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Abstract
Antarctic climate changes prior to 2000 were characterized by a strong zonally asymmetric pattern.
Over 90% of the land ice mass loss occurred around a limited area in West Antarctica, accompanied
by a rapid surface warming rate about three times the global mean. In contrast, surface warming
and glacier mass loss around East Antarctica are not significant, until the decades since 2000 when
several individual stations show that the temperature trends might have reversed. The asymmetric
climate changes between East- and West-Antarctica are largely attributable to the inter-decadal
variabilities over the Pacific and Atlantic Oceans through tropical–polar teleconnections, leaving
open the question of whether the post-2000 phase shift of the lower-latitude decadal variability
causes a flip of the asymmetric Antarctic changes. Here, by synthesizing 26 in-situ observations and
6 reanalysis datasets using a statistical method and integrating the results with a series of climate
model experiments, we find that the West-warming, East-cooling trend over Antarctica has
systematically reversed in austral spring since the early 21st century, largely due to the atmospheric
circulation anomaly over the Antarctic Peninsula–Weddell Sea region, which is associated to the
teleconnection with Pacific and atmospheric internal variability. This reversal of the temperature
seesaw suggests that substantial decadal-scale fluctuations of the Antarctic climate system exist,
including for sea-ice and land-ice systems, superimposed on and modifying longer term changes.

1. Introduction

In the satellite era since 1979, zonally asymmetric cli-
mate changes have been observed over the Antarctic
continent, the most dramatic being a rapid warm-
ing over West Antarctica and the Antarctic Peninsula
[1–3], accompanied by accelerated land ice mass loss
and sea ice melting [4–6]. In contrast, a mild cool-
ing trend was observed over the East Antarctic [3,
7] accompanied by even glacial mass gain [4]. Even
though the current mass loss of Antarctic ice shelves

is mainly attributed to their basal melting [8], the
Antarctic surface warming plays an important role
in promoting the Antarctic surface mass loss in the
future [9]. These seesaw-like climate changes between
the East and West Antarctic have broad implications
for global sea level rise [10], the global energy balance
[11], and the global carbon cycle [12].

While the overall changes in Antarctic climate
are driven primarily by the combined effects of
anthropogenic greenhouse gas forcing [13–15] and
atmospheric internal modes [16, 17], the seesaw-like
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changes between East and West Antarctica have been
largely attributed to atmospheric circulation changes
[16, 18–20] driven by teleconnections to the trop-
ical oceans [18–24]. The Southern Annular Mode
(SAM), two Pacific South American (PSA) modes
(PSA1 and PSA2) [25], and a zonal wave num-
ber three (ZW3) pattern [26, 27] contribute to
the Antarctic seesaw-like climate changes, mainly
through thermal advection [28–30] and its associ-
ated ocean–atmosphere–sea ice feedbacks [30, 31]
and cloud feedbacks [32]. The multi-decadal changes
in these atmospheric circulation patterns are linked
to tropical sea surface temperature (SST) variability
[18, 19, 21–23], in particular the Interdecadal Pacific
Oscillation (IPO) [33, 34] and the Atlantic Multi-
decadal Oscillation (AMO) [20, 22, 23], through
tropical–polar teleconnections [18, 19, 21–23].

Since the early 2000s, the warming trend over the
North Atlantic slowed down, implying an upcoming
reversal of the AMO [19], while the phase of the IPO
started to switch after the 2015–2016 El Nino event
[19, 33, 35]. Meanwhile, scattered observations over
both the East- and the West-Antarctic reported some
reversed surface air temperature (SAT) trend signals
[7, 16, 36]: warming trends at several stations inWest
Antarctica [36] and the Antarctic Peninsula [7, 16]
decreased beginning around 2000, whereas a record
warming has recently been reported at the South
Pole [37, 38], although with strong regional and sea-
sonal features [7, 16, 36, 37] and a large uncertainty
[1, 7, 36, 37]. This naturally raises questions as to
whether a systematic adjustment of the Antarctic cli-
mate system started after 2000 and whether changes
in decadal-scale tropical variability is contributing
to this polar adjustment. Answering these questions
requires accurate high-resolution observations for
identifying the regionality, seasonality, and decadal
variation in Antarctic SAT trends. Unfortunately, reli-
able observations for explaining this complexity are
limited. Surface temperature observations from only
about 20 Antarctic stations are available for assess-
ing multi-decadal trends [7], with spatial coverage
that is too sparse to represent the entire continent.
Further, pronounced biases and spurious trends exist
in the satellite observations [39] and reanalysis data-
sets over Antarctica [40, 41]. These disadvantages in
existing datasets [39–41] hinder the assessment of the
extent to which the inferred climate change reversals
are robust or systematic and what broader processes
underpin the switch.

