +145.8 m (+478 ft) Water struck at +138.0 m August 1982

Overburden	5.4	m
Mineral	3.3	m
Bedrock	0.3	m+

Block A

LOG

ţ

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.2	0.2
Till	Clay, yellowish orange, pebbly; pebbles of quartzite, quartz and sandstone; sandy below 1.5 m	1.6	1.8
	Clay, reddish brown, pebbly; pebbles of quartzite, quartz, red siltstone, sandstone and coal. Below 3.5 m, layers of sand, laminated clay and light brown stony clay	3.6	5.4
Glacial Sand and Gravel	a 'Clayey' pebbly sand Gravel: fine, rounded to well rounded quartzite and quartz with sandstone and flint Sand: mainly medium, subangular to subrounded quartz	1.6	7.0
	b 'Clayey' sandy gravel Gravel: fine and coarse, as above Sand: fine to coarse, as above	1.7	8.7
Arden Sandstone	Silty clay, olive grey	0.3+	9.0

GRADING

	Mean for deposit percentages		Vean for deposit Depth below percentages surface (m)				Percentages						
	Fines	Sand	Gravel		Fines	Sand			Gravel		/		
					- <u>1</u> 6	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 m m		
a	18	73	9	5.4-6.0 6.0-7.0 Mean	22 16 18	12 12 12 12	56 60 58	2 3 3	6 8 7	2 1 2	0 0 0		
b	12	50	38	7.0-8.0 8.0-8.7 Mean	14 10 12	8 10 9	22 42 30	9 15 11	28 17 24	19 6 14	0 0 0		
a+b	15	61	24	5.4-8.7	15	10	44	7	16	8	0		

COMPOSITION

Depth below percentages by weight in 8-16 mm fraction surface (m)

surface (m)										
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
 7.0-8.0	60	26	13	_	1	trace	-	trace	_	

Waste	10.7	m
Bedrock	0.3	m+

LOG

1

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.6	0.6
Till	Clay, yellowish orange, pebbly; pebbles of quartzite, quartz, red sandstone and siltstone and rare flint	2.2	2.8
	Clay, reddish brown, pebbly; pebbles of quartzite, quartz and red siltstone	2.1	4.9
Glacial Lake Deposits	Sandy silt, fine quartz sand with reddish brown silty clay	4.0	8.9
	Silt, reddish brown alternating with clay which is laminated in parts	1.3	10.2
	Clay, brown, laminated	0.5	10.7
Arden Sandstone	Silty clay, greenish grey	0.3+	11.0

Surface level +139.5 m (+458 ft) Water struck at +136.1 m August 1982 Block A

Waste	4.7	m
Bedrock	0.3	m+

LOG

1

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Till	Clay, reddish orange, pebbly; pebbles of quartzite, quartz, red sandstone and coal	2.2	2.5
	Clay, reddish brown with pebbles as above, sandy at base	1.2	3.7
Glacial Sand and Gravel	'Clayey' sandy gravel Gravel: fine and coarse, rounded to well rounded, quartzite and quartz with some sandstone Sand: mainly medium, subangular to subrounded quartz	1.0	4.7
Arden Sandstone	Mudstone, greenish grey	0.3+	5.0

GRADING

Mean f percen	or depos tages	sit	Depth below surface (m)	Percent	ages					
Fines	Sand	Gravel		Fines	Sand			Gravel		
				$-\frac{1}{15}$	$+\frac{1}{16} - \frac{1}{4}$	+ 4 - 1	+1 -4	+4 -16	+16 -64	+64 mm
10	65	25	3.7-4.7	10	8	49	8	17	8	0

46

Heathfield Farm

Surface level +140.4 m (+460 ft) Water struck at +133.4 m August 1982

Block	A
-------	---

Overburden	6.2	m
Mineral	4.6	m
Bedrock	0.2	m

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.7	0.7
Till	Clay, yellowish orange with small pebbles of quartzite; weakly laminated	1.8	2.5
	Clay, reddish brown, pebbly; pebbles of quartzite, quartz, red and green siltstone and sandstone	2.3	4.8
	Clay, yellowish brown, stony; pebbles of quartzite and quartz; sandy at base	1.4	6.2
Glacial Sand and Gravel	 a 'Clayey' pebbly sand Gravel: fine and coarse, rounded to well rounded quartzite and quartz with sandstone and trace mudstone, ironstone and igneous rocks Sand: fine and medium, subangular to subrounded quartz 	1.8	8.0
	 b Gravel Gravel: fine and coarse, rounded to well rounded quartzite and quartz with sandstone and trace green igneous rocks Sand: fine and medium, angular to subrounded quartz 	2.8	10.8
Arden Sandstone	Mudstone, reddish brown with bands of greyish yellow silty clay	0.2+	11.0

GRADING

r

1

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel		
				$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 - 1	+1 -4	+4 -16	+16 -64	+64 mm
18	66	16	6.2-7.0	21	24	38	2	7	8	0
			7.0-7.8	15	13	50	5	9	8	0
			Mean	18	18	45	3	8	8	0
4	47	49	8.0-9.0	6	9	36	8	18	23	0
			9.0-10.0	1	6	30	9	28	25	1
			10.0-10.8	4	11	24	8	30	23	0
			Mean	4	9	30	8	25	24	trace
9	55	36	6.2-10.8	9	12	37	6	18	18	trace
	Mean f percen Fines 18 4 9	Mean for depo percentages Fines Sand 18 66 4 47 9 55	Mean for deposit percentages Fines Sand Gravel 18 66 16 4 47 49 9 55 36	Mean for deposit percentagesDepth below surface (m)FinesSandGravel 18 66 16 $6.2-7.0$ $7.0-7.8$ Mean4 47 49 $8.0-9.0$ $9.0-10.0$ $10.0-10.8$ Mean9 55 36 $6.2-10.8$	Mean for deposit percentagesDepth below surface (m)Percent $\belowFinesFinesSandGravel\belowsurface (m)\belowPercent1866166.2-7.07.0-7.82115Mean2115447498.0-9.09.0-10.010.0-10.864Mean955366.2-10.89$	Mean for deposit percentagesDepth below surface (m)PercentagesFinesSandGravel $-\frac{1}{16}$ $-\frac{1}{16}$ 1866166.2-7.0 7.0-7.82124 151866166.2-7.0 7.0-7.81513 18447498.0-9.0 9.0-10.069 1447498.0-9.0 9.0-10.869 4955366.2-10.8912	Mean for deposit percentagesDepth below surface (m)PercentagesFinesSandGravel $-\frac{1}{16}$ $-\frac{1}{16}$ $-\frac{1}{16}$ 186616 $6.2-7.0$ $7.0-7.8$ 212438 15 44749 $8.0-9.0$ $9.0-10.0$ 6936 30 44749 $8.0-9.0$ $9.0-10.8$ 6936 30 95536 $6.2-10.8$ 91237	Mean for deposit percentagesDepth below surface (m)PercentagesFinesSandGravel $-\frac{1}{16}$ $-\frac{1}{16}$ $-\frac{1}{16}$ 186616 $6.2-7.0$ $7.0-7.8$ Mean212438244749 $8.0-9.0$ $9.0-10.0$ $10.0-10.8$ 69368 4 995536 $6.2-10.8$ 912376	Mean for deposit percentagesDepth below surface (m)PercentagesFines 18Sand 66Gravel $-\frac{1}{16}$ $-\frac{1}{$	Mean for deposit percentagesDepth below surface (m)PercentagesFines 18Sand 66Gravel $-\frac{1}{16}$ $-\frac{1}{$

Depth below surface (m)	v percentage	percentages by weight in 8-16 mm fraction								
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
8.0-9.0	57	30	12	-	-	1	trace	trace	-	
10.0-10.8	53	34	13	-	-	trace	trace	trace	-	

SP 17 SW 192 1264 7166 Bro

Brown's Green Wood

Waste	5.5	m
Bedrock	0.8	m+

LOG

1

|

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Till	Clay, strong brown, silty	1.7	2.0
	Clay, moderate brown, stony; pebbles of quartzite, quartz, sandstone, coal and red and green siltstone	3.5	5.5
Mercia Mudstone Group	Silty clay, yellowish green with red streaks	0.8+	6.3

Block	B
-------	---

Waste	8.2	m
Bedrock	0.3	m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Till	Clay, reddish brown, stony; pebbles of quartzite, quartz, coal and red and green sandstone	5.1	5.4
	Clay, sandy, grevish green, stony; pebbles of quartz and sandstone	2.3	7.7
Glacial Sand and Gravel	Gravel Gravel: fine and coarse, rounded to well rounded, quartzite and quartz with sandstone and some green igneous rocks Sand: fine to coarse, subangular to subrounded, quartz	0.5	8.2
Mercia Mudstone Group	Clay, reddish brown with green spots	0.3+	8.5

GRADING

Mean for deposit percentages			Depth below surface (m)	Percent	Percentages						
Fines Sand Grave			Fines	Sand			Gravel				
			-15	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm		
6	38	56	7.7-8.2	6	7	25	6	26	30	0	

COMPOSITION

4

(

Depth below surface (m)	Depth below surface (m)	percentages by weight in 8-16 mm fraction									
		Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
	7.7-8.2	51	32	14	-	-	-	-	3	-	

SP 17 SW 194 1042 7116 Gilbert's Green

Surface level +155.5 m (+510 ft) Water not encountered January 1983

Overburden	3.5	m
Mineral	2.5	m
Waste	0.2	m
Bedrock	2.8	m+

Block B

LOG

Geological classification	Lithology	Thickness m	Depth m	
	Made ground	0.3	0.3	
Till	Clay, reddish brown to grey-brown with pebbles of quartzite	3.2	3.5	
Glacial Sand and Gravel	a 'Clayey' pebbly sand Gravel: fine and coarse, quartzite Sand: mainly medium, subrounded quartz	0.5	4.0	
	b 'Clayey' gravel Gravel: fine and coarse, well rounded quartzite and quartz with sandstone and trace flint, igneous rocks and mudstone Sand: fine to medium, angular quartz	2.0	6.0	
?Till	Clay, reddish with quartzite pebbles	0.2	6.2	
Arden Sandstone	Clay, orangy brown and reddish	2.8+	9.0	

GRADING

ł

: 1 ...

	Mean for deposit percentages		Depth below surface (m)	Percent	ages						
	Fines	s Sand Grave	Gravel		Fines	Sand			Gravel		
					- <u>1</u> - <u>1</u> 5	$+\frac{1}{15}-\frac{1}{4}$	+ 4 -1	+1 -4	+4 -16	+16 -64	+64 mm
a	17	78	5	3.5-4.0	17	19	56	3	3	2	0
b	15	37	48	4.0-5.0 5.0-6.0 Mean	16 13 15	6 6 6	25 23 25	5 8 6	23 29 25	23 21 22	2 0 1
a+b	15	45	40	3.5-6.0	15	9	31	5	21	18	1

	Depth below surface (m)	percentages by weight in 8-16 mm fraction										
0011000	,	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others		
	4.0-5.0	50	32	13	-	1	1	-	2	1		
	5.0-6.0	48	28	19	-	1	1	-	3	0		

SP 17 SW 195 1394 7103

Umberslade Park

Surface level +141.4 m (+464 ft) Water level not recorded January 1983

Blo	ck	B	

Overburden	3.2	m
Mineral	1.0	m
Waste	0.8	m
Mineral	4.0	m
Bedrock	0.1	m۲

LOG

Geological classification	Lithology	Thickness m	
	Soil	0.4	0.4
Till	Clay, red-brown with pebbles of guartzite	2.8	3.2
Glacial Sand and Gravel	a 'Very clayey' gravel Gravel: fine and coarse, well rounded quartzite and quartz with sandstone and some igneous rocks and trace flint Sand: medium with fine, subangular to rounded quartz	1.0	4.2
?Till	Clay, red and grey with quartzite pebbles	0.8	5.0
Glacial Sand and Gravel	 b Sandy gravel Gravel: fine with coarse, well rounded quartzite and quartz with sandstone and some ironstone, flint, mudstone and igneous rocks Sand: mainly medium, subangular to subrounded, quartz 	4.0	9.0
Arden Sandstone	Mudstone, grey and red	0.1+	9.1

GRADING

	Mean for deposit percentages		Depth below surface (m)	Percentages							
	Fines	Sand	Gravel		Fines	Sand			Gravel		
					$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
8	20	39	41	3.2-4.2	20	12	21	6	17	24	0
b	6	63	31	5.0-6.0 6.0-7.0 7.0-8.0 8.0-9.0 Mean	14 6 3 2 6	8 5 9 5 7	33 49 55 33 43	12 16 11 13 13	26 19 16 26 21	7 5 6 21 10	0 0 0 0 0
a+b	9	58	33	Mean	9	8	38	12	20	13	0

COMPOSITION

surface (m)									
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
3.2-4.2	47	32	18	_	1	0	0	2	0
5.0-6.0	52	24	18	-	0	1	0	4	1
6.0-7.0	37	28	17	- .	4	3	8	3	0
7.0-8.0	45	31	22	-	0	0	1	1	0
8.0-9.0	47	35	12	-	1	1	1	3	0

Surface level +137.6 m (+452 ft) Water struck at +134.1 m January 1983

LOG

Overburden	2.4	m
Mineral	4.9	m
Waste	0.7	m
Bedrock	1.5	m

Thickness Depth Geological classification Lithology m m 0.2 Soil 0.2 Till Clay, reddish with pebbles of sandstone and 2.2 2.4 quartzite Glacial Sand and Gravel a 'Clayey' sandy gravel 1.0 3.4 Gravel: fine and coarse, well rounded quartzite and quartz with sandstone and igneous rocks Sand: fine and medium, angular to subangular quartz b Pebbly sand 3.4 6.8 Gravel: fine, well rounded quartzite Sand: fine and medium, subrounded to rounded guartz 0.5 7.3 c Gravel Gravel: fine and coarse, rounded quartzite and quartz with sandstone and some igneous rocks Sand: fine and medium, angular to subrounded guartz ?Till Clay, grey with brown mottling 0.7 8.0 1.5+ Arden Sandstone Mudstone, brown and grey, bedded 9.5

GRADING

	Mean for deposit percentages		Depth below surface (m)	Percentages							
	Fines	Sand	Gravel	•	Fines	Sand			Gravel		
					$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
a	17	51	32	2.4-3.4	17	12	35	4	16	16	0
b	5	87	8	3.4-4.4 4.4-5.4 5.4-6.8 Mean	7 5 5 5	28 33 33 3 1	53 59 49 54	2 1 3 2	7 2 7 6	3 0 3 2	0 0 0 0
e	7	43	50	6.8-7.3	7	14	22	7	23	27	0
a to c	8	76	16	2.4-7.3	8	26	47	3	9	7	0

Depth below surface (m)	percentages by weight in 8–16 mm fraction									
 	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
 2.4-3.4	47	30	13		_	1	-	6	3	
6.8-7.3	54	31	11	-	-	0	· -	3	1	

SP 17 SE 64 1974 7444

Meres Bridge

Surface level +108.6 m (+356 ft) Water not encountered 203 mm shell December 1980

LOG

i 1

ft)	Overburden Mineral Bedrock	1.5 m 6.2 m 0.8 m+
	Bedrock	0.2 m 0.8 m

Block D

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.5	0.5
Glacial Sand and Gravel	Silt, sandy, pebbly, brown; subangular to well rounded quartzite and quartz clasts	1.0	1.5
	a 'Clayey' sand, brown; fine and medium, angular to well rounded	5.8	7.3
	b Gravel Gravel: mainly coarse with cobbles, subangular to well rounded, quartzite with quartz Sand: fine	0.4	7.7
Mercia Mudstone Group	Mudstone, red-brown with green sandstone	0.8+	8.5

GRADING

	Mean for deposit percentages		Depth below surface (m)	Percentages								
	Fines Sand Grave	Gravel		Fines	Fines Sand			Gravel	Gravel			
					-15	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
a	14	86	0	1.5-3.0 3.0-5.0 5.0-7.3 Mean	17 14 11 14	49 45 42 45	32 40 46 40	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	
b	7	46	47	7.3-7.7	7	29	9	8	11	28	8	
a+b	13	83	4	Mean	13	44	38	1	1	2	1	

SP	17 SE	73	1506 7435	Box Trees

Surface level +139.2 m (+457 ft) Water not encountered September 1982

Block B

0.6 m 2.8 m+ Waste -Bedrock

LOG

. . . .

1

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.1	0.1
Till	Clay, yellowish orange, stony; pebbles of red and green mudstone	0.5	0.6
Arden Sandstone	Silty clay, greyish brown	1.7	2.3
	Siltstone, greenish grey	1.1+	3.4

SP 17 SE 74 1726 7443 Dorridge Wood

Surface level +123.6 m (+405 ft) Water struck at +114.9 m September 1982

Block	B

Overburden	4.0	m
Mineral	5.8	m
Bedrock	0.8	m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.4	0.4
Till	Clay, moderate brown, with pebbles of red and green siltstone and quartzite	3.6	4.0
Glacial Sand and Gravel	'Very clayey' pebbly sand Gravel: fine with coarse, subrounded to rounded, quartzite, quartz with sandstone and some limestone, mudstone and igneous rocks Sand: mainly medium, subangular to subrounded quartz	5.8	9.8
Arden Sandstone	Mudstone/siltstone, greenish grey	0.8+	10.6

GRADING

Mean for deposit percentages		Depth below surface (m)	Percent	ages						
Fines	Sand	Gravel		Fines	Sand		<u> </u>	Gravel		
				-16	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
20	60	20	4.0-5.0	14	11	32	8	21	14	0
			5.0-5.3	17	10	34	9	20	10	0
			5.3-6.0	21	8	37	7	20	7	0
			6.0-7.0	19	10	48	5	10	8	0
			7.0-8.0	18	9	56	4	8	5	0
			8.0-9.0	25	17	38	3	10	7	0
			9.0-9.8	24	9	58	2	6	1	0
			Mean	20	11	44	5	13	7	0

COMPOSITION

· · ·

Depth below surface (m)	percentages by weight in 8-16 mm fraction									
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
 									<u> </u>	
4.0-5.0	45	36	14	2	-	2	-	1	-	

Surface level +124.0 m (+407 ft) Water struck at +116.1 m September 1982

100

5.5 m 1.9 m 0.5 m Overburden Mineral Waste Mineral

Waste Bedrock

1.0	m
5.4	m
0.2	m+

Block D

LOG			
Geological classification	Lithology	Thickness m	Depth m
	Soil	0.5	0.5
Till	Clay, reddish brown, stony	2.7	3.2
Glacial Lake Deposit	Clay, reddish brown, laminated and with fine quartz sandy silt from 3.9-5.5 m	2.3	5.5
Glacial Sand and Gravel	a 'Clayey' sand Sand: fine and medium, quartz Fines: light brown, silty clay	1.9	7.4.
Glacial Lake Deposit	Clay and silt, moderate brown, laminated	0.5	7.9
Glacial Sand and Gravel?	b 'Very clayey' sand Sand: fine quartz Fines: greyish red silt and clay	1.0	8.9
Glacial Lake Deposit	Sandy silt, light brown with fine quartz sand	0.8	9.7
	Clay, moderate brown, laminated	0.5	10.2
	Silt, moderate brown, laminated	3.4	13.6
	'Very clayey' gravel Gravel: coarse with fine, subangular to subrounded quartzite, quartz and sandstone with mudstone Sand: mainly medium, subangular to subrounded quartz	0.7	14.3
Mercia Mudstone Group	Mudstone, moderate brown with greenish grey spots	0.2+	14.5

GRADING

1

+ ··

1

	Mean f percen	for depo Itages	sit	Depth below surface (m)	Percent	Percentages					
	Fines	Sand	Gravel		Fines	Fines Sand		Gravel			
					- <u>1</u> - <u>1</u> 5	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
a	18	82	0	5.5-7.4	18	60	21	1	0	0	0
b	37	63	0	7.9-8.9	37	57	5	1	0	0	0
	29	33	38	13.6-14.3	29	5	22	6	12	26	0
a+b	25	75	0	Mean	23	58	18	1	0	0	0

Depth below surface (m)	percentages by weight in 8-16 mm fraction									
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
 13.6-14.3	47	22	28	trace	-	3	-	-	-	

SP	17	SE 7	76	1957	7396
ъr	11	DE ((0	1391	1990

Meres Farm

Surface level +103.4 m (+339 ft) Water struck at +99.4 m September 1982

Overburden	0.3	m
Mineral	7.6	m
Bedrock	2.5	m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Glacial Sand and Gravel	a 'Clayey' pebbly sand Gravel: fine and coarse, subrounded to well rounded quartzite and quartz with red sandstone and some mudstone Sand: fine and medium, subangular to subrounded, quartz	6.2	6.5
	b Gravel Gravel: coarse and fine, rounded to well rounded, quartzite and quartz with some red sandstone and flint	1.4	7.9
Mercia Mudstone Group	Mudstone, reddish brown and greenish grey, shaley	2.5+	10.4

GRADING

	Mean for deposit percentages			Depth below surface (m)	Percent	ages						
	Fines	Sand	d Gravel	Sand Gravel		Fines	Sand			Gravel		
					-16	$+\frac{1}{16}$ $-\frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
a	17	74	9	0.3-0.7	19	17	37	27	0	0	0	
				0.7-1.7	32	26	34	2	3	3	0	
				1.7-2.7	18	23	21	7	7	24	0	
				2.7-3.7	15	39	43	1	1	1	0	
				3.7-4.7	9	26	60	2	3	0	0	
				4.7-5.7	13	49	36	1	0	1	0	
				5.7-6.5	13	35	32	1	8	11	0	
				Mean	17	32	38	4	3	6	0	
b	1	36	63	6.5-7.9	1	8	24	4	24	39	0	
a+b	15	68	17	0.3-7.9	15	29	35	4	6	11	0	

COMPOSITION

1

1...

i

(

Depth below surface (m)	percentages by weight in 8-16 mm fraction								
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
 5.7-6.7	48	37	12	-	-	2	-	1	_

SP 17 SE 77	1547 7167	Spring Cottage		Block B
Surface level +1 Water not encou August 1982	136.9 m (+449 ft) untered		Waste Bedrock	1.8 m 0.7 m+
LOG				
Geological classification		Lithology	Thickness m	Depth m
		Soil	0.3	0.3
Till		Clay, silty, yellowish orange, stony; pebbles of quartzite and quartz	1.5	1.8
Arden Sandston	e	Clay, reddish brown and pale green	0.7+	2.5

SP 17 SE 78 1750 7180 Pool Tail Coppice

17 SE 78	1750 7180	Pool Tail Coppice		Block B
face level +13	2.2 m (+434 ft)		Waste	5.6 m
ter not encour	ntered		Bedrock	0.4 m+

Surface level +132.2 m Water not encountered August 1982

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.2	0.2
Till	Clay, reddish brown, stony and sandy; pebbles of quartz and quartzite	2.3	2.5
	Clay, reddish brown, laminated, stony; pebbles of pale green siltstone and sandstone	3.1	5.6
Mercia Mudstone Group	Mudstone, reddish brown with pale green spots	0.4+	6.0

Surface level +102.4 m (+336 ft) Water struck at +99.4 m August 1982 Block D

Overburden	2.1	m
Mineral	11.9	m
Waste	0.5	m
Bedrock	0.5	. m+

LOG

Geological classification	Lithology	Thickness m	Depth m	
	Soil	0.3	0.3	
Glacial Sand and Gravel	Clay, yellowish orange, sandy with small quartzite and quartz pebbles	1.8	2.1	
	a Sand, fine and medium, quartz	5.0	7.1	
	 b 'Clayey' pebbly sand Gravel: fine and coarse, rounded to well rounded quartzite and quartz with sandstone and ironstone and some igneous rocks and mudstone Sand: fine and medium, subangular to subrounded, quartz 	3.0	10.1	
	c 'Clayey' sand, fine and medium, subangular to subrounded, quartz	3.9	14.0	
Glacial Lake Deposit	Clay, brown, weakly laminated	0.5	14.5	
Mercia Mudstone Group	Sandstone, greyish green, fine quartz sand	0.5+	15.0	

GRADING

| | ---

	Mean for deposit percentages			surface (m)	Percentages						
	Fines	Sand	Gravel		Fines	Sand			Gravel		
					- <u>1</u> - <u>1</u> 5	$+\frac{1}{16} - \frac{1}{4}$	+ 1 -1	+1 -4	+4 -16	+16 -64	+64 mm
B	8	90	2	2.1-3.1	9	39	48	1	2	1	0
				3.1-4.1	10	44	43	1	1	1	0
				4.1-5.1	5	56	37	1	1	0	0
				5.1-6.1	5	46	46	1	1	1	0
				6.1-7.1	13	63	22	1	1	0	0
				Mean	8	50	39	1	1	1	0
Ь	14	73	13	7.1-8.1	5	45	31	2	8	9	0
				8.1-9.1	17	44	20	3	6	8	2
				9.1-10.1	21	45	26	2	1	5	0
				Mean	14	45	26	2	5	7	1
c	13	87	0	10.1-11.1	12	54	33	1	0	0	0
				11.1-12.1	12	50	36	2	0	0	0
				12.1-14.0	14	42	41	3	0	0	0
				Mean	13	47	38	2	0	0	0
a to c	11	85	4	2.1-14.0	11	48	35	2	2	2	trace

	Depth below surface (m)	percentages by weight in 8-16 mm fraction								
		Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
	8.1-9.1	49	29	9	-	-	2	8	3	-

Surface level +95.4 m (+313 ft) Water not encountered January 1983

В	lock I	6
Overburden	1.2	m
Mineral	5.0	m
Bedrock	0.8	m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Till	Clay, reddish brown, sandy at base	0.9	1.2
Glacial Sand and Gravel	a Sand, fine and medium, angular to subrounded quartz	2.0	3.2
	 b 'Clayey' pebbly sand Gravel: fine and coarse, well rounded quartzite, quartz and limestone with sandstone and ironstone and trace flint and mudstone Sand: fine to coarse, angular to subrounded, quartz 	3.0	6.2
Mercia Mudstone Group	Marl, red	0.8+	7.0

GRADING

	Mean for deposit percentages		Depth below surface (m) Percentages								
	Fines	Sand	Gravel		Fines	Sand			Gravel		
					-16	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
8	5	95	0	1.2-2.2 2.2-3.2 Mean	0 9 5	80 55 67	19 36 27	1 0 1	0 0 0	0 0 0	0 0 0
b	14	59	27	3.2-4.2 4.2-5.2 5.2-6.2 Mean	14 11 17 14	8 13 15 12	27 28 38 30	16 16 17 17	20 17 13 17	15 15 0 10	0 0 0 0
a+b	11	73	16	1.2-6.2	11	34	29	10	10	6	0

COMPOSITION

ł

| | -'

1

ş

Depth surface	below e (m)	percentage	es by wei	ght in 8-16 m	nm fraction					
		Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
3.2-4.2		33	18	10	29	0	trace	10	trace	-
4.2-5.2		30	21	11	32	1	1	4	0	-

Five Ways

Surface level +124.3 m (+408 ft) Water struck at +108.3 m September 1982

LOG

1

Waste 23.0 m
Bedrock 0.2 m+

Block E

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Till	Clay, brown and yellowish brown, stony; pebbles of chalk, quartzite, quartz, flint and sandstone	2.6	2.9
	Clay, reddish brown, stony; pebbles of quartzite,	1.6	4.5
	Silty clay, reddish brown, laminated in parts	3.0	7.5
	Clay, reddish brown, stony; pebbles of quartzite, quartz, red and green siltstone/ sandstone	6.3	13.8
Glacial Lake Deposits?	Silty clay, silt and sand, reddish brown, laminated	9.2	23.0
Mercia Mudstone Group	Mudstone, reddish brown with green spots	0.2+	23.2

SP 26 NW 83 2152 6887 C	Didfield
-------------------------	----------

Surface level +101.4 m (+333 ft) Water not encountered August 1982 Block E

Waste 1.8 m Bedrock 0.8 m+

LOG

I.

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.6	0.6
River Terrace Deposits	Silty clay, sandy, grey-brown	0.3	0.9
	Sandy clay, reddish brown, stony; pebbles of guartzite and guartz	0.9	1.8
Mercia Mudstone Group	Mudstone, reddish brown	0.8+	2.6

Surface level +125.8 m (+413 ft) Water struck at +119.0 and +107.6 m

BIOCK E

Waste	20.1	m
Bedrock	0.4	m-

LOG

Geological classification	Lithology	Thickne	ThicknessDepth	
-		m	m	
	Soil	0.3	0.3	
Till	Clay, reddish brown, stony; with pebbles of quartzite, quartz, sandstone, coal and red and green mudstone	6.5	6.8	
	Sandy silt, reddish brown, laminated	0.7	7.5	
	Clay, reddish brown, stony; pebbles of quartzite, quartz, sandstone, coal and red and green siltstone	10.7	18.2	
	Silty sand and silty clay, laminated	0.3	18.5	
Glacial Sand and Gravel	Pebbly sand Gravel: fine and coarse, rounded quartzite and quartz and some green sandstone Sand: fine and medium, subangular to subrounded, quartz	1.6	20.1	
Arden Sandstone	Mudstone, reddish brown with greyish green spots	0.4+	20.5	

GRADING

. • '

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel		
				-15	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
5	86	9	18.5-20.1	9	31	52	3	3	2	0

SP 26 NW 85 2256 6727

Little Shrewley

Surface level +110.5 m (+363 ft) Water struck at +102.5 m September 1982

Overburden	5.7	m
Mineral	14.3	m
Waste	1.0	m
Bedrock	1.0	m+

Block E

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.2	0.2
Glacial Sand and Gravel	Clay, sandy and silty, reddish brown, laminated	2.3	2.5
	Sandy silt, fine quartz sand and reddish brown silty clay, laminated in parts	3.2	5.7
	'Clayey' sand, fine and medium, subangular to subrounded quartz	14.3	20.0
Glacial Lake Deposits	Clay, reddish brown, silty with rare pebbles in upper part	1.0	21.0
Mercia Mudstone Group	Mudstone, moderate brown with greyish green spots	1.0+	22.0

GRADING

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel		
				- <u>1</u> 6	$+\frac{1}{16} - \frac{1}{4}$	+ 4 -1	+1 -4	+4 -16	+16 -64	+64 mm
19	80	1	5.7-6.5	19	36	44	1	0	0	+16 -64 +64 mm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			6.5-6.7	19	32	49	0	0	0	0
			6.7-7.7	18	29	53	0	0	0	0
			7.7-8.7	21	39	39	1	0	0	0
			8.7-9.7	26	40	34	0	0	0	0
			9.7-10.7	18	35	47	0	0	0	0
			10.7-12.7	20	33	47	0	0	0	0
			12.7-14.7	21	25	51	1	1	1	0
			14.7-16.7	22	18	53	2	3	2	0
			16.7-18.7	17	14	67	2	0	0	0
			18.7-20.0	13	23	63	1	0	0	0
			Mean	19	27	52	1	1	trace	0

.

LOG

Geological classification	Lithology	Thickness m	Depth m
Glacial Sand and Gravel	Clay, sandy and stony; pebbles of quartzite, quartz and red sandstone	3.6	3.6
	'Very clayey' sand, fine and medium, subangular to subrounded, quartz	1.1	4.7
Glacial Lake Deposits	Silt, sandy, moderate brown, laminated	9.2	13.9
Till?	Clay, silty, sandy, moderate brown, stony; pebbles of quartz, sandstone and coal	1.2	15.1
Mercia Mudstone Group	Mudstone, reddish brown with greyish green spots	0.2+	15.3

GRADING

ł 1

ļ

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines Sand	Sand	Gravel		Fines	Sand			Gravel		
				-10	$+\frac{1}{16} - \frac{1}{4}$	+ 4 -1	+1 -4	+4 -16	+16 -64	+64 mm
22	78	0	3.6-4.7	22	34	44	trace	0	 :	

.

SP 26 NW 87 2060 6686 Holly Farm

Surface level +119.7 m (+393 ft) Water struck at +116.9, 112.2 and 105.9 m September 1982

LOG

f

í

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.6	0.6
Till	Clay, moderate brown, sandy and silty, stony; pebbles of sandstone, quartz and coal	2.1	2.7
	Sand, fine and medium, guartz	0.7	3.4
	Clay, moderate brown, sandy, silty, stony; pebbles of guartzite, guartz and sandstone	2.3	5.7
Glacial Lake Deposits?	Clay and silt, moderate brown, laminated; sandy at base	1.8	7.5
Glacial Sand and Gravel	'Very clayey' sand, fine and medium, quartz with bands of laminated silt and clay	1.2	8.7
Glacial Lake Deposits	Clay, moderate brown, with yellowish brown silt, laminated	5.1	13.8
Glacial Sand and Gravel	'Very clayey' sandy gravel Gravel: fine with coarse, subrounded sandstone and quartzite with quartz and some mudstone Sand: fine to coarse, quartz Fines: silt and clay, moderate brown	1.2	15.0
Glacial Lake Deposits	Clay, moderate brown, laminated; with layers of fine quartz sand	0.6	15.6
Mercia Mudstone Group	Sandstone, greyish green, fine grained quartz	0.1+	15.7

GRADING

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines Sand Gr	d Gravel		Fines	Sand			Gravel			
				-16	$+\frac{1}{16} - \frac{1}{4}$	$+\frac{1}{4}$ -1	+1 -4	+4 -16	+16 -64	+64 mm
24	76	0	7.5-8.7	24	62	14	trace	0	0	0
39	44	17	13.8-15.0	39	27	11	6	12	5	0

COMPOSITION

	Depth below surface (m)	percentages by weight in 8-16 mm fraction								
		Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
	13.8-15.0	25	10	60		-	4	_	1	_

1

SP 26 NW 88 2306 6542			Little Nunhold Farm						
	Surface level +1 Water not encou September 1982	13.1 m (+371 ft) intered		Waste Bedrock	1.6 0.4	m			
	LOG								
	Geological class	sification	Lithology	Thickness m	Depti m	h			
			Soil	0.4	0.4	-			
	Till		Clay, silty and sandy, moderate brown, stony	0.8	1.2	;			
	Glacial Sand and	d Gravel	'Clayey' sand, medium quartz with reddish brown silty clay	0.4	1.6	;			
	Mercia Mudston	e Group	Mudstone, reddish brown, shaley	0.4+	2.0)			
SP 26 NW 89	2069 6549	Manor House		Block E					
---	----------------------------	---	----------------	------------					
Surface level +12 Water not encour January 1983	21.9 m (+400 ft) ntered		Waste	2.5 m					
LOG									
Geological classi	fication	Lithology	Thickness m	Depth m					
		Soil	0.3	0.3					
Till		Clay, moderate brown with pebbles of green siltstone and mudstone	2.2+	2.5					

Waste	3.2	m
Bedrock	0.8	m+

LOG

1 ...

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.8	0.8
Till	Clay, reddish brown, stony; pebbles of quartzite, quartz and flint	2.4	3.2
Mercia Mudstone Group	Mudstone, reddish brown with grey mottling	0.8+	4.0

ï

Geological classification	Lithology	Thickness m	Depth m	
	Soil	0.3	0.3	
Glacial Sand and Gravel	'Clayey' gravel Gravel: fine and coarse, rounded to well rounded, quartzite and quartz with sandstone and some subangular to subrounded flint and igneous rocks Sand: fine to coarse, subangular to subrounded quartz Clay, reddish brown, stony; pebbles of	0.9	1.2 2.4	
	quartzite, quartz and flint			
Mercia Mudstone Group	Mudstone, reddish brown with pale green spots	0.4+	2.8	

GRADING

Mean for deposit percentages		Depth below surface (m)	Percent	ages						
Fines	Sand	Gravel		Fines	Sand		· · · · · · · · · · · · · · · · · · ·	Gravel		
				$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
17	24	59	0.3-1.2	17	7	12	5	29	30	0

COMPOSITION

Depth below surface (m)	percentages by weight in 8-16 mm fraction									
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
 <u> </u>			<u> </u>			<u> </u>		~ <u> </u>		
0.3-1.2	62	20	12	-	3	-	-	2	1	

•

1

Surface level +104.6 m (+343 ft) Water not encountered September 1981 Block F₄

Overburden	0.3 m
Mineral	4.7 m
Bedrock	0.7 m+

LOG

Geological classification	Lithology	Thickness m	Depth m	
	Soil	0.3	0.3	
Glacial Sand and Gravel	'Very clayey' sandy gravel Gravel: fine and coarse, rounded to well rounded quartzite with quartz and sandstone and some subangular flint and igneous rocks Sand: mainly medium, subangular to subrounded, quartz	4.7	5.0	
Mercia Mudstone Group	Clay, reddish brown with pale green fisheyes	0.7+	5.7	

GRADING

Mean for deposit percentages		Depth below surface (m)	Percentages								
Fines	Sand	Gravel		Fines	Sand			Gravel			
				- <u>1</u> 5	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
24	47	29	0.3-1.3	27	8	38	5	11	11	0	
			1.3-2.5	27	4	28	12	15	14	0	
			2.5-2.9	20	6	71	1	0	2	0	
			2.9-3.9	19	8	18	9	21	25	0	
			3.9-5.0	26	6	26	9	12	21	0	
			Mean	24	6	33	8	13	16	0	

COMPOSITION

Depth below percentages by weight in 8-16 mm fraction

SUPLACE IMI										
Surface (III)	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
0.3-1.3	56	18	17		7	0	 ?	0	_	
1.3-2.5	47	34	11	-	7	1	Õ	Ö	-	
2.9-3.9	62	18	14	-	3	1	1	1	-	
3.9-5.0	71	5	8	-	15	1	0	0	-	
Mean	60	18	12	-	8	1	1	trace	-	

SP 26 SW 51	2015 6388	South of Park Farm	В	lock F ₄
Surface level +9 Water not encou September 1981	9.9 m (+328 ft) Intered		Waste Bedrock	1.3 m 1.8 m+
LOG				
Geological class	sification	Lithology	Thickness m	Depth m
		Soil	0.5	0.5
Glacial Sand and	d Gravel	Clay, reddish brown with yellowish grey mottling	0.8	1.3
Arden Sandstone	e	Clay, reddish brown with green sandy lenses	1.8+	3.1

SP 26 SW 52	2160 6455	Claverdon Lodge	В	lock F ₅
Surface level +1 Water not encou September 1981	03.7 m (+340 ft) ntered		Waste Bedrock	2.1 m 1.0 m
LOG				
Geological class	ification	Lithology	Thickness m	Depth m
		Soil	0.5	0.5
Glacial Sand and	l Gravel	Clay, reddish brown to yellowish brown, with layers of medium quartz sand	1.6	2.1
Mercia Mudston	e Group	Clay, red-brown with green fisheyes	1.0+	3.1

SP 26 SW 53 2148 6434 Cuttshill Farm

Surface level +103.7 m (+340 ft)	Overburden	0.2 m
Water not encountered	Mineral	1.1 m
September 1981	Bedrock	0.3 m+
September 1981	Bedrock	0.3 m+

LOG

ł

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.2	0.2
Glacial Sand and Gravel	'Clayey' gravel Gravel: fine and coarse, rounded to well rounded quartzite and quartz with sandstone Sand: fine to coarse, subangular to subrounded, quartz	1.1	1.3
Mercia Mudstone Group	Mudstone, reddish brown	0.3+	1.6

GRADING

Mean f percen	for depo tages	sit	Depth below surface (m)	Percent	tages							
Fines	Sand	Gravel		Fines	Sand			Gravel				
				$-\frac{1}{16}$	$+\frac{1}{16}$ $-\frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm		
11	25	64	0.2-1.3	11	7	8	10	38	26	0		

COMPOSITION

ł

Depth below surface (m)	Depth below surface (m)	percentages by weight in 8-16 mm fraction								
	Surface (m)	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
	0.2-1.3	60	31	8	-	-	trace		_	1
	012 110	00	01	U			uuce			•

SP 26 SW 54 2125 6405

South of Cophill Farm

Surface level +111.7 m (+366 ft) Water struck at +107.7 m September 1981

	Block H	5
Overburden	0.7	m
Mineral	4.0	m
Bedrock	1.7	m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.7	0.7
Glacial Sand and Gravel	a 'Very clayey' sand Sand: fine and medium, subangular to subrounded quartz Fines: reddish brown	0.7	1.4
	 b 'Clayey' sandy gravel Gravel: fine with coarse, rounded to well rounded quartzite with quartz and sandstone and some igneous rocks Sand: fine to coarse, subangular to subrounded, quartz 	3.3	4.7
Arden Sandstone	Clay, silty and sandy, red and green	1.1	5.8
	Sand, greenish grey	0.6+	6.4

GRADING

	Mean f	for depo tages	sit	Depth below surface (m)	Percent	Percentages						
	Fines	Sand	Gravel		Fines	Sand			Gravel			
					-15	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
a	26	71	3	0.7-1.4	26	36	33	2	1	2	0	
Ь	18	48	34	1.4-2.5 2.5-3.5 3.5-4.0 4.0-4.7 Mean	20 20 17 14 18	13 11 6 5 9	24 36 30 27 30	8 9 11 11 9	19 19 22 28 22	16 5 14 15 12	0 0 0 0 0	
a+b	19	53	28	0.7-4.7	19	14	31	8	18	10	0	

COMPOSITION

Depth below percentages by weight in 8-16 mm fraction

Surrace (III)										
Surface (m)	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
1.4-2.5	55	25	18	-	-	-	-	-	2	
2.5-3.5	54	33	8	-	-	-	-	5	-	
3.5-4.0	52	30	17	-	trace	-	-	-	-	
4.0-4.7	67	18	13	-	-	-	trace	2	trace	

SP 26 SW 55	2243 6443	West of Curlieu Farm		Block F ₅
Surface level +1 Water not encou September 1982	16.0 m (+381 ft) intered		Waste Bedrock	5.4 m 0.5 m+

LOG

1 .

1

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Till	Clay, reddish brown, stony; pebbles of quartzite quartz, sandstone, coal and red and green siltstone	5.1	5.4
Mercia Mudstone Group	Sandstone, greyish green	0.5+	5.9

SP 26 SW 56 2196 6394

Gannaway Gate

Waste	10.1	m
Bedrock	0.5	m

LOG

ł

| ...

