WF/MR/96/021



BRITISH GEOLOGICAL SURVEY



# MINERAL RECONNAISSANCE PROGRAMME OPEN FILE REPORT NO. 21

# MINERAL INVESTIGATIONS IN THE NORTHUMBERLAND TROUGH: PART 3, ECCLEFECHAN-WATERBECK AREA

Compilation and Geochemistry:

R T Smith BSc, M Phil

Geology:

A A McMillan, BSc

Contributors:

D J Bland, BSc (Heavy Mineral Identification) N J Fortey, BSc, PhD (Petrography)

This data package relates to work

carried out by the British

Geological Survey on behalf of

the Department of Trade and

Industry

© NERC Copyright, 1996 This information must not be reproduced either in analogue or digital form without written permission from Director, BGS

This report has been generated from a scanned image of the document with any blank pages removed at the scanning stage. Please be aware that the pagination and scales of diagrams or maps in the resulting report may not appear as in the original

CONTENTS

| INTRODUCTION                                                        | 1   |
|---------------------------------------------------------------------|-----|
| Background                                                          | 1   |
| Previous Research                                                   | 1   |
| Selection of project area                                           | 1   |
| PHYSIOGRAPHY                                                        | 2   |
| PLANNING AND DEVELOPMENT FRAMEWORK                                  | 2   |
| GEOLOGY                                                             | . 3 |
| Silurian: Riccarton Group                                           | 3   |
| ? Devonian - Carboniferous: Upper Old Red Sandstone                 | 3   |
| Carboniferous: Border Group                                         | 4   |
| Birrenswark Volcanic Formation                                      | 5   |
| Kirkbean Cementstone Formation                                      | 6   |
| Gypsum-anhydrite development in the Hoddom No.2 Borehole (NY17SE/3) | 6   |
| Southerness Limestone Formation                                     | 6   |
| Fell Sandstone Formation                                            | 7   |
| Carboniferous: Liddesdale Group                                     | 7   |
| Volcanic Vents                                                      | 7   |
| Structure                                                           | 8   |
| DRAINAGE GEOCHEMISTRY                                               | 8   |
| Sampling and analysis                                               | - 9 |
| Distribution of panned concentrate anomalies                        | 9   |
| Copper                                                              | 9   |
| Lead                                                                | 10  |
| Zinc                                                                | 11  |
| Barium                                                              | 11  |
| Gold observations                                                   | 12  |
| OVERBURDEN GEOCHEMISTRY                                             | 12  |
| Sampling and analysis                                               | 12  |
| Geochemical data for till samples                                   | 13  |
| MINERAL OCCURRENCES AND ROCK GEOCHEMISTRY                           | 14  |
| Hoddom borehole core analysis                                       | 16  |
| CONCLUSIONS AND RECOMMENDATIONS                                     | 16  |
| ACKNOWLEDGEMENTS                                                    | 17  |

| REFERE | NCES                                                                        | 17 |
|--------|-----------------------------------------------------------------------------|----|
| APPEND | IX Petrographic notes on two polished thin sections from the Middlebie area | 21 |
| TABLES | • • •                                                                       |    |
| 1      | Stratigraphical succession                                                  | 4  |
| 2      | Ecclefechan panned concentrate data (reconnaissance survey, 1976)           | 22 |

| 3  | Ecclefechan panned concentrate data (follow-up survey, 1995)                       | 24  |
|----|------------------------------------------------------------------------------------|-----|
| 4a | Electron microprobe identification of selected grains in panned tills (BFU)        | 26  |
|    | and panned concentrates (BFP) from the Ecclefechan area                            |     |
| 4b | Mineralogical examination of -500 µm and +500 µm superpanned fraction of heavy     | 27  |
|    | mineral concentrates prepared from panned till (BFU) and panned stream sediment (B | FP) |
| 5  | Ecclefechan panned till data                                                       | 28  |
| 6  | Ecclefechan sieved till data                                                       | 30  |
| 7  | Ecclefechan panned concentrate gold observations                                   | 32  |
| 8  | Ecclefechan surface rock data                                                      | 33  |
| 9  | Lithology and chemical analysis of Hoddom borehole core samples                    | 34  |

## FIGURES

.