Nevertheless, while any individual dataset may
not represent the complexity of the Antarctic SAT
trend, each of the above mentioned datasets provides
additional information to reduce the uncertainty,
underscoring the need for advanced statistical tech-
niques that combine all available data to obtain more
definitive estimates of Antarctic SAT trends. Here,
using such an approach, referred to as combined
maximum covariance analysis (CMCA) [42], the

most coherent signals among different reanalyses and
observation datasets are retrieved. We thus extract
these coherent SAT modes among 26 surface sta-
tions and 6 reanalysis datasets, demonstrating that
trends in East Antarctica cooling and West Antarctic
warming in austral spring systematically reversed
after 2000. This switch is further attributed to the
large-scale adjustment of the atmospheric circulation
associated with the tropical–polar teleconnection and
atmospheric internal variability.

2. Materials andmethods

2.1. Data
We use observedmonthly SAT data from 26 Antarctic
stations (see supplementary table 1) collected by
the Scientific Committee on Antarctic Research
Reference Antarctic Data for Environmental Research
project [43]. Monthly SAT observation data for the
Byrd Station is obtained from a reconstructed tem-
perature record [2].

We also use monthly SAT and sea level pres-
sure (SLP) data from six reanalysis datasets: (1) the
Climate Forecast System Reanalysis (CFSR) [44] and
the National Center for Environmental Prediction
(NCEP) coupled forecast system model version
2 (CFSv2) [45]; (2) the NCEP- Department of Energy
(DOE) Reanalysis version-2 (NCEP2) [46]; (3) the
Modern Era Retrospective-Analysis for Research and
Applications, version 2 (MERRA2) [47]; (4) the
Japanese 55 year Reanalysis (JRA55) [48]; (5) the
Interim reanalysis data from the European Centre
forMedium-RangeWeather Forecasts (ERA-Interim)
[49]; and (6) the EuropeanCentre forMedium-Range
Weather Forecasts Reanalysis version 5 (ERA5) [50].
Because the resolutions of these datasets differ, we
interpolated all reanalysis datasets into a 2◦ × 2◦ grid.
These datasets cover a common period from 1979 to
2019, except that MERRA2 started in 1980 and ERA-
Interim ended in August 2019. The monthly 500 hPa
geopotential height (GPH) data from ERA5 are also
used to calculate the SAM, PSA1, and PSA2 patterns
and the associated time series, given the superior
quality of this dataset over the Southern Hemisphere
compared with other reanalysis datasets [51, 52]. In
addition, the monthly Hadley Centre SST dataset
(HadISST) [53] at 1◦ × 1◦ horizontal resolution has
been used to obtain the SST regressionmap onto time
series for each mode of the CMCA (see below).

The ZW3 pattern is identified using the third har-
monic of a Fourier transform of ERA5 500 hPa GPH
over 1979–2019 averaged across the latitude band of
55–63◦S.

2.2. The CMCAmethod
The CMCAmethod [42] is an effective statistical tool
to extract the most coherent spatial-temporal modes
amongmultiple different datasets with differentmap-
pings for the same variable [54]. Here we perform
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the CMCA method on the detrended monthly SAT
anomalies of the seven observational and reanalysis
datasets over the Antarctic (90◦S–55◦S) to obtain the
most prominent coherent modes of SAT interannual
and decadal variability during the period of 1979–
2019.

The coherent modes with the largest agreement
among different datasets are calculated by maximiz-
ing the combined covariance matrix among different
datasets, which is defined as:

C=
1

q− 1
XreaXobs

T

(1)

where q is the sample size of each dataset, which refers
to the time range. Xobs is the state variable (SAT) of
all in-situ observations with 26 stations, eachwith 123
samples for September–October–November (SON),
from 1979 to 2019. Xrea is a 6m × q matrix (m is the
total number of spatial grids of each reanalysis, while
q is the total number of time steps), which combines
the state variable of all six reanalyses at each time step.