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Till	Clay, reddish brown, stony; pebbles of quartzite, quartz, sandstone, coal, ironstone and red and green siltstone	8.1	8.4
Glacial Sand and Gravel	'Clayey' pebbly sand Gravel: fine and coarse, rounded quartzite and quartz with some sandstone Sand: mainly medium, subangular to subrounded, quartz	1.7	10.1
Mercia Mudstone Group	Mudstone, reddish brown with pale green spots	0.5+	10.6

GRADING

Mean for deposit percentages		Depth below surface (m)	Percent	ages						
Fines	Sand	Gravel		Fines	Sand			Gravel		
				$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
19	76	5	8.4-9.4	21	13	57	2	3	4	0
			9.4-10.1 Mean	15 19	14 13	65 61	1 2	2 2	3 3	0

78

SP 26 SW 57	2395 6484	Grove Park		BIOCK F
Surface level +111 Water not encount September 1981	.6 m (+366 ft) ered		Waste Bedrock	2.7 m 0.7 m+
LOG				
Geological classifi	cation	Lithology	Thickness m	Depth m
<u></u>		Soil	0.4	0.4
Till		Clay, yellowish and reddish brown, stony; pebbles of quartzite, quartz, sandstone, coal and red and green mudstone	2.3	2.7
Mercia Mudstone (Group	Clay, reddish brown with greyish green fisheyes	0.7+	3.4

SP 26 SW 58 2497 6443 East of Grove Park

Surface level +92.4 m (+303 ft) Water struck at +91.2 m September 1981

В	lock I	5
Overburden	0.6	m
Mineral	1.1	m
Waste	0.9	m
Bedrock	0.3	m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.6	0.6
Glacial Sand and Gravel	'Very clayey' pebbly sand Gravel: fine and coarse, rounded to well rounded, quartzite and quartz Sand: fine and medium, subangular to subrounded, quartz	1.1	1.7
Till	Clay, reddish brown with greyish green marbling, stony; pebbles of quartzite, quartz and green siltstone	0.9	2.6
Mercia Mudstone Group	Mudstone, reddish brown and pale green	0.3+	2.9

GRADING

1

Mean for deposit percentages			Depth below surface (m)	Percent	Percentages							
Fines	Fines Sand Gravel			Fines	es Sand			Gravel				
				-15	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm		
21	75	4	0.6-1.7	21	36	38	1	1	3	0		

SP 26 SW 59 2147 6319 Newlands Farm

Surface level +117.0 m (+384 ft) Water struck at +110.0 m and +98.0 m September 1981

	Block F	5
Waste	22.7	m
Bedrock	0.2	m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Till	Clay, reddish brown, stony; pebbles of quartzite, quartz, flint, chalk, coal, sandstone and ironstone	1.5	1.8
	Clay, reddish brown, stony; pebbles of quartzite, quartz, sandstone, coal and red and green mudstone	1.6	3.4
	Silt, reddish brown with layers of medium quartz sand	1.4	4.8
	Clay, reddish brown; rare pebbles of quartzite and coal	3.2	8.0
Glacial Lake Deposits	Clay, brown, laminated	11.0	19.0
Glacial Sand and Gravel	Gravel Gravel: fine and coarse, rounded to well rounded quartzite and quartz with green sandstone and trace limestone Sand: medium and coarse, angular to subrounded, quartz	3.7	22.7

GRADING

Mean for deposit percentages		Depth below surface (m)	pth below face (m) Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel		
_				-15	$+\frac{1}{15}$ $-\frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
6	43	51	19.0-20.0	7	3	4	18	30	37	1
			20.0-21.0	5	3	5	21	37	29	0
			21.0-22.0	6	5	36	14	20	19	0
			22.0-22.7	5	6	44	18	17	10	0
			Mean	6	4	21	18	26	25	trace

COMPOSITION

ł

Depth below surface (m)

percentages by weight in 8–16 mm fraction

	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
19.0-20.0	61	26	12	1	0	trace	trace	0	0
20.0-21.0	49	35	13	1	0	1	0	1	0
21.0-22.0	52	24	20	0	1	1	0	0	0
22.0-22.7	48	38	11	1	0	trace	trace	1	1

SP 26 SW 60 2201 6328

West of Norton Lindsey

Surface level +110.0 m (+361 ft) Water struck at +105.2 m September 1981

		•
Overburden	2.0	m
Mineral	3.3	m
Bedrock	0.4	m+

Block F₅

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Till	Clay, reddish brown	1.7	2.0
Glacial Sand and Gravel	'Clayey' gravel Gravel: fine and coarse, rounded to well rounded quartzite, quartz with sandstone and trace limestone Sand: fine to coarse, angular to subrounded, quartz	3.3	5.3
Mercia Mudstone Group	Mudstone, reddish brown with green spots	0.4+	5.7

GRADING

-

.

1

Mean f percen	for depo itages	sit	Depth below surface (m)	Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel			
				<u>1</u> <u>1</u> 5	$+\frac{1}{16}-\frac{1}{4}$	+ 1 -1	+1 -4	+4 -16	+16 -64	+64 mm	
11	30	59	2.0-2.6	20	6	8	10	34	22	0	
			2.6-3.6	8	13	8	15	39	17	0	
			3.6-4.6	9	4	11	13	41	22	0	
			4.6-5.3	12	7	9	11	42	19	0	
			Mean	11	8	9	13	39	20	0	

COMPOSITION

Depth below percentages by weight in 8-16 mm fraction

	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
2.0-2.6	55	32	12	1	-	0	-	0	0	
2.6-3.6	67	23	8	1	-	0	-	0	1	
3.6-4.6	58	30	11	0	-	trace	-	0	1	
4.6-5.3	63	28	8	0	-	0	-	1	0	

2491 6290 SP 26 SW 61 South-east of Hooknell

Surface level +72.4 m (+238 ft) Water not encountered September 1981

Block F₅

Overburden	0.4	m
Mineral	1.3	m
Bedrock	0.4	m+

Geological classification	Lithology	Thi ckness m	Depth m
	Soil	0.4	0.4
River Terrace Deposits	'Clayey' gravel Gravel: fine and coarse, rounded to well rounded quartzite, quartz with sandstone and some ironstone and subrounded flint Sand: fine to coarse, subangular to subrounded quartz	1.3	1.7
Mercia Mudstone Group	Clay, reddish brown with green spots	0.4+	2.1

GRADING

LOG

Mean i percen	for depo itages	sit	Depth below surface (m)	Percent	ages						
Fines	Sand	Gravel		Fines	Sand	<u></u>		Gravel			
				-15	$+\frac{1}{15} - \frac{1}{4}$	+ 4 -1	+1 -4	+4 -16	6 +16 -64 +64 mm		
12	34	54	0.4-1.7	12	7	16	11	29	25	0	

COMPOSITION

t i 1 ł

1

Depth below surface (m)	oth below percentages by weight in 8-16 mm fraction								
Surrace (iii)	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
0.4-1.7	51	32	12	_	3	-	1	1	-

SP 26 SW 62 2499 6242

New Barn Buildings

Surface level +54.4 m (+179 ft) Water struck at +52.8 m September 1981

	Block I	5
Overburden	0.6	m
Mineral	1.2	m
Bedrock	0.6	m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.6	0.6
River Terrace Deposits	'Very clayey' gravel Gravel: fine and coarse, rounded to well rounded quartzite and quartz with sandstone, subrounded flint and some ironstone and limestone Sand: fine to coarse, angular to subrounded, quartz Fines: yellow-brown silty clay	1.2	1.8
Mercia Mudstone Group	Clay, reddish brown with green spots	0.6+	2.4

GRADING

Mean f percer	for depo Itages	sit	Depth below surface (m)	Percent	ages						
Fines	Sand	Gravel		Fines	Sand			Gravel	Gravel		
				$-\frac{1}{15}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
27	24	49	0.6-1.8	27	6	10	8	29	20	0	

COMPOSITION

-

D su	epth below Irface (m)	percentages by weight in 8-16 mm fraction								
		Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
0.	.6-1.8	47	31	13	1	7	-	1	-	-

SP 26 SW 63	2168 6196	East of Park View	B	lock F ₅
Surface level + Water struck a September 198	-77.1 m (+253 ft) t +74.6 m 1		Waste Bedrock	2.8 m 0.3 m+
LOG				
Geological clas	ssification	Lithology	Thickness m	Depth m
<u></u>		Soil	0.3	0.3
Alluvium		Silty clay, greyish green and reddish brown with plant debris and quartzite and quartz pebbles	2.0	2.3
		Sandy clay with pebbles of quartzite, quartz and sandstone	0.5	2.8

Mudstone, reddish brown with green spots

0.3+

3.1

Mercia Mudstone Group

1

ł

SP 20 SW 04 2239 0240 Diacon Fai	SP
----------------------------------	----

Surface level +109.9 m (+361 ft) Water struck at +105.9 m September 1981

LOG

ł

Overburden	0.3	m
Mineral	3.9	m
Waste	0.8	m
Bedrock	0.4	m+

Block F₅

Geological classification	Lithology	Thickness m	Depth m
**	Soil	0.3	0.3
Glacial Sand and Gravel	'Clayey' gravel Gravel: fine with coarse, rounded to well rounded quartzite and quartz with sandstone and some igneous rocks Sand: fine to coarse, angular to sub- rounded quartz	3.9	4.2
Till?	Clay, reddish brown, stony; pebbles of quartzite, quartz, coal and red and green siltstone and sandstone	0.8	5.0
Mercia Mudstone Group	Clay, reddish brown, with greyish green lenses	0.4+	5.4

GRADING

Mean for deposit percentages		Depth below surface (m)	Percent	ages						
Fines	Sand	Gravel		Fines	Sand			Gravel		
				- <u>1</u>	$+\frac{1}{15} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
14	38	48	0.3-1.4	14	5	11	17	40	13	0
		10	1.4-2.5	17	6	10	14	35	18	0
			2.5-3.5	12	11	32	11	24	10	0
			3.5-4.2	10	6	16	15	42	11	0
			Mean	14	7	17	14	35	13	0

COMPOSITION

-

Depth below percentages by weight in 8-16 mm fraction surface (m) Others Quartzite Flint Mudstone Ironstone Igneous Quartz Sandstone Limestone 0.3-1.4 31 5 1 61 1 _ 1 --1.4-2.5 2.5-3.5 --29 4 -1 1 65 0 23 13 -1 2 61 0

SP 26 SW 65	2279 6203	North of Luscombe Farm	BI	lock F ₅
Surface level +94. Water struck at + September 1981	5 m (+310 ft) 93.4 m		Overburden Mineral Waste Bedrock	0.3 m 2.2 m 0.7 m 0.3 m+

LOG

1

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Glacial Sand and Gravel	'Very clayey' sandy gravel Gravel: fine and coarse, rounded to well rounded quartzite and quartz with sandstone and some ironstone Sand: fine and medium, angular to subrounded quartz	2.2	2.5
Till?	Clay, reddish brown, stony; pebbles of quartzite, quartz, sandstone and red-brown mudstone	0.7	3.2
Mercia Mudstone Group	Clay, reddish brown with pale green spots	0.3	3.5

GRADING

Mean for deposit I percentages s		Depth below surface (m)	Percent	ages						
Fines Sand	nd Gravel		Fines	es Sand ·		<u> </u>	Gravel			
				-15	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
26	54	20	0.3-1.5 1.5-2.5	20 32	18 22	32 22	9 5	13 11	8 8	0
			Mean	26	20	27	7	12	8	0

COMPOSITION

_

! |--|

!

	Depth below surface (m)	th below percentages by weight in 8-16 mm fraction ace (m)									
		Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
	0.3-1.5	46	35	17		trace	_	2	-	-	
	1.5-2.5	48	31	21	-	trace	-	0	-	-	

SP 26 SW 66 2295 6240

Block F₅ Overburden 0.4 m

Mineral6.0 mBedrock0.6 m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.4	0.4
Glacial Sand and Gravel	'Clayey' sand, fine and medium, subangular to subrounded quartz	6.0	6.4
Mercia Mudstone Group	Clay, reddish brown with green spots and fisheyes	0.6+	7.0

GRADING

1

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel		
				$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 - 1	+1 -4	+4 -16	+16 -64	+64 mm
10	88	2	0.4-1.5	19	63	15	2	1	0	0
			1.5-2.5	7	78	15	0	0	0	0
			2.5-3.5	8	64	27	1	0	0	0
			3.5-4.5	6	38	54	1	1	0	0
			4.5-5.5	7	41	50	1	1	0	0
			5.5-6.4	10	70	11	1	2	6	0
			Mean	10	58	29	1	1	1	0

SP 26 SW	67	2067 6057	Oak Farm
DI 20 DI		2001 0001	04

Surface level +112.0 m (+368 ft) Water struck at +105.0 m September 1981

Overburden	4.4	m
Mineral	2.9	m
Waste	7.6	m
Bedrock	0.1	m+

LOG

Geological classification	Lithology	Thickness m	Depth m
<u></u>	Soil	0.3	0.3
Till	Clay, yellowish brown, stony; pebbles of chalk, flint, yellow sandstone, quartzite, quartz, ironstone and coal	3.3	3.6
Glacial Lake Deposits?	Silty clay, reddish brown and orangy brown, laminated	0.8	4.4
Glacial Sand and Gravel	'Very clayey' sand, fine and medium, subangular to subrounded, quartz	2.9	7.3
	Sandy silt, fine quartz sand with reddish brown silt	2.6	9.9
Glacial Lake Deposits?	Silty clay, reddish brown; laminated from 13.0 to 14.3 m	4.4	14.3
	Clay, sandy, reddish brown, stony	0.4	14.7
	'Very clayey' sand, medium, quartz with reddish silty clay	0.2	14.9
Mercia Mudstone Group	Mudstone, reddish brown with green spots	0.1+	15.0

GRADING

ł

Mean for deposit		Depth below surface (m)	Percentages							
Fines Sand Gravel		Fines	ines Sand		Gravel					
				-15	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
27	72	1	4.4-5.5	26	26	46	1	1	0	
			5.5-6.5	28	36	36	0	0	0	
			6.5-7.3	29	53	16	1	1	0	
			Mean	27	37	34	1	1	0	

Surface level +97.8 m (+321 ft) Water struck at +95.3 m September 1981 Block F₅

Overburden	0.3	m
Mineral	3.0	m
Bedrock	0.4	m+

LOG

> (| |

...

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Glacial Sand and Gravel	'Clayey' sandy gravel Gravel: fine with coarse, rounded to well rounded quartzite and quartz with sandstone Sand: mainly medium, subangular to subrounded, quartz	3.0	3.3
Mercia Mudstone Group	Clay, reddish brown with green spots	0.4+	3.7

GRADING

Mean for deposit Dept percentages surfa		Depth below surface (m)	h below ice (m) Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel		
				$-\frac{1}{16}$	$+\frac{1}{15} - \frac{1}{4}$	$+\frac{1}{4}$ -1	+1 -4	+4 -16	+16 -64	+64 mm
11	60	29	0.3-1.3	9	10	42	9	23	7	0
			1.3-2.3	14	13	44	6	15	8	0
			2.3-3.3	11	6	41	7	20	15	0
			Mean	11	10	42	8	19	10	0

Depth below surface (m)	percentage								
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
0.3 - 1.3	61	26	13	-	-	-	-	-	-
1.3-2.3	53	32	15	-	-	-	-	-	-
2.3-3.3	50	32	18	-	-	-	-	-	trace

SP 26 SW 69 2184 6114

North of Lodge Farm

Surface level +108.7 m (+357	ft)
Water not encountered	
September 1981	

Overburden	0.3	m
Mineral	2.5	m
Bedrock	0.5	m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Glacial Sand and Gravel	'Clayey' gravel Gravel: fine and coarse, rounded to well rounded quartzite and quartz with sandstone and some ironstone Sand: mainly medium, subangular to subrounded quartz	2.5	2.8
Mercia Mudstone Group	Clay, reddish brown with green spots	0.5+	3.3

GRADING

Mean for deposit percentages		Depth below surface (m)	Percent	Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel			
				- <u>1</u> 6	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 - 1	+1 -4	+4 -16	+16 -64	+64 mm	
17	40	43	0.3-1.4	19	13	30	5	16	17	0	
			1.4-2.4	14	5	12	8	31	30	0	
			2.4-2.8	21	9	34	6	12	18	0	
			Mean	17	9	25	6	21	22	0	

	Depth below surface (m)	percentages by weight in 8-16 mm fraction										
		Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others		
	0.3-1.4	55	23	15	-	0	-	6	1	0		
	1.4-2.4	52	30	16	-	0	-	1	0	1		
	2.4-2.8	53	28	11	-	4	-	4	0	0		

Waste	2.1	m
Bedrock	0.6	m-

LOG			
Geological classification	Lithology	Thickness m	Depth m
	Soil	0.6	0.6
Glacial Sand and Gravel	Clay, reddish brown, sandy and stony; pebbles of quartzite, quartz and flint and thin layers of fine quartz sand	0.8	1.4
	'Clayey' sandy gravel Gravel: fine with coarse, rounded to well rounded quartzite, quartz and subrounded flint with rounded sandstone Sand: mainly medium, subangular to subrounded quartz	0.2	1.6
	Clay, reddish brown with layers of medium guartz sand and rare guartz pebbles	0.5	2.1
Mercia Mudstone Group	Clay, reddish brown with green spots	0.6+	2.7

GRADING

(

Mean for deposit percentages		Depth below surface (m)	Percentages								
Fines	Sand	Gravel		Fines	Sand			Gravel			
				$-\frac{1}{16}$	$+\frac{1}{16}$ $-\frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
12	53	35	1.4-1.6	12	8	38	7	30	5	0	

	Depth below surface (m)	percentages by weight in 8-16 mm fraction									
		Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
	1.4-1.6	43	22	14	-	21	-	-	-	-	

SP 26 SW 71 2322 6010

	Block I	6
den	0.4	m

Overburden0.4 mMineral2.8 mWaste0.5 mBedrock0.4 m+

LOG

Geological classification	Lithology	Thickness m	Depth m	
	Soil	0.4	0.4	
Glacial Sand and Gravel	'Clayey' sandy gravel Gravel: fine and coarse, rounded to well rounded, quartzite, quartz and limestone with sandstone, ironstone and trace mudstone Sand: fine to coarse, subangular to subrounded, quartz	2.8	3.2	
	Clay, reddish brown with pebbles of mudstone; laminated	0.5	3.7	
Mercia Mudstone Group	Clay, reddish brown with greyish green spots	0.4+	4.1	

GRADING

Mean for deposit percentages		Depth below surface (m)	Percentages								
Fines	Sand	Gravel		Fines	Sand			Gravel			
				<u>1</u> 5	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
12	60	28	0.4-1.4	16	42	27	9	5	1	0 .	
			1.4-2.4	6	5	35	20	18	26	0	
			2.4-3.2	12	10	32	12	12	22	0	
			Mean	12	19	27	14	12	16	0	

COMPOSITION

1

(

Depth below surface (m)	percentages by weight in 8-16 mm fraction									
 	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
1.4-2.4	17	25	19	28	_	1	8	-	2	
2.4-3.2	31	32	5	25	-	2	5	-	0	

SP 26 SW 72	2432 6080	Fulbrooke Edge	В	lock F ₆
Surface level +5 Water not encou September 1981	90.1 m (+296 ft) untered I		Waste Mineral Bedrock	0.4 m 0.7 m 0.9 m
LOG				
Geological class	sification	Lithology	Thickness m	Depth m
.		Soil	0.4	0.4
Glacial Sand an	nd Gravel	Sandy Gravel Gravel: fine and coarse, rounded to well rounded quartzite and quartz with sandstone and ironstone and some mudstone Sand: mainly medium, subangular to subrounded quartz	0.7	1.1
Mercia Mudstor	ne Group	Clay, reddish brown with green marbling	0.9+	2.0

GRADING

Mean for deposit percentages		Depth below surface (m)	Percentages								
Fines Sand Grave		Gravel		Fines	Sand			Gravel			
					$+\frac{1}{16} - \frac{1}{4}$	$+\frac{1}{4}$ -1	+1 -4	+4 -16	+16 -64	+64 mm	
9	55	36	0.4-1.1	9	7	33	15	19	17	0	

Depth below surface (m)	percentages by weight in 8–16 mm fraction								
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
 0.4-1.1	43	27	19		-	2	9	-	_

SP 27 NW 27	2198 7743	The Elms		Block C
Surface level Water not enc January 1981	+107 m (+351 ft) countered		Waste Bedrock	2.2 m 1.3 m+
LOG				
Geological cla	assification	Lithology	Thickness m	Depth m
		Made ground	1.0	1.0
Glacial Sand a	and Gravel	Clay, stony, red-brown; scattered rounded to well rounded quartzite and quartz pebbles	1.2	2.2
Mercia Mudste	one Group	Mudstone, red-brown with green spots	1.3+	3.5

SP 27 NW 28	2246 7716	The Elms		Block	С
Surface level +1 Water struck at 203 mm shell December 1980	11.4 m (+365 ft) +105.9 m		Overburden Mineral Waste Mineral Waste	$0.4 \\ 4.2 \\ 0.6 \\ 1.1 \\ 12.2$	m m m m+
LOG					

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.4	0.4
Glacial Sand and Gravel	a 'Very clayey' pebbly sand Gravel: fine and coarse, rounded to well rounded, mainly quartzite with quartz Sand: fine and medium, subangular to subrounded	4.2	4.6
Glacial Lake Deposits	Silt, sandy, red-brown	0.6	5.2 [.]
Glacial Sand and Gravel	b 'Clayey' gravel Gravel: fine and coarse, rounded to well rounded, mainly quartzite with quartz Sand: mainly medium, subangular to subrounded	1.1	6.3
Glacial Lake Deposits	Clay, sandy, stonefree below 12.5 m, red-brown	7.4	13.7
Glacial Sand and Gravel	c Sand with a few pebbles; mainly medium, subangular to subrounded	1.3	15.0
Glacial Lake Deposits	Clay, silty, stonefree below 13.5 m, brown	0.8	15.8
Glacial Sand and Gravel	d Sand with a few pebbles; mainly medium, subangular to subrounded	2.7+	18.5
	Hole abandoned due to rising sand		

GRADING

1

ţ

	Mean for deposit percentages			Depth below surface (m)	Percentages							
	Fines	Sand	Gravel		Fines	Sand			Gravel			
					-16	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 - 1	+1 -4	+4 -16	+16 -64	+64 mm	
a	24	24 65	11	0.4-1.4 1.4-2.4 2.4-3.4 3.4-4.6 Mean	24 21 22 29 24	29 19 22 28 25	34 40 43 31 37	3 4 2 3 3	5 8 7 6 6	5 8 4 3 5	0 0 0 0 0	
b	10	29	61	5.2-6.3	10	6	15	8	38	23	0	
a+b	22	56	22	Mean	22	20	32	4	13	9	0	
c	4	94	2	13.7-15.0	4	32	59	3	2	0	0	
d	2	96	2	15.8–16.8 16.8–18.5 Mean	5 1 2	39 35 36	55 59 58	1 2 2	0 2 1	0 1 1	0 0 0	
a-d	13	74	13	Mean	13	27	44	3	8	5	0	
		·								<u> </u>		

•

SP 27 NW 29	2330 7784	Balsall Common		Block B
Surface level +11 Water not encour December 1980	7 m (+384 ft) itered		Waste Bedrock	3.0 m 1.0 m+
LOG				
Geological classi	fication	Lithology	Thickness m	Depth m
		Made ground and soil	0.8	0.8
Glacial Sand and	Gravel	Clay, sandy, stony, yellow-brown becoming red-brown below 1.5 m; scattered rounded to well rounded pebbles, mainly quartzite	2.2	3.0
Mercia Mudstone	Group	Mudstone, red-brown with green spots	1.0+	4.0

SP 27 NW 30	2068 7667	Piercil End		Block C
Surface level + Water struck a January 1981	99 m (+325 ft) t +97.8 m		Overburden Mineral Bedrock	1.0 m 2.5 m 2.5 m+
LOG				
Geological clas	sification	Lithology	Thickness m	Depth m
· <u>·</u> ······		Soil and sandy clay	1.0	1.0
Glacial Sand ar	nd Gravel	Gravel Gravel: fine and coarse, rounded to well rounded, quartzite with quartz and some sandstone Sand: medium and coarse, subangular to subrounded	2.5	3.5

Mercia Mudstone Group Mudstone, red and green 2.5+

GRADING

4

Mean for deposit percentages		Depth below surface (m)	Percentages								
Fines	Sand	Gravel		Fines	Sand			Gravel			
				-15	$+\frac{1}{16}-\frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
2	27	71	1.0-2.0 2.0-3.5 Mean	2 2 2	2 4 3	10 16 14	9 11 10	36 32 34	41 35 37	0 0 0	

6.0

COMPOSITION

į

Depth below surface (m)	percentages by weight in +8 mm fraction									
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others	
1.0-3.5	68	31	1	_	-	trace	-	-	-	

1

SP 27 NW 31 2297 7666 Balsall Street

Surface level +117.4 m (+385 ft) Water struck at +114.2 and +102.8 m 203 mm shell November 1980

LOG

Block C

Overburden	0.4	m
Mineral	10.3	m
Waste	9.6	m
Bedrock	1.2	m+

Geological classification	Thickness m	Depth m	
	Soil	0.4	0.4
Glacial Sand and Gravel	a 'Very clayey' pebbly sand Gravel: fine and coarse, subangular to well rounded, mainly quartzite Sand: fine and medium	2.1	2.5
	b 'Clayey' sandy gravel, part gravel Gravel: fine and coarse, subrounded to well rounded, quartzite with quartz and some sandstone and mudstone	7.0	9.5
	c 'Very clayey' pebbly sand Gravel: fine, subrounded to well rounded, mainly quartzite Sand: fine	1.2	10.7
Till	Clay, sandy, stony, reddish brown; scattered subangular to well rounded pebbles, mainly quartzite with quartz	0.8	11.5
Glacial Lake Deposits	Clay, silty, laminated, brown; rare subrounded quartzite pebbles	3.1	14.6
Glacial Sand and Gravel	d 'Very clayey' sandy gravel Gravel: fine and coarse, subrounded to well rounded, mainly quartzite Sand: fine and medium	1.0	15.6
Till?	Clay, sandy, stony, reddish brown; scattered subangular to well rounded pebbles, mainly quartzite and quartz	4.7	20.3
Mercia Mudstone Group	Clay, silty, red-brown	1.2+	21.5

GRADING

• • •

	Mean f percen	Mean for deposit percentages		Depth below surface (m)	Percentages							
	Fines	Sand	Gravel		Fines	Sand			Gravel			
					- 1 8	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
8	27	63	10	0.4-1.3 1.3-2.5 Mean	25 28 27	16 37 28	44 26 33	2 2 2 2	5 3 4	8 4 6	0 0 0	
b	15	49	36	2.5-3.5 3.5-5.0 5.0-6.5 6.5-8.0 8.0-9.5 Mean	16 9 11 25 13 15	9 7 12 13 22 13	38 22 30 29 38 30	5 7 7 5 7 6	18 20 18 15 8 16	14 35 22 13 12 20	0 0 0 0 0	

c	23	73	4	9.5-10.7	23	67	4	2	3	1	0
d	16	56	28	14.6-15.6	16	29	23	4	11	17	0
a+b+c	18	55	27	Mean	18	22	28	5	12	15	0
a-d	18	55	27	Mean	18	23	27	5	12	15	0

COMPOSITION

1

1

ł

Depth below surface (m)	percentages by weight in +8mm fraction								
	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
b	3.5-5.0	72	26	-	1	1	-	-	_
b	Quartzite 3.5-5.0	Quartz 72	26	Limestone	1 Fint	1	-	Igneous 	

SP 27 NW 32 2380 7651 Yew Tree Farm

Surface level +119.4 m (+392 ft) Water struck at +116.6 m and +106.4 m 203 mm shell December 1980

ourden	0.4	m
าคไ	93	m

Block C

Overburden	0.4	m
Mineral	9.3	m
Waste	3.3	m
Mineral	3.5	m
Waste	0.5	m
Bedrock	0.5	m+

LOG

Geological classification	Lithology	Thickness m	Depth m	
	Soil	0.4	0.4	
Glacial Sand and Gravel	a 'Clayey' gravel Gravel: mainly coarse with cobbles, subrounded to well rounded, quartzite with quartz Sand: fine and medium	2.4	2.8	
	b 'Very clayey' sand with a few pebbles, mainly medium	6.9	9.7	
Till	Clay, sandy, stony, brown; scattered subangular to well rounded pebbles, mainly quartzite and quartz	3.3	13.0	
Glacial Sand and Gravel	${f c}$ 'Clayey' sand, brown; fine and medium	3.5	16.5	
Glacial Lake Deposits	Silt, sand lenses, stonefree, yellow-brown	0.5	17.0	
Mercia Mudstone Group	Mudstone, reddish brown	0.5+	17.5	

GRADING

1 1. ţ

٢

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel		
				-16	$+\frac{1}{15} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
10	44	46	0.4-1.5	14	13	11	2	4	46	10
			1.5-2.8	7	27	26	5	17	18	0
			Mean	10	21	19	4	11	30	5
31	66	3	2.8-4.5	29	15	47	1	5	3	0
			4.5-6.5	26	19	52	2	1	0	0
			6.5-8.5	34	28	33	2	2	1	0
			8.5-9.7	36	41	22	1	0	0	0
			Mean	31	24	40	2	2	1	0
15	85	0	13.0-16.5	15	37	46	2	0	0	0
25	61	14	Mean	25	23	36	2	4	9	1
23	67	10	Mean	23	27	38	2	3	6	1
	Mean f percen Fines 10 31 15 25 23	Mean for depo percentages Fines Sand 10 44 31 66 15 85 25 61 23 67	Mean for deposit percentages Fines Sand Gravel 10 44 46 31 66 3 15 85 0 25 61 14 23 67 10	Mean for deposit percentages Depth below surface (m) Fines Sand Gravel 10 44 46 0.4-1.5 1.5-2.8 Mean 31 66 3 2.8-4.5 4.5-6.5 6.5-8.5 8.5-9.7 Mean 15 85 0 13.0-16.5 25 61 14 Mean 23 67 10 Mean	Mean for deposit percentagesDepth below surface (m)PercentFinesSandGravel $-\frac{1}{16}$ $-\frac{1}{16}$ 104446 $0.4-1.5$ 14104446 $0.4-1.5$ 141.5-2.87Mean1031663 $2.8-4.5$ 294.5-6.526 $6.5-8.5$ 348.5-9.736Mean311585013.0-16.515256114Mean25236710Mean23	Mean for deposit percentagesDepth below surface (m)PercentagesFinesSandGravel $-\frac{1}{16}$ $-\frac{1}{16}$ $-\frac{1}{16}$ 104446 $0.4-1.5$ 1413104446 $0.4-1.5$ 14131021 $1.5-2.8$ 727Mean102131663 $2.8-4.5$ 2915 $6.5-8.5$ 3428 $8.5-9.7$ 3641Mean31241585013.0-16.51537256114Mean2523236710Mean2327	Mean for deposit percentagesDepth below surface (m)PercentagesFinesSandGravel $-\frac{1}{4}$ $-\frac{1}{4}$ $-\frac{1}{4}$ 104446 $0.4-1.5$ 141311104446 $0.4-1.5$ 141311111.5-2.872726Mean10211931663 $2.8-4.5$ 291547 $4.5-6.5$ 261952 $6.5-8.5$ 342833 $8.5-9.7$ 364122Mean3124401585013.0-16.5153746256114Mean252336236710Mean232738	Mean for deposit percentagesDepth below surface (m)PercentagesFinesSandGravel $-\frac{1}{4}$ $-\frac{1}{4}$ $-\frac{1}{4}$ $-\frac{1}{4}$ 104446 $0.4-1.5$ $1.5-2.8$ 1413112104446 $0.4-1.5$ $1.5-2.8$ 141311231663 $2.8-4.5$ $4.5-6.5$ $6.5-8.5$ 291547131663 $2.8-4.5$ $4.5-6.5$ $8.5-9.7$ Mean29154711585013.0-16.51537462256114Mean2523362236710Mean2327382	Mean for deposit percentagesDepth below surface (m)PercentagesCravelFinesSandGravelFinesSandGravel 10 4446 $0.4-1.5$ $1.5-2.8$ 14131124 10 4446 $0.4-1.5$ $1.5-2.8$ 14131124 10 2119411 31 663 $2.8-4.5$ $4.5-6.5$ $6.5-8.5$ 29154715 $6.5-8.5$ $8.5-9.7$ 29154715 $6.5-8.5$ $8.5-9.7$ 36412210 15 85013.0-16.515374620 25 6114Mean 25 23 36 24 23 67 10Mean 23 27 38 2 3	Mean for deposit percentagesDepth below surface (m)PercentagesPercentagesFinesSandGravel $-\frac{1}{4}$ <td< td=""></td<>

COMPOSITION

	Depth below surface (m)	percentages by weight in +8 mm fraction								
		Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
a	0.4-2.8	78	21	1	-	-	trace	-	-	-

SP 2	27 NW 33	2165 7532	Balsall Lodge Farm		Block C
Surface level +118 m (+387 ft) Water not encountered January 1981		118 m (+387 ft) untered		Waste Bedrock	7.0 m 0.5 m
LOC	3				
Geo	ological class	sification	Lithology	Thickness m	Depth m
			Soil	0.2	0.2
Gla	cial Sand an	d Gravel	Clay, sandy, red-brown to yellow-brown; rare quartzite and quartz pebbles	1.6	1.8
Gla	cial Lake De	eposits	Clay, stony, red-brown; scattered quartzite, quartz, sandstone and mudstone pebbles	5.2	7.0
Ard	en Sandston	e	Mudstone, greyish green	0.5+	7.5

ł

SP 27 NW 34 2341 7621

Balsall Street

Surface level +116 m (+381 ft) Water struck at +113 m 203 mm shell November 1980

Overburden	0.2	m
Mineral	1.3	m
Waste	1.5	m
Mineral	2.9	m
Waste	1.4	m
Mineral	4.2	m
Waste	7.0	m+

ţ

,

Geological classification	Lithology	Thickness m	Depth m	
	Soil	0.2	0.2	
?Glacial Sand and Gravel	a 'Very clayey' pebbly sand Gravel: fine, subrounded to well rounded, mainly quartzite with quartz Sand: fine and medium	1.3	1.5	
Glacial Lake Deposits	Silt, clay lenses, sandy, reddish brown	1.5	3.0	
	b 'Clayey' sand, reddish brown; mainly fine	2.9	5.9	
	Clay, silty, stonefree, laminated, brown	1.4	7.3	
Glacial Sand and Gravel	c Gravel, part 'clayey', part pebbly sand Gravel: fine and coarse, subangular to well rounded, quartzite with quartz, mudstone and some sandstone Sand: fine and medium, subangular to well rounded	4.2	11.5	
?Till	Clay, stony, reddish brown, scattered subrounded to well rounded pebbles, mainly quartzite and quartz	0.8	12.3	
Glacial Lake Deposits	Clay, silty, sandy lenses, stonefree, laminated, brown	5.6	17.9	
Glacial Sand and Gravel	d Sand, brown; fine	0.6+	18.5	
	Hole abandoned due to rising sand			

GRADING

	Mean 1 percen	Mean for deposit percentages		Depth below surface (m)	Percentages							
	Fines	Sand	Gravel		Fines	Sand			Gravel			
				$-\frac{1}{15}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm		
a	24	65	11	0.2-1.5	24	38	25	2	8	3	0	
b	15	85	0	3.0-4.5	15	64	21	0	0	0	0	
				4.5-5.9	14	52	34	0	0	0	0	
				Mean	15	58	27	0	0	0	0	
c	7	37	56	7.3-8.5	4	5	8	3	26	54	0	
				8.5-9.5	4	9	13	5	24	45	0	
				9.5-10.5	10	11	21	7	21	30	0	
				10.5-11.5	9	30	34	10	11	6	0	
				Mean	7	13	18	6	21	35	0	

a+b+c				Mean	12	33	22	3	12	18	0
d	9	88	3	17.9-18.5	9	62	24	2	3	0	0
a-d	12	60	28	Mean	12	35	22	3	11	17	0
COMPOSITION											
Depth below percentages by weight in +8 mm fraction											
	Suitae	e (III)	Quartzi	te Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	Igneous	Others
c	7.3-10	.5	71	20	4		-	5	-	trace	-

. • •
SP 27 NW 35 2363 7535

Holly Grange Farm

Surface level +112 m (+367 ft) Water struck at +107 m January 1981

Overburden	6.0	m
Mineral	2.6	m
Waste	7.0	m
Bedrock	0.4	m+

Block C

LOG

۲,

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Glacial Lake Deposits	Clay, sandy, red-brown; rare quartzite, quartz and mudstone pebbles	2.7	3.0
	Clay, silty, laminated, red-brown; rare quartzite and quartz pebbles	3.0	6.0
Glacial Sand and Gravel	'Clayey' sand, red-brown; fine and medium	2.6	8.6
Glacial Lake Deposits	Clay, silty, sand lenses to 10.3 m, stonefree, laminated, red-brown; intercalations of yellow-brown silt below 11.5 m	7.0	15.6
Mercia Mudstone Group	Mudstone, red-brown and grey-green	0.4+	16.0

GRADING

1

(

Mean for deposit percentages		Depth below surface (m)	now m) Percentages								
Fines	Sand	Gravel		Fines	Sand			Gravel			
				$-\frac{1}{16}$	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
14	86	0	6.0-7.0	18	40	42	0	0			
			7.0-8.6	12	50	37	1	0			
			Mean	14	46	39	1	0			

105

Surface level +112.1 m (+368 ft) Water not encountered 203 mm shell December 1980

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.4	0.4
Glacial Sand and Gravel	'Very clayey' gravel Gravel: fine and coarse, subangular to well rounded, mainly quartzite with quartz Sand: fine and medium	3.6	4.0
Arden Sandstone	Mudstone, red-brown with green sandstone	1.5+	5.5

GRADING

1

1

1....

(

Mean : percer	Mean for deposit percentages		Depth below surface (m)	Percent	ages						
Fines	Sand	Gravel		Fines	Sand			Gravel			
				$-\frac{1}{16}$	$+\frac{1}{16}$ $-\frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm	
25	33	42	0.4-1.5	24	21	27	2	9	17	0	
			1.5-3.0	17	4	13	10	30	26	0	
			3.0-4.0	40	6	9	7	18	20	0	
			Mean	25	10	16	7	20	22	0	

Overburden Mineral Bedrock 0.4 m 3.6 m 1.5 m+

SP 27 SW 12	2288 7448	Frogmore Wood		Block C
Surface level +1 Water not encou January 1981	27 m (+417 ft) ntered		Waste Bedrock	11.0 m 0.5 m+
LOG				
Geological class	ification	Lithology	Thickness m	Depth m
		Soil	0.3	0.3
Till		Clay, silty, stony, red-brown with blue-grey gleying to 2.0m; scattered subangular to well rounded quartzite, quartz, sandstone and mudstone pebbles	9.9	10.2
		Gravel lens; fine and coarse, subrounded to well rounded quartzite, quartz and sandstone clasts	0.8	11.0
Mercia Mudston	e G roup	Mudstone, greyish green	0.5+	11.5

١

ţ

•

Surface level +121.4 m (+398 ft) Water struck at +117.9 m and + 111.8 m 203 mm shell November 1980

LOG

١

. ł

1

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.2	0.2
Glacial Lake Deposits	Clay, silty, sandier with depth, reddish brown with white gleying	3.3	3.5
	Silt, sandy, stonefree, brown	0.5	4.0
Till	Clay, stony, reddish brown; scattered subangular to well rounded, quartzite, quartz, sandstone and mudstone pebbles	5.6	9.6
Glacial Lake Deposits	Silt, sandy, stonefree, brown	2.0	11.6
	'Very clayey' sand with a few pebbles, silt lenses, brown; fine	2.5	14.1
	Silt, clayey, stonefree, brown	3.2	17.3
?Till	Clay, stony, reddish brown; scattered subrounded to well rounded quartzite, quartz, sandstone and mudstone pebbles	1.3+	18.6
	Hole abandoned - no recovery		

GRADING

Mean for deposit percentages		Depth below surface (m)	Percent	Percentages								
Fines Sand Gra		Gravel		Fines	Sand	·····		Gravel				
				$-\frac{1}{15}$	$+\frac{1}{16} - \frac{1}{4}$	+ 4 - 1	+1 -4	+4 -16	+16 -64	+64 mm		
28	68	4	11.6-14.1	28	63	3	2	2	2	0		

SP 27 SW 14	2202 7297	North of Nunley Pit		Block D
Surface level +1: Water struck at February 1981	20.0 m (+394 ft) +115.5 m		Overburden Mineral Waste Bedrock	2.8 m 13.2 m 0.9 m 0.1 m+

LOG

.