- 1 Locational and drainage network map of the survey area
- 2 Geological map of the survey area
- 3 Copper in panned concentrate samples
- 4 Lead in panned concentrates
- 5 Zinc in panned concentrates
- 6 Barium in panned concentrates
- 7 Copper in panned tills
- 8 Lead in panned tills
- 9 Zinc in panned tills
- 10 Barium in panned tills
- 11 Copper in sieved tills
- 12 Lead in sieved tills
- 13 Zinc in sieved tills
- 14 Barium in sieved tills
- 15 Summary lithological log of the Hoddom No. 2 Borehole core (NY17SE BJ)

.

#### **INTRODUCTION**

#### Background

Two of the most important criteria for the formation of major SEDEX Irish-style deposits, the presence of syn-depositional faulting in a Lower Dinantian basin and a geothermal system over a zone of high heat flow in the crust, are fulfilled along the northern margin of the Solway-Northumberland basin. Recognition of the broad similarities in the geological and tectonic history of the sedimentary basins of east-central Ireland and northern England/southern Scotland prompted Mineral Reconnaissance Programme (MRP) interest in the Solway-Northumberland basin in the 1970's soon after discovery of the world-class Navan Zn-Pb deposit in Ireland (Andrew, 1993).

#### **Previous Research**

Reconnaissance panned concentrate sampling by the MRP in the mid 1970's between Langholm and Ecclefechan identified anomalous concentrations of Pb and Zn extending intermittently over about 20 km of strike broadly coincident with the Lower Carboniferous / Lower Palaeozoic boundary (Gallagher et al., 1977).

Only the most prominent geochemical anomalies near Westwater [330500 582300] were followed up at that stage. Detailed investigations involving integrated geophysical and deep overburden surveys resulted in the discovery of minor vein and stratabound galena and sphalerite mineralisation over at least 4 km of Lower Carboniferous strike. Shallow diamond drilling (13 holes to depths of 20 to 60 m), revealed the presence of sporadic Pb-Zn-Cu mineralisation with combined grades of 0.1-0.3% over 1-2 m of thickness. Sulphides (galena and sphalerite) occur in disseminations and dolomitic veins in porous sandstones and cementstones, usually in close proximity to the contact of the basal Carboniferous Birrenswark lavas and the overlying 'cementstone' facies of the Lower Border Group. Mineralised breccia zones within the lavas carry chalcopyrite and pyrite, and both styles of mineralisation appear to be emplaced along north-easterly trending normal faults and cross faults.

In the period 1981-85 systematic stream sediment surveys in southern Scotland, carried out as part of the BGS Geochemical Baseline Survey of the Environment (G-BASE), confirmed the regional pattern of anomalous base-metal concentrations close to the basin margin (BGS, 1993a), although the stream sediment data exhibit generally poorer geochemical contrast in comparison with panned concentrates, especially in areas of subdued relief and thick drift to the south-west of Langholm.

A multidisciplinary study into the analysis of spatially-related (geochemical, geophysical and geological) datasets and mineral deposit modelling for carbonate-hosted mineral deposits in northern England (Plant and Jones, 1991; Jones et al., 1994) also emphasised the high base-metal prospectivity of the Solway-Northumberland basin. The report suggests that particularly favourable sites for mineralisation occur where the northern basin-margin synsedimentary faults cut Courceyan-Chadian rocks at <0.5 km depth. Zones of fault intersection can result in areas of dilation and structural disruption which may provide potential pathways for mineralising fluids.

### Selection of project area

Based on these concepts and the high incidence of base-metal geochemical anomalies a new MRP project aimed at stimulating mineral exploration interest in the northern margin of the Northumberland-Solway basin was initiated in 1992. Four principal targets areas considered