The singular value decomposition is then per-
formed on the combined covariance matrix C to
retrieve the largest coherent spatial-temporal modes
that maximize the cross-covariance among all reana-
lyses and station observations. Notably, the spatial
patterns of these CMCA modes among the six reana-
lysis datasets show high consistency [54]. Therefore,
here we use the ensemble mean of reanalyses to rep-
resent a combined reanalysis spatial pattern for each
mode.

2.3. Other statistical methods
The SAM, PSA1, and PSA2 modes in this study
are the first three Empirical Orthogonal Function
(EOFs) [55], respectively, retrieved from the monthly
ERA5 500 hPa GPH anomalies over the Southern
Hemisphere (0◦–90◦S). Spatial correlation coeffi-
cients (weighted by the area of each grid cell) have
been used to illustrate the coherence between circu-
lation patterns associated with CMCA Mode 1 and
PSA2. We use the Sen’s slope method [56] to calcu-
late the linear trend, with the significance level cal-
culated through the Mann–Kendall test [57]. Linear
regression, Pearson’s correlation, and composite ana-
lysis are also used in this study to (respectively) invest-
igate the regression maps of the CMCA time series
and the correlation between PSA2 and ZW3. The stat-
istical significance is calculated using the Student’s
t-test, which is undertaken using the effective degree
of freedom taking the autocorrelation of the variables
into consideration.

In this study, two statistical methods were
employed to identify the change points of the time
series. The firstmethod utilizedwas the robust change
point detection method developed by Alin et al [58].
This method identifies the robust change points by
calculating the sum of squares for error for various
regression models. The second method employed

was the traditional moving t-test [59], which is based
on the 15 year moving trend of the time series. This
method detects significant change points by testing
whether the trend has undergone a sudden change
at a certain point. The change points are determined
according to the intersection of these two methods.

3. Results

3.1. Seesaw SAT trends between East andWest
Antarctica
We calculate the trends of the Antarctic SAT using
26 frequently-used stations for two periods, 1979–
2000 and 2001–2019. Although the sparse distribu-
tion of these stations may not represent the SAT
trends over the entire Antarctic, the distribution of
these warming and cooling signals depicts a seesaw-
like pattern, especially for austral spring (SON).
Most of the stations over West Antarctica experi-
enced rapidwarming trends before 2000 (figure 1(a)),
followed by cooling trends after (figure 1(b)). This
reversal is especially evident at the Faraday/Vernadsky
(figure 1(c)) and Rothera (figure 1(d)) stations loc-
ated at the west coast of the Antarctic Peninsula, as
well as the Byrd Station (figure 1(e)) over in-land
West Antarctica. In contrast, most of the stations
over East Antarctica show mild, insignificant cooling
trends before 2000 (figure 1(a)), followed by warm-
ing trends after (figure 1(b)). This switch is clear
at the Neumayer Station (figure 1(f)) over Queen
Maud Land and the Amundsen–Scott and Vostok sta-
tions (figures 1(g) and (h)) in the interior of East
Antarctica.

The multi-decadal SAT trends (based on in-situ
observations) for the other three seasons are illus-
trated in supplementary figure 1. Similar seesaw-
like SAT trends are seen in most of these seasons,
especially for austral summer (December-January-
February, DJF, see supplementary figures 1(a) and
(d)). However, these seesaw signals are either weaker
(see supplementary figures 1(a) and (d)), or more
complex (see supplementary figures 1(b), (c), (e) and
(f)) than those of the austral spring (figure 1). Below
we focus exclusively on the seesaw-SAT trend and its
reversal in spring (SON).

To further evaluate the spatial distribution of this
seesaw-like SAT trend, we illustrate the spring SAT
trends before and after 2000 based on three state-
of-the-art reanalysis products, namely the MERRA2
(see supplementary figures 2(a) and (d)), the JRA55
(see supplementary figures 2(b) and (e)), and the
ERA5 datasets (see supplementary figures 2(c) and
(f)). Although these reanalyses show some degree of
the West warming-East cooling trend reversal after
2000, there is considerable discrepancy in the spa-
tial extent and magnitude of the west–east trend pat-
tern, which is not surprising given previously repor-
ted discrepancies among these reanalyses [40, 41].
These discrepancies hinder the further assessment of
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Figure 1. Austral spring (September–October–November, SON) surface air temperature (SAT) trends based on in-situ
observations ((a) and (b)). Colored circles indicate the SON SAT trends (◦C/decade) from in-situ observations for the periods
1979–2000 (a) and 2001–2019 (b), respectively. (c)–(h) show the SON seasonal mean time series for Faraday/Vernadsky (c),
Rothera (d), Byrd (e), Neumayer (f), Amundsen–Scott (g), and Vostok (h) stations. The solid (dashed) red lines in (c)–(h) show
the significant (insignificant) linear trends of the SAT at each station at p< 0.1. The change points in (c)–(h) are determined
using the Alin’s method and the moving t-test based on 10 year moving trend.

the west–east pattern, including its robustness or its
potential causes, and call for a statistical approach that
might yet distill a robust and common signal from
these datasets.