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.3	0.3
Till	Clay, reddish brown, stony; pebbles of quartzite, guartz and sandstone	2.5	2.8
Glacial Sand and Gravel	a 'Very clayey' pebbly sand Gravel: fine and coarse, rounded to well rounded quartzite and quartz Sand: fine and medium, subangular to subrounded, quartz	2.0	4.8
	b 'Clayey' sand, fine and medium, guartz	11.2	16.0
	Clay, reddish brown, stony; pebbles of quartzite, quartz and red and green mudstone	0.9	16.9
Mercia Mudstone Group	Mudstone, reddish brown with greyish green marbling	0.1+	17.0

GRADING

	Mean for deposit percentages		Depth below surface (m)	Percent							
	Fines	Sand	Gravel		Fines	Sand	********		Gravel		
					- <u>1</u> - <u>1</u> 5	$+\frac{1}{16}$ $-\frac{3}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
a	20	70	10	2.8-3.8	23	32	39	1	2	3	0
				3.8-4.8	18	23	42	2	6	9	Ō
				Mean	20	27	41	2	4	6	0
b	19	80	1	4.8-5.8	25	28	43	2	2	0	0
				5.8-6.8	24	26	50	0	0	0	0
				6.8-7.8	20	25	55	0	0	0	0
				7.8-8.8	22	27	50	0	1	0	0
				8.8-9.8	15	20	61	2	2	0	0
				9.8-10.8	14	17	68	1	0	0	0
				10.8-11.8	11	23	64	1	1	0	0
				11.8-12.8	14	43	41	1	1	0	0
				12.8-13.8	19	52	28	1	0	0	0
				13.8-14.8	17	53	29	1	0	0	0
				14.8-16.0	26	56	18	0	0	0	0
				Mean	19	34	45	1	1	0	0
a+b	19	79	2	2.8-16.0	19	33	45	1	1	1	0

SP 27 SW 15 2306 7408 South of Frogmore Wood

Surface level +131.7 m (+432 ft)WasteWater struck at +123.7 m and +120.2 mBedrockJanuary 1981Second Second Secon

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.4	0.4
Glacial Sand and Gravel?	Clay, sand lenses, red-brown; scattered quartzite and quartz pebbles	3.8	4.2
Till	Clay, stony, brown; scattered subrounded to well rounded quartzite, quartz, sandstone and mudstone pebbles	3.1	7.3
Glacial Lake Deposits	Clay, silt lenses, stonefree, laminated, red-brown	4.2	11.5
Glacial Sand and Gravel	Gravel Gravel: fine and coarse with some cobbles, rounded to well rounded, mainly quartzite with quartz Sand: medium, angular to subrounded	2.7	14.2
Mercia Mudstone Group	Mudstone, red-brown and green	0.3+	14.5

GRADING

1

S.

|---

1

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel		
				-15	$+\frac{1}{15} - \frac{1}{4}$	+ 4 -1	+1 -4	+4 -16	+16 -64	+64 mm
4	29	67	11.5–12.5 12.5–14.2 Mean	3 4 4	3 4 4	18 16 17	11 6 8	30 32 31	34 38 36	1 0 0

14.2 m 0.3 m+

.

SP 27 SW 19 2053 7240 Park Farm

Surface level +124.5 m (+408 ft) Water not encountered September 1982 Waste 9.3 m Bedrock 0.2 m+

Block D

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.2	0.2
Glacial Sand and Gravel	Sandy gravel Gravel: fine with coarse, rounded quartzite and quartz Sand: medium and coarse, angular to subrounded quartz Fines: silty clay, yellowish brown	0.4	0.6
Till	Clay, sandy and silty, reddish brown, stony; pebbles of quartz and quartzite	3.4	4.0
Glacial Lake Deposits	Silt and silty clay, reddish brown; laminated in parts	5.3	9.3
Arden Sandstone	Mudstone, greenish grey	0.2+	9.5

SP 27 SW 20 2387 7273 Honiley Boot Public House

Surface level +129.2 m (+424 ft) Water struck at +124.7 m and 117.2 m September 1982 Overburden 3.0 m Mineral 5.0 m Waste 4.6 m Bedrock 0.1 m+

Block E

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.4	0.4
Glacial Sand and Gravel	Clay, yellowish orange, stony and below 2.0 m sandy; pebbles of quartzite, quartz and sandstone	2.6	3.0
	'Very clayey' sand Sand: mainly fine, quartz Fines: silty clay, reddish brown	5.0	8.0
	Silt, reddish brown, sandy	0.2	8.2
Till	Clay, reddish brown and brown, stony; pebbles of quartzite, quartz, sandstone and red and green siltstone	4.4	12.6
Mercia Mudstone Group	Mudstone, greyish green	0.1+	12.7

GRADING

1

1

1

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel		
				-15	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 - 1	+1 -4	+4 -16	+16 -64	+64 mm
33	67	0	3.0-4.2	29	49	20	2	0		
			4.2-5.2	35	54	10	1	0		
			5.2-6.2	36	56	8	0	0		
			6.2-7.2	32	60	8	0	0		
			7.2-8.0	32	58	9	0	0		
			Mean	33	55	11	1	0		

SP 27 SW 21 2152 7154 Abbey Farm

Surface level +124.0 m (+407 ft) Water struck at +114.4 m and +105.1 m September 1982 Block D

Overburden	9.6	m
Mineral	6.8	m
Waste	4.2	m+

LOG

Geological classification	Lithology	Thickness m	Depth m
	Soil	0.1	0.1
Till	Clay, brown, sandy, stony; pebbles of quartzite and quartz	0.8	0.9
	Clay, reddish brown, stony; pebbles of quartzite, quartz, sandstone, coal and red and green mudstone	2.2	3.1
	Clay, yellowish brown, stony; pebbles of chalk, flint, shell fragments, quartz, quartzite and red and green mudstone	0.7	3.8
	Clay, reddish brown, stony; pebbles of quartzite, quartz, sandstone and coal	5.8	9.6
Glacial Sand and Gravel	'Very clayey' sand Sand: fine and medium, quartz Fines: silty clay, reddish brown	6.8	16.4
Glacial Lake Deposits	Silt and silty clay, reddish brown, laminated; with fine quartz sand below 18.9 m	4.0	20.4
?Till	Clay, yellowish brown and reddish brown	0.2+	20.6

GRADING

ı

Mean for deposit percentages		Depth below surface (m)	Percentages							
Fines	Sand	Gravel		Fines	Sand			Gravel		
				-15	$+\frac{1}{16} - \frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
21	79	0	9.6-11.6	21	34	44	1	0		······
			11.6-12.6	14	28	57	1	0		
			12.6-13.6	17	27	54	2	0		
			13.6-14.6	26	31	40	3	0		
			14.6-15.6	24	46	29	1	0		
			15.6-16.4	24	50	25	1	Ó		
			Mean	21	35	43	1 .	0		

2063 7082 SP 27 SW 22

Rowington Coppice

Surface level +126.1 m (+414 ft) Water struck at +108.6 m September 1982

¢ 1

i

Waste	17.4	m
Bedrock	0.2	m+

Lithology	Thickness m	Depth m
Soil	0.4	0.4
Clay, reddish brown, stony; pebbles of quartzite, quartz, coal and red and green mudstone	15.6	16.0
Clay, reddish brown, laminated	0.5	16.5
Sand, medium and coarse, quartz	0.3	16.8
Clay, reddish brown, stony; pebbles of quartzite, quartz, coal and red and green mudstone	0.6	17.4
Mudstone, reddish brown with greenish bands	0.2+	17.6
	Lithology Soil Clay, reddish brown, stony; pebbles of quartzite, quartz, coal and red and green mudstone Clay, reddish brown, laminated Sand, medium and coarse, quartz Clay, reddish brown, stony; pebbles of quartzite, quartz, coal and red and green mudstone Mudstone, reddish brown with greenish bands	LithologyThickness mSoil0.4Clay, reddish brown, stony; pebbles of quartzite, quartz, coal and red and green mudstone15.6Clay, reddish brown, laminated0.5Sand, medium and coarse, quartz0.3Clay, reddish brown, stony; pebbles of quartzite, quartz, coal and red and green mudstone0.6Mudstone, reddish brown with greenish bands0.2+

ф

SP 27 SW 23 2	336 7030	Haseleygreen Farm		Block E
Surface level +122. Water struck at +11 September 1982	1 m (+401 ft) 11.1 m		Overburden Mineral Waste Mineral Bedrock	1.6 m 2.4 m 6.8 m 5.5 m 0.2 m+
LOG				
Geological classific	ation	Lithology	Thickness m	Depth m
±		Soil	0.2	0.2
Glacial Sand and G	ravel	Clay, sandy, reddish brown and yellowish orange, stony; pebbles of quartzite and quartz	1.4	1.6
		a 'Very clayey' gravel	2.4	4.0

	Soil	0.2	0.2
lacial Sand and Gravel ill lacial Lake Deposits lacial Sand and Gravel	Clay, sandy, reddish brown and yellowish orange, stony; pebbles of quartzite and quartz	1.4	1.6
	a 'Very clayey' gravel Gravel: fine and coarse, rounded to well rounded quartzite, quartz and sandstone Sand: fine to coarse, angular to subrounded, quartz Fines: silty clay, yellowish orange	2.4	4.0
	Silty clay, yellowish, stony; pebbles of quartzite and quartz	0.5	4.5
Till	Clay, reddish brown, stony; pebbles of quartzite, quartz, sandstone, coal and red and green siltstone	5.0	9.5
Glacial Lake Deposits	Clay, sandy with layers of fine quartz sand; laminated	1.3	10.8
Glacial Sand and Gravel	 b 'Clayey' pebbly sand Gravel: fine and coarse, rounded to well rounded, quartzite and quartz Sand: mainly medium, subangular to subrounded, quartz Fines: silty clay, reddish brown 	3.0	13.8
	${f c}$ Sand, medium, subangular to subrounded quartz	2.5	16.3
Mercia Mudstone Group	Mudstone, reddish brown and greyish green	0.2+	16.5

GRADING

ł

	Mean for deposit percentages		Depth below surface (m)	Percent	Percentages						
	Fines	Sand	Gravel		Fines	Sand			Gravel	· · · · · · · · · · · · · · · · · · ·	
					$-\frac{1}{15}$	$+\frac{1}{16}$ $-\frac{1}{4}$	+ 1/4 -1	+1 -4	+4 -16	+16 -64	+64 mm
8	21	35	44	1.6-2.0	26	25	26	3	9	11	0
				2.0-3.0	20	8	14	8	25	25	0
				3.0-4.0	20	7	13	10	31	19	0
				Mean	21	11	16	8	24	20	0
b	19	64	17	10.8-11.8	34	17	29	2	6	12	0
				11.8-12.8	13	12	56	4	12	3	0
				12.8-13.8	11	9	53	8	13	6	0
				Mean	19	13	46	5	10	7	0
c	5	95	0	13.8-14.8	5	11	74	10	0	0	0
				14.8-16.3	4	16	78	2	0	0	0
				Mean	5	14	76	5	0	0	0
a+b+c	15	65	20	Mean	15	12	47	6	11	9	0

COMPOSITION

Depth below surface (m)	percentage	es by weig	ght in 8-16 п	nm fraction					
Surface (iii)	Quartzite	Quartz	Sandstone	Limestone	Flint	Mudstone	Ironstone	onstone Igneous Oth	Others
1.6-2.0	47	35	18	-	-	-	-	-	-

.

APPENDIX F

Resistivity Survey

Of the range of geophysical techniques tested during an initial feasibility study conducted in the district during 1981, ground resistivity surveying, and, in particular, the Offset Wenner sounding system was found to be the most cost-effective for obtaining acceptably consistent results rapidly (Clarke and others, 1982: unpublished report).

Theory

Resistivity is defined as the resistance to electrical flow of a volume of ground of unit length and cross-sectional area. Apparent resistivity (measured in ohm.metres, ohm m) is a weighted combination of the resistivities of sub-surface layers, and is obtained by passing a current (I) (Figure 7) between two current electrodes, C1 and C2, and measuring the potential difference (ΔV) between two potential electrodes, P1 and P2. By changing the positions of the electrodes systematically for a particular configuration, a series of apparent resistivity readings may be obtained in order to resolve the sub-surface layering. For the Wenner electrode configuration (Figure 7a), the apparent resistivity (ρ a) is given by:-

$$\rho a = 2\pi a \Delta V$$

where a is the electrode separation.

At all the sites investigated geophyscially, the Offset Wenner sounding system was used in conjunction with the averaging system for improved accuracy of the results and a digital read-out of the measured resistances. The Offset Wenner system was designed for operation with a multi-core cable containing metal connections for each of the elctrode positions, which feeds back to a central switching box. This technique uses a central electrode in addition to the conventional Wenner array electrode positions (Figure 7b). By combining measurements from different electrode configurations (selected by using the switching box), it is possible to check the consistency of the readings, to compensate for the effect of nearsurface lateral variations and to reduce the total number of electrode positions occupied. By this means, all the electrodes can be planted and connected at the same time, making the system practical for one-man operation as well as being rapid and cost-effective.

Results

Using the Offset Wenner sounding system, 406 resistivity depth soundings were taken at 137 sites. In general, three resistivity depth soundings were carried out at each site at approximately 45° to one another, depending on geological conditions and local physical constraints. At two sites (HY 81 and HY 108), 4 depth soundings were taken because of the presence of two distinct geological deposits at the surface.

Control boreholes were drilled at or near to 16 of the geophysical sites to provide calibration of the results obtained at each. Full details are given in Appendix H,

resistance

b. Offset Wenner (five electrode array)

Figure 7 Electrode configurations of the resitivity arrays

Table 9Comparison of the thickness of sand and gravel and the depth to base of the drift proved by boreholes and
derived from the interpretation of resistivity depth soundings. (See also Appendix H).

Borehole Number	Thickness of mineral proved by shell and auger drilling	Depth to base of drift	Resistivity Depth Sounding Identification No.	Mean thickness of sand and gravel interpreted from resistivity soundings	Depth to base of drift
	(m)	(m)	(m)	(m)	(m)
16 NE 66	2.3	4.0	HY 53	3.8	4.2
16 SW 17	1.2	1.7	HY 99	2.0	2.2
16 SE 6	-	2.0	HY 106		2.8
16 SE 8	1.3	2.9	HY 108	1.5	2.3
17 NW 176	2.9*	10.2	HY 4	2.8	10.2
17 NW 177	0.8	10.0	HY 7	_ **	8.9
17 NW 178	0.6	10.5	НҮ 3	_ **	10.3
17 SW 191	4.6	10.8	HY 12	5.8	10.0
17 SW 193	0.5	8.2	HY 16	3.9	9.2
17 SW 194	2.5	6.2	HY 14	4.3	5.9
17 SW 195	5.8	9.0	HY 15	7.1	9.4
17 SW 196	4.9	8.0	HY 13	5.5	7.9
17 SE 73	-	0.6	HY 19	-	0.5
17 SE 76	7.6	7.9	HY 22	7.2	7.4
17 SE 77	-	1.8	HY 27	-	3.6
25 NW 64	5.0	6.2	HY 134	5.5	6.8
Mean thickness	3.1	6.3		3.8	6.4

* Includes 1.3 m waste parting; ** Sand and gravel not recognised in resistivity depth soundings.

and a comparison of the mean thicknesses of the sand and gravel and the depths to the base of drift at the borehole and resistivity sites constitute Table 9.

The depth to the base of the drift, as interpreted from the resistivity soundings, compares favourably with the values obtained for the same interval from the control boreholes: the respective mean values are 6.4 m and 6.3 m. For each of the 13 control sites where sand and gravel was proved, the calculated mean thickness of mineral in the boreholes is 3.1 m compared with 3.8 m based on data from the interpretation of the resistivity depth probes. This considerable discrepancy can be attributed largely to the results from three sites (16 NE 66, 17 SW 193 and 17 SW 194) at which the difference between the recorded and percentage interpreted thicknesses is over 40 per cent. Such wide variations arise because the borehole and resistivity traverse, in each case, were unavaoidably sited over 100 m apart: in arable areas, the preferred location for boreholes, from the landowners' point of view and for ease of access, were the edges and corners of fields, whereas the resistivity method requires the multi-core cable to be laid out in a straight line (usually over 64 m in length) and well away from any field boundaries where lateral variations in the resistivity values might arise from the presence of ditches, trees and the like. If the results obtained from these three sites are discounted, the mean thickness of sand and gravel for the remaining sites is 3.5 m calculated from the borehole records compared with 3.7 m interpreted from the resistivity results. Such a difference may be regarded as acceptable in terms of the expected reliability of an extensive survey conducted at the indicated level of assessment.

Interpretation

Interpretation of the apparent resistivity values was carried out using a field-based micro-computer and printer which were programmed to produce the listings of field data, interpretation and plots for each depth sounding. The system enabled the operator to enter and interpret the resistivity readings at the end of each day, in order to provide an immediate check on the consistency and reliability of the results. Any unusual or discrepant data were re-run on the ground. The results from each resistivity site are summarised in Appendix G; interpreted resistivity values and the derived thickness of each layer have been collated from up to 4 soundings at each site and the calculated mean thicknesses of sand and gravel and overburden have been used in the assessment of resources.

Frequency distribution plots of the interpreted resistivity values calculated from the field apparent resistivity readings are shown in Figures 8 and 9. High resistivity values (>60 ohm m) can invariably be attributed to sands and gravels, whereas values below about 40 ohm m are indivative of clay (or very clayey deposits). Intermediate value (40 to 60 ohm m) needed careful interpretation and may be attributed to either sandy or clayey deposits. Thus, it can be seen from Figures 8 and 9 that the potentially workable deposits of sand and gravel are to be found mainly in the Glacial Sand and Gravel and also, in some cases, in the Alluvium and First River Terrace Deposits.

Comparision of the interpreted resistivity values with the orientation of each sounding was conducted for Glacial Sand and Gravel, Till and Mercia Mudstone Group, but revealed no evidence that a particular orientation affected the consistency of the results. The nature of the deposits is known to be very variable even over a short distance (of say, 50 m) and such variations may have cancelled out any depositional characteristics that may be present.

Summary

The interpretations of the resistivity depth soundings using the Offset Wenner configuration, demonstrate that the method provides a rapid and consistent technique for assessing the nature and thickness of scattered drift deposits. The results, compared with those from control boreholes, generally, but not invariably, show an overestimation in the interpreted thickness of sand and gravel, of about 20 per cent on average: this may possibly be attributed to the variability of the deposits themselves. However, the average depth to the base of drift derived from the resistivity readings correlates closely with the data from the control boreholes, usually to within ± 5 per cent.

Figure 8 Frequency distribution of the resistivity results for the Drift deposits Since the preparation of this diagram, some of the First River Terrace Deposits have been reclassified as Second Terrace.

Interpreted resistivity(ohm.m)

Figure 9 Frequency distribution of the resistivity results for the Solid deposits

1

Although the Mercia Mudstone Group has not been differentiated elsewhere in the Report, the mudstones above and below the Arden Sandstone display slightly different resistivities arising from the marginally more silty nature of the upper division.

APPENDIX G

Summary of Resistivity Results

In the listings below, the following conventions are used. The Depth Sounding Identification Number, comprising an abbreviation of the sheet name (Hendley-in-Arden) and the accession number for the sheet (e.g. HY 48), is followed by the six-figure National Grid Reference for the site, accurate to 100 m. This location, which is referred to the nearest named locality on the 1:25 000 base map, is the mid-point of an area within which individual depth soundings were taken: one sounding was taken at two sites (HY 4, 101) two soundings were conducted at three of the sites (HY 6, 7, 35), 3 at 130 sites and 4 at the remaining two sites (HY 81, 108). (The location of each sounding is shown by a symbol on the resource map, and further details are presented in Appendix H).

The summary of the resistivity results from the soundings at each site comprises the range of interpreted resistivity values (in ohm metres) and thicknesses (in metres) for each identified layer, together with a lithological interpretation and in brackets, the most likely geological classification.

The resource block within which the site falls and the geology, deduced from the mapping, are also given.

Mapped geology: Glacial Sand and Gravel overlying Glacial Lake Deposits

Resistivity results: Soil, sandy, 0.4-0.5 m thick, 89-112 ohm m. Sand and gravel (Glacial Sand and Gravel), 1.1-1.3 m thick, 228-356 ohm m overlying sand and gravel interbedded with silt (Glacial Lake Deposits), 1.9-5.7 m thick, 45-85 ohm m. Bedrock (Mercia Mudstone Group), clay, 3.4 m-7.0 m depth, 22-23 ohm m.

HY 2	115 764	Dickens' Heath Farm
		Block A

- Mapped geology: Till overlying Glacial Sand and Gravel
- Resistivity results: Soil, sandy, 0.5–0.9 m thick, 69–131 ohm m. Sandy clay (Till), 0.9–2.0 m thick, 53–63 ohm m overlying sand and gravel (Glacial Sand and Gravel), 7.1–8.3 m thick, 153–162 ohm m. Bedrock (Mercia Mudstone Group), clay, 8.9–10.8 m depth, 12–22 ohm m.

HY 3	131 769	Lodge Farm	Block A
		20080	

Till

- Mapped geology:
- Resistivity results: Soil, sandy, 1.1-1.7 m thick, 102-168 ohm m. Clay, part sandy (Till), 6.1-11.7 m thick, 30-52 ohm m. Bedrock (Mercia Mudstone Group), clay, 7.8-12.8 m depth, 20-21 ohm m.

HY 4	110 776	Whitlock's End	Farm Block A

- Mapped geology: Till overlying Glacial Sand and Gravel
- **Resistivity results:** Made ground to 1.6 m with a resistivity of 140 ohm m. Clay (Till), 5.9 m thick, 23 ohm m overlying sand and gravel (Glacial Sand and Gravel), 2.7 m thick. Bedrock (Mercia Mudstone Group), clay, 10.2 m depth, 21 ohm m.

HY 5	105 755	Rumbush	Block A

Mapped geology: Till

Resistivity results: Soil, sandy, 0.4-0.5 m thick, 132-194 ohm m. Sandy clay (Till), 0.3-0.5 m thick, 67-72 ohm m overlying sand and gravel (Glacial Sand and Gravel), 7.0-9.3 m thick, 113-183 ohm m. Bedrock (Mercia Mudstone Group), clay, 7.8-10.2 m depth, 26-27 ohm m. HY 6

116 752 Lady Lane Farm Block A

Glacial Lake Deposits

Mapped geology:

Resistivity results: Soil, sandy, 0.3 m thick, 101-102 ohm m. Clay (Glacial Lake Deposits), 1.3-1.4 m thick, 25-29 ohm m overlying sand and gravel (Glacial Sand and Gravel), 4.6-5.1 m thick, 106-132 ohm m. Bedrock (Mercia Mudstone Group), clay, 6.3-6.7 m depth, 9-17 ohm m.

HY 7	103 765	Whitlock's End
		Block A

Mapped geology: Till

Resistivity results: Soil, sandy, 0.7-1.4 m thick, 71-114 ohm m. Clay (Till), 6.5-9.2 m thick, 26-35 ohm m. Bedrock (Mercia Mudstone Group), clay, part sandy, 7.2-10.5 m depth, 25-45 ohm m.

HY 8	122 744	Salter Street Farm
		Block A

Mapped geology: · Till

Resistivity results: Soil, clay, part sandy, 0.9-1.5 m thick, 38-92 ohm m. Clay (Till), 6.5-8.2 m thick, 27-35 ohm m. Bedrock (Arden Sandstone), clay, 8.0-9.1 m depth, 17-19 ohm m.

HY 9	130 744	Lodge Paddocks
		Block A

Mapped geology: Till

Resistivity results: Soil, sandy, 0.6-0.9 m thick, 81-88 ohm m. Clay (Till and Glacial Lake Deposits), 7.4-11.6 m thick, 23-37 ohm m. Bedrock (Arden Sandstone), clay, 8.2-12.2 m depth, 26-32 ohm m.

HY 10	106 733	Springbrook Farm
		Block A

- Mapped geology: Till overlying Glacial Lake Deposits
- **Resistivity results:** Soil, sandy, 0.6-0.8 m thick, 67-168 ohm m. Clay, part sandy (Till), 5.0-6.5 m thick, 19-43 ohm m overlying clay (Glacial Lake Deposits), 1.5 m thick, 22-40 ohm m. Bedrock (Mercia Mudstone Group), clay, 7.1-7.8 m depth, 17-21 ohm m.

HY 11	122 726	The Beeches	Block A

Mapped geology: Till

Resistivity results: Soil, sandy, 0.5-0.6 m thick, 48-62 ohm m. Clay (Till), 1.5-2.0 m thick, 19-30 ohm m overlying clay (Glacial Lake Deposits), 7.0-7.4 m thick, 16 ohm m. Bedrock (Mercia Mudstone Group, part Arden Sandstone), clay, 9.3-9.5m depth, 23-25 ohm m.

HY 12	138 727	Heathfield Far	m Block A
Mapped geology:	Till		
Resistivity results: thick, 31–62 ohm n 18–33 ohm m over and Gravel), 4.6–6 (Arden Sandstone) m.	Soil, sandy n. Clay (Ti lying sand a .7 m thick, , clay, 9.6-1	7, part clay, 0.3- 11), 2.5-4.8 m th nd gravel (Glaci 123-170 ohm m. 0.2 m depth, 17	-0.8 m ick, ial Sand Bedrock -21 ohm
HY 13	147 720	Nuthurst	Block A
Mapped geology: Gravel	Till overly	ving Glacial Sand	d and
Resistivity results: ohm m. Sandy cla m overlying sand a 4.1-7.7 m thick, 1 Sandstone), clay, p ohm m.	Soil, sandy y (Till), 0.5 and gravel (87–346 ohm part sandy,	y, 0.4 m thick, 1 -3.1 m thick, 35 Glacial Sand and m. Bedrock (Ai 7.5-8.6 m depth	43-192 -66 ohm d Gravel), rden , 23-49
HY 14	105 710	Gilbert's Gree	n Block B
Mannad gealers	Till quart	ving Classic Son	d and
Gravel	THI Overly	ing Glacial San	u anu
Resistivity results: ohm m. Clay, par ohm m overlying s Gravel), 3.8–4.6 m (Arden Sandstone) m.	Soil, sand t sandy (Til and and gra thick, 81-1 , clay, 5.3-6	y, 0.0-0.3 m thic l), 1.2-1.7 m thi lvel (Glacial San 87 ohm m. Bed 5.3 m depth, 24-	ek, 56–61 ek, 30–43 id and rock 28 ohm
НҮ 15	139 711	Umberslade P	ark Block B
Mapped geology: Gravel	Till overly	ying Glacial San	d and
Resistivity results: 2801 ohm m (poor Clay, part sandy (overlying sand and 6.0-8.1 m thick, 1 Sandstone), clay, 5	Soil, sand electrode of Till), 0.0-8. d gravel (Gl. 05-325 ohm 8.8-10.1 m of	y, 0.6-0.9 m thic contact at one so 8 m thick, 18-51 acial Sand and C m. Bedrock (A depth, 19-26 ohr	ck, 148- ounding). I ohm m Gravel), rden n m.
HY 16	102 701	Alderhanger V	Vood Block B
Mapped geology: Gravel	Till overly	ying Glacial San	d and
Resistivity results: thick, 42-78 ohm ohm m overlying s Sand and Gravel), Bedrock (Mercia M depth, 21-24 ohm	Soil, sand m. Clay (Ti sand and gra 3.7-4.2 m t Mudstone Gi m.	y, part clayey, (11), 3.8-4.1 m th avel, part clayey hick, 48-84 ohm roup), clay, 8.8-	0.8-1.7 m nick, 16-19 7 (Glacial 1 m. 9.5 m

HY 17	121 705	Leasowes	Block B		
Mapped geology:	Alluvium				
Resistivity results: Soil, sandy, part clay, 0.7-1.4 m thick, 27-94 ohm m. Clay (Alluvium), 2.7-3.4 m thick, 13-28 ohm m. Bedrock (Mercia Mudstone Group), clay, 3.4-4.8 m depth, 16-21 ohm m.					
HY 18	146 706	Kemps Green	Farm Block B		
Mapped geology: Gravel	Till overly	ying Glacial San	d and		
Resistivity results: Soil, sandy, 0.5-0.8 m thick, 77-100 ohm m. Clay (Till), 3.8-7.2 m thick, 20-30 ohm m overlying sand and gravel (Glacial Sand and Gravel), 2.2-4.1 m thick, 99-110 ohm m. Bedrock (Arden Sandstone), clay, part sandy, 7.9-10.2 m depth, 27-36 ohm m.					
HY 19	152 744	Box Trees	Block B		
Mapped geology:	Till				
Resistivity results: Clay, part sandy (Till), 0.4-0.8 m thick, 32-64 ohm m. Bedrock (Arden Sandstone), clay, 0.4-0.8 m depth, 14-20 ohm m.					
HY 20	194 748	Black Boy Bri	idge Block D		
Mapped geology:	Glacial S	and and Gravel			
Resistivity results: 233 ohm m. Sand 6.5-9.4 m thick, 1 Mudstone Group),	Soil, sand and gravel 16-210 ohm clay, 7.0-9	ly, 0.3–0.5 m thi (Glacial Sand a n m. Bedrock (N .7 m depth, 25–	ck, 119- nd Gravel), Aercia 26 ohm m.		
HY 21	176 737	Darley Green	Block B		
Mapped geology:	Glacial S	and and Gravel			
Resistivity results: ohm m. Sand and Gravel), 6.0-8.6 m (Arden Sandstone) 19-30 ohm m.	Soil, sand gravel, par thick, 56-), clay, part	dy, 0.3 m thick, rt clayey (Glacia 211 ohm m. Be t sandy, 6.3-8.9	93–118 al Sand and drock m depth,		
HY 22	194 738	Yew Tree Fa	rm Diastr D		
			BIOCK D		
Mapped geology:	Glacial S	and and Gravel			

Resistivity results: Soil, sandy, part clayey, 0.0-0.3 m thick, 46-76 ohm m. Sand and gravel, part clayey (Glacial Sand and Gravel), 6.6-8.3 m thick, 47-111 ohm m. Bedrock (Mercia Mudstone Group), clay, 6.8-8.6 m depth, 21-23 ohm m.

HY 23	157 730	Hockley Heath Block B	HY 28	170 712	Bearhouse Farm Block B
Mapped geology:	Till		Mapped geology:	Glacial Sa	and and Gravel
Resistivity results: ohm m. Clay, pa ohm m partly und Sand and Gravel), Bedrock (Mercia depth, 18-23 ohm	Soil, sand rt sandy (Til lerlain by sa , 2.6–3.0 m t Mudstone Gi m.	y, 0.3-1.0 m thick, 50-99 1), 1.1-1.5 m thick, 33-49 nd and gravel (Glacial hick, 144-206 ohm m. roup), clay, 2.5-4.5 m	Resistivity results: ohm m. Sand and 3.3-6.2 m thick, 7 Mudstone Group),	Soil, sand gravel (Gla '4-107 ohm i clay, 3.8-6.	y, 0.5 m thick, 105–169 cial Sand and Gravel), m. Bedrock (Mercia 7 m depth, 24–26 ohm m.
			HY 29	189 714	Kingswood House Block D
HY 24	178 729	Packwood Farm Block B	Mapped geology:	Glacial Sa	and and Gravel
Mapped geology: Resistivity results: ohm m. Clay (Til ohm m. Sand and 5.6 m thick, 90-4 Group), clay, 5.5-	Till and C Soil, sand II), one sound I gravel (Gla 15 ohm m. 1 -7.1 m depth	lacial Sand and Gravel y, 0.3-0.5 m thick, 57-232 ding only, 2.3 m thick, 36 cial Sand and Gravel), 5.0- Bedrock (Mercia Mudstone , 26-38 ohm m.	Resistivity results: 222 ohm m. Clay Gravel), 15.4–17.((Mercia Mudstone 26 ohm m.	Soil, sand rey sand and 0 m thick, 4 e Group), cla	y, 0.8-1.5 m thick, 155- gravel (Glacial Sand and 8 ohm m. Bedrock 1y, 16.2-18.5 m depth, 21-
			HY 30	155 706	Brook House Farm Block F ₃
HY 25	182 720	The Lightwoods Block B	Mapped geology:	Alluvium	
Mapped geology: Resistivity results: c 0.4 m, 1.0-1.2 n sandy (Till), 4.0-4 (Mercia Mudstone	Till Soil, sand n thick, 56-5 1.7 m thick, e Group), cla	y becoming clayey below 256 ohm m. Clay, part 15-55 ohm m. Bedrock 19, part sandy, 5.1-5.9 m	Resistivity results: 34-41 ohm m. Sa thick, 88-134 ohm Group), clay, 1.6-	Soil, sand nd and grav n m. Bedroc -1.9 m depth	y clay, 0.4-0.5 m thick, el (Alluvium), 1.2-1.5 m ek (Mercia Mudstone n, 10-11 ohm m.
depth, 32–50 ohm	m.		HY 31	187 701	Broom Hall Bridge Block D
HY 26	195 728 Netherwo	od Heath Farm Block D	Mapped geology:	Glacial Sa	and and Gravel
Mapped geology: Gravel Resistivity results:	Alluvium Soil, sand	and Glacial Sand and y, 0.5-0.7 m thick, 99-141	Resistivity results: ohm m. Sand and 3.2-3.4 m thick, 1 Mudstone Group),	Soil, sand I gravel (Gla 105–131 ohm , clay, 3.6–4	y, 0.4–1.2 m thick, 50–56 icial Sand and Gravel), m. Bedrock (Mercia .5 m depth, 15–17 ohm m.
ohm m. Clay (Al thick, 28 ohm m. Gravel), 5.6-7.2 n Sandstone), clay,	luvium), one Sand and gr n thick, 57-9 6.3-8.2 m de	sounding only, 1.6 m ravel (Glacial Sand and 91 ohm m. Bedrock (Arden epth, 18-20 ohm m.	HY 32	199 705	Weston Hall Farm Block D
			Mapped geology:	Till	
HY 27	155 717	Spring Cottage Block B	Resistivity results: m. Clay (Till), 1. (Mercia Mudstone depth, 31-42 ohm	Soil, sand 8 m thick, 2 e Group), cla m.	y, 0.4 m thick, 64-72 ohm 24-30 ohm m. Bedrock ay, part sandy, 2.2 m
Mapped geology:	1111				
Resistivity results: depth, 0.6-1.3 m 2.8 m thick, 13-4 clay, 3.4-3.7 m de	Soil, sand thick, 46-16 6 ohm m. B epth, 19-23	y becoming clayey with 7 ohm m. Clay (Till), 2.4- edrock (Arden Sandstone), ohm m.	НҮ 33	211 738	Dadkin Farm Block D
			Mapped geology:	Till and C	lacial Sand and Gravel
			Resistivity results: thick, 55-151 ohm 1.9 m thick, 24 ol and Gravel), 5.7-' clay/silt (Glacial 46 ohm m. Bedro m depth, 21-26 ol	Soil, sand n m. Clay (' hm m. Sand 7.3 m thick, Lake Depos ock (Arden S hm m.	y, part clayey, 0.3-0.5 m Till), one sounding only, and gravel (Glacial Sand 89-698 ohm m overlying its), 1.1-2.0 m thick, 36- andstone), clay, 7.3-10.1

÷

ΗY	34	241 731	Poors Wood	Block E

Mapped geology:

gy: Till and Glacial Sand and Gravel

Resistivity results: Soil, sandy, part clay, 0.3-1.4 m thick, 31-86 ohm m. Clay (Till), one sounding only, 4.4 m thick, 19 ohm m. Sand and gravel (Glacial Sand and Gravel), 1.1-4.2 m thick, 77-135 ohm m. Both deposits overlying clay/silt (Glacial Lake Deposits), 2.0-4.0 m thick, 45-48 ohm m. Clay (Till), 5.4-7.8 m depth, 19-27 ohm m.

HY 35	202 724	Park Farm	Block D
111 00		1 41 1 1 41 111	

Mapped geology: Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.0-0.5 m thick, 127 ohm m. Sand and gravel (Glacial Sand and Gravel), 4.8 m thick, 101-221 ohm m. Bedrock (Arden Sandstone), sandy clay, 4.8-5.3 m depth, 45-48 ohm m.

HY 36	213 722	Warren Farm	
			Block I

Mapped geology: Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.5-0.6 m thick, 102-134 ohm m. Sand and gravel (Glacial Sand and Gravel), 6.0-6.1 m thick, 72-78 ohm m overlying clay/silt (Glacial Lake Deposits), 3.5-3.8 m thick, 45-47 ohm m. Clay (Till), 10.1-10.4 m depth, 26-40 ohm m.

HY 37 243 720 Honiley Block E

- Mapped geology: Glacial Sand and Gravel overlying Glacial Lake Deposits
- Resistivity results: Soil, sandy, 0.5-1.5 m thick, 56-60 ohm m. Sand and gravel (Glacial Sand and Gravel), 2.0-2.2 m thick, 75-91 ohm m. Clay and silt (Glacial Lake Deposits), 2.6-3.5 m depth, 25-42 ohm m.

HY 38	204 714	Baddesley Clinton
		Block D

Mapped geology: Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.3-0.5 m thick, 77-89 ohm m. Sand and gravel, upper part clayey (Glacial Sand and Gravel), 2.8-9.3 m thick, 40-230 ohm m. Bedrock (Mercia Mudstone Group), clay, 3.1-9.8 m depth, 25-27 ohm m.

HY 39	231 720	Manor Farm	Block E
Mapped geology:	Till		

Resistivity results: Soil, sandy, part clayey, 0.3-0.4 m thick, 44-64 ohm m. Clay (Till), 7.4-10.9 m thick, 17-23 ohm m. Bedrock (Mercia Mudstone Group), clay, 7.7-11.3 m depth, 15-17 ohm m.

HY 40 241 709

Beausale

Block E

Mapped geology: Till

Resistivity results: Soil, sandy, 0.4-0.8 m thick, 42-50 ohm m. Clay (Till), 3.8-4.2 m thick, 18-20 ohm m. Bedrock (Mercia Mudstone Group), clay, 4.6-4.8 m depth, 22-25 ohm m.

HY 41	227 704	Five Ways	Block E

Mapped geology: Till

Resistivity results: Soil, sandy, 0.2-0.5 m thick, 54-57 ohm m. Clay, part sandy (Till), 2.4-4.1 m thick, 19-38 ohm m. Bedrock (Mercia Mudstone Group), clay, 2.9-4.5 m depth, 17-22 ohm m.

1137 40	100 007	mark C	
NI 42	102 031	Trap's Green	вюск в

Mapped geology: Till overlying Glacial Lake Deposits

Resistivity results: Soil, clay, part sandy, 0.5-1.1 m thick, 33-50 ohm m. Clay, part sandy (Till), 4.0-4.1 m thick, 22-51 ohm m. Clay and silt (Glacial Lake Deposits), 4.5-5.2 m depth, 29-44 ohm m.

HY 43	117 697	Jennell Wood	
			Block B

Mapped geology: Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.2-0.3 m thick, 76-100 ohm m. Sand and gravel, part clayey (Glacial Sand and Gravel), 7.4-8.2 m thick, 63-235 ohm m. Bedrock (Mercia Mudstone Group), clay, 7.7-8.5 m depth, 29-33 ohm m.

HY 44 131 691	Hill Farm	Block F ₂
---------------	-----------	----------------------

Mapped geology: Alluvium

Resistivity results: Soil, sandy, part clayey, 0.2-0.3 m thick, 35-93 ohm m. Sand and gravel, part clayey (Alluvium), 0.7-1.5 m thick, 76-260 ohm m. Bedrock (Mercia Mudstone Group), clay, 0.9-1.8 m depth, 14-15 ohm m.

HY 45	100 687	Newhouse Farm Block F ₁
Mapped geology:	Glacial Sa	and and Gravel

Resistivity results: Soil, sandy, 0.2-0.3 m thick, 62-107 ohm m. Sand and gravel (Glacial Sand and Gravel),

3.9-6.0 m thick, 68-102 ohm m. Bedrock (Mercia Mudstone Group), clay, 4.2-6.3 m depth, 20-22 ohm m.

H¥ 46	111 682	Heath Lodge	Block F ₁	НҮ 53	157 694	Upland Cottage Block B
Mapped geology:	Till			Mapped geology: Gravel	Till overly	ying Glacial Sand and
Resistivity results: ohm m. Clay (Till overlying sand and 3.2-4.1 m thick, 6 Mudstone Group),	Soil, sandy l), 1.0–1.4 m d gravel (Gla 5–93 ohm m clay, 4.6–5.	7, 0.2-0.3 m thi thick, 30-40 o acial Sand and 6 Bedrock (Mer 4 m depth, 30-	ck, 61-83 hm m Gravel), rcia 33 ohm m.	Resistivity results: 302 ohm m. Sand thick, 44 ohm m. Gravel), 3.0-4.6 n Mercia Mudstone 4.2-5.3 m depth,	Soil, sand dy clay (Till) Sand and g m thick, 81- e Group, part 21-22 ohm n	y, 0.3-0.7 m thick, 103- , one sounding only, 0.9 m ravel (Glacial Sand and 184 ohm m. Bedrock (par Arden Sandstone), clay, n.
HY 47	123 686	Mockley Woo	d Block F ₁	1117 64	105 000	Toomooth Today
Mapped geology:	Till and G	lacial Sand and	Gravel	H I 94	102 098	Block B
Resistivity results: thick, 67-144 ohm 2.1 m thick, 18 oh	Soil, sandy m. Clay (1 m. m. Sand	y, part clayey, `ill), one soundi and gravel, upp	0.3-0.4 m ing only, per part	Mapped geology: Gravel	Till overl	ying Glacial Sand and
clayey (Glacial Sa 151 ohm m. Bedry clay, 2.5-4.3 m de	nd and Grav ock (Mercia pth, 40-41 c	vel), 3.7-4.0 m Mudstone Grou hm m.	thick, 59– up), sandy	Resistivity results: thick, 55-111 ohr m thick, 35-66 ol (Glacial Sand and ohm m. Bedrock 4.6 m depth 28-	Soil, sand m m. Clay, j hm m overly d Gravel), 2. (Mercia Mu 34 ohm m	y, part clayey, 0.3 m part sandy (Till), 1.1-1.4 ing sand and gravel 2-2.9 m thick, 146-197 dstone Group), clay, 3.7-
HY 48	116 678	Crowley Farr	n Block F ₁	no m dopen, zo s		
Mapped geology:	Glacial Sa	nd and Gravel		HY 55	167 692	Lapworth Park Block F
Resistivity results: ohm m. Sand and 5.1-5.7 m thick, 1	Soil, sandy gravel (Glae 12–317 ohm	7, 0.2-0.5 m thi cial Sand and G m. Bedrock (M	ck, 95–372 Fravel), Mercia	Mapped geology:	Glacial S	and and Gravel and Till
Mudstone Group),	clay, 5.4-5.	9 m depth, 24-	37 ohm m.	Resistivity results: ohm m. Sand and 0.7-1.7 m thick, soundings only, 2	Soil, sand d gravel (Gla 215-1024 oh 2.2-2.3 m thi	y, 0.0-0.5 m thick, 188 Icial Sand and Gravel), m m. Clay (Till), two ck, 15-17 ohm m.
HY 49 Mapped geology:	144 680 Till	Botley Hill	Block F ₁	Bedrock (Mercia depth, 23-24 ohm	Mudstone G m.	roup), clay, 2.2-3.3 m
Resistivity results: thick, 36-60 ohm ohm m. Bedrock 4.5 m depth, 26-23	Soil, sandy m. Clay (Ti Mercia Muc 3 ohm m.	7, part clayey, 11), 2.5-4.2 m tl Istone Group), o	0.3-0.5 m hick, 17-33 clay, 3.0-	HY 56	174 697	Yew Tree Farm Block F ₃
				Mapped geology:	Second R	iver Terrace
HY 50	148 672	Impsley Farm	Block F ₂	Resistivity results: ohm m. Sand and 1.9 m thick, 150- Sandstone), clay,	Soil, sand d gravel (Sec -508 ohm m. , 1.9–2.3 m d	y, 0.3-0.4 m thick, 70-163 ond River Terrace), 1.5- Bedrock (Arden epth, 17-30 ohm m. Clay
Mapped geology:	Second Ri	ver Terrace	1 1 0 9 9	(Mercia Mudston depth, 31 ohm m	e Group), on •	e sounding only, 12.2 m
ohm m. Clay (Sec 34-37 ohm m. Be	ond River 1 drock (Merc	`errace), 1.1-1. ia Mudstone Gr	2 m thick, coup), clay,			
1.4 m depth, 20-2	l ohm m.			HY 57	180 697	Windmill Hill Block F _g
HY 52	123 662	Barrells Park		Mapped geology:	Till	J
Mapped അവരെയം	Alluvium		Block F ₁	Resistivity results: ohm m. Clay (Ti	Soil, sand ill), 1.5–1.7 n	ly, 0.4-0.6 m thick, 89-10 n thick, 17-21 ohm m Dependent 2 9-5 0 m
	Gell and	. 0002 m th:	alt 75	thick, 25–30 ohm	m. Bedrocl	< (Mercia Mudstone
Resistivity results: ohm m. Sand and 142-188 ohm m. I 1.8 m depth, 15-3	Soil, sandy gravel (Allu Bedrock (Ard Lohm m. C	7, 0.0-0.3 m thi ivium), 0.9-1.5 den Sandstone) Iay (Mercia Mu	ek, 75 m thick, , clay, 0.9– idstone	Group), clay, 5.8	-7.1 m depth	n, 22-24 ohm m.