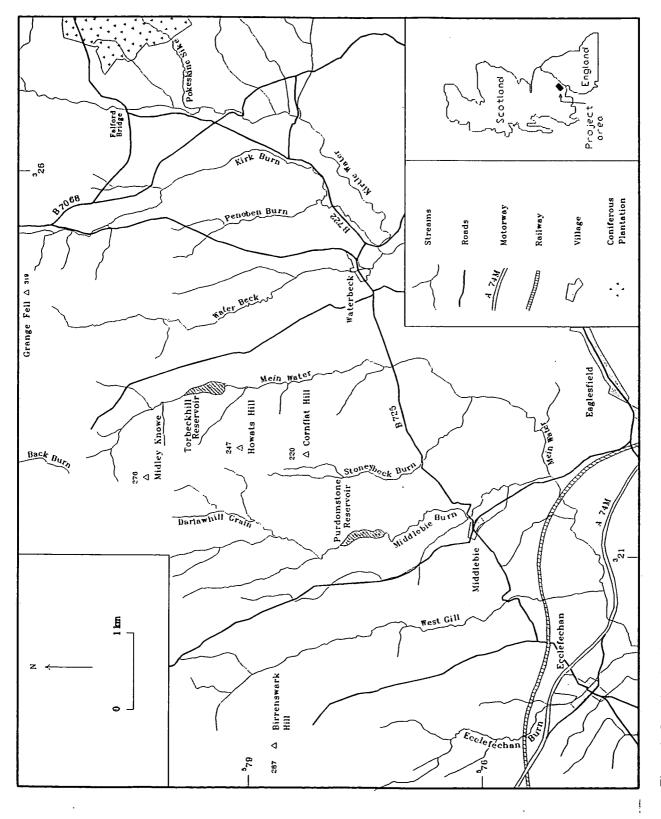



Figure 1 Locational and drainage network map of the survey area

-

prospective for stratabound (Irish-style) and/or epigenetic (Pennine-style) base-metal mineralisation were examined. This report describes the results of mineral reconnaissance investigations between Falford (2.5 km south-west of Westwater) and Ecclefechan, covering a total strike length of about 12 km and an across-strike width of 8 km (Figure 1). The principal follow-up targets in the project area were the Lower Carboniferous sedimentary and basic rocks in the vicinity of the major north-east trending Waterbeck Fault, one of a system of en echelon structures marking the northern edge of the Northumberland-Solway Basin. In addition, reconnaissance geochemical data are also presented for the area lying immediately north of the Lower Carboniferous where anomalous concentrations of Cu, Ba (+ minor Pb and Zn) occur in streams cutting the unconformable or faulted Silurian-Upper Old Red Sandstone boundary.

## PHYSIOGRAPHY

The area which occupies about 60 km<sup>2</sup> lies partly in the foothills of the Southern Uplands and is characterised by smooth, rounded grass and heather clad hills rising to a maximum of 319 m OD on Grange Fell near the northern margin of the study area (Figure 1). Relief and elevation decrease in a generally southwards direction although the Birrenswark lavas form a distinct line of hills, 200-250 m OD, through the central part of the area. A marked break of slope coincides approximately with the lava-sediment boundary, to the south of which the land is gently undulating or flat-lying with an average elevation of <100 m OD.

Over the higher ground, the principal drainage direction is south-south-east, most tributaries flowing in moderately deeply incised valleys orthogonal to the regional strike until they cross the lavasediment boundary, where they drain into the broad south-west meandering courses of Mein Water and Kirtle Water. Due to an almost continuous cover of glacial deposits (including lodgement and ablation tills) which thicken southward, rock outcrop over the Border Group sedimentary rocks is very scarce except in the most deeply incised stream sections. The Birrenswark lavas are better exposed especially in the steep sided gorges cut by Ecclefechan Burn, West Gill and Middlebie Burn (Figure 1), and in a few small disused quarries which have provided hard core for farm roads and local tracks. Much of the higher ground in the north-eastern part of the area is covered by blanket peat up to 3 m thick in places especially in the poorly drained upper reaches of Water Beck and Mein Water.

Apart from the villages of Ecclefechan, Middlebie and Waterbeck the area is relatively sparsely populated. Much of the valley and marginal hill land is utilised for arable and pastoral farming, but the highest ground supports only thin grass cover and consequently is used mainly for sheep grazing. A small coniferous plantation is located in the north-east corner of the area (Figure 1).

## PLANNING AND DEVELOPMENT FRAMEWORK

The area is located about 25 km north-west of Carlisle and the same distance east of Dumfries. Communications are good with a network of minor roads and the A 74M motorway, and west coast railway providing easy access to Glasgow and London (Figure 1). The market town of Annan, 10 km to the south, is a small port on the Solway estuary supporting several established industries and, on the outskirts, the Chapel Cross nuclear power station. There are no known conservation areas likely to effect mineral extraction either within or in close proximity to the study area.

## GEOLOGY

Lower Carboniferous sedimentary rocks which form the northern margin of the Northumberland basin underlie the southern part of the district (Figure 2). They are underlain by lavas of the Birrenswark Volcanic Formation which rest on rocks assigned to the Upper Old Red Sandstone. These in turn, rest with marked unconformity upon an irregular Lower Palaeozoic surface. The stratigraphical succession is summarised in Table 1.