Despite limited station observations and signific-
ant discrepancies between reanalysis datasets, effect-
ive methods can be used to combine all available
information and extract reliable patterns of SAT vari-
ability. The CMCA method has been demonstrated
to be particularly effective for this purpose, providing
a means to extract coherent information from mul-
tiple datasets pertaining to the same variable [54].
In this study, we therefore apply the CMCA method
to 6 reanalysis datasets and 26 in-situ observations
to identify the most consistent modes of Antarctic
SAT variability, and further investigate the robust-
ness and underlyingmechanisms of the reversal of the
Antarctic SAT trend in SON.

Figure 2 shows the spatial patterns and time
series of the first three CMCA modes of SON SAT.
The first mode (figure 2(a)) explains 39% of the
total covariance, showing a seesaw pattern between
West Antarctica (including the Antarctic Peninsula)
and a large portion of East Antarctica comprising
QueenMaud Land and interior East Antarctica, here-
after referred to as the Antarctic-seesaw SAT pattern.
Importantly, the associated time series (figure 2(b))
of Mode 1 shows a significant trend reversal in
∼2000. A significant negative trend before 2000 is
observed, which represents substantial warming over
West Antarctica and cooling over the Queen Maud
Land area. After 2000, a significant positive trend is
observed, with warming over most regions of East
Antarctica and cooling overWest Antarctica. In short,
the first mode represents a seesaw multi-decadal SAT
trend pattern betweenWest Antarctica and theQueen
Maud Land area with a phase reversal in the early 21st

century.

The spatial pattern of CMCAMode 2 (figure 2(c))
shows a pan-Antarctic cooling at its positive phase
(hereafter named as Antarctic-continental SAT
pattern), which might be related to the variability
of the SAM [60] or radiative forcing associated with
changes in greenhouse gas concentrations. Mode 3
(figure 2(e)) depicts a West Antarctic SAT-dipole
pattern [61–63] between the Antarctic Peninsula and
the west of Marie Byrd Land [63]. Unlike Mode 1,
the time series of Modes 2 and 3 (figures 2(d) and
(f)) show no significant trends. The first three modes
of CMCA explain more than 86% of the covariance
between the set of 26 stations and the 6 reanalysis
datasets, indicating that these three modes represent
the majority of SAT variability over the Antarctic in
austral spring.

We also conducted a CMCA analysis on monthly
temperature anomalies for the other three seasons
(see supplementary figures 3 and 4). The first three
leading modes show very similar spatial patterns to
those for the spring, with the rank of percentage
variance explained by Mode 1 (Antarctic-seesaw pat-
tern) and Mode 2 (Antarctic-continental pattern)
switched. The similarity of the leading three modes
among different seasons reinforces the robustness of
these dominant modes of Antarctic SAT variability.
Below we discuss the circulation associated with the
SON seesaw-SAT trend and its reversal.

3.2. Anomalous atmospheric circulation associated
with the seesaw SAT trends
The SLP projected onto the time series of the
Antarctic-seesaw SAT pattern (CMCA Mode 1)
through linear regression (figure 3(a)) shows aRossby
wave-like pattern, with an anomalous high-pressure
center over the Ross Sea and a low-pressure center
over the Antarctic Peninsula–Weddell Sea region;
the latter extends to inland Antarctica and induces
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Figure 2. The first three major modes of the combined maximum covariance analysis (CMCA). Shown are results for austral
spring from a set of 26 Antarctic station observations and 6 reanalysis datasets. (a) and (b) show the spatial pattern (a) and time
series (b) of the CMCAMode 1. The color shading represents the spatial patterns retrieved from 6 reanalysis datasets (ensemble
mean for each mode), while the dots represent the signals of the 26 in-situ observations for each CMCA mode. The scatters show
significant values at p< 0.05. The red and blue curves in (b) illustrate the CMCA time series of station observations (blue) and
the combined reanalyses (red) for each mode, while the R values in the upper left corner of each panel indicate the correlation
coefficient between these time series. (c)–(f) are same as (a) and (b), but for CMCAMode 2 (c)–(d) and Mode 3 (e)–(f).