ι

{

ł

1

i 1

HY 58	192 694	Turner's Green Block D	
Mapped geology:	Second R	iver Terrace	

Resistivity results: Soil, sandy, 0.5-0.7 m thick, 86-147 ohm m. Clay, sandy (Second River Terrace), 1.0-1.6 m thick, 32-48 ohm m. Bedrock (Mercia Mudstone Group), clay, 1.5-1.9 m depth, 12-13 ohm m.

HY 59 177 683 Bush Wood Block F₃

Mapped geology: Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.3 m thick, 82-167 ohm m. Sand and gravel (Glacial Sand and Gravel), 2.4-5.6 m thick, 177-690 ohm m. Bedrock (Mercia Mudstone Group), clay, part sandy, 2.7-5.9 m depth, 29-47 ohm m.

HY 60 182 686 Bushwood Common Farm Block F₃

Mapped geology: Till and Glacial Sand and Gravel

Resistivity results: Soil, sandy, part clayey, 0.4-0.6 m thick, 62-295 ohm m. Clay (Till), one sounding only, 1.3 m thick, 17 ohm m. Sand and gravel, part clayey (Glacial Sand and Gravel), 3.0-5.2 m thick, 62-363 ohm m. Bedrock (Mercia Mudstone Group), clay, 4.7-5.7 m depth, 22-35 ohm m.

HY 61 185 684 Bushwood Common Farm Block F₂

- Mapped geology: Till overlying Glacial Sand and Gravel
- Resistivity results: Soil, sandy, 0.6-0.7 m thick, 191-213 ohm m. Clay, sandy (Till), 1.3-1.6 m thick, 32-42 ohm m overlying sand and gravel (Glacial Sand and Gravel), 3.7-4.5 m thick, 316-623 ohm m. Bedrock (Arden Sandstone), clay, sandy, 5.6-6.7 m depth, 33-40 ohm m.

HY 62	188 689	Finwood Lawn	Block D

Mapped geology: Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.3-0.4 m thick, 72-110 ohm m. Sand and gravel (Glacial Sand and Gravel), 4.8-6.1 m thick, 93-240 ohm m. Bedrock (Mercia Mudstone Group), clay, 5.2-6.3 m depth, 30-32 ohm m.

HY 63

192 682 Finwood

Block D

Mapped geology:

Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.0-0.4 m thick, 266 ohm m. Sand and gravel (Glacial Sand and Gravel), 0.7-0.9 m thick, 93-145 ohm m. Bedrock (Mercia Mudstone Group), clay, 7.4-9.6 m thick, 19-21 ohm m. Clay (Arden Sandstone), 8.1-10.7 m depth, 29-31 ohm m.

HY 64	155 679	Camp Hill Farm
		Block F ₂

Mapped geology: Second River Terrace

Resistivity results: Soil, clay, sandy, 0.4-0.8 m thick, 35-57 ohm m. Clay (Second River Terrace), 4.5-5.6 m thick, 14-17 ohm m. Bedrock (Mercia Mudstone Group), clay, 4.9-6.0 m depth, 9-19 ohm m.

HY 65 190 679 Lowsonford Block D

Mapped geology: Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.3-1.0 m thick, 172-354 ohm m. Sand and gravel, upper part clayey (Glacial Sand and Gravel), 3.6-5.9 m thick, 58-901 ohm m. Bedrock (Arden Sandstone), clay, sandy, 4.6-6.2 m depth, 37-39 ohm m.

HY 66	191 675	Sandhills	Block E
Mapped geology:	Glacial Sa	nd and Gravel	
Resistivity results:	Soil, sandy gravel (Glac	v, 0.2-0.4 m thic	ek, 77-200 ravel).

Sandstone), clay, 2.6–6.6 m depth, 23–28 ohm m.

2.2-6.4 m thick, 145-222 ohm m. Bedrock (Arden

HY 67	196 678	Sandall House Block F ₂
Mapped geology:	Second R	iver Terrace

Resistivity results: Soil, sandy, 0.0-0.4 m thick, 87 ohm m. Sand and gravel (Second River Terrace), 0.7-1.2 m thick, 81-167 ohm m. Bedrock (Mercia Mudstone Group), clay, 0.7-1.6 m depth, 13-14 ohm m.

HY 68 199 673 High Cross Block E

Mapped geology: Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.2-0.4 m thick, 102-166 ohm m. Sand and gravel (Glacial Sand and Gravel), 1.5-3.3 m thick, 108-432 ohm m. Bedrock (Arden Sandstone), clay, sandy, 1.8-3.5 m depth, 44-49 ohm m.

НУ 69	196 670	Meadow Croft Block F ₂	HY 75	168 653	Preston Bago	Block F ₃
Mapped geology:	Second Ri	iver Terrace	Mapped geology:	Till		
Resistivity results: ohm m. Sand and 1.5 m thick, 109– Mudstone Group)	Soil, sand I gravel (Sec 177 ohm m. , clay, 1.5-1.	y, 0.2–0.4 m thick, 88–107 ond River Terrace), 1.2– Bedrock (Mercia 9 m depth, 12–13 ohm m.	Resistivity results: ohm m. Clay, sar m. Bedrock (Ard 20-26 ohm m.	Soil, sand ndy (Till), 2. en Sandston	ly, 0.3–0.7 m th 2–3.3 m thick, e), clay, 2.9–3.4	ick, 54–141 19–63 ohm 7 m depth,
HY 70	154 666	Mobbs's Farm Block F ₂	HY 76	174 653	Preston Bago	ot Farm Block Fa
Mapped geology:	Alluvium		Mapped geology:	Second R	iver Terrace	Z
Resistivity results: thick, 19-81 ohm 1.3 m thick, 92-1 Mudstone Group),	Soil, sand m. Sand an 93 ohm m. 1 , clay, 1.5-1.	y, part clay, 0.3-0.5 m d gravel (Alluvium), 1.0- Bedrock (Mercia .6 m depth, 14-15 ohm m.	Resistivity results: ohm m. Sand and 2.7 m thick, 179– Mudstone Group, m depth, 24–28 of	Soil, sand I gravel (Sec 237 ohm m. part Arden hm m.	dy, 0.3-0.6 m th cond River Terr Bedrock (part Sandstone), cla	ick, 58-78 vace), 0.4- Mercia ay, 0.7-3.0
HY 71	176 669	Malthouse Farm				
		BIOCK F ₃	HY 77	198 657	Lye Green	Block E
Mapped geology:	Glacial Sa	and and Gravel	Mapped geology:	Glacial S	and and Gravel	overlying
Resistivity results: ohm m. Sand and m thick, 130–153 Group), clay, 1.2-	Soil, sand I gravel (Gla ohm m. Bee -1.5 m depth	y, 0.0-0.3 m thick, 70-98 cial Sand and Gravel), 1.2 drock (Mercia Mudstone , 24-27 ohm m.	Till Resistivity results: ohm m. Sand and 2.1 m thick, 111- ohm m. Bedrock sounding only, cla	Soil, sand I gravel (Gla 162 ohm m (Mercia Mu ay, 4.5 m de	dy, 0.0-0.2 m th acial Sand and (overlying clay dstone Group), apth, 30 ohm m.	ick, 168 Gravel), 1.1- (Till), 25-31 one
HY 72	177 664	Preston Fields Block F			. ,	
Mapped geology:	Glacial Sa	and and Gravel	HY 78	212 693	Mousley End	Block E
Resistivity results:	Sand and	gravel (Glacial Sand and	Mapped geology:	Till		
Gravel), 0.3-0.7 m (Mercia Mudstone depth, 0.3-0.7 m	n thick, 77-1 e Group), cla depth, 20-45	119 ohm m. Bedrock y becoming sandy with ohm m.	Resistivity results: thick, 9-81 ohm r 31-45 ohm m. Be becoming sandy b	Soil, sand m. Clay, sa edrock (Ardo below, 1.2-1	dy, part clay, 0. ndy (Till), 1.1-1 en Sandstone), (.6 m depth, 16-	.3–1.2 m 1.3 m thick, clay -68 ohm m.
HY 73	175 659	Preston Bagot				
		Block F ₃	HY 79	233 696	Haseley Gre	en
Mapped geology:	Glacial Sa	and and Gravel				Block E
Resistivity results:	Soil, sand	y, 0.2-0.9 m thick, 152- (Clacial Sand and	Mapped geology:	Glacial S	and and Gravel	l
Gravel), 1.3-3.0 r (Mercia Mudstone ohm m.	n thick, 87-2 e Group), cla	233 ohm m. Bedrock y, 1.5-3.8 m depth, 27-30	Resistivity results: ohm m. Sand and 11.0 m thick, 114 Mudstone Group)	Soil, sand d gravel (Gla 4-814 ohm n 9, clay, 6.6-1	dy, 0.2 m thick, acial Sand and o n. Bedrock (Me 11.2 m depth, 3	, 124–272 Gravel), 6.4– rcia 3–36 ohm m.
HY 74	184 663	Yarningale Farm Block F ₄	HY 80	247 695	Beausale Co	ttage Block E
Mapped geology: Sand and Gravel	Second R	iver Terrace and Glacial	Mapped geology:	Glacial S	Sand and Grave	l
Resistivity results: thick, 63–173 ohn Terrace), one sou Sand and gravel (thick, 372–408 oh Group), clay, 2.0- (?Arden Sandston	Soil, sand n m. Sand a Inding only, Glacial Sand m m. Bedro -3.3 m depth ie), one soun	y, part clayey, 0.3–0.8 m nd gravel (Second River 1.7 m thick, 177 ohm m. d and Gravel), 1.5–2.5 m bek (Mercia Mudstone d, 13–39 ohm m. Sand ding only, 1.8 m depth,	Resistivity results: m. Sand and gra depth, 5.1-5.2 m (Mercia Mudston ohm m.	Soil, sand vel, becomi thick, 64-1' e Group), cl	dy, 0.2 m thick, ng more clayey 76 ohm m. Bed ay, 5.3–5.4 m d	, 69–95 ohm ' with Irock Iepth, 22–25

ł

(. . .

1

139 ohm m.

House

HY 81 203 684 Rowington Hill Bridge Block E

Mapped geology: Alluvium and Second River Terrace

Resistivity results: Soil, sandy, part clay, 0.4-0.9 m thick, 11-340 ohm m. Clay (Alluvium), one sounding only, 2.0 m thick, 26 ohm m. Clay (Second River Terrace), 1.1-2.9 m thick, 9-23 ohm m. Bedrock (Mercia Mudstone Group), clay, 1.9-3.4 m depth, 12-14 ohm m.

HY 82 231 683 Glebe Farm Block E

Mapped geology: First River Terrace and Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.2-0.4 m thick, 137-262 ohm m. Sand and gravel (First River Terrace), one sounding only, 0.5 m thick, 472 ohm m. Sand and gravel, part clayey (Glacial Sand and Gravel), 6.9-8.6 m thick, 53-500 ohm m. Bedrock (Mercia Mudstone Group), clay, part sandy, 7.3-9.4 m depth, 19-59 ohm m.

HY 83	241 687	Waste Green	Block E

Mapped geology: Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.2 m thick, 56-78 ohm m. Sand and gravel, part clayey (Glacial Sand and Gravel), 2.9-8.0 m thick, 51-862 ohm m. Bedrock (Mercia Mudstone Group), clay, sandy, 3.1-8.2 m depth, 35-69 ohm m.

HY 84	246 682	Brownley Green Block E
Mapped geology:	Till	

Resistivity results: Soil, sandy, part clayey, 0.7-0.9 m thick, 50-97 ohm m. Clay (Till), 3.3-3.7 m thick, 16-19 ohm m. Bedrock (Mercia Mudstone Group), clay, 4.2-4.4 m depth, 23-26 ohm m.

HY 85	236 674	Haseley	Block E

Mapped geology: Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.2-0.9 m thick, 52-216 ohm m. Sand and gravel, part clayey (Glacial Sand and Gravel), 8.4-9.2 m thick, 54-154 ohm m. Bedrock (Mercia Mudstone Group), clay, 9.3-9.4 m depth, 25-32 ohm m.

HY 86

Block E

- Mapped geology: Till overlying Glacial Sand and Gravel
- **Resistivity results:** Soil, sandy, 0.2-0.5 m thick, 84-110 ohm m. Clay, part sandy (Till), 2.7-3.7 m thick, 23-45 ohm m overlying sand and gravel (Glacial Sand and Gravel), 5.3-6.4 m thick, 423-683 ohm m. Bedrock (Mercia Mudstone Group), clay, part sandy, 9.1-9.5 m depth, 30-51 ohm m.

HY 87	209 661	Little Pinley Farm
		Block E

- Mapped geology: Till overlying Glacial Sand and Gravel
- Resistivity results: Soil, sandy, poor electrode contact, 1.0-1.2 m thick, 605-1298 ohm m. Clay, sandy (Till), 0.4-1.8 m thick, 55-68 ohm m overlying sand and gravel (Glacial Sand and Gravel), 6.4-9.0 m thick, 448-679 ohm m. Bedrock (part Mercia Mudstone Group, part Arden Sandstone), clay, part sandy, 9.0-10.5 m depth, 6-38 ohm m.

HY 88	215 656	Pinley Abbey	Block E

Mapped geology: Glacial Sand and Gravel

18 ohm m.

Resistivity results: Soil, sandy, 0.4-1.2 m thick, 217-384 ohm m. Sand and gravel (Glacial Sand and Gravel), 7.8-10.4 m thick, 71-121 ohm m. Bedrock (Mercia Mudstone Group), clay, 8.2-10.8 m depth, 16-

HY 89	244 657	Budbrooke Farm Block E
Mapped geology: Gravel	Till overl	ying Glacial Sand and

Resistivity results: Soil, clay, part sandy, 0.3 m thick, 26-45 ohm m. Clay (Till), 2.1-3.2 m thick, 15-16 ohm m overlying sand and gravel (Glacial Sand and Gravel), 6.0-7.9 m thick, 460-658 ohm m. Bedrock (Mercia Mudstone Group), clay, 8.4-11.4 m depth, 24-29 ohm m.

HY 90	102 645	Stapenhill Wood
		Block F ₁

Mapped geology: Alluvium

Anuvium

Resistivity results: Soil, clay, 0.3-0.9 m thick, 14-17 ohm m. Clay (Alluvium), 2.0-3.4 m thick, 13-24 ohm m. Bedrock (Mercia Mudstone Group), clay, 2.3-3.7 m depth, 21-26 ohm m.

HY 91	116 642	Morton Bagot Block F ₁	HY 97	128 614	Shelfield Green Block F ₁
Mapped geology:	Glacial Sa	nd and Gravel	Mapped geology:	Till	
Resistivity results: ohm m. Sand and 1.1-1.3 m thick, 1 Lias), clay, 1.1-1.4	Soil, sandy gravel (Gla 16-147 ohm 1 m depth, 1	y, 0.0-0.3 m thick, 191 cial Sand and Gravel), m. Bedrock (Lower 15-18 ohm m.	Resistivity results: ohm m. Clay (Til Bedrock (Mercia depth, 25-29 ohm	Soil, sand 1), 2.5–3.0 m Mudstone Gr m.	y, 0.3-0.4 m thick, 57-100 h thick, 21-38 ohm m. roup), clay, 2.9-3.3 m
HY 92	143 644	May's Wood Block F ₁	HY 98	141 613	Pool's Farm Block F ₂
Mapped geology:	Glacial Sa	and and Gravel	Mapped geology:	Second Ri	iver Terrace
Resistivity results:Soil, sandy, poor electrode contact, 0.2-0.3 m thick, 816-1494 ohm m. Sand and gravel (Glacial Sand and Gravel), 1.6-2.4 m thick, 148-6573 ohm m. Bedrock (Mercia Mudstone Group), clay, 1.8- 3.0 m depth, 35-37 ohm m.Resistivity results: thick, 36-78 ohm m. Sail (Second River Terrace), Bedrock (Mercia Mudstone Group), clay, 1.8- depth, 23-27 ohm m.			Soil, sand m. Sand an rrace), 2.1-3 Mudstone G m.	y, part clayey, 0.7-0.9 m d gravel, part clayey 8.0 m thick, 55-82 ohm m. roup), clay, 3.0-3.9 m	
HY 93	145 641	Wootton Hill Farm Block F ₁	HY 99	148 617	Gray Mill House Block F ₂
Mapped geology:	Head		Mapped geology:	Second R	iver Terrace
Resistivity results: 48-55 ohm m. Cla m. Bedrock (Merc sandy, 1.1-2.8 m d	Soil, clay, y (Head), 0 ia Mudston epth, 27-44	, sandy, 0.3-0.5 m thick, 1.8-2.3 m thick, 14-22 ohm le Group), clay, part l ohm m.	Resistivity results: ohm m. Sand and 2.5 m thick, 148- Mudstone Group)	Soil, sand I gravel (Sec 671 ohm m. , clay, 1.6-2	y, 0.2-0.3 m thick, 96-284 cond River Terrace), 1.3- Bedrock (Mercia .7 m depth, 24-28 ohm m.
HY 94	131 638	Merryfield Farm Block F.	HY 100	135 608	Little Alne Block F ₁
Manadanalamia	T :11	2.000 - 1	Mapped geology:	Till	
Resistivity results: thick, 31-74 ohm model ohm m. Bedrock 2.9 m depth, 23-2-	Soil, clay m. Clay (Ti Mercia Muc 4 ohm m.	, part sandy, 0.4-0.7 m ill), 2.0-2.5 m thick, 20-21 dstone Group), clay, 2.7-	Resistivity results: 120 ohm m. Clay 17-53 ohm m. Sa Gravel), one sour Bedrock (Mercia depth, 26-34 ohm	Soil, sand y, part sandy and and grav ding only, 1 Mudstone G	y, 0.4-1.4 m thick, 107- 7 (Till), 1.0-2.4 m thick, el (Glacial Sand and .6 m thick, 146 ohm m. roup), clay, 2.2-3.8 m
HY 95	100 632	Spernall Park Block F ₁	HY 101	130 601	Carmore Hill
Mapped geology:	Alluvium	_			Block F ₁
Resistivity results:	Soil, clay	, 0.3 m thick, 12-21 ohm	Mapped geology:	Till	
m. Clay (Alluviu Bedrock (Mercia I depth, 10-13 ohm	n), 2.8-3.3 1 Mudstone G m.	m thick, 17–18 ohm m. roup), clay, 3.1–3.6 m	Resistivity results: Clay (Till), 4.4 m Mudstone Group)	Soil, sand thick, 18 ol , clay, 4.8 m	iy, 0.4 m thick, 58 ohm m. hm m. Bedrock (Mercia h depth, 38 ohm m.
HY 96	144 630	Wootton Park Farm Block F	HY 102	130 604	New Covert Block F ₁
	()))	1	Mapped geology:	Till	
Mapped geology: Resistivity results: 43-61 ohm m. Cla Bedrock (Mercia) 28 ohm m.	Soil, clay ay (Till), 2.4 Mudstone G	, part sandy, 0.3 m thick, 0 m thick, 24-25 ohm m. roup), clay, 2.3 m depth,	Resistivity results: ohm m. Clay, pa ohm m. Bedrock 3.1 m depth, 33-4	Soil, sand Irt sandy (Ti (Mercia Mu 40 ohm m.	iy, 0.5-0.8 m thick, 80-98 11), 2.0-2.5 m thick, 13-55 Idstone Group), clay, 2.5-

HY 103	141 604	Aston Cantlow Block F ₂
Mapped geology:	Second Ri	ver Terrace
Resistivity results: ohm m. Sand and 1.6 m thick, 96-21 Mudstone Group), Clay (Arden Sands depth, 33 ohm m.	Soil, sandy gravel (Sec 9 ohm m. 1 clay, 1.2-1. tone), one s	y, 0.0-0.3 m thick, 75 ond River Terrace), 1.2- Bedrock (Mercia 9 m depth, 19-24 ohm m. sounding only, 8.9 m
HY 104	154 642	Wootton Pool Block F ₂
Mapped geology:	Second Ri	ver Terrace
Resistivity results: ohm m. Clay (Sec 22-27 ohm m. Bec 2.5-4.0 m depth, 2	Soil, sand ond River 1 drock (Merc 17-30 ohm n	y, 0.5-0.7 m thick, 54-84 Ferrace), 2.0-3.5 m thick, eia Mudstone Group), clay, n.
HY 105	166 642	Wootton Grange Block F ₂
Mapped geology:	Alluvium	
Resistivity results: ohm m. Clay (All m. Bedrock (Mero sandy with depth,	Soil, clay, uvium), 1.0 tia Mudston 1.3-3.6 m c	, 0.3-0.8 m thick, 10-32 -2.8 m thick, 16-24 ohm e Group), clay becoming lepth, 6-15 ohm m.
HY 106	193 644	Claverdon Block E
Mapped geology:	Till	
Resistivity results: 228 ohm m. Clay, 21-42 ohm m. Be 1.5-3.6 m depth, 2	Soil, sand , part sandy drock (Merc 4-28 ohm n	y, 0.4-0.5 m thick, 159- (Till), 1.0-3.2 m thick, sia Mudstone Group), clay, n.
HY 107	152 631	Wootton Wawen Block F ₂
Mapped geology:	Second R	iver Terrace
Resistivity results: ohm m. Sand and Terrace), 2.4–4.4 (Mercia Mudstone ohm m.	Soil, sand gravel, par m thick, 55 Group), cla	y, 0.5 m thick, 178-280 t clayey (Second River -73 ohm m. Bedrock ay, 2.9-4.9 m depth, 20-24
HY 108	160 637	Pettiford Bridge Block F ₂
Mapped geology:	Alluvium	and Second River Terrace
Resistivity results:	Soil, sand	y, 0.2-0.7 m thick, 98-512

common common

HY 109 169 635 Preston Hill Farm Block F4 Mapped geology: Glacial Sand and Gravel Sand and gravel (Glacial Sand and **Resistivity results:** Gravel), 0.4-1.0 m thick, 64-78 ohm m. Bedrock (Mercia Mudstone Group), clay, 0.4-1.0 m depth, 22-33 ohm m. HY 110 174 633 Thistley Wood Block F4 Mapped geology: Glacial Sand and Gravel **Resistivity results:** Soil, sandy, part clay, 0.3-0.8 m thick, 19-256 ohm m. Sand and gravel, part clayey (Glacial Sand and Gravel), 1.0-1.5 m thick, 73-488 ohm m. Bedrock (Mercia Mudstone Group), clay, sandy, 1.0-2.0 m depth, 30-54 ohm m. HY 111 180 637 Kington Farm Block F4 Mapped geology: Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.3-0.6 m thick, 114-153 ohm m. Sand and gravel, part clayey (Glacial Sand and Gravel), 0.6-1.1 m thick, 50-243 ohm m. Bedrock (Mercia Mudstone Group), clay, 0.6-1.6 m depth, 16-26 ohm m.

HY 112	183 636	Tattle Bank	Block F.

Mapped geology: Till and Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.2-0.4 m thick, 74-310 ohm m. Clay (Till), one sounding only, 1.6 m thick, 19 ohm m. Sand and gravel (Glacial Sand and Gravel), 1.3-1.8 m thick, 103-221 ohm m. Bedrock (Mercia Mudstone Group), clay, 1.5-2.2 m depth, 26-32 ohm m.

HY 113 194 631 Langley Block	• F ₄
------------------------------	------------------

Mapped geology: Glacial Sand and Gravel

Resistivity results: Soil, sandy, 0.3-0.6 m thick, 110-147 ohm m. Sand and gravel, upper part clayey (Glacial Sand and Gravel), 4.3-6.1 m thick, 57-325 ohm m. Bedrock (Mercia Mudstone Group), clay, 4.6-6.5 m depth, 33-39 ohm m.

		Block F ₄
Mapped geology:	Glacial Sand and Gravel	

Austy Manor Cottages

158 624

Resistivity results: Sand and gravel (Glacial Sand and Gravel), 0.4-1.2 m thick, 87-132 ohm m. Bedrock (Mercia Mudstone Group), clay, part sandy, 0.4-1.2 m depth, 25-43 ohm m.

HY 114

HY 115	162 627	Austy Manor	Block F ₄
Mapped geology:	Glacial Sa	nd and Gravel	
Resistivity results: Gravel), 0.7–0.9 m (Mercia Mudstone ohm m.	Sand and a thick, 107- Group), cla	gravel (Glacial -167 ohm m. B y, 0.7-0.9 m de	Sand and edrock pth, 16–25
HY 117	192 623	Langley Gree	n Block F ₄
Mapped geology:	Alluvium		
Resistivity results: Clay (Alluvium), (Bedrock (Mercia M m, 0.9–1.0 m dept	Soil, clay, 0.6-1.0 m th Mudstone Gr h, 10-43 ohr	0.3 m thick, 2 ick, 11–14 ohm oup), clay, san n m.	7 ohm m. m. dy to 3.9
HY 118	153 614	Pennyford Ha	all Block F ₄
Mapped geology:	Second Ri	ver Terrace	
Resistivity results: thick, 30-58 ohm 2.2 m thick, 23-26 Group), 2.3-2.5 m	Soil, clay, m. Clay (Se ohm m. Be depth, 28-3	part sandy, 0. cond River Tel edrock (Mercia 0 ohm m.	3–0.4 m rrace), 2.0- Mudstone
HY 119	168 612	Oakland Farm	n Block F ₄
Mapped geology:	Alluvium		
Resistivity results: 28-91 ohm m. Sau thick, 60-119 ohm Group), clay, 1.4-	Soil, clay, nd and grave m. Bedroc 1.9 m depth	part sand, 0.3 el (Alluvium), 1 k (Mercia Muds , 20-26 ohm m.	m thick, .1-1.6 m stone
HY 120	198 619	Langley Gree	n Block F ₅
Mapped geology:	Glacial Sa	nd and Gravel	
Resistivity results: (Glacial Sand and m. Bedrock (Mero depth, 16-24 ohm	Sand and g Gravel), 0.3 eia Mudston m. Clay, sa	gravel, part cla -0.6 m thick, 6 e Group), clay, andy (Arden Sa	uyey 66-365 ohm 0.3-0.6 m ndstone),

HY 121

169 606 **Bearley Station**

Block FA

Glacial Sand and Gravel Mapped geology:

2.0-3.7 m depth, 39-54 ohm m.

Soil, sandy, 0.0-0.3 m thick, 111 **Resistivity results:** ohm m. Sand and gravel (Glacial Sand and Gravel), 0.5-4.7 m thick, 61-255 ohm m. Bedrock (Mercia Mudstone Group), clay, part sandy, 0.5-5.0 m depth, 17-51 ohm m.

HY 122 193 605 Snitterfield Bushes Block F5

Mapped geology: Till

Resistivity results: Soil, clay, 0.3 m thick, 32-42 ohm m. Clay (Till), 8.6 m+, 11-21 ohm m. Base of Till not identified from soundings.

НΥ	123	107 586	Kinwarton	Block F
	120	101 300	Killwal ton	DIOCKI

Mapped geology: Second River Terrace

Resistivity results: Soil, sandy, 0.3-0.6 m thick, 63-98 ohm m. Clay (Second River Terrace), 0.7-1.9 m thick, 30-39 ohm m. Bedrock (Mercia Mudstone Group), clay becoming sandy below, 1.0-2.3 m depth, 8-20 ohm m.

HY 124 110 588	Kinwarton	Block F ₂
----------------	-----------	----------------------

Mapped geology: Second River Terrace

Resistivity results: Soil, sandy, part clayey, 0.2-0.5 m thick, 35-67 ohm m. Clay (Second River Terrace), 0.8-2.5 m thick, 11-21 ohm m. Bedrock (Mercia Mudstone Group), clay, part sandy, 1.2-3.0 m depth, 7-38 ohm m.

ΗY	125	115 587	Kinwarton	Block F ₂

Mapped geology: Second River Terrace

Resistivity results: Soil, sandy, 0.2-0.3 m thick, 51-102 ohm m. Sand and gravel, part clayey (Second River Terrace), 1.2-2.1 m thick, 51-108 ohm m. Bedrock (Mercia Mudstone Group), clay, 1.5-2.4 m depth, 10-11 ohm m.

HY 126 117 590 Great Alne Block F	HY 126	117 590	Great Alne	Block F ₂
-----------------------------------	--------	---------	------------	----------------------

Mapped geology: Alluvium

2.5 m depth, 9-10 ohm m.

Resistivity results: Soil, clay, 0.3-1.0 m thick, 18-33 ohm m. Clay, sandy (Alluvium), 1.2-1.8 m thick, 43-52 ohm m. Bedrock (Mercia Mudstone Group), clay, 1.8-

HY 127	121 590	Great Alne	Block F ₂
11 120	121 350	Great Alle	^{ыоск г} 2

Mapped geology: Second River Terrace

Resistivity results: Soil, clay, 0.2-0.3 m thick, 18-29 ohm m. Sand and gravel, part clay (Second River Terrace), 1.2-1.3 m thick, 24-57 ohm m. Bedrock (Mercia Mudstone Group), clay, 1.2-1.5 m depth, 11-13 ohm m.

HY 128	131 5 94	Aston Cantlow
		Block F ₂
Mapped geology:	Alluvium	
Resistivity results: ohm m. Clay, sand thick, 12-38 ohm r Group), elay, 2.5 n	Soil, clay, dy with dep n. Bedrock n depth, 16-	0.3-0.5 m thick, 25-31 th (Alluvium), 2.0-2.2 m (Mercia Mudstone -21 ohm m.
HY 129	162 599	Newnham Block F ₄
Mapped geology:	Glacial Sa	nd and Gravel
Resistivity results: ohm m. Sand and Gravel), 0.3-1.6 m (Lower Lias), clay m.	Soil, sand gravel, par thick, 39-6 , sandy, 0.3	y, 0.0-0.2 m thick, 57 t clay (Glacial Sand and 55 ohm m. Bedrock -1.8 m depth, 17-44 ohm
HY 130	181 592	Arden Hill Farm Block F ₅
Mapped geology:	Till	
Resistivity results: ohm m. Clay, par ohm m. Bedrock (Mudstone Group),	Soil, clay t sandy (Til part Lower clay, 3.0-4	, 0.2–0.7 m thick, 27–45 1), 2.3–4.0 m thick, 8–36 Lias, part Mercia 2 m depth, 22–29 ohm m.
HY 131	193 588	Comyns Farm Block F ₅
Mapped geology:	Till	
Resistivity results: ohm m. Clay (Till Bedrock (Mercia M depth, 14-26 ohm	Soil, clay I), 2.2-3.0 n Audstone G m.	, 0.3–1.0 m thick, 20–30 n thick, 22–24 ohm m. roup), clay, 2.8–4.0 m
HY 132	218 594	Snitterfield BlockF ₆
Mapped geology:	Glacial S	and and Gravel
Resistivity results: ohm m. Sand and 0.6-1.0 m thick, 7 0.8-1.7 m thick, 3 by sand and grave thick, 81-118 ohm Group), one sound ohm m.	Soil, sand gravel (Gla 4-216 ohm 1-40 ohm n 1 (Glacial S m. Bedroo ing only, cl	y, 0.0-0.3 m thick, 53-58 acial Sand and Gravel), m overlying clay (Till), n. Both deposits underlain and and Gravel), 2.4 m+ ck (Mercia Mudstone ay, sandy, 4.1 m depth, 50
HY 133	226 597	Sand Barn Cottages Block F ₆
Mapped geology:	Glacial S	and and Gravel

Resistivity results: Soil, sandy, 0.7-0.8 m thick, 98-149 ohm m. Sand and gravel (Glacial Sand and Gravel), 2.6-4.6 m thick, 187-389 ohm m. Bedrock (Mercia Mudstone Group), clay, 3.3-5.4 m depth, 36-44 ohm m.

HY 134 234 596 Clump Hill Block F Mapped geology: Till overlying Glacial Sand and Gravel **Resistivity results:** Soil, sandy, part clay, 0.2-1.1 m thick, 37-255 ohm m. Clay, part sandy (Till), 0.0-1.2 m thick, 15-46 ohm m overlying sand and gravel (Glacial Sand and Gravel), 4.4-7.0 m thick, 186-615 ohm m. Bedrock (Mercia Mudstone Group), clay, 6.5-7.2 m depth, 26-29 ohm m. HY 135 209 590 **Hollow Meadow** Block F₆ Mapped geology: Glacial Sand and Gravel **Resistivity results:** Soil, sandy, 0.3 m thick, 102-201 ohm m. Sand and gravel, part clayey (Glacial Sand and Gravel), 2.2-3.3 m thick, 53-563 ohm m. Bedrock (Mercia Mudstone Group), clay, 2.5-3.6 m depth, 26-37 ohm m. Block F₆ HY 136 234 589 **Black Hill** Mapped geology: Glacial Sand and Gravel **Resistivity results:** Soil, clay, 0.2-1.5 m thick, 12-23 ohm m. Sand and gravel, part clay (Glacial Sand and Gravel), 1.9-4.9 m thick, 32-314 ohm m. Bedrock (Mercia Mudstone Group), clay, 3.3-5.1 m depth, 25-30 ohm m. Block F₆ HY 137 238 591 **Black Hill** Mapped geology: Glacial Sand and Gravel **Resistivity results:** Soil, sandy, 0.2-0.3 m thick, 91-162 ohm m. Sand and gravel (Glacial Sand and Gravel), 1.1-3.2 m thick, 99-396 ohm m. Bedrock (Mercia Mudstone Group), clay, 1.3-3.4 m depth, 26-30 ohm m. HY 138 245 587 Hampton Gorse Block F6 Mapped geology: Fourth River Terrace Soil, clay, sandy, 0.4-0.5 m thick, **Resistivity results:** 39-57 ohm m. Clay (Fourth River Terrace), 1.0-2.0 m thick, 12-24 ohm m. Bedrock (Mercia Mudstone

Group), clay, 1.4-2.5 m depth, 23-27 ohm m. Block F₆

Green Hill

244 584

Mapped geology: Fourth River Terrace Soil, sandy, 0.8-1.2 m thick, 112-**Resistivity results:** 139 ohm m. Clay, part sandy (Fourth River Terrace), 1.3-2.0 m thick, 10-42 ohm m. Bedrock (Mercia

Mudstone Group), clay, 2.4-2.8 m depth, 14 ohm m.

HY 139

APPENDIX H

1

COMPARISON OF INTERPRETED RESISTIVITY DATA WITH BOREHOLE RECORDS

The interpreted resistivity results at each of sixteen sites (left side of page) are compared with summary records of the control boreholes (right side of page). The records include the grid reference, lithology and (in brackets) the geological classification, together with the thickness of each proven bed or deposit. Where applicable, the position of the control borehole relative to the resistivity soundings is noted.

The comparisons are presented in order of the Depth Sounding Identification Numbers; the cross-reference listing below is in order of the Borehole Registration Numbers:

Borehole Registration Numbers	Resistivity site number
16 NE 66	HY 53
16 SW 17	HY 99
16 SE 6	HY 106
16 SE 8	HY 108
17 NW 176	HY 4
17 NW 177	HY 7
17 NW 178	HY 3
17 SW 191	HY 12
17 SW 193	HY 16
17 SW 194	HY 14
17 SW 195	HY 15
17 SW 196	HY 13
17 SE 73	HY 19
17 SE 76	HY 22
17 SE 77	HY 27
25 NW 64	HY 134

In the latter part of this Appendix (pp,141 to 164), the records of the individual depth soundings conducted at each of the sixteen resistivity check sites are reproduced in full. An annotated record and explanation will be found on pages 140 and 141.

Grid reference 131 769

Lithology	Interpreted thickness (m)
Soil, sandy	1.1 - 1.7
Clay, part sandy (Till)	6.1 - 11.7

Clay (Mercia Mudstone Group)

HY 4

Grid reference 110 776

Lithology	Interpreted thickness (m)
Made ground	1.6
Clay (Till)	5.9
Sand and gravel (Glacial Sand and Gravel)	2.7

Clay (Mercia Mudstone Group)

HY 7

1

I 1 Grid reference 103 765

Lithology	Interpreted thickness (m)	Lithology	Pı thick
Soil, sandy	0.7 - 1.4	Soil	
Clay (Till)	6.5 - 9.2	Clay, sandy, pebbly below 3.0 m (Till)	
		Gravel (Glacial Sand and Gravel)	
		Clay, pebbly (Till)	

Clay, part sandy (Mercia Mudstone Group)

Borehole SP 17 NW 178

Grid reference 1306 7688

Lithology	Proved thickness (m)
Soil	0.5
Clay, silty sand layers, pebbly below 3.3 m (Till)	8.0
Gravel, 'clayey' (Glacial Sand and Gravel)	0.6
Clay, silty, laminated (Glacial Lake Deposits)	1.4
Mudstone, silty (Mercia Mudstone Group)	0.5+
Borehole SP 17 NW 176	
Grid reference 1105 7763	

Lithology	Proved thickness (m)
Soil and Till	0.3
Clay, sandy below 5.6 m, pebbly (Till)	7.0
Sandy gravel, 'clayey' (Glacial Sand and Gravel)	0.8
Clay, sandy bands (Glacial Lake Deposits)	1.3
Gravel (Glacial Sand and Gravel)	0.8
Clay, silty (Mercia Mudstone Group)	0.3+

Borehole SP 17 NW 177

Grid reference 1037 7642

Lithology	Proved thickness (m)
Soil	0.2
Clay, sandy, pebbly below 3.0 m (Till)	8.0
Gravel (Glacial Sand and Gravel)	0.8
Clay, pebbly (Till)	0.5
Silt (Till)	0.5
Clay, silty (Mercia Mudstone Group)	0.5+

1

Borehole SP 17 SW 191

Resistivity soundings were located more than 160 m from borehole site.

Grid reference 138 727

Grid reference 1364 7279

Lithology	Interpreted thickness (m)	Lithology	Proved thickness (m)
Soil, sandy, part clay	0.3 - 0.8	Soil	0.7
Clay, (Till)	2.5 - 4.8	Clay, pebbly (Till)	5.5
Sand and gravel (Glacial Sand and Gravel)	4.6 - 6.8	Sand, 'clayey' and pebbly, becoming gravel below (Glacial Sand and Gravel)	4.6
Clay (Arden Sandstone)		Mudstone (Arden Sandstone)	0.2+
HY 13		Borehole SP 17 SW 196	
Resistivity soundings more than 100 m fro	om borehole site.		
Grid reference 147 720		Grid reference 1478 7217	
Lithology	Interpreted thickness (m)	Lithology	Proved thickness (m)
Soil, sandy	0.4	Soil	0.2
Clay, sandy (Till)	0.5 - 3.1	Clay, pebbly (Till)	2.2
Sand and gravel (Glacial Sand and Gravel)	4.1 - 7.7	Gravel, 'clayey', sandy becoming less clayey below (Glacial Sand and Gravel)	4.9
		Clay (?Till)	0.7
Clay, part sandy (Arden Sandstone)		Mudstone (Arden Sandstone)	1.5+
HY 14		Borehole SP 17 SW 194	
Resistivity soundings more than 60 m from	m borehole site and clos	er to sand and gravel outcrop.	
Grid reference 105 710		Grid reference 1042 7116	
Lithology	Interpreted thickness (m)	Lithology	Proved thickness (m)
Soil, sandy	0.0 - 0.3	Made ground	0.3
Clay, part sandy (Till)	1.2 - 1.7	Clay, pebbly (Till)	3.2
Sand and gravel (Glacial Sand and Gravel)	3.8 - 4.6	Sand, 'clayey', pebbly becoming 'clayey' gravel below (Glacial Sand and Gravel)	2.5
		Clay, pebbly (?Till)	0.2
Clay (Arden Sandstone)		Clay (Arden Sandstone)	2.8+

,

1

. .