## **Silurian: Riccarton Group**

The oldest rocks of the area crop out only in the far north-west (Stockbridgehill [3199 5795]) and north-east (Grange Fell [3244 5819]\*) corners of the district. They belong to the the Riccarton Group of Silurian (Wenlock) age. These rocks comprise a thick sequence of steeply dipping, east-north-east striking, turbidite sandstones, shales and mudstones deposited in a subsiding foreland basin following the closure of the Iapetus Ocean (Stone et al., 1987). The succession is folded, faulted and affected by low-grade metamorphism which accompanied end-Caledonian tectonic events. Petrographical and lithological studies (Lumsden et al., 1967) indicate that quartz is the predominant mineral in the greywackes accompanied by subsidiary amounts of feldspar, chlorite (derived from earlier ferromagnesian minerals), muscovite and accessory amounts of apatite, zircon and tourmaline.

## ? Devonian - Carboniferous: Upper Old Red Sandstone

Overlying the Silurian with marked angular unconformity is a thin sequence of strata of Upper Old Red Sandstone (UORS) facies. The rocks comprise red sandstones, conglomerates and siltstones with locally developed thin horizons of concretionary carbonate nodules (cornstones) and, near the top of the sequence, thicker bands of pedogenic carbonates (Leeder, 1974; 1976). The strata are of probable Upper Devonian age although Lumsden et al., (1967) suggested that they may represent a distinctive reddened facies of the Lower Carboniferous. The succeeding basalt lavas of the Kelso and Birrenswark Volcanic formations have given K-Ar whole rock radiometric ages of 361 +/- 7 Ma, indicating that eruption probably straddled the Devonian - Carboniferous boundary (De Souza, 1982).

The rocks occupy low ground around the summit of Burnswark Hill and upper reaches of the Middlebie Burn, Mein Water, Water Beck, Penoben Burn, Kirk Burn and Kirtle Water (Figures 1 and 2). Both to the south-west and northeast of the district Leeder (1976) has recorded well developed pedogenic carbonates (which represent palaeosol horizons) in the top few metres of the successions, particularly where they are associated with lithic-rich sandstones. The carbonate profiles include nodular, massive, cylindroid and irregular morphoplogies and the carbonate phase is usually ferroan dolomite sparrite (Leeder, 1976). Stringers and nodules of chert are also present. Locally, as at Cowdens Quarry [3165 5771] west of the district, indurated and silicified sandstones are found immediately underlying the lavas.

Most of strata are of fluviatile origin and palaeogeographical evidence indicates that they were probably part of an interior alluvial braided drainage system with predominant current flow to the north-east (Leeder, 1973). The occurrence of palaeosols towards the top of the sequence suggests a period of crustal upwarp and stream incision related to partial melting of the upper mantle which gave rise to the eruption of the succeeding Birrenswark lavas.