large-scale adjustments in thermal advection. In
particular, during its positive phase (as shown in
figure 3(a), predominantly post-2000), the deep low
pressure center over the Antarctic Peninsula–Weddell
Sea drives cold air advection from interior Antarctica
to West Antarctica and warm advection from the
Southern Ocean to Queen Maud Land. For the neg-
ative phase (predominantly pre-2000), the orienta-
tion of the above warm–cold advection is reversed
(not shown), thus helping explain the switch of the
seesaw SAT pattern in austral spring. The anomalous
circulation pattern appears linked to the second PSA
mode (PSA2); the correlation coefficient between
the circulation pattern associated with the seesaw
SAT mode (CMCAMode 1) (i.e. figure 3(a)) and the
PSA2 (figure 3(b)) reaches 0.91, and their temporal
correlation coefficient is 0.6 (figure 3(c)).

The seesaw pattern shows strong signals along the
coastal regions of theQueenMaud Land and theWest
Antarctic, as depicted in figures 2(a) and 3(a). To
investigate the potential role of oceanic processes in
these coastal signals, we conducted further analysis by
calculating the sea ice concentration (SIC) and SST
anomalies associated with the seesaw SAT mode in
SON through linear regression (see supplementary
figure 5). Our findings indicate that the high loadings

across the coastal regions (figure 2(a)) are closely
linked to the air–sea heat flux associated with the
SIC and SST anomalies (see supplementary figure 5).
Specifically, the positive phase of the seesaw mode
(figure 2(a)) corresponds to a sea ice expansion
over the Amundsen–Bellingshausen Sea and a sea ice
retreat over the coastal East Antarctic (see supple-
mentary figure 5(a)) caused by thermal advection and
mechanical forcing [64, 65]. These sea ice anomalies
further cool the West Antarctic and heat the East
Antarctic by reducing/intensifying the heat flux from
the ocean to the atmosphere [66, 67]. Additionally,
the positive phase of the seesaw SAT mode is also
closely associated with sea surface warming over the
Atlantic sector of South Ocean and surface cooling
over the Amundsen–Bellingshausen Sea (see supple-
mentary figure 5(b)), which may contribute to the
coastal warming/cooling over the East/West Antarctic
by impacting on the sea ice anomalies [68] and air–
sea heat flux. Therefore, the oceanic processes related
to the SIC and SST anomalies play a crucial role in
the high loading over the coastal regions of the seesaw
SAT mode.

The circulation pattern associated with the
Antarctic-continental mode (CMCA Mode 2)
(see supplementary figure 6(a)) is dominated by
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Figure 3. Sea level pressure (SLP) and surface air temperature (SAT) associated with CMCAMode 1 and Pacific–South American
pattern 2 (PSA2). (a) Spatial pattern of CMCAMode 1 (color shadings) and regression map of sea level pressure (SLP, black
contours) onto the normalized time series of Mode 1 during the period of 1979–2019. (b) Regression map of SLP against its
normalized time series of PSA2. Solid contours show positive circulation anomalies, with dashed contours showing negative ones.
Contour intervals are 0.5 hPa. (c) Time series of PSA2 (black curve) and CMCAMode 1 (red curve). The solid (dashed) line
shows the significant (insignificant) trend at p< 0.05. R values in the upper left corner of (c) indicate the correlation coefficient
between the time series of CMCAMode 1 and that of PSA2.

low-pressure encompassing the entire Antarctic
continent, resembling the zonally symmetric SAM
pattern with a spatial-pattern correlation reaching
0.85. The circulation associated with the Antarctic-
dipole mode (CMCA Mode 3) (see supplement-
ary figure 6(b)) shows a Rossby wave train pattern
strongly resembling the first PSA mode (PSA1), with
a correlation of about 0.64.