1

Grid reference 139 711

Borehole SP 17 SW 195

Grid reference 1394 7103

Lithology	Interpreted thickness (m)	Lithology	Proved thickness (m)
Soil, sandy	0.6 - 0.9	Soil	0.4
Clay, part sandy (Till); not recognised in one sounding, but very high resistivity of soil (2800 ohm m) due to poor electrode contact, and high resistivity of sand and gravel below (>104 ohm m) have combined to 'mask' the clay layer	0.0 - 8.8	Clay, pebbly (Till)	2.8
Sand and gravel (Glacial Sand and Gravel) 6.0 - 8.1	Gravel, 'very clayey' (Glacial Sand and Gravel)	1.0
		Clay, pebbly (?Till)	0.8
		Gravel, sandy (Glacial Sand and Gravel)	4.0
Clay (Arden Sandstone)		Mudstone (Arden Sandstone)	0.1+
НҮ 16		Borehole SP 17 SW 193	
Resistivity soundings more than 100 m fr	om borehole site.		
Grid reference 102 701		Grid reference 1038 7001	
Lithology	Interpreted		Drawad
Lithology	thickness (m)	Lithology	thickness (m)
Soil, sandy, part clayey	thickness (m) 0.8 - 1.7	Li thology Soil	thickness (m)
Soil, sandy, part clayey Clay (Till)	thickness (m) 0.8 - 1.7 3.8 - 4.1	Lithology Soil Clay, sandy, pebbly (Till)	thickness (m) 0.3 7.4
Soil, sandy, part clayey Clay (Till) Sand and gravel, part clayey (Glacial Sand and Gravel)	thickness (m) 0.8 - 1.7 3.8 - 4.1 3.7 - 4.2	Lithology Soil Clay, sandy, pebbly (Till) Gravel (Glacial Sand and Gravel)	10.3 7.4 0.5
Soil, sandy, part clayey Clay (Till) Sand and gravel, part clayey (Glacial Sand and Gravel) Clay (Mercia Mudstone Group)	thickness (m) 0.8 - 1.7 3.8 - 4.1 3.7 - 4.2	Lithology Soil Clay, sandy, pebbly (Till) Gravel (Glacial Sand and Gravel) Clay (Mercia Mudstone Group)	10.3 7.4 0.5 0.3+
Soil, sandy, part clayey Clay (Till) Sand and gravel, part clayey (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) HY 19	thickness (m) 0.8 - 1.7 3.8 - 4.1 3.7 - 4.2	Lithology Soil Clay, sandy, pebbly (Till) Gravel (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) Borehole SP 17 SE 73	10.3 7.4 0.5 0.3+
Soil, sandy, part clayey Clay (Till) Sand and gravel, part clayey (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) HY 19 Resistivity soundings more than 100 m fr	thickness (m) 0.8 - 1.7 3.8 - 4.1 3.7 - 4.2	Lithology Soil Clay, sandy, pebbly (Till) Gravel (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) Borehole SP 17 SE 73	1 thickness (m) 0.3 7.4 0.5 0.3+
Soil, sandy, part clayey Clay (Till) Sand and gravel, part clayey (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) HY 19 Resistivity soundings more than 100 m fr Grid reference 152 744	thickness (m) 0.8 - 1.7 3.8 - 4.1 3.7 - 4.2	Lithology Soil Clay, sandy, pebbly (Till) Gravel (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) Borehole SP 17 SE 73 Grid reference 1506 7435	1 thickness (m) 0.3 7.4 0.5 0.3+
Soil, sandy, part clayey Clay (Till) Sand and gravel, part clayey (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) HY 19 Resistivity soundings more than 100 m fr Grid reference 152 744 Lithology	thickness (m) 0.8 - 1.7 3.8 - 4.1 3.7 - 4.2 om borehole site. Interpreted thickness (m)	Lithology Soil Clay, sandy, pebbly (Till) Gravel (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) Borehole SP 17 SE 73 Grid reference 1506 7435 Lithology	Proved thickness (m) 0.3 7.4 0.5 0.3+ Proved thickness (m)
Soil, sandy, part clayey Clay (Till) Sand and gravel, part clayey (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) HY 19 Resistivity soundings more than 100 m fr Grid reference 152 744 Lithology	thickness (m) 0.8 - 1.7 3.8 - 4.1 3.7 - 4.2 om borehole site. Interpreted thickness (m)	Lithology Soil Clay, sandy, pebbly (Till) Gravel (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) Borehole SP 17 SE 73 Grid reference 1506 7435 Lithology Soil	Proved thickness (m) 0.3 7.4 0.5 0.3+ Proved thickness (m) 0.1
Soil, sandy, part clayey Clay (Till) Sand and gravel, part clayey (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) HY 19 Resistivity soundings more than 100 m fr Grid reference 152 744 Lithology Clay, part sandy (Till)	thickness (m) 0.8 - 1.7 3.8 - 4.1 3.7 - 4.2 om borehole site. Interpreted thickness (m) 0.4 - 0.8	Lithology Soil Clay, sandy, pebbly (Till) Gravel (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) Borehole SP 17 SE 73 Grid reference 1506 7435 Lithology Soil Clay, pebbly (Till)	Proved thickness (m) 0.3 7.4 0.5 0.3+ Proved thickness (m) 0.1 0.5
Soil, sandy, part clayey Clay (Till) Sand and gravel, part clayey (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) HY 19 Resistivity soundings more than 100 m fr Grid reference 152 744 Lithology Clay, part sandy (Till) Clay (Arden Sandstone)	thickness (m) 0.8 - 1.7 3.8 - 4.1 3.7 - 4.2 om borehole site. Interpreted thickness (m) 0.4 - 0.8 1.5 - 2.1	Lithology Soil Clay, sandy, pebbly (Till) Gravel (Glacial Sand and Gravel) Clay (Mercia Mudstone Group) Borehole SP 17 SE 73 Grid reference 1506 7435 Lithology Soil Clay, pebbly (Till) Clay, silty (Arden Sandstone)	Proved thickness (m) 0.3 7.4 0.5 0.3+ Proved thickness (m) 0.1 0.5 1.7

Borehole SP 17 SE 76

Resistivity soundings more than 130 m from borehole site. Borehole nearer to bedrock outcrop.

Grid reference 194 738

Grid reference 1957 7396

Lithology	Interpreted thickness (m)	Lithology	Proved thickness (m)
Soil, sandy, part clayey	0.0 - 0.3	Soil	0.3
Sand and gravel, part clayey (Glacial Sand and Gravel)	6.6 - 8.3	Sand, 'clayey', pebbly; gravel below (Glacial Sand and Gravel)	7.6
Clay (Mercia Mudstone Group)		Mudstone (Mercia Mudstone Group)	2.5+
HY 27		Borehole SP 17 SE 77	
Grid reference 155 717		Grid reference 1547 7167	

Lithology	Interpreted thickness (m)	Lithology	Proved thickness (m)
Soil, sandy becoming clayey with depth	0.6 - 1.3	Soil	0.3
Clay (Till)	2.4 - 2.8	Clay, silty, pebbly (Till)	1.5
Clay (Arden Sandstone)		Clay (Arden Sandstone)	0.7+

HY 53

Borehole SP 16 NE 66

Resistivity soundings were centred more than 100 m from the borehole site.

Grid reference 157 694

Grid reference 1549 6936

Lithology	Interpreted thickness (m)	Lithology	Proved thickness (m)
Soil, sandy	0.3 - 0.7	Soil	0.5
Clay, sandy (Till); only recognised in one sounding; however, the soil layer and underlying sand and gravel both have high resistivities (>139 ohm m) and probably have combined to 'mask' the clay layer	0.9	Clay, sandy, pebbly (Till)	1.2
Sand and gravel (Glacial Sand and Grave	1) 3.0 - 4.6	Sand, 'very clayey', pebbly (Glacial Sand and Gravel)	2.3
Clay (part Mercia Mudstone Group, part Arden Sandstone)		Mudstone (Mercia Mudstone Group)	0.2+

Grid reference 148 617

Borehole SP 16 SW 17

Grid reference 1481 6184

Lithology	Interpreted thickness (m)	Lithology	Proved thickness (m)
Soil, sandy	0.2 - 0.3	Soil	0.5
Sand and gravel (Second River Terrace)	1.3 - 2.5	Gravel (Second River Terrace)	1.2
Clay (Mercia Mudstone Group)		Clay and mudstone (Mercia Mudstone Group)	1.3+

HY 106

Grid reference 193 644

Borehole SP 16 SE 6

Grid reference 1935 6441

Lithology	Interpreted thickness (m)	Lithology	Proved thickness (m)
Soil, sandy	0.4 - 0.5	Soil	0.3
Clay, part sandy (Till)	1.0 - 3.2	Clay, pebbly (Till)	1.7
Clay (Mercia Mudstone Group)		Mudstone (Mercia Mudstone Group)	1.0+

HY 108

Borehole SP 16 SE 8

Resistivity soundings more than 150 m from borehole site. Borehole closer to edge of deposit.

Grid reference 160 637

Grid reference 1610 6387

Borehole SP 25 NW 64

Grid reference 2344 5955

Lithology	Interpreted thickness (m)	Lithology	Proved thickness (m)
Soil, sandy	0.2 -0.7	Soil and made ground	1.1
Sand and gravel (Alluvium); only one sounding conducted on Alluvium, 180 m from borehole	1.5	Clay, gravelly (Alluvium)	0.5
Clay (Second River Terrace)	1.3 - 2.0	Gravel (Second River Terrace)	1.3
Clay (Mercia Mudstone Group)		Mudstone and siltstone (Mercia Mudstone Group)	1.1+

HY 134

Grid reference 234 596

Lithology	Interpreted thickness (m)	Lithology	Proved thickness (m)
Soil, sandy, part clay	0.2 - 1.1	Soil	0.3
Clay, part sandy (Till)	0.0 - 1.2	Clay (Till)	0.9
Sand and gravel (Glacial Sand and Gravel)	4.4 - 7.0	Sand, 'clayey' and pebbly below (Glacial Sand and Gravel)	5.0
Clay (Mercia Mudstone Group)		Marl (Mercia Mudstone Group)	0.8+

EXPLANATION OF THE DETAILED RESISTIVITY RECORDS

Resistivity records of each of the depth soundings used in the comparison with the borehole data are given below. Records of other depth soundings not quoted here may be consulted on application to Programmes Director – B, British Geological Survey, Keyworth, Nottingham NG12 5GG.

The numbered paragraphs which follow, correspond with the annotations given on the first record, below.

1 Resistivity depth sounding identification number

Each resistivity depth sounding is identified by two numbers separated by a decimal point and prefixed by the letters HY (Henley-in-Arden). The first number refers to the resistivity site and the second to the sounding number at that site. Thus, HY 3.1 is the first resistivity sounding taken at site HY 3.

2 National Grid reference

All National Grid references fall in the 100 km square SP. Grid references for each sounding are given to eight figures and are accurate to within 10 m.

3 Azimuth

Azimuth refers to the compass bearing, in degrees, at which the resistivity sounding was conducted (corrected for magnetic variation at September 1982).

4 Input data

The input data are the field resistivity readings (measured in ohm m) taken at different electrode spacings for a particular electrode configuration (see Figure 9).

5 Processing results

The processing results are the apparent resistivities calculated for a given electrode spacing (Wenner configuration) together with an indication of the percentage observed, offset and lateral errors (expressed as a decimal). The root mean square (RMS) percentage errors for the sounding as a whole are also given.

6 Field curve data

The field curve data give the apparent resistivities used in the interpretation, the percentage difference of the theoretical model from the field data (R.M.S. Relative error) and an indication where the maximum deviation from the field data points occurred (Maximum relative error).

7 Interpreted model

The interpreted model shows the thickness, depth (both in metres) and the apparent resistivity (ohm m) for each layer recognised in the interpretation of the sounding. The reflection coefficients are an expression of the percentage difference in the resistivities of two adjacent layers.

8 Plotted results

The graph shows the comparison of the interpreted theoretical model curve to the field data points.
		INPUT D	ATA ⁴		
Electro Spacin	de g A	С	D1	D2	в
.5 1.0 2.0 4.0 8.0 16.0 32.0	43.3000 18.0300 6.8400 1.9770 .8730 .3680 .1500	40.3000 16.9900 6.5900 1.8750 .8130 .3410 .1420	37.1000 16.2300 5.0800 1.5700 .6290 .2898 .1110	27.8000 12.7900 5.0600 1.4820 .6690 .3160 .1120	3.0100 1.0400 .2630 .1010 .0610 .0250 .0070

PROCESSING RESULTS⁵

,

ŧ 1 ŝ

1

1

. •

1

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5	101.94	0002	2866	.0407
1.0	91.17	0.0000	2371	0108
1.5	73.71			
2.0	63.71	0019	0039	.4920
3.0	47.52			
4.0	38.35	.0005	0577	.0385
6.Ŭ	34.90			
8.0	32,62	0011	.0616	.0399
12.0	32.87			
16.0	30.45	.0054	.0865	1500
24.0	25.83			
32.0	22.42	.0067	.0090	0.0000
48.0	20.71			
64.0	24.91			

R.M.S. Observational Error = .0034 R.M.S. Offset Wenner Difference = .1479 R.M.S. Potential Ladder Difference = .2119

FIELD CUF	RVE DATA6		INTERF	RETED MODEL ⁷
Electrode Separation	lectrode Apparent paration Resistivity		Depth	Rho
	,			
.5	101.94	1.11		107.8
1.0	91.17			
1.5	73.71		1.11	
2.0	63.71			
3.0	44.00	11.73		34.0
4.0	38.35			
6.0	34.90		12.84	
8.0	32,62			
12.0	32.00			17.8
16.0	30.45			
24.0	25.83			*****
32.0	22,42			
48.0	20.71			

Reflection Coeffts.

~.5205

-.2639

R.M.S. Relative error = .0298 Maximum rel. error = -.0516 at sample 10 Number of trials was 0

PLOTTED RESULTS

FLUITED	REDUL	10-																		
			······;		r	• •• ••• ••• •			·· ··;		·** ::	• • • • • •	· · · · · · · · · · · · · · · · · · ·	·····					···.	· •
1						•• • • • • • • • • • • • • • • • • • • •				• •••	11.12	···.		· · · · · · · · · · · · · · · · · · ·			·····			ŀ
h		· ···· į ···	· ·····i			· ··· · ·····			• •••	• • • • •	Y P		· · · · · · · · · · · · · · · · · · ·	••••••••	••••		·	···• •	~	÷
					ļ.,	• ••••• • ••••• •				· ····	+ -+		k				·			Į.,
				ii	i		·			. L.	1. ŝ.	. L.,				l				1
		-	· •	1							11			1				· · · ·		1.
p			i	· · ···	h. j															i.,
1	• •	1	· 1	÷.,							11		:	1		. :			1	1
j			· · · · · · · · ·	•• i•••i••							·····	····		· · · · · · · · ·			· · · · · · ·			÷
:			1 1	11							11	-		1		1 1		1	1	1
i					4l											4 1	. 1		1	1
1				1										;				··· · ·		
		- i	1 1	11	1 1						11	:		:		1 1		1	1	•
•				11	÷ .		: '				1.1	1		1		1	1		-	2
· · · · · · · · · · · · ·		·	· · · · · · · ·		ŀ		····· · ····	••••• • •	• ••••		• ;• • i	••••		· · · · · · · ·		.		ļ		
	, i	:	· 1	1.1	11		•				1 1		1	1		- 1	. 1	1		:
1							; ;				1 1	1		:	1	- 1			-	÷
			1 1	1 1							1 1			1		(i	. 1	1		1
i			1 1								1 1			1	1	1	. 1	1	- 1	1
;	1	1	1 1	1 1	÷ ; .					- 1	. 1	1	1	1	1	4	1	1	1	1
	i		¥	· more	<u>.</u>					····		i	·····	·		f				i.,
		i			pap.,	«								·			······			4
	····· · · ···								· · · · · · · · · · · · · · · · · · ·			.i	· ···· · ·····	·	••• ••	1.1		i		4
				!!			i				!		·			i	i.			۶.
			· · ·	· ·			ŧ				1 1	:					. 1	1	1	T
:	:										• . •••			T				···•		41
	.	i							i:		i		l			·		!		1.
:	: :	1	: 1	1.	: .		: ~	. ·	. 1		÷.	1	1				·		Т.	÷.
									· ·	···· .	·;··· :					1 1	····	. j.	·	
	: :	:		1 1	11		: 1		- ° - ?	1. 10	1.1		:	:	:	1	1	- i		1
;	. :			1 1	. ;		1		1		. 1	·	Sec. Aug	1		1	. 1			1
1				····					· ·				· · · · · · · · · · · · · · · · · · ·					r		
:		1	: :	1 :			:		Ι.		. 1	÷ -		Courses .				1		
:			1 1	1.1								·			inc.		: 1	:		1
									L				· · · · · · · · · · · ·			i #	. "I.	I.		·
			1 1	11			: 1			:	. 1			•			: 1	1	4	:
			· .		11		:		1 3				•		1	1 1				:
1	: '		. 1	1	÷ ÷								:	1	1	: ;			÷	;
:	• .		1 1	11	1.1		:		• •	· .	1.1		:	1	1	1 2			-	1
:	1.	:		11	1 :		1		: •		- 1		1		1	1		- 1	1	:
·	· · · · · · · · · · · · · · · · · · ·		4.		·				ii						L				!	÷.,

HY 3.2 Grid Ref: SP 1310 7685 Azimuth: 307 -----

		INPUT D	ATA				FIELD CU	RVE DATA		INTERPRETED MODEL						
Electro Spacin	de g A	С	D1	D2	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.				
.5	46.5000	44.7000	30.0000	33.3000	1.7820	1	.5	99.43	1.67		101.8					
1.0	18.8100	17.3600	14.4600	16.7900	1.4540	2	1.0	98.17								
2.0	8.4800	8,0000	6.2400	7.0200	.4780	3	1.5	92.00		1.67		3272				
4.0	3.2600	3.0800	2,4900	2.7100	.1720	4	2.0	83.32								
8.0	1.0070	.9440	.8310	.8310	.0600	5	3.0	74.00	6,16		51.6					
16.0	,3520	.3290	.2910	.2710	.0200	6	4.0	45.35								
32.0	.1550	.1490	.1110	.1130	.0060	7	6.0	53.14		7.83		4474				
						8	8.0	41.77								
						9	12.0	33.47			19.7					
						10	16.0	28.25								
	PRC	CESSING F	RESULTS			11	24.0	23.60			*******					
						12	32.0	22.52								

PROCESSING	RESULTS

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5	99.43	.0004	.1043	.3358
1.0	98.17	0002	.1491	- 2386
1.5	101.78			
2.0	83.32	.0002	.1176	.0273
3.0	68.60			
4.0	65.35	.0025	.0846	.0822
6.0	53.14			
8.0	41.77	.0030	0.0000	0929
12.0	33.47			
16.0	28.25	.0086	0712	- 0589
24.0	23.60			
32.0	22.52	0.0000	.0179	0.0000
48.0	23.80			
64.0	29.76			

R.M.S. Observational Error = .0036 R.M.S. Offset Wenner Difference = .0922 R.M.S. Potential Ladder Difference = .1776

R.M.S. Relative error = .0284 Maximum rel. error = -.0529 at sample 7 Number of trials was 0

PLOTTED RESULTS

		· · · · ·			
· · ·	·			• • • •	ч · · . :
	· · · · ·				
	. :				
	· · · · · · · · · · · · · · · · · · ·				
					· · · ·
		۰ ب	•		

.

	INPUT DATA														
Electro Spacin	de g A	с	D1	DZ	в										
.5 1.0 2.0 4.0 8.0 16.0	63.1000 20.2000 6.9000 1.9490 .7850 .3330	60.1000 18.8900 6.6400 1.8530 .7350 .3150 1320	46.5000 18.2600 5.3900 1.5500 .5750 .2640 0990	44.8000 16.9900 5.5100 1.5840 .5940 .2670	3.0100 1.2930 .2760 .0960 .0500 .0200										

Electrode	Wenner	Observed	Offset	Lateral
Spacing	Resistivity	Error	Error	Error
.5	143.41	0002	0372	.3196
1.0	110.74	.0008	0721	2664
1.5	92.56			
2.0	68.49	0023	.0220	.2545
3.0	46.95			
4.0	39.38	0.0000	.0217	0107
6.0	33.78			
8.0	29.38	0.0000	.0325	.0669
12.0	28.58			
16.0	26.69	0060	.0113	0353
24.0	23.36			
32.0	21.01	0.0000	.1053	0.0000
48.0	20.75			
64.0	22.12			

R.M.S. Observational Error = .0024 R.M.S. Offset Wenner Difference = .0532 R.M.S. Potential Ladder Difference = .2015

	1	= ,	143 41	. 70		168.1	
	5	1.0	110 74				
	4	1.0	84.00		30		- 1947
	4	2.0	48 49				••/4/
	-	7.0	44 05	1 09		117.3	
	4	3.0	70.70	1.07			
		4.0	77.00		1 39		- 5848
	<i>,</i>	8.0	70 70		1.0/		.0000
		12.0	27.00	8 84		29.5	
	10	14.0	20.00	0.04		27.0	
	10	24.0	20.07		10.23		1706
	10	77.0	21.01		10110		
	1-	22.0	21.01			20.9	
						2017	

R.M	.S. Re	elative erro	r = .0287				
			<u>.</u>				

INTERPRETED MODEL

INTERPRETED MODEL

Rho

904.1

.....

140.3

22.8

75.8

20.7 *******

٠

.

Reflection Coeffts.

-.7313

-.7204

.5375

-.5710

• .:

.

Rho

Thickness Depth

Reflection

Coeffts.

Maximum rel. error = -.0476 at sample 10 Number of trials was 0

Apparent

Resistivity

526.22 201.38 118.28

118.28 76.15 48.08 33.54 28.91 27.39 30.39 30.46 27.53 24.93 24.23

at sample

FIELD CURVE DATA

Apparent

Resistivity

Electrode

Separation

BLOTTED DECULTO

														••• ••				· .	- , -					.,	11.	. · · ,		
			÷			. 1.	֥	· * ·			**			• • • •	·· ·· .*			·		·· ····				:	· · ···			
					- 1	· ·				• •				1.1	· ÷	···•;• ·	···!··	i	···: ·	÷	··· ·			···· · ···	····· ·	- 1		· · · · · ·
						·····'	· • •	÷.						.;	•	••		÷;		i	•••••				· ···· ·	1.1	••••	
				'.		. 1.	÷	3.1						·			····;··	۰.	۰,۰	i		•••		.d.,	1			
									÷ .			-		÷ .		•		1.3		•				:			•	· ·
• •				:				·: ··'	÷ ····	•		- 11	••••	11		:	÷.,	• •	• • •			-					1 : T	· . · ·
			÷			•	;	۰.	÷						;								,					
			:														:		÷	:			:	1	. 1	: :		: .
						÷.	:	÷				۰.		÷.,		÷.,				£				1	1.1	·		
					-	•		· :				•			- 1	1							1		÷ :	: 1		1.1
:	:											:		:	- 2	1	:	1 1	:	i i			;	1	: :	: 1	· .	i.,
							:		·			*		÷			1	.11		:				1	1	: . ·	÷ • .	
			• '					•				۰.		1	1			. :		:			2		•			
				:		:			:			1			:			1		:				•	;			1.1
					•	· .	:												. ÷.	•			:	•	:	1	•	
·				:																•							- 1	
				•				ι.	1					:						•				:	1	÷	• •	
		• •					1.	1	÷		• •				· . I	. *				·			÷					
		·	·.		· · ·						×.			· ·	÷.,		1.	1.1						4		'		
	:			. :			:	:				÷ :														·		
								1.	· ·			- 7	· .	:		÷.,			÷ ÷	•				· .				. 1 1.
:		•		•								•		•	:			. 1						•				÷ .
	· · ·			• •			÷			• •		•••			۰.		÷		17	÷ .	• • •	•		··:·	4.1			r
•	•		•			•	÷.,	÷.,												۰.				·			:.	
	· ···				•	÷.,																	÷	-				÷ .
						:			1						- 1		÷.,			•			:	· ·		•	-	
	• •			· · ·		•				•••••								· · · ·		÷	: i i		1		÷ '	:	· ·	• •
			÷					11								•	-		• •			÷.,	÷		1		: :	÷ .
																;			1					÷.			1	: 1
	:		•••••	٠.	•	•								···· ·					i i''					:	·····	·	. T	
				•	;	• •		. '							:	:		:		1			:	÷	•	•	• •	
								. :						1	;		:	1.1	: '	•				1	:	:	: 1	• •
			·				÷					-					- 1		1	:			;	:	:		- 1	11
															•			÷.	:				:	•	:	•	: 1	1 1
	· · *																	1.4		••				•• ••••			• • • • •	· ··· *

Thickness

.36

1.20

5.88

2.72

7

Depth

.36

1.56

7.44

10.16

brid Ret: SP 1106 7767 Azimuth: 10 HY 41

FIELD CURVE DATA INPUT DATA Eiectrode Electrode Separation D1 DC в Spacing Α С .5 1.0 1.5 2.0 3.0 4.0 6.0 8.0 175.3000 181.5000 153.5000 33.6000 35.1000 29.0000 6.8900 5.7700 6.3500 1.7340 1.3870 1.2820 7.8800 1.3900 .2460 .0730 .5 184.0000 1.0 2.0 4.0 8.0 16.0 32.0 184.0000 35.1000 7.1300 1.8090 .7330 .4070 G D 4 5 6 7 8 9 0 10 1.7340 .6790 .6790 .3810 .1540 1.3870 .5040 .2960 .1170 .5860 .3100 .1310 .0730 .0520 .0210 .0070 .1660

PROCESSING RESULTS

1

1

1

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5	526.22	.0045	-,1672	2444
1.0	201.08	.0031	1903	2355
1.5	118.28			
2.0	76.15	0008	. 1957	.1198
3.0	48.08			
4.0	33.54	.0011	··.0787	.2348
6.0	28.91			
8.0	27.39	.0027	.1505	0547
12.0	30.39			
16.0	30.46	.0124	.0462	.1480
24.0	27.53			
32.0	24.93	.0306	.1129	0.0000
48.0	24.23			
64.0	26.02			

R.M.S. Relative error	= .03	297
Maximum rel. error =	.0684	at
Number of trials was	0	

8.0 12.0 16.0 24.0 32.0 48.0

PLOTTED RESULTS

11 12

10

R.M.S. Observational Error = .0127 R.M.S. Offset Wenner Difference = .1293 R.M.S. Potential Ladder Difference = .1869

WARNING: The observed error for spacing o is greater than 1% There may be an incorrect input data value

WARNING: The observed error for spacing 7 is greater than 1% There may be an incorrect input data value

HY 71 Grid Ref: SP 1035 762/ Azimuth:		4
---------------------------------------	--	---

INPUT DATA					FIELD CUR	VE DATA		INTER	PRETED MODEL			
Electroc	le 1 A	C	Di	D7	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
opolaring		-			_	1	.5	116.71	1.35		114.3	
.5	49.6000	45.9000	35.0000	39.300	0 3,6600	5	1.0	101.67				
1.0	19.4300	18.1700	15.9400	16.410	0 1,2500	-	1.5	88.00		1.35		5353
2.0	7.2300	6.9300	6.0900	5.390	.2940	- A	20	72.13				
4.0	2.3900	2.2700	2.0200	1.662	0 .0930		3.0	53.43	9,19		34.6	
8.0	.9170	.8610	.7420	.570	.0540	5	4 0	46.27				
16.0	4270	.3990	.3390	. 291	0 .0270	7	4.0	76.00		10.54		1591
32.0	.1750	.1770	.1580	. 114	.0070	ć	8.0	70.00				
						0	12.0	32.00			25.1	
						10	16.0	31.67			20.1	
						11	24.0	28.50			******	
	PRO	CESSING	RESULTS			17	72.0	27 34				
						17	48.0	74.69				
Electro	te Wen	ner O	bserved	Offset	Lateral	10	40.0	14.07				
Spacing	1 Resist	ivity	Error	Frror	Error	DMC D	alativa error	- 0285				
		,				Mayamum	rol error =	0547 at sam	nle 8			
.5	116.	71	.0008	.1157	.0421	Number o	f trials was	0				
1.0	101.	63	.0005	0291	1516	Hamber o						
1.5	80.	55										
2.0	72.	13	.0008	1220	.1480		PECIII TO					
3.0	53.	43							· , · g · p···,			
4.0	46.	27	.0114	1945	.1756		i shi miti	the production of the second	· · · · · · · · ·	• [• . • * • • •	· ···· ··· ··· ··· ·	
6.0		51					· · · · · ·		· · · · · · · · · · · · · · · · · · ·			
8.0	32.	97	.0022	2622	. 1538	· · · · ·			i in shut d			
12.0	77.	63					· · · · · · · · · · · · · · · · · ·					
16.0	31.	67	.0023	1524	.1211							
74.0	79.	97				•	11 T. T. 11 T. 1		승규는 소개 집에 관계를 가격했다.	. i j i i i i		
37.0	27	7.4	0452	3235	0.0000							
48.0	74.	69					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
64.0	25	87					• • •			::		
0.10	20.						v v	·				
						1	· · · · ·			· . 1 ;	: :	
								· · · ·	1 1 1	1 1 1 1	:	

R.M.S. Observational Error = .0177 R.M.S. Offset Wenner Difference = .1940 R.M.S. Potential Ladder Difference = .1385

WARNING: The observed error for spacing 4 is greater t There may be an incorrect input data value

WARNING: The observed error for spacing 7 is greater t There may be an incorrect input data value

			·	-	1		÷	• •			1		• ••			•					۰.	- 1	۰.	4	:	ŀ		•		ŀ		Ŧ					····;·	· ; ·
			·				۰.		÷		. • :									·		. 4		۰.	1.					ļ		., .						÷
			÷					÷	-	:,	: '		•••			•		:		Ŧ	:	-	÷	i	5	1		·	•••		•••							
; .			÷				• •	:	÷	÷	÷		·		÷	÷			•••		:	••••		:	•			•		-							··· :	:
• .												:				i.		. :		•				:	:	۰,											i	
:			•			:		÷	;	;	:	:						:		1	:	:	;	÷	1	:				-		1			:	:	:	:
			:						÷			. ;				ļ		1			:		:	•	:					-		:					:	-
i	÷		1				•	÷		÷	÷	Ξ,		•	<. `	1.				:	4		-		r			•				 				Ċ		
hą	n	17	ć	: .			i.			•••		•	•	•		* : .		-		÷	••••			•	:		• •• •		· ····	: 	 	·				4. 1 2 1		
		·	:		••		÷	•		;		÷			•				·	•		• •	• •	۰.	: "	÷		·		:	·		•••	• •	÷	ļ	2	.;
(ha	n	17						÷							•					:	÷		· :	÷	;.	-			• •	::	• •					1		·
	•			-						÷		•				:				:						:					•							
. •			:	·				Ŷ	• •		ł			·		••••	• •	1	•	÷	:		:	Ť	1		·			•		÷		•	• •	:•3	•	
1			•						•	:	;	1						3		÷	:					•						:			-	. ;	1	•
			:				۰.	÷	; ;	۰.				. ,		÷ .								;	i.	i				۰,		; 						

HY 72 Grid Ref: SF 1005 7649 Azimuth: 80

		INPUT D	ATA				FIELD CU	RVE DATA		INTER	PRETED MODEL	
Electro	ie 3 A	С	D1	D2	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
.5	27.9000	26.2000	25.1000	17.3400	1.6980	1	.5	66.66	.70		71.4	
1.0	8,9100	8,3000	8.8700	6.6600	.5060	2	1.0	48.79				
2.0	3.5500	3.4300	2,5500	2.7700	.1360	3	1.5	38.84		.70		4737
4.0	1.5070	1.4250	1.0280	1.1390	.0810	4	2.0	33.43				
8.0	.8310	.7710	.5720	.6150	.0590	5	3.0	28.00	6.53		25.5	
16.0	4540	.4270	.3390	.3530	.0300	6	4.0	27.23				
	•					7	6.0	28.00		7.23		.7766
						8	8.0	29.83				
						9	12.0	33.76			45.0	
	PRC	CESSING R	ESULTS			10	16.0	34.78				

Electrode Wenner Observed Offset Lateral Spacing Resistivity Error Error Error

spacing	Resistivity	Error	Error	error
.5	66.56	.0001	3657	.1415
1.0	48.79	.0004	2846	2982
2.0	33.43	0045	.0827	. 2005
3.0	26.41			
4.0	27.20	.0007	.1024	.0762
6.0	29.55	2017	0705	
8.0	27.82	.0012	.0725	.0145
14.0	33.78	0066	0405	0.0000
24.0	33.70	. 0,000	.0400	0.0000
32.0	32.01			

R.M.S. Observational Error = .0033 R.M.S. Offset Wenner Difference = .1996 R.M.S. Potential Ladder Difference = .1768

1

R.M.S. Relative error = .0168 Maximum rel. error = -.0230 at sample 4 Number of trials was 0

PLOTTED RESULTS

HY 12.1 Grid Ref: SP 1382 7280 Azimuth: 355

		INPUT D	ATA				FIELD CU	RVE DATA		INTERF	RETED MODEL
Electro	je J A	С	D1	02	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho
.5 1.0	19.3200	18,4500	13.6700	15.1300	.8840	1	.5	45.24	.47		54.8
2.0	3.0300	2.8800	2.1700	2.1800	.1490	3	1.5	29.73		. 47	take kan ber tre yes and she had
8.0	1.2490	1.1590	.8560	.9260	.0890	5	3.0	28.92	3.86		24.0
32.0	.2320	. 2220	.1910	.1960	.0110	7	6.0	39.16		4.33	
						9	12.0	51.51	5.75		170.4
	PRO	CESSING R	ESULTS			10	24.0	47.84		10.08	
Electro	de Wen	iner Ob	served ()ffset (_ateral	12	48.0	26.76			16.5
Spacin	g Resist	ivity	Error	Error	Error	14	64.0	22.54			

Electrode	Wenner	Observed	Offset	Lateral
Spacing	Resistivity	Error	Error	Error
.5	45.24	~.0007	.1014	.2716
1.0	32.92	0001	.0038	.1159
1.5	29.73			
2.0	27.33	.0003	.0046	.0612
3.0	28.92			
4.0	31.59	0022	.0382	.0097
6.0	39.16			
8.0	44.79	.0008	.0786	.0114
12.0	51.51			
16.0	52.78	.0015	.0724	.0089
24.0	47.84			
32.0	38.91	0043	.0258	0.0000
48.0	26.76			
64.0	22.54			

R.M.S. Observational Error = .0020 R.M.S. Offset Wenner Difference = .0584 R.M.S. Potential Ladder Difference = .1233

= .0280 .0861 at sample R.M.S. Relative error = 2 Maximum rel. error = Number of trials was 0

.

....

:::

;

.. . .

:

							•. •								-	۰.			,					: •			** **		• •								
 					: .		÷.,														· ••;	:		÷.	• ••	-									5	:	
 		<i>.</i> .			۰.			ε.															. .	:				- 1			÷.,					÷.,	•••
			•					-													1. i										1			÷		۰.	
							··. ·																			••••									:		
 			-	-			÷÷•	۰.	3	• •				···			• •	• •				• •	· ·	·: ··	*****	**	••	·	• •	• •				· · · ·	··· ··	÷	•••
•								•										-			: ;		:											•	•		
					÷			• •	• •		• ••	• ••	••••	• •				۰.		• ••		:-	· •		•	••	• ••							: **		····	
									•												: :		- 2					. *						2		÷	
 •••						· · ·	•	·:·	۰.		• •	****		·:		• • •		• :					• •					• •	•			·· .					
						1			:					•							۰.																
							÷.,		÷ .					۰.			١.	. 1	'	۰				:							·	i	÷				
 	• ••							•	Ξ.												. 1		÷.	:							1	1					
			:					•													. 1														-		
		•																		•			-											:	:		
 :										۰.				1				*		·		'										. :	ά.	÷		÷	
														1						:	·	•		÷.							1	;	1		•	:	
																				:		: :		:								•		:			
						•				•											-			:									<u>.</u>	:	:	•	
																	-						:									;	:		-		
																						۰.									:				-		
																				÷ .	•		:														
 										-				- 0			•••				• •			··*	••••	• •	-				÷	• •	· •	-	•		
										: .				*							•	, :	Ξ.										· • ·				
			. :																			:		<u>.</u> .								۰.					•
					:			:													1			•				'					<u>.</u>			÷.,	
										•	•••••		•		••• •		•••			• • • • •		••••															
							۰.			:	-					• •••	i							· ·		• • •	• •					••	. • •	•	• •	• •	
									:					:			•			•		•	•			·~···	· • *	·					·	-			
 		·* ··					:	٠.	:	•				÷.,*						· · ·	:	-	:						••••	٠,-				·.			•
						÷.											:			:		×	•	:							·			-		:	
 ••			••••				·	:										•			÷ *	÷ • •	· …			• • •	••••			•	·· · •		÷ • •		• • •	• •	1
•							-	27	÷.,					:			:			3.11	':	: :	: :	٠								· ·	1	-			
				•		•				•												- 3	÷ •								÷			-		:	
 • •	•••	• •		• •		• •				• •	· ·	13	et.,		• • •		1. 1		<u>.</u>	·. ···	· ·		· ,								··. ·			, ·			
								:						•	v	,			1		1		• •	:					•					•	1	1	
																													-								

Reflection

Coeffts.

-.3909

.7531

-.8234

:

HY	12.2	Grid	Ref: SP	1389	7277	A7100

		INPUT D	АТА			
Electro	je J Å	С	D1	D2	в	
.5	25.1000	23.7000	19.4900	18.4400	1.4880	
1.0	10.6200	10.0900	8.1600	7.9100	.5300	
2.0	4.1700	3.9500	3.2500	3.2100	.2230	
4.0	2.0300	1.9030	1.5310	1.4290	.1330	
8.0	1.2150	1.1270	.9330	.8410	.0830	
16.0	.5550	.5180	.4650	.4270	.0360	
32.0	.2120	.2030	.1750	.1510	.0080	

PROCESSI	NG	REGH	TS

Electrode	Wenner	Observed	Offset	Lateral
Spacing	Resistivity	Error	Error	Error
.5	59.58	0035	0554	.0841
1.0	50.49	0.0000	0311	.1362
1.5	44.08			
2.0	40.59	0007	0124	0145
3.0	38.60			
4.0	37.20	0000	0689	0263
6.0	41.22			
8.0	44.59	.0041	1037	.0433
12.0	46.51			
16.0	44.84	.0018	0852	~.0554
24.0	38.81			
32.0	32.77	.0047	1472	0.0000
48.0	28.34			
64.0	32.56			

R.M.S. Observational Error = .0030 R.M.S. Offset Wenner Difference = .0834 R.M.S. Potential Ladder Difference = .0724

	FIELD CUP	RVE DATA		INTERF	RETED MODEL	
	Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
1	.5 1.0	59.58 50.49	.80		61.5	
3 4	1.5	44.08 40.59		.80		3016
5	3.0	38.60	4.83		33.0	
7	6.0	41.22		5.63		.5769
9	12.0	46.51	4.59		123.0	
11	24.0	38.81		10.22		-,7083
13	48.0	28.34			21.0	

i

;

R.M.S. Relative error = .0143 Maximum rel. error = .0306 at sample 10 Number of trials was 0

PLOTTED RESULTS

··· · · · ··· · · :

÷ . : • . ÷ · • .

		INPUT DA	ATA			
Electro Spacin	de g A	С	D1	DZ	в	
.5 1.0 2.0 4.0 8.0 16.0 32.0	11.1400 4.5200 2.5100 1.8860 1.3750 .7290 .2490	10.5900 4.3200 2.3700 1.7530 1.2690 .6790 .2370	8.0400 3.2900 1.7410 1.3060 1.0160 .5850 .2090	8.7900 3.3500 1.6630 1.2570 .9490 .5530 .2010	.5730 .1990 .1330 .1340 .1000 .0480 .0120	

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5 1.0	26.44 20.86 20.15	0021	.0891	.1518 .0878
2.0	21.39	.0028	0458	.0238
4.0	32.21	0005	0382	0206
8.0	49.39	.0044	0682	.0084
16.0	57.20	.0027	0562	.0411
24.0 32.0 48.0 64.0	50.49 41.22 29.69 25.74	0.0000	0390	0.0000

R.M.S. Observational Error = .0024 R.M.S. Offset Wenner Difference = .0550 R.M.S. Potential Ladder Difference = .0747

R.M.S. Relative error = .0288 Maximum rel. error = -.0735 at sample 1 Number of trials was 0

FIELD CURVE DATA

Apparent Resistivıty

26.44

20.86

20.15 21.39 26.88 32.21 42.70 49.39 55.95 57.20 50.49 41.22 29.69 25.74

Electrode

.5

1.0 1.5 2.0 3.0 4.0 6.0 8.0

12.0 16.0 24.0 32.0 48.0

64.0

Separation

PLOTTED RESULTS

123456789

HY 13.1 Grid Ref: SP 1472 7207 Azımuth: 26

		INPUT D	АТА		
Electro	de g A	С	D1	D2	в
.5	55.1000	53.6000	37.6000	42.5000	1.4880
2.0	8.8600	8.4600	7.2200	4.9300	. 3930
8.0	2.5600	2.4000	2.0700	1.7490	.1500

PROCESSING RESULTS

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5	125.82	.0002	.1223	. 4946
1.5	86.73	0008	- 7770	2544
5.0	78.69	.0008	3//0	
4.0	79.55 95.17	.0024	0411	1338
8.0 12.0	75.98 85.72	,0039	1681	.1006
16.0 24.0	80.89 68.80	.0020	1953	0.0000
32.0	60.10			

R.M.S. Observational Error = .0021 R.M.S. Offset Wenner Difference = .2140 R.M.S. Fotential Ladder Difference = .2721

	FIELD CUP		INTER	PRETED MODEL		
	Electrode Separation	Apparent Resistıvıty	Thickness	Depth	Rho	Reflection Coeffts.
1	.5	125,82	.38		164.0	
2	1.0	85.64				
3	1.5	79.00		.38		4236
4	2.0	76.34				
5	3.0	77.00	3,10		66.4	
6	4.0	79.55				
7	6.0	90.00		3.48	~~~~~~~	. 4749
8	8.0	95.98				
9	12.0	90.00	4.11		186.5	
10	16.0	82.89			10010	
11	24.0	68.83		7.59		- 5818
12	32.0	60.10				
					49.3	

4

INTERPRETED MODEL

Rho

31.0

18.1 ------

156.2

19.3

Thickness Depth

.30

2.83

9.55

.30

2.53

6.72

Reflection Coeffts.