\* British National Grid Reference

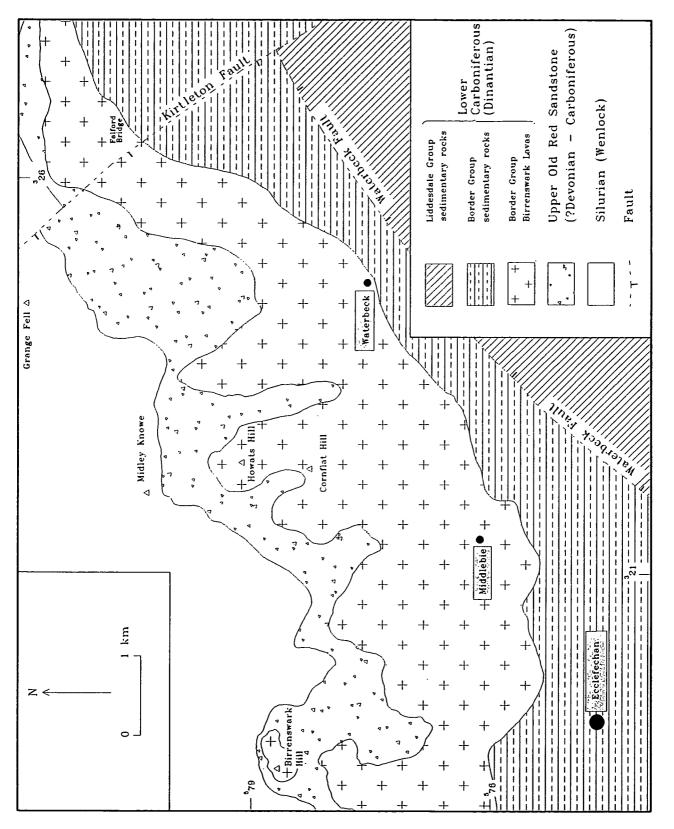



Figure 2 Geological map of the survey area

Table 1 Stratigraphical succession

| SUPERFICIAL DEPOSITS              |                                                                                                             | Thickness |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------|-----------|
| RECENT                            | Peat                                                                                                        | 0.2 - 3 m |
|                                   | Alluvium                                                                                                    | <5 m      |
| Pleistocene                       | Glacial sand and gravel                                                                                     | <2 m      |
|                                   | Till                                                                                                        | 1.5 - 6 m |
| CARBONIFEROUS                     | *                                                                                                           |           |
| D LIDDESDALE GROUP<br>I<br>N<br>A | limestone-dominated sequence at Eaglesfield &<br>Blackwoodridge: lower part of Liddesdale Group<br>(Asbian) | > 90 m    |
| N BORDER GROUP                    | Fell Sandstone Formation* (?Arundian - Asbian)                                                              | c.100 m   |
|                                   | Southerness Limestone Formation (Chadian -<br>Arundian)                                                     | c. 50 m   |
| N                                 | Kirkbean Cementstone Formation (Courceyan-<br>Chadian)                                                      | c. 200 m  |
|                                   | Birrenswark Volcanic Formation (at base)                                                                    | c. 80 m   |
| ?Devonian- Carboniferous          | Upper Old Red Sandstone                                                                                     | <50 m     |
| SILURIAN                          | unconformity                                                                                                |           |
| Wenlock                           | Riccarton Group                                                                                             | >500 m    |

\* = provisional lithostratigraphical formation

## **Carboniferous: Border Group**

In the Langholm and Bewcastle areas Lumsden et al. (1967) and Day (1970) divided the Lower Carboniferous into a tripartite (Lower, Middle and Upper) Border Group and a bipartite (Lower and Upper) Liddesdale Group. These were primarily distinguished on biostratigraphical grounds with unit tops and bases defined by marker horizons. This report adopts a revised Border and Liddesdale Group lithostratigraphy (BGS, 1996) utilising the lithostratigraphical formations defined for the Solway coast (BGS, 1993b; McMillan in Lintern & Floyd, in preparation) and provisional formations and members to be proposed for Annandale (1: 50 000 Sheet 10W Lochmaben, BGS, in preparation).

The lowermost rocks of the Border Group in the area comprise the Birrenswark Volcanic Formation and these define the base of the Carboniferous system along the northern margin of the Northumberland - Solway Basin. These rocks, together with the succeeding Kirkbean Cementstone Formation and part of the Southerness Limestone Formation (BGS, 1993b, 1996; McMillan in Lintern & Floyd, in preparation), are of approximately the same biostratigraphical age as the Lower Border Group (Lumsden et al., 1967; Day, 1970). The top and base of the succeeding sandstone-dominated strata of the Fell Sandstone Formation (Fell Sandstone Group of Nairn, 1956) are probably diachronous: the formation is generally equivalent in age to the Middle to Upper Border Group (Lumsden et al., 1967; Day, 1970). Some beds including the sandstones contain a marine fauna. Strata of the Lawston Linn Coal Group (defined by Nairn, 1956) are taken to be facies variants of the Fell Sandstone Formation. Tuffs and lavas of the Glencartholm Volcanic Formation (Group of Nairn, 1956) die out to the east of the district at Allfornought. Strata of the lower part of the Liddesdale Group are present between Eaglesfield and High Muir.

#### **Birrenswark Volcanic Formation**

Extensional subsidence was very rapid during Courceyan-Chadian times, resulting in marked palaeogeographical changes and destruction of the internal UORS drainage system allowing the sea periodic access to the basins. Locally, alkali olivine-basalt extrusion accompanied rift-basin formation and tensional fracturing along the main basin faults (Leeder, 1974). The basalts and interbedded tuffs, which mark the base of the Lower Carboniferous succession, are known as the Birrenswark Volcanic Formation, named after Birrenswark (or Burnswark) Hill [35185 786]. The basalt petrography and mineralogy are described in detail by Pallister (1952) and Elliott (1960). The basalts are comparable with the Lower Carboniferous basalts of the Midland Valley of Scotland (MacDonald, 1975), being dominantly microporphyritic feldspar-rich types.