Recent studies [69, 70] indicated that the PSA2
is also associated with atmospheric internal variabil-
ity including the ZW3mode over the southern hemi-
sphere. Correlation between the PSA2 and different
atmospheric variables, including SAT, 500 hPa GPH,
mean SLP, 500 hPa wind speed, and 10 m meridi-
onal wind speed, show clear ZW3 imprints in these
fields (see supplementary figure 7). Composite anom-
alies over seven years with the largest (85th percent-
ile) PSA2 years show that the positive phase of PSA2
is associated with a ∼30◦ (longitude) eastward shift
of the ZW3 pattern (see supplementary figure 8),
including a shift of the prominent Amundsen Sea
Low (ASL) circulation mode eastward toward the
Antarctic Peninsula andWeddell Sea, which here con-
tributes to the deep pressure center over the Antarctic
Peninsula–Weddell Sea after 2000.

4. Conclusion and discussion

Studies investigating Antarctic climate variability
and trends are challenged by the limited observa-
tional data [3, 40]. Available in-situ observations are
too sparse to represent variability over the entire
Antarctic continent [7]. On the other hand, although
we have many high-resolution gridded datasets,
including satellite observations and reanalyses, the

wide range of observational techniques, accuracies,
and methods for combining observations and mod-
els necessarily lead to inconsistencies between dif-
ferent datasets [3, 40, 41]. Our application of the
CMCA method extracts dominant modes of tem-
perature variability in the station observations and
six different reanalyses, one of which represents the
coherent SAT mode featuring the Antarctic-seesaw
pattern.

The dynamics of Antarctic climate change and
its zonal-asymmetric feature is a fundamental issue
in climate science [1, 71], especially given its broad
implication for global sea level rise [10], global
energy balance [11], and the global carbon cycle
[12]. Recent studies indicated that the zonally
asymmetric Antarctic SAT trends with East-cooling
andWest-warming during the second half of the 20th
century were largely driven by the multi-decadal SST
variability over the Pacific and the Atlantic Oceans.
The SAM [60], the ASL [72, 73], and remote for-
cing from the tropical oceans [19, 22, 28] are each a
part of the dynamics driving the observed Antarctic
climate variability and change [22, 23, 28, 72–75],
especially the dipole-like sea ice and SAT changes
over the West Antarctic between the Ross Sea and
Amundsen–Bellingshausen Seas.

Here we reveal a broader, continental-wide,
seesaw SATpattern between East andWest Antarctica,
which underwent a reversal around 2000 (figure 4).
These reversed trends show strong warming over
Queen Maud Land and inland East Antarctica and
cooling over West Antarctica during 2000–2019. In
contrast to previous studies that attributed the zonal
asymmetry of the Antarctic SAT trend to the ASL
[19, 20, 28, 76], we find that this continental-wide
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Figure 4. Schematic figure of the seesaw temperature pattern. The anomalous high (low) pressure center over the Antarctic
Peninsula–Weddell Sea leads to warm (cold) advection to the West Antarctic region, with a cold (warm) advection to the East
Antarctic region before (after) 2000, as shown in (a) and (b), leading to a surface air temperature seesaw pattern whose tendency
switched before and after 2000. A reversal of this anomalous pressure center after 2000 is related to the eastward shift of the zonal
wave number three mode.

seesaw SAT change is related to thermal advection
caused by an anomalous circulation center over the
Antarctic Peninsula–Weddell Sea region. Before 2000,
there was an anomalous high-pressure center over the
Peninsula–Weddell Sea region, leading to a warm air
advection from lower latitudes to West Antarctica,
and a cold air advection from the South Pole toQueen
Maud Land (figure 4(a)). After 2000, an anomalous
low-pressure center was present over the Peninsula–
Weddell Sea region [5], reversing the patterns of
thermal advection prior to 2000 (figure 4(b)). This
anomalous circulation center is in part a result of for-
cing from the tropical Pacific, and in part an eastward
shift of the ZW3 projected onto PSA2 variability,
although the ultimate cause for the changes involving
ZW3 and PSA2 requires further investigation, giving
the dynamical complexity of the PSA2 [55, 69, 70, 77].

During the satellite era since 1979, the Antarctic
has experienced a series of asymmetric climate
changes, with the strongest changes typically appear-
ing over the West Antarctic [2–4, 73]. The reversal of
the Antarctic seesaw SAT trend pattern and the asso-
ciated adjustment of the large-scale atmospheric cir-
culation over the Antarctic we reported have broad
implications for projecting long-term changes of the
Antarctic sea-ice and land-ice [4–6, 9], in that these
changes might not appear unidirectional and can
be masked by the adjustment we documented. The
Antarctic climate adjustment revealed by our study
potentially has broad implications for the future pro-
jections of sea level rise, the energy budget of the earth
system, and the global carbon cycle.
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