-.2627

.7923

-.7801

R.M.S. Relative error = .0286 Maximum rel. error = -.0507 at sample Number of trials was 0

PLOTTED RESULTS

•••• 77. . .: 77. . .: 2 · ' ; •

FIE				АТА	INPUT D		
Elect Separa		в	D2	D1	С	de g A	Electro Spacin
1.	1	2.4100	47.9000	40.1000	49.9000	52.3000	.5
2 1.		.7090	13.1700	12.7500	16.1100	16.8200	1.0
3 1.	-	.4730	6.1100	5,6100	8.2300	8.7100	2.0
4 2.	4	.3940	4.0700	4.3100	5.6800	6.0700	4.0
5 3.	5	.2550	2.7000	2.7300	3.3400	3.6000	8.0
6 4.	6	.0710	1.1470	1.1110	1,2290	1.3000	16.0
7 6	-						

Electrode	Wenner Resistivity	Observed Error	Offset	Lateral
opacing	NUSIBLIVICY	Error	21101	2110
.5	138.23	0002	.1773	0451
1.0	81.43	.0001	.0324	.v376
1.5	72.66			
2.0	73.64	.0008	.0853	.0664
3.0	90.27			
4.0	105.31	0007	0573	.0481
6.0	127.17			
8.0	136.47	.0014	0110	.0556
12.0	134.46			
16.0	110.50	0.0000	.0719	0.0000
24.0	72.40			
32.0	40.21			

R.M.S. Observational Error = .0007 R.M.S. Offset Wenner Difference = .0858 R.M.S. Potential Ladder Difference = .0515

t

ţ

ł

	FIELD CU	RVE DATA		INTERF	PRETED MODEL	
	Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
1	.5	178.23	.76		191.7	
2	1.0	81.47				
3	1.5	72.66		. 36		5220
4	2.0	73.64				
5	3.0	90.27	2.29		60.2	
6	4.0	105.31				
7	6.0	127.17		2,65		.7034
8	8.0	136.47				
c)	12.0	134.40	4.81		345.7	
10	16.0	113.50				
11	24.0	72.43		7.46		8566
					26.7	

R.M.S. Relative error = .0283 Maximum rel. error = -.0548 at sample 1 Number of trials was 0

PLOTTED RESULTS

			•						
			··· ·					i stri i	· ·
								·	· ·
			· .						
					· · ·				:.
					•				
		•			1			- ·	
								5 8 A	
			:					•	
			•						
			· .			•			
				4	÷ .				
	•	•		· •			•		
			· · · ·						
			• •		· .		•		
					• •				· ·
			· ·						
			:				•	1	
			·. "			•	:	• •	
	•						:		
									•
•					· · · .			:	
							•		

Grid Ref: SP 1473 7195 Azimuth: 325 <u>HY 13.3</u>

		INPUT D	ATA			FIELD CURVE DATA			INTERPRETED MODEL			
Electro Spacin	de g À	С	D1	D2	в		Electrode Separation	Apparent Resistivity	Thiciness	Depth	Rho	Reflection Coeffts.
.5	41.0000	39.5000	29.9000	30.8000	1.4640	1	.5	95.05	. 76		142.5	
1.0	16.5800	15.8300	10.8700	12,5900	.9500	2	1.0	73.70				
2.0	12.0900	11.3500	8.1800	8,0100	.7450	3	1.5	85.00		. 76		- 6050
4.0	7.1100	6.4700	5.2000	5.6400	.6290	4	2.0	101.72				.0000
8.0	3.9800	3.7700	3,0600	3,0200	.2090	5	3.0	123.51	.57		75.1	
16.0	1.2050	1.1540	1.0120	1.0580	.0490	6	4.0	136.22				
32.0	2740	.2240	.1760	.2170	.0090	7	6.0	150,00		. 97		77.96
						8	8.0	152.81				•/ 5/6
						9	12.0	130.00	7.68		234 5	
						10	16.0	104.05			20110	
	PRO	CESSING R	ESULTS			11	24.0	62.00		8.61		8197
						12	32.0	39.51				.01/1
Electro	de Wen	iner Ob	served C	Iffset L	ateral	13	48.0	26.00			7.70	
Spacin	q Resist	ivity	Error	Error	Error	14	64.0	22.50				
	-											

PROCESSING RESULTS

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5 1.0 1.5	95.05 73.70 88.57	.0009 0.0000	.0297 .1466	.2815 0182
2.0	101.72	·.0004	0210	.1001
3.0 4.0	117.51 176.22	.0015	.0812	1530
8.0	155.12 152.81	.0003	0132	.2058
16.0	104.05	.0017	.0444	.1105
24.0 32.0	58.73 39.51	.0043	.2087	0.0000
48.0	26.00			
64.U				

R.M.S. Observational Error = .0019 R.M.S. Offset Wenner Difference = .1036 R.M.S. Potential Ladder Difference = .1671

PLOTTED RESULTS

. • . .

> . .

23.3 *******

		INPUT D	ATA			
Electro	je J A	С	D1	02	в	E Se
.5 1.0 2.0 4.0 8.0	18.0700 7.6000 4.8300 2.8000 1.3960	17.4100 7.1500 4.5500 2.6100 1.3110 .5070	13.9600 5.9300 3.4500 2.1000 1.0690 .4080	12.1700 5.2000 3.2400 2.0500 1.1080 .4329	.6730 .4500 .2730 .1960 .0820	1 2 4 5 6
.0.0		. 3070	. 1000			7

(

1

ł

Electrode	Wenner	Observed	Offset	Lateral
Spacing	Resistivity	Error	Error	Error
.5	41.04	0007	1370	. 2796
1.0	34.97	0.0000	1312	0262
1.5	39.89			
2.0	42.03	.0015	0628	.0823
3.0	47.75			
4.0	52.15	0021	0241	0111
8.Ú	56.71			
8.0	54.71	.0022	.0358	.0331
12.0	48.30			
16.0	42.22	0000	.0571	0.0000
24.0	36.48			
32.0	34.98			

R.M.S. Observational Error = .0014 R.M.S. Offset Wenner Difference = .0867 R.M.S. Potential Ladder Difference = .1318

	FIELD CUP	RVE DATA		INTER	PRETED MODEL	
	Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
1	.5	41.04	. 27		56.3	
25	1.0	34.97		.27		3048
4	2.0	42.03 47.75	1.47		30.0	
6 7	4.0 6.0	52.15 56.71		1.74		.5138
8 9	8.0 12.0	54.71 48.30	4.37		93.4	
10	16.0 24.0	42.22		6.11		5413
					27.9	

R.M.S. Relative error = .0251 Maximum rel. error = -.0499 at sample 11 Number of trials was = 0

PLOTTED RESULTS

												4.1.1	
												÷ .	
						,					1.1		
				· . '								•••	
									'				
								,					. •
			· .									• •	
				•									
													:
,								s'					
												•	
												•	:
									S				• •
				•				*					
				·								• .	
								•					
· · · ·	-	•			•			*	· .	••			
							:						
				• •									
								:					
				·									

•••••

HY 14.2 Grid Ret: SP 1048 7100 Azimuth:	Grid Ret: SP 1048 7100 Azimuth	69
---	--------------------------------	----

INPUT DATA							FIELD CURVE DATA			INTERPRETED MODEL			
Electro	ie J A	Ĺ	D1	D2	в		Electrode Separation	Apparent Resistivity	Thicliness	Depth	Rho	Reflection Coeffts.	
.5 1.0 2.0 4.0	20.5000 9.0500 5.2700	19.5800 8.5000 4.9000	15.2200 6.8100 3.9700 2.2000	13.8700 6.5300 3.6100 2.1700	.9290 .5390 .3620	1 2 3 4	.5 1.0 1.5 2.0	45.69 41.91 45.62 47.63	. 25	.25	60.9	2570	
8.0 16.0 32.0	1.2170 .4410 .1830	1.1500 .4190 .1700	.9560 .3450 .1310	.9780 .3350 .1340	.0670 .0220 .0090	5 6 7 8	3.0 4.0 6.0 8.0	52,98 54,92 52,85 48,61	1.23	1.48	36.0	. 3867	
	PRO	CESSING R	ESULTS			10 11 12	12.0 16.0 24.0 32.0	40.14 34.18 28.84 26.64	3.86	5.34	81.4	5417	
Electro		cor (ib	convod (Afret L	teral						24.2		

Electrode	Wenner	Ubserved	U++set	Latera.
Spacing	Kesistivity	Error	Error	Error
.5	45.69	0004	0928	.2542
1.0	41.91	.0012	0420	~.0158
1.5	45.62			
2.0	47.63	.0015	0950	,0097
3.0	52.98			
4.0	54.92	.0007	0137	.04.39
6.0	52.85			
8.0	48.61	0.0000	.0228	.0082
12.0	40.14			
16.0	34.18	0.0000	0294	.0962
24.0	28.84			
52.0	26.64	. 0221	.0776	0.0000
48.0	07 97			
-4.0	74 / 7			
54.0	21.67			

R.M.S. Kelative error = .0280 Maximum rel. error = -.0449 at sample 11 Number of trials was = 0

PLOTTED RESULTS

R.M.S. Observational Error = .0084 R.M.S. Offset Wenner Difference = .0554 R.M.S. Potential Ladder Difference = .1137

 $\ensuremath{\mathsf{WARNING}}$. The observed error for spacing 7 is greater than 1%. There may be an incorrect input data value

HY 14.3 Grid Ref: SF 1054 7108 Azimuth: 305

		INPUT D	ATA			FIELD CURVE DATA				INTERPRETED MODEL		
Electroc Spacing	le } A	С	Di	D2	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
.5	20,0000	19.2600	15.1500	11.7500	.7800	1	.5	42,25	1.65		42.8	
1.0	10.5900	9.9700	7.7000	6.8800	.6250	2	1.0	45.80				
2.0	7.2000	6.7300	5.5200	4.5200	.4520	3	1.5	52.00		1.65		.6270
4.0	4.4300	4.1300	3.3400	3,1500	.3020	4	2.0	63.08				
8.0	2.2900	2.1200	1.9110	1.6850	.1500	5	3.0	74.65	4.61		186.7	
15.0	.7060	.6680	.6120	.6390	.0380	6	4.0	81.50				
						7	6.0	89.38		6.26		7688
						8	8.0	90.38				
						9	12.0	79.96			24.4	
	PRO	CESSING R	ESULTS			10	16.0	62,88				

Floatro	to bloo		downed 0	lifent L	at or al							

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5	42.25	0020	2528	.2943
1.5	56.55	0005	1125	.03.54
2.0	63.08	.0025	1992	.0296
3.0	74.65			
4.0	81.56	0005	-,0586	0083
6.0	89.38			
8.0	90.38	.0088	1257	.0297
12.0	79.96			
16.0	62.88	0.0000	.0432	0.0000
24.0	36.58			
32.0	17.09			

R.M.S. Ubservational Error = .0038 R.M.S. Offset Wenner Difference = .1513 R.M.S. Potential Ladder Difference = .1338

R.M.S. Relative error = Maximum rel. error = -. Number of trials was .0795 = .0298 -.0617 at sample 5 0

PLOTTED RESULTS

······································		
a a a second	وأربيت سابية بخبر بالمراسل أستستر الماسي أساري أوالا	and de sale
and a set of the set o	والسيل بسراسية المتدوية والمرورة وروافي والمراجع المراجع المراجع	
	a second data and handless a second-second second	
the second se	· · · · · · · · · · · · · · · · · · ·	
		1 1 4 4
		· · · · ·
the second second of the second se		
,	the second se	
i de la companya de l	[4] A. B. S.	
		:
and here a set of the	and the second	a di sin de de
and the second		
		1 1 .
· · · · · · · · · · · · · · · · · · ·		
		1.6.7.8.
	** * **** **** * **********************	
	i y la Bola a la su la su la su	
	•	
	the second se	
		1
		1 1 1 1
		•
the second of the first second of the	and the second second state of the second	

HY 15.1 Grid Ret: SP 1396 7114 Azimuth: 328

FIELD CURVE DATA INPUT DATA Electrode Apparent Electrode D2 Thickness Depth A C в D1 Separation Resistivity Spacing .5 795.0000 1.0 80.8000 2.0 14.6400 4.0 6.2400 8.0 3.0600 16.0 1.0040 32.0 .2660
 183.0000
 255.0000
 324.0000

 78.6000
 79.0000
 54.6000

 14.0400
 10.3100
 12.4800

 5.8300
 5.1400
 4.0300

 2.8500
 2.5500
 2.2000

 .9570
 .9160
 .7900

 .2570
 .2240
 .1880
 11.8900 2.2900 .5900 .3990 .1990 .0470 .0090 $\begin{array}{c} 909.\,49\\ 419.\,72\\ 210.\,00\\ 143.\,19\\ 118.\,59\\ 115.\,23\\ 116.\,00\\ 118.\,12\\ 105.\,67\\ 85.\,75\\ 55.\,87\\ 41.\,42\\ 34.\,98 \end{array}$.5 1 .18 1.0 1.5 2.0 3.0 4.0 6.0 8.0 12.0 16.0 24.0 32.0 48.0 34 5 .54 6 7 8 9 5.34

R.M.S. Relative error =

Maximum rel. error = Number of trials was

PLOTTED RESULTS

.0297

0

.

.

PROCESSING RESULTS

Electrode	Wenner	Ubserved	Uttset	Lateral
Spacing	Resistivity	Error	Error	Error
.5	909.49	.0003	.2383	.9005
1.0	419.72	0011	3653	.5317
1.5	277.98			
2.0	143.19	.0007	.1904	.0779
5.00	118.59			
4.0	115.23	.0018	2421	.0320
5.9	127.53			
8.0	118.12	.0006	1277	.0922
12.0	105.67			
16.0	85.75	0000	147/	. 0049
24.0	56.8/			
32.0	41.4.	0.0000	1748	0.0000
48.0	14.98			
64.1	41.02			

H.N.S. Observational Error = .0016 R.N.S. Ultset Wenner Difference = .0248 R.M.S. Potential Ladder Difference = .4000

1

.0682 at sample 1

INTERPRETED MODEL

.18

.72

6.06

8.76

2.70

Rho

2800.5

832.9

104.6

325.2 ____

26.2 ******

Reflection Coeffts.

-.5415

-.7769

.5133

~ . 8509

÷ ۰. HY 15.2 Grid Ref: SP 1397 7099 Azımuth: 52

	INPUT DATA								
Electro Spacin	de g A	С	D1	D2	в				
.5	56.6000	53.8000	50.6000	40.2000	2.7200				
1.0	21,8000	21.2000	14.4300	16.4900	.5940				
2.0	4.3800	4.2100	3.1900	3.7600	.1730				
4.0	1.6940	1.6030	1.2300	1.1330	.0910				
8.0	1.1400	1.0660	.7960	.7760	.0730				
16.0	.5950	.5470	.4570	.4920	.0470				
77.0	2200	2070	1700	2000	0160				

PROCESSING RESULTS

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5 1.0 1.5	142.63 97.14	.0014	2291	.0458 1.1526
2.0	43.67	0007	.1640	.1209
4.0	29.69	0.0000	0821	.0363
8.0	39.51	.0009	0254	.0911
16.0	47.70	.0017	.0738	1056
32.0 48.0 64.0	37.20 24.12 14.85	.0046	.1622	0.0000

R.M.S. Observational Error = .0020 R.M.S. Offset Wenner Difference = .1395 R.M.S. Potential Ladder Difference = .4772

R.M.S. Relative error = .0287 Maximum rel. error = -.0498 at sample Number of trials was 0 6

FIELD CURVE DATA

Apparent Resistivity

142.63 97.14 64.00 43.67 30.00 29.69 34.00 39.51 46.16 47.70 45.81 37.20 24.12

Electrode Separation

.5

1.0 1.5 2.0 3.0 4.0

6.0 8.0 12.0

16.0 24.0 32.0 48.0

12745

6 7

8 9

PLOTTE	D RESULTS				
	·····	· · · · · · · ·		11 11 17 grades 1	
•• •					
:					
		e na similar na si			· · · · · · · · · · · · · · · · · · ·
			. !	1	
		- 11 m - 11 i i i			
		1 1 1			
·· · ·	· · · · · · · · · · · · ·			' 'a da a	 A second sec second second sec
	• •	· · · ·	. 1		
			: '		
					n na man ta san a gan anan i a gada ga m
:			:		
		1	1 1		
	· 1		: .	1 <u>1</u>	
:					un nuder under under der einen der
	- <u>-</u>	· ··· : · · · · · · · · · · · · · · · ·			e e de regereine, est trèser
	n. 121 j	1 . s .		··· · · · · · · · · · ·	
• •	- · · · · · · · ·	:	· · · · · · · · · · · · · · · · · · ·		그는 사람 바다 바람이 있는 것 가 하나 같이?
					and and a set of the s
	.:'	· · · · · ·		· · · · · · · · · · · · ·	
	: .	1 1 1 1 1 1 1	· · ·		
2			· ··· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·····
		e enere i de la tada		trade a desired the first of the	n - n n n' n n n the new growen neglecter (n'n
•	· , ·		· · ·		
					en angerer ege ere beide beide beide
:	. :	: :			
		1 1 1 1 1	1 .		
		1 : + : ; ;			
					and an a local and the stand of the state of the

INTERPRETED MODEL

Rho

147.5

18.0

138.5

19.3

24.6

Depth

.90

4.06

10.04

Thickness

.90

3.16

5.98

Reflection Coeffts.

-.7825

.7700

-.7554

HY 15,3 Grid Ref: SP 1089 7105 Azimuth: 357

INPUT DATA						FIELD CURVE DATA			INTERPRETED MODEL			
Electro Spacin	de g A	С	D1	D2	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
.5	84.8000	82.1000	63,4000	68.6000	2.6200	1	.5	207.35	.58		236.4	
1.0	24.3000	23.2000	19.8100	17.8600	. 9890	2	1.0	118.34				
2.0	6.3100	5.9200	4.6300	5.4100	.3830	3	1.5	78.00		.58		6478
4.0	2.1900	2.0600	1.6700	1.8340	.1350	4	2.0	63.08				
8.0	.9370	.8920	.7700	.6540	.0400	5	3.0	52.36	2.35		51.4	
16.0	.3970	.3810	.3130	.2530	.0130	6	4.0	44.03				
32.0	.2000	.1890	.1450	.1240	.0090	7	6.0	40.00		2.93		2108
						8	8.0	35.79				
						9	12.0	30.37	6.46		33.5	
						10	16.0	28.45				
	PRO	CESSING R	ESULTS			11	24.0	27.40		9.39		1532

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5 1.0	207.35	.0009	.0788 1035	.3568
1.5	97.05 63.08	.0011	.1554	.0156
4.0	44.03	~.0023	.0936	~.0707
8.0 12.0	35.79 30.37	.0054	1629	.1445
16.0 24.0	28.45 27.40	.0076	2120	.2394
32.0 48.0	27.04 35.80 44.60	.0101	1561	0.0000

R.M.S. Observational Error = .0055 R.M.S. Offset Wenner Difference = .1443 R.M.S. Potential Ladder Difference = .2433

WARNING: The observed error for spacing 7 is greater than 1% There may be an incorrect input data value

11 12 24.0 27.40 9.39 ****** R.M.S. Relative error = .0309 Maximum rel. error = -.0622 at sample Number of trials was 0 5 PLOTTED RESULTS

....

INPUT DATA						FIELD CURVE DATA			INTERPRETED MODEL			
Electrod Spacing	e À	С	D1	D2	•в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
.5	29,1000	26.2000	25.9000	26.700	0 2.9700	1	.5	82.62	.84		85.5	
1.0	10.1700	9.7200	8.990	8.920	0.4450	2	1.0	56.27				
2.0	2.8000	2.6800	2.4100	2.220	0.1200	3	1.5	39.00		.84		6765
4.0	1.2100	1.1410	.860	.876	0.0690	4	2.0	29.09				
8.0	.7830	.7210	.5670	.549	0.0580	5	3.0	23.87	3.77		16.5	
16.0	.4150	.3850	. 3540	.312	0.0280	6	4.0	21.82				
32.0	.1960	.1830	.1400	.151	0.0110	7	6.0	24.96		4.61		.6710
						8	8.0	28.05				
						9	12.0	32.39	4.21		83.8	
						10	16.0	32.47				
	PRO	CESSING	RESULTS			11	24.0	30.78		8.82		5901
						12	32.0	29.25				
Electrod	le Wenr	ner O	bserved	Offset	Lateral						21.6	
Spacing	Resist:	ivity	Error	Error	Error							

.5	82.0	62	0024	.0304	5147							
1.0	50.3	27	.0005	0078	1685							
1.5	29.	35				R.M.S. R	elative erro	r = .0285				
2.0	29.	09	0.0000	0821	0795	Maximum	rel. error =	0405 at sa	ample 6			
3.0	23.4	87				Number o	f trials was	0				
4.0	21.	82	0.0000	.0184	0108							
6.0	24.	90										
8.0	28.	05	.0051	0323	.0104	PLOTTED	RESULTS					
12.0	32.1	39										
16.0	32.	47	0.0000	0681	0739	• •						······································
24.0	30.	78							· ":			
32.0	29.	25	.0103	.0756	0.0000					··· . · ·		
48.0	28.	42										÷
64.0	30.	91									5	· .

R.M.S. Observational Error = R.M.S. Offset Wenner Differe R.M.S. Potential Ladder Diff

Grid Ref

HY 16.2

ł

ł

WARNING: The observed error There may be an incorrect in

						· . · .
.0044 ince = .0527 erence = .2256						1. ÷ – ÷
for spacing 7 is greater than : put data value	1%	: 		. * • •		
				 ·		
			•		•	
		· · ·				•

23.7 *******

-.3408

9.42 -----

INPUT DATA						FIELD CURVE DATA			INTERPRETED MODEL			
Electro	de g A	ũ	D1	D2	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
.5	21,4000	20.6000	15,9400	13,8000	.8470	1	.5	45.72	. 39		42.1	
1.0	10.3000	9.6400	8.0400	7.6000	.6680	2	1.0	49.13				
2.0	4.1900	3.9000	3.7200	3.3200	.2850	3	1.5	48.50		.39		- 1877
4.0	1.6540	1.5780	1.2720	1.2250	.0740	4	2.0	44.23				
8.0	.6830	.6340	.4970	.5150	.0450	5	3.0	37.73	1.25		61.0	
16.0	.3580	.3330	.2680	.2800	.0230	0	4.0	21.38			0	
32.0	.1760	.1670	.1310	.1270	.0080	7	6.0	25.50		1 64		- 5307
						8	8.0	25.43		1104		
						.7	12.0	27. 23	4.07		18 7	
						10	16.0	27.55			10.7	
	PRO	CESSING R	ESULTS			11	74.0	27.06		5 71		4410
			200210			10	32.0	05 04		5.71		.4410
Electro	de Wen	ner Ob	served ()f+set La	ateral	12	22.0	20.74	3.71		48.2	

Electrode	Wenner	Observed	Dí†set	Lateral
Spacing	Resistivity	Error	Error	Error
.5	46.72	- 0077	- 14.79	2202
1.0	49.13	0008	0563	.0160
1.5	51.76			
2.0	44.23	.0012	1135	1938
3.0	37.73			
4.0	31.38	.0012	0076	.1531
6.0	25.11			
8.0	25.43	.0059	.0356	0261
12.0	27.23			
16.0	27.55	.0056	.04.38	0354
24.0	27.06			
32.0	25,94	.0057	0710	0.0000
48.0	26.52			
64.0	30.94			

K.M.S. Relative error = .0284 Ma:imum rel. error = -.0685 at sample 6 Number of trials was 0

· · · · .

.

PLOTTED RESULTS

R.M.S. Observational Error = .0039 R.M.S. Offset Wenner Difference = .0778 R.M.S. Fotential Ladder Difference = .1390

Grid Ref: SP 1026 7012 Azimuth: 320 HY 16.3

INPUT DATA							
Electro	de g A	С	Di	DC	в		
.5 1.0 2.0 4.0 8.0 16.0	34.7000 13.3600 6.3800 1.6790 .6550 .3570	32.9000 12.3200 6.2000 1.6110 .6080 .3340	24.1000 11.4900 4.3700 1.0560 .4680 .2600	24.4000 11.0500 4.8100 1.3050 .4760 .2740	1.8080 1.0350 .1809 .0700 .0440 .0220		

PROCESSING RESULTS

Electrode Wenner Spacing Resistivit	Observed v Error	Offset Error	Lateral Error
.5 76.18	~.0002	.0124	.2672
1.0 70.81	.0004	0390	2707
1.5 67.46			
2.0 57.68	.0000	.0959	.8638
3.0 38.27			
4.0 29.67	0012	.2109	.4100
6.0 27.00			
8.0 23.75	.0046	.0169	.0146
12.0 25.91			
16.0 26.84	.0028	.0524	0.0000
24.0 26.98			
32.0 27.13			

R.M.S. Observational Error = .0023 R.M.S. Offset Wenner Difference = .0987 R.M.S. Potential Ladder Difference = .4803

	FIELD CUR	RVE DATA	INTERPRETED MUDEL						
	Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.			
1	.5	76.18	1.73		77.5				
2	1.0	70.81							
3	1.5	65.00		1.73		6667			
4	2.0	57.68							
5	3.0	38.27	3.84		15.5				
6	4.0	29.67							
7	0.0	24.00		5.57		.5700			
8	8.0	23.73							
9	12.0	25,91	3.91		56.6				
10	16.0	26.84							
				9.48		4682			
					70 5				

R.M.5. Relative error = .0225 Maximum rel. error = .0404 at sample Number of trials was 0 8

PLOTTED		
	The second se	
	the state of the s	÷
	이 가지 않는 것 같아요. 그 같아요. 이 가지 않는 것 같아요. 한 것 같아요. 가지 않는 것 같아요.	
	이 가지 않는 것 같아요. 그는 것 같아요. 그는 것 같아요. 이 나는 것 같아요. 아이는 것 같아요.	-
	and the second	· · ·
		÷ •
	a the second	9.1
	그는 그는 사람이 있는 것 같아요. 이 가지 않는 것 같은 것 같아요. 이 가지 않는 것 같아요. 이 가지 않는 것 같아요.	
		÷ .
		• :
	the second se	
		:
		:
	the second se	
	the second se	
		·· . ·
	and the second	
		• •
		ι.
	(a) A fair is a second s second second se	

HY 19.1 Grid Ref: SP 1515 7443 Azimuth: 44

Observed Offset y Error Error

-.0040 .0730

.0754

-.0274

-.0225

.0062 0.0000

.0003 -.0000

0.0000

0.0000

.0024

0.0000

R.M.S. Observational Error = .0010 R.M.S. Offset Wenner Difference = .0453 R.M.S. Potential Ladder Difference = .2075

Electrode Wenner Spacing Resistivity

51.42 25.82 23.30 18.18 16.03 15.59 15.61 15.61 15.24 15.24 17.53 18.20

.5 1.0 1.5 2.0 4.0 4.0 8.0 12.0 18.0 24.0 32.0

i

Lateral Error

.3885

.0713

.0427

.0571

INPUT DATA							FIELD CURVE DATA				INTERPRETED MODEL		
Electro	de g A	С	D1	D2	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.	
.5	14.2400	13.6500	10.0200	9.9800	.5860	1	.5	31.42	.82		31.5		
1.0	5.4500	5.1700	3.9600	4.2600	.2800	2	1.0	25.82				701/	
2.0	1.8980	1.8010	1.3920	1.5010	.0970		1.5	21.00		.87	and man this line prop page (with the		
4.0	.8390	.7890	.6290	.6120	.0500	4	2.0	18.18					
8.0	.4250	.4000	. 3140	.3070	.0240	5	3.0	16.03	1.50		14.1		
16.0	. 2210	2070	. 1610	. 1620	.0140	6	4.0	15.59					
						7	6.0	15.78		2.32		.0505	
						8	8.0	15.61					
						9	12.0	15.84			15.6		
	PRO	CESSING R	ESULTS			10	16.0	16.24					

**	×	*	×	×	×	*

R.M.S. Relative error	= .0239
Maximum rel. error =)419 at sample
Number of trials was	<u>,</u> 0

PLOTTED RESULTS

÷			ż	· :	2	: 1	: .	:	. • •	• •	ela el
		1									
		:						• •			
		 · :									
											• •
								,			
	,										
	:										
		•									

. .

. .

. .

1

. .

۰.

INPUT DATA							FIELD CURVE DATA				INTERPRETED MODEL		
Electroc	e A	С	D1	D2	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.	
.5	21.7000	21.0000	16,5000	14.8700	.7260	1	.5	49.28	.44		64.2		
1.0	5.6700	5.4000	4.3800	4.6800	.2690	2	1.0	28.46					
2.0	2.1300	2.0200	1.5620	1.6470	.1160	3	1.5	22.50		. 44		5489	
4.0	.8950	.8450	.6960	.6480	.0520	4	2.0	20.16					
8.0	.4250	.3980	.3130	.3170	.0270	5	3.0	18.57	1.98		18.7		
16.0	.2300	.2170	.1730	.1630	.0110	6	4.0	16.89					
						7	6.0	16.20		2.42		0841	
						8	8.0	15.83					
						9	12.0	16.33			15.8		
	PRO	CESSING F	RESULTS			10	16.0	16.89					

Electrode	Wenner	Observed	Offset	Lateral
Spacing	Resistivity	Error	error	Error
.5	49.28	0012	~.1039	. 6705
1.0	28.46	.0002	.0662	.0425
1.5	24.61			
2.0	20.16	0028	.0530	.1141
3.0	18.57			
4.0	16.89	0022	0714	.0462
6.0	16.20			
8.0	15.83	0.0000	.0127	0060
12.0	16.33			
16.0	16.89	.0087	0595	0.0000
24.0	17.79			
32.0	20.09			

R.M.S. Observational Error = .0039 R.M.S. Offset Wenner Difference = .0668 R.M.S. Potential Ladder Difference = .3055

R.M.S. Relative error = .0287Maximum rel. error = -.0529 at sample 10 Number of trials was 0

PLOTTED RESULTS

	the factory and the second		
imarri tarada	er al and and the debalances of the	the second and the second s	
1			
· · ·			
			······································
1			
· ·	a se al a se jugi súa associa a	an an an a dan ar d' nadar sata chand alamb	
· · ·			
: , 1			
	en er et en	a in the contract for a proof of the first of the	anan ara manan ara gi anganah anda ganjada
· · · · ·			
1 .			
· · · · · · · · · · · · · · · · · · ·			
in a construction of the set		. The stand of the Standar advantance for a	
· · · · · · · · · · · · · · · · · · ·	an and a first such a start of the second star		
	in the second	and manufactory and has not t	· · · · · · · · · · · · · · · · · · ·
10.000			
	, e , e e e for el de quel els es se seu s		
1			and the second sec
•		· · · · · · · · · · · · · · · · · · ·	
···· · · · · ·		and and the second states in	
:	a a 4 . 1 .		
	1 . I . I . I		
		(1) (1) (1) (1) (1)	
1	يستمينا والمشاوين والمستور والمستر	s 🗙 🗤 an a dan a a baar a angar sana sala b	առու ու եւ եսու են ություները պետաները պետվե
1 .		a merely where the set of the	
• •			
. : :			
·		An and the first state of the s	

18.6 ******

Grid Ref: SP 1527 7435 HY 19.3 Azimuth: 11

INPUT DATA							FIELD CURVE DATA				INTERPRETED MODEL		
Electro Spacin	de g A	С	D1	D2	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.	
.5	13,7500	12.9100	12.3900	11.2500	.8530	1	.5	37.13	. 39		46.1		
1.0	5.0800	4.8600	3,9100	3,7900	.2230	2	1.0	24.19					
2.0	2.2300	2.1100	1.5750	1.6950	.1260	3	1.5	21.00		.39		4012	
4.0	1.0490	.9780	,7750	.7960	.0680	4	2.0	20.55					
8.0	.4930	.4620	.3750	.3640	.0290	5	3.0	20.98	2.09		19.7		
						6	4.0	19.74					
						7	6.0	19.59		2.48		0287	
							8.0	10 57					

PROCESSING RESULTS

Wenner Resistivity	Observed Error	Offset Error	Lateral Error
37.13 24.19	0009 0006	0964 0312	2185
19.91	0027	.0734	.1011
20.98	.0029	.0267	.0248
18.57 18.03 18.79	.0041	-,0298	0.0000
	Wenner Resistivity 37.13 24.19 19.91 20.55 20.98 19.74 19.59 18.57 18.03 18.79	Wenner Observed Error 77.13 0009 24.19 0004 19.91 0027 20.98 0027 19.74 .0029 19.55 .0041 18.57 .0041 18.03 18.79	Wenner Observed Offset Resistivity Error Error 77.13 0009 0964 24.19 0006 0312 19.91 0027 .0734 20.98 0027 .0267 19.74 .0029 .0267 19.59 18.57 .0041 0298 18.03 18.79 0278 .0241

R.M.S. Observational Error = .0026 R.M.S. Offset Wenner Difference = .0588 R.M.S. Potential Ladder Difference = .1344

1 1 I

8.0 12.0 16.0 8 9 10 18.03 18.79 R.M.S. Relative error = .0301 Maximum rel. error = .0429 at sample 9 Number of trials was 0

PLOTTED RESULTS

PLOTTED RESULTS : · · · 1.

INPUT DATA												
Electrode Spacing A C D1 D2 B												
.5	27.9000	26.4000	23.3000	15.4000	1.5010							
1.0	14.9500	14.0400	12.8700	9.4300								
2.0	6,8800	6.4300	5.6200	5.0300	.4530							
4.0	3,0500	2.8700	2.5000	2.2300	.1800							
8.0	1.0910	1.0340	.9370	.8180	.0570							
16.0	.3670	.3500	.2890	.2810	.0180							
32.0	.1770	.1670	.1260	.1180	.0090							

1

1

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5	60.79	0000	4083	.1322
1.0	72.09	0002	3085	.0425
2.0	66.92	0004	1108	0334
3.0	63.81	0.0000	- 1142	0755
6.0	50.83	0.0000		.0/00
8.0	44.11	~.0000	1356	.0491
16.0	28.65	0027	0281	.0289
24.0	24.80			
32.0	24.53	.0057	~.0656	0.0000
48.0	29.41			
64.0	36.57			

R.M.S. Observational Error = .0024 R.M.S. Offset Wenner Difference = .2107 R.M.S. Potential Ladder Difference = .0699

FIELD CURVE DATA Electrode Apparent Separation Resistivit

INTERPRETED MODEL

22.5

ectrode paration	Apparent Resistivity	Thickness	Depth	Rho	Reflectio Coeffts.
.5	60.79	.31		45.7	
1.0	70.06				
1.5	72.09		.31		.2780
2.0	66.92				
3.0	63.81	1.58		84.5	
4.0	59.44				
6.0	50.83		1.89		2891
8.0	44.11				
12.0	34.55	6.70		46.6	
16.0	28.65				
24.0	24.80		8.57		3869
32.0	24.53				
				20.6	

R.M.S. Relative error = .0285 Maximum rel. error = .0567 at sample 5 Number of trials was 0

PLOTTED RESULTS

in an air an in a star of the star of the star of the star star and the star of the star star star star star star star star	
	•
ter a community when down down by a fordar to go to an a company of the advantation of the advantation of the down of the advantation of t	
	**
ter energia de la companya de la comp	
	•
is a summing a sum of a suit sign darburged a sum as sum as such as integrated at such such such such such such	
	•
	••
in a second s	••

HY 22.2 Grid Ref: SP 1948 7390 Azimuth: 330

		INPUT D	ATA				FIELD CU	RVE DATA		INTER	PRETED MODEL	
Electroo Spacing	je g A	С	D1	D2	в		Electrode Separation	Apparent Resistıvıty	Thickness	Depth	Rho	Reflection Coeffts.
.5	40.0000	37.8000	29.6000	25.0000	2.1600	1	.5	85.77	.30		76.3	
1.0	19.2100	17.8800	15.5600	14.4900	1.3290	2	1.0	94.40				
2.0	9.6800	9.1800	7.2500	6.9000	.4980	3	1.5	96.30		.30		. 1315
4.0	4.3300	4.0100	3.4100	3.2900	.3180	4	2.0	88.91				
8.0	1.5660	1.4760	1.2550	1.3930	.0940	5	3.0	87.00	.96		99.4	
16.0	.4710	.4530	.3870	.3490	.0180	6	4.0	84.19				
32.0	.1710	.1590	.1210	.1250	.0110	7	6.0	81.32		1.26		7.0496
						8	8.0	66.55				
						9	12.0	46.88	5.67		90.0	
						10	16.0	37.00				
	PRO	CESSING R	RESULTS			11	24.0	25.58		6.93		÷- 6000
						12	32.0	24.73				
Electro	de Wen	ner Ob	served ()ffset L	ateral	13	48.0	27.44			22.5	

Electrode	Wenner	Observed	Offset	Lateral
Spacing	Resist1v1ty	Error	Error	Error
.5	85.77	.0010	1685	.2001
1.0	94.40	.0001	0712	0964
1.5	96.30			
2.0	88.91	.0002	0495	.1286
3.0	82,59			
4.0	84.19	.0005	0358	0008
6.0	81.32			
8.0	66,55	0026	.1042	0921
12.0	46.88			
16.0	37.00	0000	1033	.1911
24.0	25.58			
32.0	24.73	.0059	.0325	0.0000
48.0	27.44			
64.0	29,33			

R.M.S. Observational Error = .0025 R.M.S. Offset Wenner Difference = .0924 R.M.S. Potential Ladder Difference = .1359 R.M.S. Relative error = .0322 Maximum rel. error = .0535 at sample 11 Number of trials was 0

PLOTTED RESULTS

		206																										
	 								• ••											 								
. *	 	· ··. ·	۰.			- (-, 1				· · · ·		è i	÷	1	۰.,	·· * .	11		 	×.,					· · · · ·		
	 	· · ?				···· . ,.									4.			· · · · ·	i	 					1	1		
·	 · · .						1.1				•				:											1 1	· · · ,	
1						1.1	100				:		1	• • •		••		•••	÷	 	- 21						- P.C	•
	 	•••••	:				?-	• •		• •	·	• •	1	:	:	•••••			1.	 	:		1 .					
	•						1.										:	١.,					1				. '	
	 				• :	• •	·								·			1 Y S	÷ •	 			·		• • • •	-i	· · · ·	
	 ·													•				:					:		•	۰.	5	
•					·.								:	·	:	•	·1·		• ••• •	 						·	• •	
:			-		1	• •	•											: :							-			
			-								•		٠			÷.,		·		 			÷				:	
		:		. :	•	· - :	•								-													
•	•					: :	:				1				:													
		:		•		. ,							•				:	11								1.1		
	 	:	• •			• .:	۰.			• •			: ••	:	• :	··ŀ	···' ··		÷.	 	· ·				·	-	·.	
	:					• •									:						-			1				
	2						•								:	•		÷ .						•	•			
:		:		:		••••									5		•							•				
																	:								1	:	. '	
		• • ••		:	1.1	•			••••					i	··' ·	. '		:								·		
	 ÷ .				. ~ 4	. · ·	· •		·. ·	· ·	×.	5.14	A					· .			.:			÷				
• •					·	· · .									.`			۰										
		۰.															· :	· :			•					•		
	•																	÷				•			.:			
							• •		-					•				• • •										
																	•	<i>,</i> `										
														•••				•										
																										. :	. 1	
												· · ·								 ·					. '		· · · ·	
																			:								:	
							•								. :			÷.,						۰.				
																						```			•	:	• ;	
																						• •					. '	
																		۰.										
,																		: :	ι.									
						1 1																						
																		÷ .	-							· .	۰.	
																										. :		
																		. '										
						:										•											. :	
																											'	

		INPUT D	ATA			FIELD CURVE DATA					INTERPRETED MODEL		
Electro Spacin	ode Ig A	с	D1	D2	в		Electrode	Apparent Resistivity	Thickness	Depth	Rho		
.5	48.7000	46.1000	34.2000	35.6000	2.6300	1	.5	109.64	1.37		111.1		
1.0	22.2000	21.0000	17.1300	17.0000	1.1900	2	1.0	107.22					
2.0	9.1600	8.7000	6.8600	7.9700	.4620	3	1.5	99.68		1.37			
4.0	3.5000	3.2800	2.6000	2.8300	.2100	4	2.0	87.52					
8.0	1.2320	1.1750	.9730	1.0040	.0560	5	3.0	77.50	5,46		64.6		
16.0	.3470	.3290	.2590	.2810	.0180	6	4.0	68.24					
32.0	.1650	.1560	.1150	.1120	.0080	7	6.0	60.32		6.83			
						8	8.0	49.69					
						- 9	12.0	35.81			20.5		
						10	16.0	27.14					
	PRO	CESSING F	ESULTS			11	24.0	23.18			*******		
						10	72.0	22.82					
Flectro	nde Wen	ner Oh	served C	lffeet 1	atoral	17	19.0	27.07					
		. 01	serveu c		arei ar	1.0	48.0	27.07					

Wenner Resistivity	Observed Error	Offset Error	Lateral Error
107.64	0004	.0401	.1555
99.68 87.52	0002	.0302	.1387
48.24 69.32	.0029	.0847	.0763
49.69	.0008	.0314	.1925
27.14	0.0000	.0815	.0198
22.82 27.07	.0061	0264	0.0000
	Wenner Resistivity 109.64 107.22 99.68 87.52 77.50 68.24 60.32 49.69 35.81 27.14 23.18 22.82 27.07 34.56	Wenner Resistivity         Observed Error           109.64        0006           107.22         .0005           99.68         .0002           87.52        0002           77.50         .0008           68.24         .0029           60.32         .0008           35.81         .0000           23.18         .0024           22.82         .0061           27.07         .041	Wenner Resistivity         Observed Error         Offset Error           109.64        0006         .0401           107.22         .0005        0076           99.68        0002         .0302           77.50         -         0029           68.24         .0029         .0847           60.32         .0008         .0314           35.81         -         .0000           27.14         0.0000         .0815           22.82         .0061        0264           27.07         -         .0264

R.M.S. Observational Error = .0026 R.M.S. Offset Wenner Difference = .0508 R.M.S. Potential Ladder Difference = .1232

# R.M.S. Relative error = .0284 Maximum rel. error = .0617 at sample 10 Number of trials was 0

#### PLOTTED RESULTS

-					
	· .			h.	
		-			
					and an extension of a manufacture of a
		-			
		• •			
				'	
	,				
				· .	
	<b>b</b> -				
		• • • • • • • • • • • • • • • • • • • •			
					· · · · · · ·
			£		
				· ·	
	•			-	
		-			
		-			
-			**		
•					•
	•				
					· · · · ·

Reflection Coeffts.

-.2647

-.5182

HY 27.1	Grud	Ref:	SF	1551	7165	Azimuth:	320
111 2/11	01.10	e	<u> </u>	1001	,100	He rine city	220

INPUT DATA						FIELD CU	RVE DATA		INTERPRETED MODEL			
Electro	ie J À	С	D1	מב	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
.5	26.0000	24.8000	21.7000	21.3000	1.2820	1	.5	67.54	.55		81.0	
1.0	6.6400	6.3700	5.6500	5.2500	.2660	2	1.0	34.24				
2.0	1.8460	1.7540	1.3670	1.4940	.0900	3	1.5	22.87		.55		7053
4.0	.8970	.8440	. 6260	.6590	.0510	4	2.0	17.98				
8.0	.5120	.4770	.3680	. 3710	.0350	5	3.0	16.22	2.85		14.0	
16.0	. 2830	. 2650	.2110	. 2090	.0170	6	4.0	16.15				
32.0	.1520	.1450	.1080	.1120	.0090	7	6.0	17.61		3.40		. 2222
						8	8.0	18.57				
						9	12.0	20.64			22.0	
						10	16.0	21.11				
	PRO	CESSING R	ESULTS			11	24.0	21.42			*******	
	1.40		200210			12	32.0	22.12				

PROCESSING	RESULTS

. -

ĺ 1

1

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5	67.54 34.24	0031 .0006	0186 0734	.0983 .1445
2.0	17.98	.0011	.0888	.0050
3.0 4.0	16.22	.0022	.0514	.0479
6.0 8.0	17.61 18.57	0.0000	.0081	.0119
12.0	20.64 21.11	.0005	0095	.0043
24.0 32.0	21.42	~.0000	.0364	0.0000
48.0 64.0	24.12 26.54			

R.M.S. Observational Error = .0020 R.M.S. Offset Wenner Difference = .0503 R.M.S. Potential Ladder Difference = .0742

R.M.S. Relative error = .0284 Maximum rel.error = .0504 at sample 2 Number of trials was 0

PLOTTED RESULTS

.

• . . HY 27.2 Grid Ref: SP 1546 7164 Azimuth: 44

		INPUT D	ATA			
Electrode Spacing	A	С	D1	D2	в	
.5 40 1.0 15 2.0 6 4.0 2 8.0 16.0	.4000 5.1000 5.9500 2.1400 .8720 .3160	38.1000 14.6500 6.8200 2.0700 .8320 .2960	28.0000 9.3800 2.9200 .7860 .3790 .1940	34.5000 13.7790 6.1300 1.9870 .7490 .2650	2.3100 .4440 .1250 .0710 .0400 .0190	

#### PROCESSING RESULTS

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5	98.17	0002	.2080	.0914
1.0	72.73	.0004	.3793	.1802
1.5	58.29			
2.0	56.80	.0007	.7094	1.1570
3.0	49.70			
4.0	34.85	0005	.8662	.7110
6.0	34.73			
8.0	28.35	0000	.6560	.6678
12.0	27.58			
16.0	23.07	.0032	.3094	0.0000
24.0	24.24			
32.0	26.93			

R.M.S. Observational Error = .0014 R.M.S. Offset Wenner Difference = .5725 R.M.S. Potential Ladder Difference = .6828

	FIELD CUF	RVE DATA		INTER	RETED MODEL	
	Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
1	.5	98.17	.22		151.4	
2	1.0	72.73				
3	1.5	64.00		- 22		3211
4	2.0	56.86				
5	3.0	40.00	1.00		77.8	
6	4.0	34.85				
7	6.0	30.00		1.22		3661
8	8.0	28.35				
9	12.0	25.00	2.39		36.1	
10	16.0	23.07				
				3.61		2217
					23.0	
					*******	

#### R.M.S. Relative error = .0306 Maximum rel. error = .0474 at sample 6 Number of trials was 0

#### PLOTTED RESULTS

· ·												: · ·		•	• •			• .			• •	
										•		1 e		· · .				• `				2.5
								• •						• • •.							•	· •
																						· · · ·
																		. •			· · .	1.1.1.1.1.1
														•	•							·
										•												
				•								· .										5. s
														÷.,	•			· •	•			
		•										•						•				
											•		:	·· ·	· •	•	• •		•••			
												· •	- 1	•				•				÷ .
																		•				:
						÷								: :		•				-		1. 1. 1. 1. 1.
														1	. :				;			· ·
															-			•				
																						•
																			;			
			•	• •																	•	
							1						÷.,									
							2					•							1			•
								· .		•		· ··							;			
	•					•	•		÷.										- ° -			1.12
									· · · .													÷.,
											•											
					••	1.1	. *				- <b>N</b> ee - 20	· ·		ć. –		••			3			2.00
	•			:								κ.		÷					,			: *
				÷ .	·	4.1			- ÷.				***		*				. :			4
			-								•			. •	÷							· · · ·
	•	•		•					•								-					
									· · ·			:										
			•										•	• •				· •			17 T T	
			•	÷	: ·	÷ +															•	· ·
			•	:	: '	: •	:		:			:			·							
				•	• •	: •	:		:		•	•		• :	•				-			
				•	• • •	: •	:		:		:	•		·	•				:			
			•	•	•	: •	:		:		:	•	:	· : : •	•				:			

HI	27.3	Grid	Ret: SP	1552	/4/2 Azimuth:
		INPUT D	ATA		
Electro	de g A	С	D1	D2	в
.5 1.0 2.0 4.0 8.0 16.0	34.1000 8.6900 2.7300 .8930 .4640 .2590	32.4000 8.2800 2.6200 .8390 .4340 .2430	29.2000 7.7600 2.2100 .6950 .3290 .1850	27.0000 7.3200 2.1700 .7160 .3410 .1930	0 1.7750 0 .4060 0 .1100 0 .0530 0 .0270 0 .0150

#### PROCESSING RESULTS

Électrode Spacing	Wenner Resistivity	Öbserved Error	Offset Error	Lateral Error
.5	88.28	~.0022	0783	.0656
1.0	47.38	.0005	0584	1612
1.5	32.97			
2.0	27.52	.0000	0183	.1095
3.0	21.71			
4.0	17.73	.0011	.0278	1001
6.0	17.47			
8.0	16.34	.0065	.0358	.0313
12.0	17.80			
16.0	19.00	0039	.0423	0.0000
24.0	20.65			
32.0	21.90			

R.M.S. Observational Error = .0032 R.M.S. Offset Wenner Difference = .0480 R.M.S. Potential Ladder Difference = .1032

RVE DATA		INTERP	PRETED MODEL	
Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeftts.
88.28	.28		166.9	
47.38				
35.00		.28		5679
27.52				
20.00	1.01		46.0	
17.73				
16.50		1.29		~.5620
16.84				
17.80	2.43		12.9	
19.00				
	RVE DATA Apparent Resistivity 88.28 47.38 25.00 27.52 20.00 17.73 16.50 16.84 17.60 19.06	Barbar         Apparent           Resistivity         Thickness           88.28         .28           47.38         .28           25.00         .27.52           20.00         1.01           17.73         16.50           16.84         .2.43           19.06         2.43	Apparent Resistivity         Interf           88.28         .28           47.38         .28           27.52         .28           20.00         1.01           17.73         16.50         1.29           16.84         2.43           17.80         2.43	Apparent Resistivity         INTERPRETED MODEL           Apparent Resistivity         Thickness         Depth         Rho           88.28         .28         166.9           47.38         .28            25.00         .28            27.52         .28            20.00         1.01         46.0           17.73         16.50         1.29            16.84         17.80         2.43         12.9           19.00         19.00         12.9         14.9

3.72

------

19.0 ***** .1912

F.M.S. Relative error = .0281 Maximum rel. error = -.0449 at sample 6 Number of trials was .0

4

PLOTTED RESULTS

80

HY 35.1 Grid Ref: SP 2025 7237 Azimuth: 71

	INPUT DATA					FIELD CU	RVE DATA		INTERPRETED MODEL			
je J	A	С	D1	D2	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
73.2	2000	68,7000	55.4000	52,7000	4.4900	1	.5	169.80	4.76		170.1	
35.0	0000	33.0000	25.6000	27.5000	2.0700	2	1.0	166.82				
17.7	200	16.7400	13.5300	12.4800	.9790	3	1.5	163.57		4.76		5809
7.2	2700	6.8100	5.6900	5,9400	.4530	4	2.0	163.43				
2.2	2400	2.1200	1.9840	1.7640	.1230	5	3.0	156.85			45.1	
.7	480	.7180	.5850	.5650	.0280	6	4.0	146.15				
						7	6.0	125.10			*******	
						8	B.0	94.20				
						9	12.0	67.42				
	PRO	CESSING F	RESULTS			10	16.0	57.81				
						11	24.0	50.76				

Electrode Wenner Observed Offset Lateral Spacing Resistivity Error Error Error 169.80 166.82 163.57 163.43 156.85 146.15 125.10 94.20 67.42 57.81 50.76 57.89 .0001 -.0020 -.0500 .5 .0520 .5 1.0 1.5 2.0 3.0 4.0 -.0066 .0006 -.0807 .1432 .0010 .0430 .0327 6.0 8.0 -.0013 -.1174 -.0746 12.0 16.0 24.0 32.0 .0027 -.0348 0.0000

Electrode Spacing A

16.0

.5 73.2000 1.0 35.0000 2.0 17.7300 4.0 7.2700 8.0 2.2400 16.0 .7480

R.M.S. Observational Error = .0015 R.M.S. Offset Wenner Difference = .0719 R.M.S. Potential Ladder Difference = .0773

R.M.S. Relative error = .0281 Maximum rel. error = -.0527 at sample 11 Number of trials was 0

#### PLOTTED RESULTS

• •												
	. '	· · · · ·	·					. :.'				
							•	r				
		•					:				· ·····	Se See 2. 19
		· · ·	et e 19 e 19	· · • • •				:	·			
							. :	· · · ·	·		:	
		:										
		·					· ·		11			
								· · · · · · · · · · · ·	·			·
							:					
			· · · · · ·									
				. •								
	1					·:						·
	:			- :			•	* • • •		•		
	•								. : *		:	
		· ·		: •								
				,			· · · · · · · · · · · ·	a , .d				
			· .				: :	: 1 : :				
			D		· · · · · · · · · · · · · · · · · · ·	· • ·						
	•		• • •							:		
								1. 1 1 1				
							•	1 A A A A A A A A A A A A A A A A A A A		:		
							· .	20	: • .			
							·	1 t. X				
		: i		· . ·								
							:					
									1 I V			
			• •									
			1	· · .			· ;				···· ·	
	•					:				· · · ·		
,		· · ·								<b>-</b> -	'	· · · · · · · · · · · · · · · · · · ·
									• •		:	
						•• • ••		pr p				
								*				
						:						· · · ·
			1. 4.		•• •	***	· · · ·	÷			''	·
	:	· .	· · ·			:	· .					
							· :					
	•		:			1		1 2 4 4				
			·					·				
		· ·										
							:	1				
							:	· .		:	-	
		: :	1 . '						1.1		:	
			+ : -									· . ·
		. :	1				1 .	:			1	
							•					

Grid Ref: SP 2024 7242 Azimuth: 350 HY 35.2

#### INPUT DATA

Electro Spacin	de g A	С	D1	D2	в
.5	52.9000	50.4000	40.4000	37.3000	2.5600
1.0	24.2000	11.4000	9.5000	7.9900	.7530
4.0	6.7300	6.3100	5.0900	4.9000	.4150
8.0 16.9	.8160	.7640	.7250	. 6980	.0500

#### PROCESSING RESULTS

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5	122.05	0011	0798	.1469
1.0	111.90	.0007	1457	.0820
2.0	109.89	0002	1727	.0312
4.0	125.54	.0007	0380	.1029
6.0	122.61	.0007	0412	.0143
12.0	91.32			
16.0	71.53	.0025	0379	0.0000
32.0	21.49			

R.M.S. Observational Error = .0012 R.M.S. Offset Wenner Difference = .1012 R.M.S. Potential Ladder Difference = .0897

	FIELD CUP	VE DATA		RETED MUDEL					
	Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.			
1	.5	122.05	.48		126.8				
74774	1.0	111.90 113.11 109.89		.48		1142			
5	3.0	119.51	2.01		100.8				
6 7 8	4.0 6.0 8.0	125.54 122.61 109.83		2.49		.3731			
9	12.0	91.32	2.76		220.8				
10	16.0	71.53		5.25		6447			
					47.7				
					*******				

R.M.S. Relative error = .0276 Maximum rel. error = .0482 at sample _2 Number of trials was __0

#### PLOTTED RESULTS

:					· · · ·
	:				
		• •	••••		
	· ·			•	
			· . ·		
	· · · · ·		• •		

156

INPUT DATA													
Electro Spacin	de g A	С	D 1	DC	в								
.5 1.0 2.0 4.0 8.0 15.0	29.2000 12.7500 6.4100 2.8700 .9130 .3270 .1520	27.8000         12.0500         6.0500         2.7300         8620         .3060         .1450	28.0000 10.5900 2.5800 .9010 .2730 .1150	19.0300 7.3600 4.0200 2.0000 .6840 .2370 .1040	1.3800 .6840 .3720 .1330 .0500 .0180 .0070								

Electrode Spacing	Wenner Resistivity	Ubserved Error	Offset Error	Lateral Error
.5 1.0	73.87 56.39	.0007	3815 3599	0215
1.5	58.45 60.57	0019	3320	.0346
4.0	57.55 49.11	.0024	2533	.0594
8.0	39.84 33.22	.0011	2738	2256
16.0	25.64	.0092	1412	0214
48.0 64.0	23.88 28.55	0.0000	1005	0.0000

R.M.S. Observational Error = .0037 R.M.S. Offset Wenner Difference = .2814 R.M.S. Potential Ladder Difference = .1126 R.M.S. Relative error = .0220 Maximum rel.error = .0441 at sample 1 Number of trials was 0

FIELD CURVE DATA

Apparent Resistivity

> 73.87 56.39 58.45 60.57 61.11 57.55 49.11 39.84 50.00 25.64 22.67 23.88

Electrode

Separation

 $\begin{array}{c} .5\\ 1.0\\ 1.5\\ 2.0\\ 3.0\\ 4.0\\ 8.0\\ 12.0\\ 16.0\\ 24.0\\ 32.0\\ 48.0 \end{array}$ 

### PLOTTED RESULTS

120456789

-																											
			•••	• •			•							5.1	•••		•	· · .			-		··. · ·	2.			
							• •		.,				."	1		• `											
				• •	· '					•	. '	•														· · ·	
	1.00		۰.	۰.	·.			• •	•					: :		• •					- 1		•••		• • ••	- 1	
	•		,		•			 																			
			•										:	:													:
			• •		· '			• •		-	-	:	'					***				• •			÷	÷	1
					•						٤	•											•			•	
• •					۰.		• •	 ••	۰.				•	2.0	÷ .	~,			-				. *			: .	
															۰.								:		÷		
														5		:							:	•		: ;	
 					•		• •	 	- i				• • •		· ·	• •	-		•		• •••	·	•	.*	•		
															:											:	
						:																		1			
				. :											:											•	
 						· .			· .			:		-		•			-					•	·*• •		
	:							• •	•								• •					-				•	•
															-	. '				*							
		•	Ξ,			· ·			*				-									-	-		• •		
				• •		5	. •	•	4	••	κ.																
						<i></i>	· .								•••							. ,					
																										:	
											-				٠.							•	· ·			:	, °
																							:			۰.	
		•	•											:			· ••						•			:	
			:					•										· .									
																								~		· .	
 · · .																									. :	1.1	
				. •																				:			
																											•
														•	. '									•			۰.
																									-		

1

•

.

. .

INTERPRETED MODEL

Thickness Depth

.30

1.15

4.15

. 30

.85

5.00

Rho

_____

******

102.7

43.8

80.9

21.5

Reflection Coeffts.

-.4020

.2975

-. 5801

HY	53.2	Grid	Ref:	SP	1577	6928	Azimuth:	5

		INPUT D	ATA				FIELD CU	RVE DATA		INTER		
Electro Spacır	ide ig A	С	D 1	02	B		Electrode Separation	Apparent Registivity	Thickness	Depth	Rho	Reflection Coeffts.
.5	124.8000	118.0000	94.6000	92.3000	6.5000	1	.5	293.58	.48		301.5	
1.0	46.1000	43.6000	30.6000	39.0000	2.5200	2	1.0	218.65				
2.0	15.9700	14.8900	12,9100	12.0100	1.0600	3	1.5	175.00		.68		3673
4.0	5.6700	5.0800	4.5400	4.9800	.2750	4	2.0	156.58				
8.0	1.2810	1.2240	1.0890	1.1140	.0520	5	3.0	134.80	2.95		139.5	
16.0	.3410	. 3240	.2560	.2580	.0130	6	4.0	119.63				
32.0	.1520	.1400	.1110	.1100	.0090	7	6.0	80.88		4.63		7351
						8	8.9	55.37				
						9	12.0	34,38			21.3	
						10	16.0	25.84				
	PR	OCESSING F	RESULTS			11	24.0	21.82			******	
		-				12	32.0	22.22				
Electro	ode We	nner Ot	served (	)ffset L	ateral.	13	48.0	24.78				

PLOTTED RESULTS

R.M.S. Relative error = .0285 Maximum rel. error = -.0443 at sample Number of trials was 0

Electrode Spacing	Wenner Resistivity	Observed Error	Üffset Error	Lateral Error
.5	293.58 218.65	0.0000 0004	0246	.2141
1.5	185.19 156.58	.0013	0722	.0125
4.0	119.63	.0026	.0924	.0693
8.0	55.37 34.38	.0039	.0227	0140
16.0	25.84	.0118	.0078	. 1.236
52.0 48.0 64.0	22.22 24.28 24.85	.0199		0,000

K.M.S. Observational Error = .(0)90 R.M.S. Offset Wenner Difference = .1023 R.M.S. Potential Ladder Difference = .1345

WARNING: The observed error for spacing oils greater than 1% There may be an incorrect input data value

WARNING: The observed error for spacing 7 is greater than 1% There may be an incorrect input data value

Offset

Error

.0143 -.0528

-.0329

.0620

.0138

.0129

-.0088

PROCESSING RESULTS

Observed

Error

.0007

.0007

.0004

.0015

.0080

.0062

R.M.S. Observational Error = .0039 R.M.S. Offset Wenner Difference = .0345 R.M.S. Potential Ladder Difference = .1099

Electrode Wenner Spacing Resistivity

.5 1.0 1.5 2.0 4.0 6.0 12.0 14.0 14.0 24.0 24.0 48.0

64.0

 $\begin{array}{c} 198.39\\ 190.38\\ 185.12\\ 175.80\\ 175.80\\ 177.02\\ 166.25\\ 122.70\\ 87.21\\ 51.65\\ 31.06\\ 24.02\\ 22.82\\ 25.84\\ 32.15 \end{array}$ 

		INPUT D	ATA				FIELD CU	RVE DATA	
Electro Spacin	ode Ig A	С	D1	D2	в		Electrode Separation	Apparent Resistivity	Thick
.5	86.6000	81.8000	62.7000	63.6000	4.7400	1	.5	198.39	
1.0	40.5000	38.3000	31.1000	29.5000	2.2400	2	1.0	190.38	
2.0	18.0800	16.7400	14.2200	13,7600	1.3270	3	1.5	185.12	
4.0	8.2500	7.8400	6.4100	6.8200	.4070	4	2.0	175.80	
8.0	1.9620	1.8890	1.7230	1.7470	.0700	5	3.0	177.02	4.
16.0	.3780	.3570	.3070	.3110	.0180	6	4.0	166.25	
32.0	.1610	.1530	.1140	.1130	.0070	7	6.0	122.70	
						8	8.0	87.21	
						0	10.0	E1 / E	

Lateral

Error

.1164 .0705

-.0834

.2069

.0031

-.0646

0.0000

#### INTERPRETED MODEL Reflection Coeffts. ness Depth Rho

1 .5 198.39 .70 198.3 2 1.0 190.38	
2 1.0 190.38	
3 1.5 185.12 .700366	
4 2.0 175.80	
5 3.0 177.02 4.60 184.3	
6 4.0 166.25	
7 6.0 122.70 5.307876	
8 8.0 87.21	
9 12.0 51.65 21.9	
10 16-0 31-06	
15 48.0 23.84	

R.M.S. Relative error = .0286 Maximum rel. error = .0475 at sample 10 Number of trials was 0

### PLOTTED RESULTS

	• •									•	-	•					·	•	· • •	۰.	••			11.1					•	۰.	
							· . ·				•	• •					1	···: ·	• • •	-				•••						• •	
				• •			• •					•	•		•				• ••	1.1			• • • •	1		11		۰.	· · .		٠
						· .				• •						· •	-1-								••						
								۰.			. 1			÷	. 1	- 1		:						·			. :				
																			-												
								••		• •					• • •			• •					****							• •	. 1
																												·	. :		
	•		. *			•	••	•		· ·				•	:	•			· · .											•	•
					•												7										. '				
							:									•													•		
							1																			:		· .			
						-														• •											
•••				5.00	ć	• •	· • • ·	÷.,		~	۰.						· ··			••••	•	•••	•	. `	•				. '	. :	
						; .					•			•		,													• •	÷ .	
						5	:																			•					
			•					•						•						· .										· .	
		•						•								•	•														
				÷										·						·							. '				
																		·		· ···				• ."			1.1	· · ·	·	. `	
				. '		÷.	···.		· .	· `.	·		· .						۰.			· · .		· .				• •			
																														1	
				:			-												1										-	1.1	-
•																			•••	•									-		
				•										•						•	-										
								· · ·					•					•	• ·												
	:							÷ .																							
																			:												
					:	:								-										;							
		•		••	-					• •				21		۰.	:						•							•	
																								1.1					•	:	
														:											•					•	
			 · · ·			۰.														. '											
																				۰.				•					;		
				1			. 1											:		. '											
			•	•	•									:						:								•		. :	
						. '	1																								
		;						:												-											
								i.						۰														۰.		•	

HY 99.1 Grid Ref: SP 1477 6179 Azımuth: 31

		INPUT D	АТА				FIELD CU	RVE DATA		INTER		
Electro Spacin	de g A	С	D1	DD	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
.5	135.0000	126.2000	99.3000	91.1000	8.7700	1	.5	299.08	. 34		284.0	
1.0	68.2000	64.6000	51.6000	52,7000	3.5700	2	1.0	327.67			20110	
2.0	19.5200	18.8000	17.6000	16.1500	.7080	3	1.5	276.26		- 34		1400
4.0	3,4900	3.3800	2.8300	2.8500	.1090	4	2.0	212.06				.1400
8.0	.7950	.7470	.6000	.6140	.0470	5	3.0	131.85	1.27		376.5	
16.0	.3420	.3220	.2580	.2610	.0190	6	4.0	71.38			2.0.0	
						7	6.0	38.00		1.61		- 8676
						8	8.0	30.51				.00/0
						9	12.0	27.99			76 7	
	PR	DCESSING R	ESULTS			10	16.0	26.09			2017	

#### PROCESSING RESULTS

Electrode Spacing	Wenner Resistivity	Übserved Error	Offset Error	Lateral Error
.5	279.08	.0002	0861	.0947
1.0	327.67	.0004	.0211	.2386
1.5	276.26			
2.0	212.06	.0006	0859	.1799
3.0	131.85			
4.0	71.38	.0003	.0070	.3904
5.0	42.39			
8.0	30.51	.0013	.0231	.0413
12.0	27.99			
16.0	26.09	.0027	.0116	0.0000
24.0	24.84			
32.0	25.32			

R.M.S. Observational Error = .0013 R.M.S. Offset Wenner Difference = .0516 R.M.S. Potential Ladder Difference = .2247

R.M.S. Relative error = Maximum rel. error = . Number of trials was = .0302 .0521 at sample 10 O,

#### PLOTTED RESULTS

. .

> . .

******

HY 99.2

1

ŧ

Grid Ref: SP 1483 6177

Azimuth: 294

		INPUT D	АТА			
Electro	de					
Spacin	g A	С	D1	D2	в	
.5	56.9000	54.2000	42.3000	39.6000	2.7400	
1.0	28.5000	26.9000	21.3000	20,3000	1.5920	
2.0	12.6600	11.9000	10,3400	9.4000	.7550	
4.0	3.8900	3.6800	3.3400	3.3100	.1990	
8.0	.9610	.9080	.8000	.7820	.0540	
16.0	.3890	. 3690	.2940	.2920	.0200	

#### PROCESSING RESULTS

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5 1.0	128.65	0007	0659	.1361
1.5	133.72	00004	- 0957	1117
3.0	108.58	0079	- 0090	- 0446
6.0 8.0	56.63	- 0010	- 0000	- 1007
12.0	29.91	0.0000	0228	1025
24.0	28.43	0.0000	-,0068	0.0000

R.M.S. Observational Error = .0013 R.M.S. Offset Wenner Difference = .0522 R.M.S. Potential Ladder Difference = .1071

# an 4567890 1.0 1.5 2.0 3.0 4.0 8.0 12.0 16.0 24.0 108.58 83.57 56.63 39.76 29.91 29.46 28.43 11 R.M.S. Relative error = Maximum rel. error = . Number of trials was = .0288 .0567 at sample 2

FIELD CURVE DATA

Apparent Resistivity

128.65

100.69 100.72 100.72 108.58

Electrode Separation

1

.5

0

## ------

· · ·		····									·····	·		
		·····.	·		•			:						
	· . ··	:		·		· .			•.			··. ·	•••••	··· · · · ·
			• •				• •	÷ .	. ·			•••	• .	
		•	· . :	:::		·	·:				·· ;			
			:						. •	:				
:		÷	÷.	••••.			: <b>*</b> . •	• • • • •	 	·	:.	•		·. ·:
•			·									5		
	•••		:	•					•			•		: .
• •								: .	1	i.			• •	Ϊ.
					•	• •		• •	• . •	: :· *	• •	-	:	
: .	·	· · · ·	1 3	:				· · ·	· · ·		. •		.: `	·
		. :	:	• •				:	· : :	•				
	·	·		·				. •	· · ·		:	· · ·		••••

INTERPRETED MODEL

.22

2.66

Rho

******

23.5 ******

95.9

147.8

28.1

Thickness Depth

. 77

2.44

Reflection Coeffts.

.2130

-.4805

HY 99.3 Grid Ref: SP 1483 6177 Azimuth: 322

## 

Electro	de					
Spacir	ng í	A	C	D1	DC	в
.5 1.0 2.0 4.0 8.0	173.90 100.10 34.20 4.10 .75	000 000 000 700 540	163.3000 94.8000 32.6000 4.0600 .7130	112.5000 71.2000 28.0000 4.5000 .6000	128.4000 76.2000 29.9000 4.1700 .6060	10.4700 5.2800 1.5080 .1370 .9430
16.0	.3:	230	.3040	.2400	.2320	.0160

#### PROCESSING RESULTS

Electrode Spacing	Wenner Resistivity	Observed Error	Offset ' Error	Lateral Error
.5	378 40	0007	1720	0922
1.0	463.07	.0002	.0678	.2292
1.5	434.78	- 0027	0454	3501
3.0	242.63			
4.0	108.95	0017	0761	9617
8.0	30.31	0.0000	.0100	0009
16.0	23.73	.0093	0339	0.0000
24.0	24.20			
and and the first	-/.71			

R.M.S. Observational Error = .0040 R.M.S. Offset Wenner Difference = .0746 R.M.S. Potential Ladder Difference = .4710

i

.

	FIELD CU	RVE DATA		INTERPRETED MODEL						
	Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.				
1	.5	378,40	.19		206 6					
2	1.0	463.07			22010					
5	1.5	434.78		19		5007				
4	2.0	363,80		• • • /		- J_ 7_J				
5	3.0	200.00	. 98		471 -					
6	4.0	108.95			0/1.0					
7	6.0	47.00		1 17		- (050				
8	8.0	30.31				0032				
9	12.0	24.55	1.00		145 1					
10	16.0	23.73			100.1					
11	24.0	24.20		2.37		7508				

R.M.S. Relative error = .0318 Maximum rel. error = -.0481 at sample Number of trials was ບ 8

#### PLOTTED RESULTS

	•	•	·		
•			٠		
			•		
				•	

- .

HY 106.1 Grid Kef: SP 1931 6440 Arimuth: 301

1. . .

1

1

INPUT DATA						FIELD CUP	RVE DATA		INTERPRETED MODEL			
Electrode Spacing	PA	С	D1	D7:	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
.5 1.0 2.0 4.0	39.2000 11.4600 3.3000 1.3420	37.0000 11.0400 3.1300 1.2750	36.7000 7.3600 2.5100 1.0320	23.5000 9.8200 2.6100 1.0150	2.1900 .4030 .1720 .0820	1 2 3 4	.5 1.0 1.5 2.0	110.27 54.00 38.00 32.17	.39	. 39	158.5	5826
8.0 16.0	.7000 .3780	.6540 .3540	.5130 .2760	.5040 .2760	.0420 .0230	5 6 7	5.0 4.0 6.0	27,00 25,72 25,47	.73	1.12	41.8	2921
	PRC	CESSING F	ESULTS			8 9 10	8.0 12.0 16.9	26.60 27.75	2.47	3.59	22.9	.0840
Electrod Spacing	e Wer Resist	iner Öb Sivity	served ( Error	)ffeet L Error i	ateral Error						27.1	

27.5 *****

#### PLOTTED RESULTS

.5	110.27	.0003	0912	2784	*****
1.0	54.00	.000a	.2874	.4564	
1.5	35.72				
2.0	32.17	000a	.0391	.0560	8.M.S. Kelative error = $.0179$
5.0	29.42				Maximum ref. error = $0210$ at sample 10
4.0	25.72	0111	0166	0195	Number of trials was 1
5.9	25.47				
8.0	25.5o	.0057	0177	.0340	
12.0	26.50				PLOTTED RESULTS
16.0	27.75	.0026	0.0000	0.0000	
24.0	29.76				
32.0	71.55				and the second
R.M.S. 0	bservational	Error = .	0052		(a) A set of the se
R.M.S. 0	iffset Wenner	Differenc	e = .1245		
R.M.S. P	otential Lad	der Differ	ence = .2	410	
WARNING:	The observe	d error fo	r spacing t data va	4 is greate	er than 1%
11101 0 1110	y De an Inco	neee inpe	c water ve		

Grid Ref: SP 1926 6441 Azimuth: 33 HY 106.2

INPUT DATA							FIELD CURVE DATA				INTERPRETED MODEL		
Electrod Spacing	e A	C	Di	02	в		Electrode Separation	Apparent Resistivity	Thiclness	Depth	Rho	Reflection Coeffts.	
. 5	37.4000	36.3000	31,8000	26.8000	1.1030	1	.5	92,05	.37		170.6		
1.0	7.0200	<b>~.</b> 0300	8.0000	5.7300	. 3060	2	1.0	36.85					
2.9	2,3900	2.2500	1.7870	1.8110	.1300	5	1.5	24,00		. 37		7834	
4.0	1.2060	1.1040	.8960	.8510	.0710	4	2.0	22.61					
8.0	. 6690	. 6260	.4900	.4870	.0400	5	3.0	21.89	3.03		20.7		
						6	4.0	21,97					
						7	6.0	23,45		~. 4·)		. 1411	
						8	8.0	24.55					
	PRO	CESSING R	ESULTS			9	12.0	26.56			27.5		
						10	16.0	27.93					

Spacing	Wenner Resistivit∨	Observed Error	Offset Error	Lateral Error
.5	92.05	0001	1705	. 6933
1.0	16.05	~.0022	~.0460	.1433
1.5	28.60			
2.0	22.01	.0042	133	-0214
3.0	21.89			
4.0	21.97	.0008	0503	.0332
0.0	23.45			
8.0	24.55	.0045	~.0061	0.0000
12.0	26.56			
10.0	S			

P.N.S. Observational Error = .0029 F.M.S. Uttert Wommer Difference = .0825 R.M.S. Potential Ladder Difference = .1546

R.M.S. Relative error = -0.082Matimum rel. error = -0.412 at sample () Number of trials was = 0

#### PLOTTED RESULTS

..

. • · · · · · · · · · HY 106.3 Grid Ref: SP 1934 6435 Azimuth: 48

INPUT DATA							
Electro Spacin	de g A	С	01	D2	в		
.5 1.0 2.0 4.0	62.7000 13.9700 3.3800 1.3130	58.8000 13.4200 3.2100 1.2240	52.6000 10.3500 2.7000 .9750	59.1000 13.9600 2.6600 1.0320	3.9600 .5310 .1730 .0860		

#### PROCESSING RESULTS

Electrode	Wenner	Obser ved	Offset	Lateral
Spacing	Resistivity	Error	Error	Error
_				
.5	175.46	0010	.1164	-,2596
1.0	76.37	.0014	.2970	0246
1.5	37.61			
2.0	33.68	0009	0149	.0267
3.0	27.96			
4.0	25.22	.0023	.0568	0610
6.0	25.17			
8.0	25.41	0028	.0495	0.0000
12.0	27.38			
16.0	31.08			

R.M.S. Observational Error = .0018 R.M.S. Offset Wenner Difference = .1467 R.M.S. Potential Ladder Difference = .1346

5
7340
.9
1911
7

INTERPRETED MODEL

INTERPRETED MODEL

Rho

------

-----

511.8

361.5

24.7

Thickness Depth

24

1.66

.

.24

1.42

з

Reflection

Coeffts.

-.1721

~.8721

R.M.S. Relative error = .0326 Maximum rel. error = .0495 at sample _2 Number of trials was __0

FIELD CURVE DATA

Apparent

Resistivity

407.94

407.94 527.04 275.00 220.48 110.00 61.20 52.75 27.42

24.49

0

= .0289 .0418 at sample

Electrode

.5

1.0 1.5 2.0 3.0 4.0

6.0 8.0

12.0

R.M.S. Relative error = Maximum rel. error = . Number of trials was

PLOTTED RESULTS

Separation

1 (1 )) 4 (2)

6 7

8

FIELD CURVE DATA

#### PLOTTED RESULTS

. . . Τ. . . . . . · ·· ·· : · ..... . .... t i i i : 33 1 .. ι, · .. . .. ÷ x3 (1 · ٠. · ÷ ... 4.14 :

HY 108.1 Grid Ref: SP 1593 6381 Azimuth: 28

INPUT	DATE
	~

Electrode Spacing Ĥ £. D1 DC в .5 173.0000 163.3000 137.1000 122.6000 9.7700 1.0 45.7000 2.0 20.8000 4.0 2.3100 8.0 .7190 a5.2000 57.4000 20.0000 16.8900 2.1700 2.4600 .6850 .5290 50.7000 2.5100 .7430 .1220 .0360 18.2000 2.4100

#### PRÜCESSING RESULTS

1

٤

ť.

Electrode	Wenner Resistivity	Observed Error	Offset	Lateral
opulating	nebeber ney	2		
.5	407.94	0004	1117	.1420
1.0	327.04	0002	0519	.1352
1.5	259.55			
2.0	220,48	.00.27	.0747	.5195
3.0	155.02			
4.0	61.20	.0078	0205	9702
6.0	72.75			
8.0	27.42	0028	.0605	0.0000
1.2.0	-4.44			
16.0	27.80			

R.M.S. Observational Error = .0009 R.M.S. Offset Wenner Difference = .0.05 R.M.S. Potential Ladder Difference = .5589 HY 108.2 Grid Ref: SP 1601 6374 Azimuth: 46

INPUT DATA				FIELD CURVE DATA			INTERPRETED MODEL					
Electro	de g A	С	D1	02	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
.5	35.2000	34.1000	30.0000	22.2000	1.0780	1	.5	82.00 48.73	.57		98.1	
2.0	3.1700	3.0200	2.3500	2.3600	.1470	3	1.5	35.00		.57		6242
8.0	.7220	.6810	.5410	.5450	.0430	5	3.0	25.78	1.96		22.7	
						7	6.0	28.22		2.53		.1202
	PRO	CESSING F	RESULTS			9	12.0	27.17			28.9	

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5	82.00	,0006	2989	.5330
1.0	48.73	0011	.0529	2536
1.5	42.09			
2.0	29.59	.0009	.0042	.1252
3.0	25.78			
4.0	26.79	.0028	1538	0067
6.0	28.22			
8.0	27.29	0028	.0074	0.0000
12.0	27.17			
16.0	27.56			

R.M.S. Observational Error = .0019 R.M.S. Offset Wenner Difference = .1522 R.M.S. Fotential Ladder Difference = .3017

R.M.S. Relative error	= .0285
Maximum rel. error =	.0550 at sample 9
Number of trials was	0

#### PLOTTED RESULTS

	المدار الأراجا				
			T. 1111		in the state of th
· · · · · · · · · · ·					·
		٤.	.i •i	····· · · · · · · · · · · · · · · · ·	ta a sa sa sa sa sa sa sa
	•			:	
			· · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·
			· · · ·	· ·	:
· · ·				· · · · · · · · ·	
		1		· ·	- 1 1 + 1 + 1
· · · · · · · · · · · · · · · · · · ·	a shart a fa				t and the sum light
				. '	
				1	
: :	· · · ·	•		1	
			. i . i .	:	
	1 <b>1</b> 1 1 1 1 1 1 1				
				· · · · · ·	
· ·			¹		and the second second
•					· · · · · · · · · · · · · · · · · · ·
			· · · · .		
				• :	
				:	
			1		2 2 2 2 2 2
	· .				· · ·
				:	·
		[.]			

*******

HY 108.3 Grid Ret: SF 1599 6360 Azımuth: 8

INPUT DATA							
Electroc Spacing	ie A	С	D1	DÇ	в		
.5 1.0 2.0 4.0 8.0	32.7000 8.5600 3.0400 1.4070 .7330	31.7000 8.0900 2.8900 1.3230 .6870	23,8000 6,9600 2,2700 1,0000 ,5280	23.0000 6.9700 2.3600 1.0520 .5650	1.0150 .4800 .1560 .0840 .0460		

PROCESSING	RESULTS	

.

1

Electrode Spacing	Wenner Resistivity	Observed Error	Offset Error	Lateral Error
.5	73.51 43.76	0005 0012	0342	.6906 0161
1.5	38.69 29.09	0020	.0389	.0577
3.0 4.0	25.38 25.79	0.0000	.0507	.0435
6.0 8.0	26.93	0.0000	.0677	0.0000
12.0	28.33			

R.N.S. Observational Error = .0010 R.M.S. Offset Wenner Difference = .0444 R.M.S. Potential Ladder Difference = .3473

	FIELD CUP	RVE DATA		INTER	PRETED MODEL	
	Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
1	.5	73.51	.53		86.6	
2	1.0	43.76				
3	1.5	34.00		.53	the set of the set of the set	5674
4	2.0	29.09				
5	3.0	25.38	2.01		23.9	
6	4.0	25.79				
7	6.0	26.93		2.54		.0825
8	8.0	27.47				
9	12.0	28.33			28.2	
10	16.0	28.25				
					******	

R.M.S. Relative error = .0291 Maximum rel. error = -.0543 at sample - 4 Number of trials was = 0

#### PLOTTED RESULTS

-

INPUT DATA							FIELD CU	RVE DATA	INTERPRETED MODEL				
Electroc Spacing	A	С	D1	DC	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.	
.5	47.0000	45.1000	31,4000	36.4000	1,9320	1	.5	106.50	.68		121.2		
1.0	12,1900	11.3300	9.6600	14.1000	.8510	2	1.0	74.64					
2.0	3.8500	3.6500	3.4600	2.8500	.2000	3	1.5	49.00		.68		5864	
4.0	1.5580	1.4670	1.2170	1.1270	.0880	4	2.0	39.65					
8.0	.7160	.6760	.5370	.5280	.0400	5	3.0	31.00	1.29		31.6		
						6	4.0	29.46					
						7	6.0	27.91		1.97		0934	
						8	8.0	26.77					
	PRO	CESSING R	ESULTS			9	12.0	27.27			26.2		
Electrod	e Wen	ner Ob	served (	Iffset L	ateral						*****		

PLOTTED RESULTS

R.M.S. Relative error = .0286 Maximum rel. error = -.0691 at sample -2 Number of trials was -0

Spacing	Resistivity	Error	Error	Error
.5	196.50	0007	.1475	.4415
1.0	74.64	.0007	.3737	6730
1.5	60.67			
2.0	39.65	0000	1933	0776
3.0	28.50			
4.0	29.46	.0019	0768	.0566
6.0	27.91			
8.0	26 <b>.</b> 77	0.0000	0169	0.0000
12.0	27.27			
16.0	28.85			

1

ł

į

R.M.S. Observational Error = .0010 R.M.S. Offset Wenner Difference = .2025 R.M.S. Potential Ladder Difference = .4053

PLOT	TED RE	SULT	S																				
	. • •															··· · ·		. •		'			
					•								÷.				÷.	·		·	÷ 1		٠,
		· :	· ··					•	1.1							··· ···					. *		÷
• •	· ·		· · · · .	:	· ·		• ••						÷.	: :	•••		-:	· .	• •• • ••••				
			· .							1.							5		÷.			- 1	
			;	•						- 1	:			÷ .			÷						
				•													•••				i		
·									• .		;			.:						۰.		:	÷
		:			· .				;	•		:	1	:							1.1		•
:										•		. :		. ÷			1			:			
	• •			• •	2.1					•				÷. *						the second		:	1
	•			:							:						:		•				
:								•	•			• •		::			÷	•		-			
			· · ·		-	:				:	:	÷ 1	;	· ÷					:			•	
				· · .								:						'	. ·		÷.,		
					. :	:					··.			1.4				;	۰.,				
			•	:	· · .				· . ·	·	÷								;				
•	• •	•	:		· ·			•			÷*	•••••	• •	1.1		•		···· ·.	•		· · ·.	•	
•	•	• •	• •	- T.C.			1		· ·				• •	с÷,								·· ·.	
				· .	· : .		·•	•	.:	•	:								;	÷	14		
				1	:																. :	. •	÷
					•														•		•		÷
								•	. • i	-	·						·			•			
	•				• •			:		·	;	•	*	۰.	•								
						:																•	
	• •		· · ·		:			• •					•							· · ·	•	÷ +	
•						•											1					. :	
												. 1		-					:				
																							•

26.3 ******

. .

HY 134.1 Grid Ref: SF 2349 5962 Azimuth: 88

INPUT DATA						FIELD CU	RVE DATA		INTERPRETED MODEL				
Electro Spacine	je 3 A	С	D 1	D2	E		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.	
.5	137.3000	130.7000	92.5000	94.5000	6.5500	1	.5	293.74	. 21		255.2		
1.0	65.6000	61.5000	51.2000	47.7000	4.1200	2	1.0	310.70					
2.0	26.7000	25.1000	22,0000	20,9000	1.5730	3	1.5	295.00		.21		.1410	
4.0	9.9700	9.4600	8.2700	7.5500	.4970	4	2.0	269.55					
8.0	3.4000	3.2500	3.1200	2.3800	.1400	5	3.0	228,73	1.14		339.0		
16.0	.5540	.5290	.5750	.4750	.0220	6	4.0	178.80					
						7	6.0	160.35		1.35		2919	
						8	8.0	138.23					
						9	12.0	80.00	5.83		185.8		
	PRO	CESSING F	ESULTS			10	16.0	52.78					
										7.18		7520	

Electrode	Wenner	Observed	0ffset	Lateral
Spacing	Resistivity	Error	Error	Error
.5	293,74	.0004	.0214	.2528
1.0	310.70	0003	0708	.0613
1.5	311.19			
2.0	269.55	.0010	0513	0370
3.0	228.73			
4.)	178.80	.0013	0910	.0659
6.0	160.35			
8.0	138.23	.0029	2691	.4615
12.0	96.54			
16.0	52.78	.0054	1905	0.0000
24.0	22.59			
32.0	2.19			

R.M.S. Observational Error = .0026 R.M.S. Offset Wenner Difference = .1444 R.M.S. Potential Ladder Difference = .2393

R.M.S. Relative error = .0276 Maximum rel. error = -.0626 at sample - B Number of trials was - 0

PLOTTED RESULTS

Azimuth: 77 Grid Ref: SP 2345 5956 HY 134.2

		INPUT D	АТА				FIELD CU	IRVE DATA		INTER	RETED MODEL
Electro	de g A	с	D1	D2	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho
.5	57.8000	54.8000	41.6000	40.6000	3.0000	1	.5	129.12	.22		97.0
1.0	29.0000	27.4000	24.0000	19.0800 8.6100	1.5830	222	1.0	125.00		.22	
4.0	7.5200	7.1400	5.5100	4.7900	.3780	4	2.0	118.63			
8.0	4.0400	3.6800	3.4600	2.9100	.3570	5	3.0	119.58	.86		171.0
16.0	1.0820	1.3050	1.2800	1.14/0	.0780	7	6.0	147.53		1.08	
						8	8.0	160.10			
						9	12.0	150.00	1.12		46.3
	PRO	CESSING R	ESULTS			10	16.0	126.02			

Electrode Spacing	Wenner Resistivitv	Observed Error	Öffset Error	Lateral Error
.5	129.12	0.0000	0243	.1360
1.0	135.04	.0006	2284	.1216
1.5	132.64			
2.0	118.63	.0006	1758	.0367
3.0	119.58			
4.0	129.43	.0003	1398	,1251
6.0	147.53			
8.0	160.10	.0007	1727	-,1040
12.0	165.75			
16.0	126.02	.0022	0104	0,0000
24.0	59.81			
32.0	20.47			

R.M.S. Observational Error = .0010 R.M.S. Offset Wenner Difference = .1490 R.M.S. Potential Ladder Difference = .1106

.5	129.12	.22		97.0	
1.0	135.34				
1.5	125.00		.22	and the loss the second second	.2761
2.0	118.63				
3.0	119.58	.86		171.0	
4.0	129.43				
6.0	147.53		1.08		5739
8.0	160.10				
12.0	150.00	1.12		46.3	
16.0	126.02				
			2.20		.8183
		4.44		463.3	
			6.64		8941
				20.9	
	-			*******	

Reflection Coeffts.

R.M.S. Relative error = .0231 Maximum rel. error = .0357 at sample Number of trials was 0 8

#### PLOTTED RESULTS

	• •	···			1						·		·.	1					·· . · ·				
	•								۰.	:												·	
	:													1.1			• •						
										•			:		:								·.
													(i										
					•	:																	
					1.000																		
	•																						
																							1
		·* · · · · ·																		· .		1	÷.
					: :															-			
																						· · · ·	
	•																						
															:								
									•														
																	:						
		:				-																	
	:								-				:	• •									
		•															-						
																	•						
			·																				··' ·
		-																					
															·· · · · ·					-			
	-	-				· .										٤.							• •
		-		**	·							-					-						
			•					~					• •				•						
			•						•			-											
		-																					
				• •••				. 1		• • •					· · ·	· · ·			•	•	. •		
			"	• • •		•		. '	:		÷.		÷		÷.,	·			· .	•	·:		
	•	÷	·				·· ·	: . '	:		· · ·	. : :	ġ,			·	÷				:	• . •	•
	÷	÷	·. :		,		····	 	÷		· ··		ż	: ;	1		·					• . •	
	· .	÷	: : :		•••••			 	:			. : :	ż		; ;		÷			• •		·	
	· .	÷	: : :				···· ····		:			. : :					····. ····.					· · · ·	•
	•	÷	·						:	•		. : :					·			•		·	•
	· .	÷	·				···· ···	· · ·	:	· · · ·		. : :		· · ·		·····	·			 		·	•
	· .	÷ •	·				···· ···		:	· · ·						·	···			· ·		· · ·	
· · · ·	÷ . ; .	·	:, : :	·					:	· · · ·						" 	···			· ·		· · ·	• • <u>*</u>
· · · · ·	•	· · · ·		· .						· · · ·							· ···.			· · ·		· · · ·	•
· · · · ·	÷ . ; .	- - - - -	- <u>-</u>	· · ·						· · · ·	· · · ·						···., ·			· · ·		· · · · · · · · · · · · · · · · · · ·	 
· · · · ·	· · ·	÷	·	· · ·						· · · ·						· · · · ·	····, ···,		· · · ·	· · ·		·	•
· · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	·					· · ·	· ·	· · · ·						· · · · ·	····.	· ·		· · ·		· · · · · · · · · · · · · · · · · · ·	•
· · · ·	· · ·	· · · ·		•					- - -	· · · ·						· · · ·	····			· · ·			
· · · ·		· · · · · ·		•						· · · ·						· · · · ·	· · ·			· · ·			
· · · · · ·			·	· · ·				 	· · · ·	· · · · ·								· ·		· · ·			
· · · · · · · · · · · · · · · · · · ·	· · ·		;	· · ·						· · · · ·						· · · · · · · · · · · · · · · · · · ·	•			· · ·			
· · · · · ·	· · ·			· · ·					· ·	- - 						· · · · · · · · · · · · · · · · · · ·	· ····, ·			· ·			
· · · · · ·	· · ·			· · ·					· ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	· ····, ·			· · ·			
· · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·		· · ·					· ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·				· · ·			
· · · · · · · · · · · · · · · · · · ·	· · ·			· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		· · · · ·				· · · ·	· · · · ·			· · ·			
· · · · · · · · · · · · · · · · · · ·	· · ·			· · · · · · · · · · · · · · · · · · ·					· · · ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·				· · ·			
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					•	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	· · · · ·	-		· · ·			
· · · · · · · · · · · · · · · · · · ·	· · ·			· · · · · · · · · · · · · · · · · · ·			·····		•	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	· · · · ·	· ·		· · ·			
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					· ·							· · · · · · · · · · · · · · · · · · ·	· · · · ·	-		· · ·			
· · · · · · · · · · · · · · · · · · ·										· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	· · · · ·	- - 		· · ·			
· · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	•							· · · · · · · · · · · · · · · · · · ·	· · ·	-		· · ·			
· · · · · · · · · · · · · · · · · · ·																· · · · · · · · · · · · · · · · · · ·				· · ·			
· · · · · · · · · · · · · · · · · · ·									· · · ·							· · · · · · · · · · · · · · · · · · ·	· · ·	- - 		· · ·			
· · · · · · · · · · · · · · · · · · ·																· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-		· · ·			
· · · · · · · · · · · · · · · · · · ·																· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-		· · ·			· · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·				· · ·			
· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·		-		· · ·			· · · · · · · · · · · ·

Grid Ref: SP 2337 5949 HY 134.3 Azimuth: 19

INPUT DATA					FIELD CU	RVE DATA	INTERPRETED MODEL					
Electro Spacine	de 9 A	С	Di	D2	в		Electrode Separation	Apparent Resistivity	Thickness	Depth	Rho	Reflection Coeffts.
.5	12.1200	11.6800	8.8100	8.8400	.4380	1	.5	27.72	.36		36.9	
1.0	5.0500	4.8500	3.4300	3.4760	.2090	2	1.0	21.68				
2.0	3.6800	3.4700	2.4100	2.3100	.1990	3	1.5	24.00		.36		4330
4.0	3.1900	3.0000	2.1500	2.0400	.1900	4	2.0	29.66				
8.0	2.4000	2.2300	1.7510	1.6060	.1690	5	3.0	41.81	1.26		14.6	
16.0	1.5730	1.4750	1.2470	1.0400	.0810	6	4.0	52.65				
32.0	.6150	.5770	.5150	.4980	.0350	7	6.0	70.78		1.62		. 9536
						8	8.0	84.37				
						9	12.0	104.81	4.83		614.7	
						10	16.0	114.96				
	PRO	CESSING RE	ESULTS			11	24.0	113.00		6.45		
						12	32.0	101.84				.,,,,,,,
Electro	de Wen	ner Ob	served ()	ffset L	ateral	15	48.0	84.09			29.4	

Electrode	Wenner	Observed	Offset	Lateral
Spacion	Resistivity	Frror	Frror	Error
Chornering	nebiber ney		2.1.0.	
Ξ.	77 70	0002	0074	7770
	-/ - /	.0002	.0034	
1.0	21.68	0018	.0116	,0914
1.5	25.22			
2.0	29.66	.0030	0424	.0323
3.0	41.81			
4.0	52,65	0.0000	0525	.0392
6.0	70.78			
8.0	84.37	.0004	0B64	0173
12.0	104.81			
16.0	114.96	.0109	1810	.1703
24.0	111.20			
32.0	101.84	.0049	~.0336	0.0000
48.0	84.09			
14.5	15 T 10 T			
64.0	37.8.			

R.N.S. Observational Error = .0047 R.M.S. Offset Wenner Difference = .0811 R.M.S. Potential Ladder Difference = .1569

ł 1

WARNING: The observed error for spacing 5 is greater than 1% There may be an incorrect input data value  $% \left( {{{\left( {{{{{c}_{{\rm{s}}}}} \right)}}} \right)$ 

## -----29.4

******

R.M.S. Relative error = .0285 Maximum rel. error = -.0459 at sample 12 Number of trials was = 0

#### PLOTTED RESULTS

The following reports relate particularly to bulk mineral resources

### **Reports of the Institute of Geological Sciences**

Assessment of British Sand and Gravel Resources 1 The sand and gravel resources of the country south-east of Norwich, Norfolk: Resource sheet TG 20. E. F. P. Nickless. Report 71/20 ISBN 0 11 880216 X £1.15 2 The sand and gravel resources of the country around Witham, Essex: Resource sheet TL 81. H. J. E. Haggard. Report 72/6 ISBN 0 11 880588 6 £1.20 3 The sand and gravel resources of the country south and west of Woodbridge, Suffolk: Resource sheet TM 24. R. Allender and S. E. Hollyer. Report 72/9 ISBN 0 11 880596 7 £1.70 The sand and gravel resources of the country around Maldon, Essex: Resource sheet TL 80. J. D. Ambrose Report 73/1 ISBN 0 11 880600 9 £1.20 The sand and gravel resources of the country around Hethersett, Norfolk: Resource sheet TG 10. E. F. P. Nickless. Report 73/4 ISBN 0 11 880606 8 £1.60 6 The sand and gravel resources of the country around Terling, Essex: Resource sheet TL 71. C. H. Eaton. Report 73/5 ISBN 0 11 880608 4 £1.20 The sand and gravel resources of the country around Layer Breton and Tolleshunt D'Arcy, Essex: Resource sheet TL 91 and part 90. J. D. Ambrose. Report 73/8 ISBN 0 11 880614 9 £1.30 The sand and gravel resources of the country around Shotley and Felixstowe, Suffolk: Resource sheet TM 23. R. Allender and S. E. Hollyer. Report 73/13 ISBN 0 11 880625 4 £1.60 The sand and gravel resources of the country around Attlebridge, Norfolk: Resource sheet TG 11. E. F. P. Nickless. Report 73/15 ISBN 0 11 880658 0 £1.85 10 The sand and gravel resources of the country west of Colchester, Essex: Resource sheet TL 92. J. D. Ambrose. Report 74/6 ISBN 0 11 880671 8 £1.45 11 The sand and gravel resources of the country around Tattingstone, Suffolk: Resource sheet TM 13. S. E. Hollyer. Report 74/9 ISBN 0 11 880675 0 £1.95 12 The sand and gravel resources of the country around Gerrards Cross, Buckinghamshire: Resource sheet SU 99, TQ 08, 09. H. C. Squirrell. Report 74/14 ISBN 0 11 880710 2 £2.20 Mineral Assessment Reports (Institute of Geological Sciences) 13 The sand and gravel resources of the country east of Chelmsford, Essex: Resource sheet TL 70. M. R. Clarke. ISBN 0 11 880744 7 £3.50 The sand and gravel resources of the country east of 14 Colchester, Essex: Resource sheet TM 02. J. D. Ambrose. ISBN 0 11 880745 5 £3.25 15 The sand and gravel resources of the country around Newton on Trent, Lincolnshire: Resource sheet SK 87. D. Price. ISBN 0 11 880746 3 £3.00 16 The sand and gravel resources of the country around Braintree, Essex: Resource sheet TL 72. M. R. Clarke. ISBN 0 11 880747 1 £3.50 The sand and gravel resources of the country around Besthorpe, Nottinghamshire: Resource sheet SK 86 and part 76. J. R. Gozzard.

ISBN 0 11 880748 X £3.00

18 The sand and gravel resources of the Thames Valley, the country around Cricklade, Wiltshire: Resource sheet SU 09, 19 and parts SP 00, 10. P R. Robson. ISBN 0 11 880749 8 £3.00 19 The sand and gravel resources of the country south of Gainsborough, Lincolnshire: Resource sheet SK 88 and part 78. J.H. Lovell.

ISBN 0 11 880750 1 £2.50

20 The sand and gravel resources of the country east of Newark upon Trent, Nottinghamshire: Resource sheet SK 85. J. R. Gozzard.

ISBN 0 11 880751 X £2.75

21 The sand and gravel resources of the Thames and Kennet Valleys, the country around Pangbourne, Berkshire: Resource sheet SU 67. H. C. Squirrell. ISBN 0 11 880752 8 £3.25

22 The sand and gravel resources of the country north-west of Scunthorpe, Humberside: Resource sheet SE 81. J. W. C. James.

ISBN 0 11 880753 6 £3.00

23 The sand and gravel resources of the Thames Valley, the country between Lechlade and Standlake: Resource sheet SP 30 and parts SP 20, SU 29, 39. P. Robson. ISBN 0 11 881252 1 £7.25

24 The sand and gravel resources of the country around Aldermaston, Berkshire: Resource sheet SU 56, 66. H. C. Squirrell.

ISBN 0 11 881253 X £5.00

25 The celestite resources of the area north-east of Bristol: Resource sheet ST 68 and parts 59, 69, 79, 58, 68, 78, 77.
E. F. P. Nickless, S. J. Booth and P. N. Mosley.
ISBN 0 11 881262 9 £5.00

26 The sand and gravel resources of the country around Monyash, Derbyshire: Resource sheet SK 16. F. C. Cox and D. McC. Bridge. ISBN 0 11 881263 7 £7.00

27 The sand and gravel resources of the country west and south of Lincoln, Lincolnshire: Resource sheets SK 95 and part 96, and SK 97 and part 96. I. Jackson. ISBN 0 11 884003 7 £6.00

28 The sand and gravel resources of the country around Eynsham, Oxfordshire: Resource sheet SP 40 and part 41. W. J. R. Harries.

ISBN 0 11 884012 6 £3.00

29 The sand and gravel resources of the country south-west of Scunthorpe, Humberside: Resource sheet SE 80. J. H. Lovell.

ISBN 0 11 884013 4 £3.50

30 Procedure for the assessment of limestone resources. F. C. Cox, D. McC. Bridge and J. H. Hull. ISBN 0 11 884030 4 £1.25

31 The sand and gravel resources of the country west of Newark upon Trent, Nottinghamshire: Resource sheet SK 75. D. Price and P. J. Rogers. ISBN 0 11 884031 2 £3.50

32 The sand and gravel resources of the country around Sonning and Henley, Berkshire, Oxfordshire and Buckinghamshire: Resource sheet SU 77, 78. H. C. Squirrell. ISBN 0 11 884032 0 £5.25

The sand and gravel resources of the country north of Gainsborough, Lincolnshire: Resource sheet SK 89.J. R. Gozzard and D. Price.ISBN 0 11 884033 9 £4.50

The sand and gravel resources of the Dengie Peninsula,
Essex: Resource sheet TL 90 and parts 80, TM 00,
TQ 89, 99, TR 09. M. B. Simmons.
ISBN 0 11 884081 9 £5.00

35 The sand and gravel resources of the country around Darvel, Strathclyde: Resource sheet comprising parts of NS 53, 54, 63, 64. E. F. P. Nickless, A. M. Aitken and A. A. McMillan. ISBN 0 11 884082 7 £7.00 36 The sand and gravel resources of the country around Southend-on-Sea, Essex: Resource sheets comprising parts of TQ 88, 89, 98, 99, TR 08, 09; and TQ 78, 79 and parts of 88, 89. S. E. Hollyer and M. B. Simmons. ISBN 0 11 884083 5 £7.50

37 The sand and gravel resources of the country around Bawtry, South Yorkshire: Resource sheet SK 69. A. R. Clavton.

ISBN 0 11 884053 3 £5.75

38 The sand and gravel resources of the country around Abingdon, Oxfordshire: Resource sheet SU 49, 59, SP 40, 50. C. E. Corser.

ISBN 0 11 884084 5 £5.50

39 The sand and gravel resources of the Blackwater Valley (Aldershot) area: Resource sheet SU 85, 86 and parts 84, 94, 95, 96. M. R. Clarke, A. J. Dixon and M. Kubala. ISBN 0 11 884085 1 £7.00

40 The sand and gravel resources of the country west of Darlington, County Durham: Resource sheet NZ 11, 21. A. Smith.

ISBN 0 11 884086 X £5.00

41 The sand and gravel resources of the country around Garmouth, Grampian Region: Resource sheet NJ 36. A. M. Aitken, J. W. Merritt and A. J. Shaw. ISBN 0 11 884090 8 £8.75

42 The sand and gravel resources of the country around Maidenhead and Marlow: Resource sheet SU 88 and parts 87, 97, 98. P. N. Dunkley. ISBN 0 11 884091 6 £5.00

43 The sand and gravel resources of the country around Misterton, Nottinghamshire: Resource sheet SK 79.D. Thomas and D. Price.ISBN 0 11 884092 4 £5.25

44 The sand and gravel resources of the country around Sedgefield, Durham: Resource sheet NZ 32. M. D. A. Samuel. ISBN 0 11 884093 2 £5.75

45 The sand and gravel resources of the country around Brampton, Cumbria: Resource sheet NY 55, part 56. I. Jackson. ISBN 0 11 884094 0 £6.75

46 The sand and gravel resources of the country north of Harlow, Essex: Resource sheet TL 41. P. M. Hopson. ISBN 0 11 884107 6 £9.50

47 The limestone and dolomite resources of the country around Wirksworth, Derbyshire: Resource sheet SK 25 and part 35. F. C. Cox and D. J. Harrison. ISBN 0 11 884108 4 £15.00

48 The sand and gravel resources of the Loddon Valley area: Resource sheet SU 75, 76, and parts 64, 65, 66, 74.
M. R. Clarke, E. J. Raynor and R. A. Sobey.
ISBN 0 11 884109 2 £8.75

49 The sand and gravel resources of the country around Lanark, Strathclyde Region: Resource sheet NS 94 and part 84. J. L. Laxton and E. F. P. Nickless. ISBN 0 11 884110 6 £11.00

50 The sand and gravel resources of the country around Fordingbridge, Hampshire: Resource sheet SU 11 and parts 00, 01, 10, 20, 21. M. Kubala. ISBN 0 11 884111 4 £7.75

51 The sand and gravel resources of the country north of Bournemouth, Dorset: Resource sheet SU 00, 10, 20, SZ 09, 19, 29. M. R. Clarke.

ISBN 0 11 884112 2 £9.75

52 The sand and gravel resources of the country between Hatfield Heath and Great Waltham, Essex: Resource sheet TL 51, 61. R. J. Marks. ISBN 0 11 884113 0 £8.00

53 The sand and gravel resources of the country around Cottenham, Cambridgeshire: Resource sheet TL 46, 47.A. J. Dixon.ISBN 0 11 884114 9 £9.25

54 The sand and gravel resources of the country around Huntingdon and St Ives, Cambridgeshire: Resource sheets comprising parts of TL 16, 17, 26, 27; and TL 26, 27, 36, 37. R. W. Gatliff.

ISBN 0 11 884115 7 £8.75

55 The sand and gravel resources of the country around Ipswich, Suffolk: Resource sheet TM 14. R. Allender and S. E. Hollyer.

ISBN 0 11 884116 5 £10.00

56 Procedure for the assessment of the conglomerate resources of the Sherwood Sandstone Group. D. P. Piper and P. J. Rogers. ISBN 0 11 884143 2 £1.25

57 The conglomerate resources of the Sherwood Sandstone Group of the country around Cheadle, Staffordshire: Resource sheet SK 04. P. J. Rogers, D. P. Piper and T. J. Charsley. ISBN 0 11 884144 0  $\pm$ 7.75

58 The sand and gravel resources of the country west of Peterhead, Grampian Region: Resource sheet NK 04 and parts NK 05, 14, 15, NJ 94, 95. A. A. McMillan and A. M. Aitken.

ISBN 0 11 884145 9 £12.00

59 The sand and gravel resources of the country around Newbury, Berkshire: Resource sheet SU 46, 47 and parts 36, 37, 47. J. R. Gozzard. ISBN 0 11 884146 7 £11.50

60 The sand and gravel resources of the country south-west of Peterborough, in Cambridgeshire and east Northamptonshire: Resource sheets TL 09, 19 and SP 98, TL 08. A. M. Harrisson.

ISBN 0 11 884147 5 £15.50

61 The sand and gravel resources of the country north of Wrexham, Clwyd: Resource sheet SJ 35 and part 25. P. N. Dunkley.

ISBN 0 11 884148 3 £11.75

62 The sand and gravel resources of the country around Dolphinton, Strathclyde Region, and West Linton, Borders Region: Resource sheet NT 04, 14 and parts 05 15. A. A. McMillan, J. L. Laxton and A. J. Shaw. ISBN 0 11 884149 1 £8.00

63 The sand and gravel resources of the valley of the Douglas Water, Strathclyde Region: Resource sheet NS 83 and parts 82, 92, 93. A. J. Shaw and E. F. P. Nickless. ISBN 0 11 884150 5 £11.50

64 The sand and gravel resources of the country between Wallingford and Goring, Oxfordshire: Resource sheet SU 68 and part 58. C. E. Corser. ISBN 0 11 884151 3 £11.50

65 The sand and gravel resources of the country around Hexham, Northumberland: Resource sheet NY 86, 96. J. H. Lovell.

ISBN 0 11 884152 1 £7.50

66 The sand and gravel resources of the country west of Chelmsford, Essex: Resource sheet TL 60. P. M. Hopson. ISBN 0 11 884153 X £8.50

67 The sand and gravel resources of the country around Hatfield and Cheshunt, Hertfordshire: Resource sheet TL 20, 30 and parts TQ 29, 39. J. R. Gozzard. ISBN 0 11 884167 X £10.00

68 The sand and gravel resources of the country north-east of Halstead, Essex: Resource sheet TL 83. R. J. Marks and J. W. Merritt.

ISBN 0 11 884168 8 £13.25

69 The sand and gravel resources of the country around Welwyn Garden City, Hertfordshire: Resource sheet TL 11, 21. J. R. Gozzard.

ISBN 0 11 884169 6 £10.50

70 The sand and gravel resources of the country east of Harrogate, North Yorkshire: Resource sheet SE 35. D. L. Dundas. ISBN 0 11 884170 7 £15.50 71 The sand and gravel resources of the country around Hemel Hempstead, St Albans and Watford: Resource sheet TL 00, 10, and parts TQ 09, 19.

W. J. R. Harries, S. E. Hollyer and P. M. Hopson. ISBN 0 11 884171 8 £12.00

72 The sand and gravel resources of the country around Bury St Edmunds, Suffolk: Resource sheet TL 86. M. P 'Iawkins.

ISBN 0 11 884172 6 £10.50

73 The sand and gravel resources of the country between Ely and Cambridge, Cambridgeshire: Resource sheet
TL 56, 57. A. R. Clayton.
ISBN 0 11 884173 4 £9.50

74 The sand and gravel resources of the country around Blaydon, Tyne and Wear: Resource sheet NZ 06, 16. J. R. A. Giles. ISBN 0 11 884174 2 £10.50

75 The sand and gravel resources of the country around Stokesley, North Yorkshire: Resource sheet NZ 40, 50, and parts 41, 51. R. G. Crofts. ISBN 0 11 884175 0 £11.50

76 The sand and gravel resources of the country around Ellon, Grampian Region: Resource sheets NJ 93 with parts 82, 83, 92, and NK 03 with parts 02, 13. J. W. Merritt. ISBN 0 11 884176 9 £15.00

77 The limestone and dolomite resources of the country around Buxton, Derbyshire: Resource sheet SK 07 and parts 06, 08. D. J. Harrison. ISBN 0 11 884177 7 £13.50

78 The sand and gravel resources of the country west of Boroughbridge, North Yorkshire: Resource sheet SE 36. D. A. Abraham.

IŠBN 0 11 884178 5 £12.75

1

79 The limestone and dolomite resources of the country around Bakewell, Derbyshire: Resource sheet SK 26 and part 27. D. McC. Bridge and J. R. Gozzard. ISBN 0 11 884179 3 £10.50

80 The sand and gravel resources of the country between Stamford, Lincolnshire, and Peterborough, Cambridgeshire: Resource sheet TF 00, 10. S. J. Booth. ISBN 0 11 884180 7 £14.50

81 The sand and gravel resources of the country around Dorchester and Watlington, Oxfordshire: Resource sheet SU 69 and part 59. C. E. Corser. ISBN 0 11 884204 8 £14.25

82 The sand and gravel resources of the country around Sible Hedingham, Essex: Resource sheet TL 73.R. J. Marks and D. W. Murray.ISBN 0 11 884205 6 £10.75

83 The sand and gravel resources of the country around Hollesley, Suffolk: Resource sheet TM 34.S. E. Hollyer and R. Allender.ISBN 0 11 884206 4 £13.25

84 The sand and gravel resources of the country around Kirk Hammerton, North Yorkshire: Resource sheet SE 45. J. R. A. Giles. ISBN 0 11 884207 2 £10.00

85 The sand and gravel resources of the country around Nayland, Suffolk: Resource sheet TL 93. P. M. Hopson. ISBN 0 11 884208 0 £11.25

86 The sand and gravel resources of the country around Wem, Shropshire: Resource sheet SJ 42, 52.B. Cannell and W. J. R. Harries.ISBN 0 11 884209 9 £15.50

87 The sand and gravel resources of the country around Ranskill and East Retford, Nottinghamshire: Resource sheet SK 68 and part 78. D. Thomas. ISBN 0 11 884210 2 £8.50 88 The sand and gravel resources of the country around Tholthorpe, North Yorkshire: Resource sheet SE 46. R. Stanczyszyn.

ISBN 0 11 884211 0 £13.00

89 The sand and gravel resources of the country around Newport-on-Tay, Fife Region: Resource sheet NO 42 and parts 32, 52. J. L. Laxton and D. L. Ross. ISBN 0 11 887413 6 £12.75

90 The sand and gravel resources of the country around Shrewsbury, Shropshire: Resource sheet SJ 41, 51. B. Cannell. ISBN 0 11 884213 7 £17.00

91 The conglomerate resources of the Sherwood Sandstone Group of the country east of Stoke-on-Trent, Staffordshire: Resource sheet SJ 94. D. Piper. ISBN 0 11 884214 5 £7.00

92 The sand and gravel resources of the country around Armthorpe, South Yorkshire: Resource sheet SE 60. D. Price and D. P. Best. ISBN 0 11 884215 3 £10.00

93 The sand and gravel resources of the country around Whittlesey, Cambridgeshire: Resource sheet TF 20, TL 29.S. J. Booth.ISBN 0 11 884216 1 £12.50

94 The sand and gravel resources of the country north and

west of Woodhall Spa, Lincolnshire: Resource sheet TF 16 and part 17. I. Jackson. ISBN 0 11 884217 X £14.75

95 The sand and gravel resources of the country around Biggar, Strathclyde Region: Resource sheet NS 93, NT 03, and parts NS 92, NT 02. A. J. Shaw and J. W. Merritt. ISBN 0 11 887414 4 £15.00

96 The sand and gravel resources of the country around Potter Hanworth and Reepham, Lincolnshire: Resource sheet TF 06, 07. R. G. Crofts. ISBN 0 11 884219 6 £9.75

97 The sand and gravel resources of the country around Clare, Suffolk: Resource sheet TL 74. R. Marks. ISBN 0 11 884297 8 £10.00

98 The limestone and dolomite resources of the country around Tideswell, Derbyshire: Resource sheet SK 17 and parts 18, 27. R. W. Gatliff. ISBN 0 11 884298 6 £14.50

99 The sand and gravel resources of the country north and west of Billingham, Cleveland: Resource sheet NZ 42 and part 52. J. W. C. James. ISBN 0 11 884299 4 £10.50

100 The sand and gravel resources of the country around Billinghay, Lincolnshire: Resource sheet TF 15 and part 05. J. B. L. Wild. ISBN 0 11 884300 1 £13.75

101 The sand and gravel resources of the country around Glenrothes, Fife Region: Resource sheet NO 20 and parts 21, 30, 31. A. M. Aitken and D. L. Ross. ISBN 0 11 887415 2 £15.00

102 The sand and gravel resources of the country around Coggeshall, Essex: Resource sheet TL 82. S. J. Booth and J. W. Merritt.

ISBN 0 11 887416 0 £16.00

103 The sand and gravel resources of the country between Dorchester and Wareham, Dorset: Resource sheets comprising parts of SY 68, 69, 78, 79, 88, 89, 98, 99. S. J. Mathers.

ISBN 0 11 884303 6 £17.00

104 The sand and gravel resources of the country around Stansted Mountfitchet, Essex: Resource sheet TL 52.P. M. Hopson.ISBN 0 11 884304 4 £11.75

105 The sand and gravel resources of the Welshampton area, Shropshire and Clwyd: Resource sheet SJ 43. Institute of Geological Sciences. ISBN 0 11 884305 2 £12.00

106 The sand and gravel resources of the country south of Wrexham, Clwyd: Resource sheet SJ 34 and part 24. D. F. Ball.

ISBN 0 11 884306 0 £11.00

107 The sand and gravel resources of the country between Rugby and Northampton, Warwickshire and Northamptonshire: Resource sheet SP 66 and parts 56, 57, 65, 67, 75 and 76. M. R. Clarke and E. R. Moczarski. ISBN 0 11 884307 9 £20.00

108 The sand and gravel resources of the country south of Horncastle, Lincolnshire: Resource sheet TF 26. G. Power and J. B. L. Wild.

ISBN 0 11 884308 7 £9.75

109 The sand and gravel resources of the country around Great Dunmow, Essex: Resource sheet TL 62. C. W. Thomas.

ISBN 0 11 884309 5 £12.75

110 The sand and gravel resources of the country north of Newmarket, Cambridgeshire and Suffolk: Resource sheet TL 67 and part 66. C. E. Corser. ISBN 0 11 884310 9 £14.50

111 The sand and gravel resources of the country east and south-east of Darlington, Durham: Resource sheet NZ 30, 31. J. R. Gozzard and D. Price.

ISBN 0 11 884311 7 £14.25

112 The sand and gravel resources of the country around Hertford, Hertfordshire: Resource sheet TL 31.P. M. Hopson and M. D. A. Samuel.ISBN 0 11 884312 5 £11.75

113 The sand and gravel resources of the country around Mold, Clwyd: Resource sheet SJ 26 and part 16. D. F. Ball and K. A. McL. Adlam.

ISBN 0 11 884313 3 £12.00

114 The sand and gravel resources of the country around Kettering and Wellingborough, in parts of Northamptonshire, Cambridgeshire and Bedfordshire: Resource sheets SP 97 and parts SP 87, TL 07; and SP 86, 96. A. M. Harrisson.

ISBN 0 11 884314 1 £18.00

115 The sand and gravel resources of the country east of Solihull, Warwickshire: Resource sheet comprising parts of SP 17, 18, 27, 28. B. Cannell. ISBN 0 11 884315 X £10.75

116 The limestone resources of the Craven Lowlands: Resource sheet comprising parts of 1:50000 geological sheets

59, 69, 61, 67, 68 and 69. D. J. Harrison. ISBN 0 11 884316 8 £15.00

117 The sand and gravel resources of the country around Redgrave, Suffolk: Resource sheet TM 07 and part 08. C. A. Auton.

ISBN 0 11 884317 6 £15.00

118 The sand and gravel resources of the country around Sudbury, Suffolk: Resource sheet TL 84. P. M. Hopson. ISBN 0 11 884318 4 £12.50

119 The sand and gravel resources of the country around Bedale, North Yorkshire: Resource sheet SE 28. J. R. A. Giles.

ISBN 0 11 884319 2 £11.75

120 The sand and gravel resources of the country around Catterick, North Yorkshire: Resource sheet SE 29. J. H. Lovell.

ISBN 0 11 884320 6 £10.75

121 The sand and gravel resources of the country around Callander and Dunblane, Central Region: Resource sheet NN 60, 70. J. W. Merritt and J. L. Laxton. ISBN 0 11 887417 9 £15.00

122 The sand and gravel resources of the country around Lymington and Beaulieu, Hampshire: Resource sheet comprising parts of SU 20, 30, 40, and SZ 29, 39, 49. S. J. Mathers.

ISBN 0 11 884322 2 £17.00

123 The sand and gravel resources of the country between Mildenhall and Barrow, Suffolk: Resource sheet TL 76, 77 and part 87. A. R. Clayton. ISBN 0 11 884323 0 £15.50

124 The sand and gravel resources of the country around Chatteris, Cambridgeshire: Resource sheet TL 38 and part 37. J. R. Gozzard.

ISBN 0 11 884324 9 £12.50

125 The sand and gravel resources of the country between Coventry and Rugby, Warwickshire: Resource sheet SP 47 and part 37.

ISBN 0 11 884325 7 £12.75

126 The limestone and dolomite resources of the country around Settle and Malham, North Yorkshire: Resource sheet comprising parts of 1:50000 geological sheets 50 and 60. D. W. Murray.

ISBN 0 11 884326 5 £9.75

127 The sand and gravel resources of the country around Woolpit, Suffolk: Resource sheet TL 96. M. R. Clarke. ISBN 0 11 884327 3 £13.00

128 The sand and gravel resources of the country around Coningsby, Lincolnshire: Resource sheet TF 25. I. Jackson and M. D. Issaias. ISBN 0 11 884328 1 £11.75

129 The limestone and dolomite resources of the country north and west of Ashbourne, Derbyshire: Resource sheet SK 15 and parts 04, 05, 14. D. McC. Bridge and D. S. Kneebone ISBN 0 11 884329 X £15.25

130 The sand and gravel resources of the country between Bourne and Crowland, Lincolnshire: Resource sheet TF 11 and parts 01, 21. S. J. Booth. ISBN 0 11 884430 X £20.00

131 The sand and gravel resources of the country west of Stirling, Central Region: Resource sheet NS 69, 79.J. L. Laxton and D. L. RossISBN 0 11 887421 7 £14.50

132 The sand and gravel resources of Strathallan, Tayside Region: Resource sheet comprising parts of NN 80, 81, 90, 91. A. M. Aitken and A. J. Shaw. ISBN 0 11 887422 5 £15.50

133 The sand and gravel resources of the country northeast of Thaxted, Essex: Resource sheetTL 63. R. J. Marks.ISBN 0 11 884433 4 £11.50

134 The sand and gravel resources of the country around Prees, Shropshire: Resource sheet SJ 53. J. W. C. James. ISBN 0 11 884434 2  $\pm 16.00$ 

135 The sand and gravel resources of the country around West Tanfield, North Yorkshire: Resource sheet SE 27.G. E. Strong and J. R. A. Giles.ISBN 0 11 884435 0 £10.75

136 The sand and gravel resources of the country around Whitchurch and Malpas, Clwyd, Cheshire and Shropshire: Resource sheet SJ 44, 54. I. Jackson, D. J. Lowe,A. N. Morigi and S. J. Mathers.ISBN 0 11 884436 9 £16.00

137 The sand and gravel resources of the country around Diss, Norfolk: Resource sheet TM 17 and part 18.
C. J. Wilcox and R. Stanczyszyn.
ISBN 0 11 884437 7 £15.00

138 The sand and gravel resources of the country around Chichester and north of Bognor Regis, Sussex: Resource sheet SU 80, 90. J. H. Lovell and P. H. A. Nancarrow. ISBN 0 11 884438 5 £16.00 139 The sand and gravel resources of the country around Kinross, Tayside Region: Resource sheet NO 00, 10, and parts NT 09, 19. J. W. Merritt and D. L. Ross. ISBN 0 11 887423 3 £17.50

#### Mineral Assessment Reports (British Geological Survey)

140 The sand and gravel resources of the country around Dalkeith and Temple, Lothian Region: Resource sheets NT 25 and 26, and NT 35 and 36. A. M. Aitken, J. H. Lovell, A. J. Shaw and C. W. Thomas. ISBN 0 11 887526 4 £20.00

141 The hard-rock resources of the country around Caerphilly, South Wales: Resource sheet comprising parts of 1:50000 geological sheets 249 and 263. K. A. McL. Adlam, D. J. Harrison and J. B. L. Wild.
ISBN 0 11 884441 5 £11.50

142 The sand and gravel resources of the country around Henley-in-Arden, Warwickshire: Resource sheet SP16 and parts 15, 17, 25, 26, 27. B. Cannell and R. G. Crofts. ISBN 0 11 884442 3 £25.00

143 The sand and gravel resources of the country north-east of Ripon, North Yorkshire: Resource sheet SE 37 and part 47. A. N. Morigi and J. W. C. James. ISBN 0 11 884443 1 £16.50

### **Reports of the Institute of Geological Sciences**

1

ŀ

Į

Other Reports 69/9 Sand and gravel resources of the Inner Moray Firth. A. L. Harris and J. D. Peacock. ISBN 0 11 880106 0 35p 70/4 Sands and gravels of the southern counties of Scotland. G. A. Goodlet. ISBN 0 11 880105 8 90p 72/8 The use and resources of moulding sand in Northern Ireland. R. A. Old. ISBN 0 11 881594 0 30p 73/9 The superficial deposits of the Firth of Clyde and its sea lochs. C. E. Deegan, R. Kirby, I. Rae and R. Floyd. ISBN 0 11 880617 3 95p 77/1 Sources of aggregate in Northern Ireland (2nd edition). I. B. Cameron. ISBN 0 11 881279 3 70p 77/2 Sand and gravel resources of the Grampian Region. J. D. Peacock and others ISBN 0 11 881282 3 80p 77/5 Sand and gravel resources of the Fife Region. M. A. E. Browne. ISBN 0 11 884004 5 60p 77/6 Sand and gravel resources of the Tayside Region. I. B. Paterson. ISBN 0 11 884008 8 £1.40 77/8 Sand and gravel resources of the Strathclyde Region. I. B. Cameron and others. ISBN 0 11 884028 2 £2.50 77/9 Sand and gravel resources of the Central Region, Scotland. M. A. E. Browne. ISBN 0 11 884016 9 £1.35 77/19 Sand and gravel resources of the Borders Region, Scotland. A. D. McAdam. ISBN 0 11 884025 8 £1.00 77/22 Sand and gravel resources of the Dumfries and Galloway Region. I. B. Cameron. ISBN 0 11 884021 5 £1.20 78/1 Sand and gravels of the Lothian Region of Scotland. A. D. McAdam. ISBN 0 11 884042 8 £1.00 78/8 Sand and gravel resources of the Highland Region. W. Mykura, D. L. Ross and F. May. ISBN 0 11 884050 9 £3.00

Dd 717442 C10

Printed in England for Her Majesty's Stationery Office



#### 1:25 000 Sand and Gravel Resource Sheet published 1984. G.M. Brown, D.Sc., F.R.S., Director, Institute of Geological Sciences.

rictly to that site; reliable conclusion thickness and grading elsewhere in the deposit, particularly in material as variable as sand and gravel. However, estimates of the volume and mean grading of the mineral as a whole in each Resource Block are given in the Report.

Data quoted for an individual borehole or resistivity sounding refer

#### © Crown copyright 1984.



and financed by the Department of the Environment.

. • * . 1

.