In the district, the lavas occupy the high ground of Burnswark Hill where they form an "outlier" in the Upper Old Red Sandstone. The main outcrop can be traced across south-facing slopes from Haregills to Middlebierig, extending northeastwards along the southern flanks of Howats Hill, Torbeckhill to Crowdieknowe Hill and Ley Hill (Figure 2). The total thickness of lavas in the district is estimated at about 80 m (Pallister, 1952). The rocks are vesicular and rich in amygdales particularly in the upper parts of flows, but their most striking feature is their alteration by deuteric activity and the effects of intense atmospheric weathering producing a distinctive spheroidal weathering surface. Hematite is commonly present, but pyrite and chalcopyrite, which were seen as common constituents of calcite-dolomite breccia veins and as patchy disseminations in lavas west of Langholm, have not been observed in the study area. Chloritisation and calcitisation are widespread, the former resulting from alteration of mafic silicates. Amygdales are commonly filled by calcite, accompanied by chlorite, clay minerals, quartz, and chalcedonic silica. Calcite also forms the matrix of breccia-veins. In Middlebie Burn, Pallister (1952) notes that the highest exposures of lava consist of a lava breccia cemented in a crystalline ankerite. Abundant sediment in vesicles and veins suggests that the lava were erupted contemporaneously with the onset of sedimentation.

#### Kirkbean Cementstone Formation

The earliest Lower Carboniferous sedimentary rocks of the area are represented by a sequence of up to 200 m of cementstone facies strata comprising thinly bedded, sparsely fossiliferous, muddy dolomitic limestones (cementstones), siltstones and sandstones. These rocks are referred to the Kirkbean Cementstone Formation (equivalent of most of the Cementstone Group of Nairn 1956). The sediments were deposited either in shallow channels or within mudflats in a predominantly estuarine environment. The cementstones probably formed as a result of frequent submergence of mudflats in semi-stagnant, saline water. In the district these rocks are thought to rest directly on the Birrenswark lavas. To the west in the Dalton area the cementstones are underlain by dark red fine-grained to conglomeratic sandstones assigned to the Annandale Sandstone Member (Annandale Sandstones of Nairn 1956). The eastern limit of these sandstones is probably near Hoddom although the BGS Hoddom Borehole No.2 (registered number NY17SE/3, 31641 57285) drilled in 1994 failed to penetrate the full cementstone sequence at 200 m below surface level (see Appendix ). To the east of the district in the Langholm - Newcastleton area, up to 200 m of cementstones (referred to as the Black Burn Formation by Leeder, 1974) pass downwards into fine-grained, massive, fluviatile and deltaic distributary sandstones now collectively referred to the Whita Sandstone Member (after the Whita Sandstones of Peach and Horne, 1903, Nairn, 1956, 1958; Lumsden et al., 1967; Leeder, 1974; Smith and Walker, 1996).

## Gypsum-anhydrite development in the Hoddom No.2 Borehole (NY17SE/3)

Throughout the sequence in BGS Hoddom No.2 Borehole (NY17SE/3), particularly in the cementstones and grey siltstones of the Kirkbean Cementstone Formation, fibrous gypsum (satin spar) bands, up to 4 cm thick are present. Normally the bands are sub-parallel or parallel to bedding. High angle and vertical veins of gypsum are also present. In addition, patches and bands of brecciated, massive anhydrite are developed in beds up to 1 m thick. Both anhydrite and gypsum can be formed subaqueously in shallow water and subaerially in coastal sabkhas (Tucker, 1988). Following burial to depths greater than a few hundred metres all CaSO<sub>4</sub> is preserved as anhydrite. Secondary gypsum forms during erosion and uplift. Although it is thought that the fibrous gypsum probably grew under pressure in water-filled veins induced by hydraulic fracture (Shearman et al., 1972), its source can be attributed either to anhydrite hydration or to residual sulphate-rich pore fluids.

### Southerness Limestone Formation

At Southerness on the Solway coast the well exposed coastal section of marine limestones, sandstones, mudstones and algal beds was described in detail by Craig (1956) and Deegan (1970). The sequence includes the Syringothyris Limestone which Craig (1956) considered to be the biostratigraphical equivalent of the Harden Beds at the base of the Middle Border Group at Langholm (Lumsden et al 1967). The Southerness beds are presumed to overlie the Kirkbean Cementstone Formation, only exposed inland, and have been assigned to the Southerness Limestone Formation (BGS 1993b, 1996; McMillan in Lintern & Floyd, in preparation). In the Ecclefechan area exposure of these rocks is very poor and as a consequence their extent and thickness is poorly known. Probably in the order of 50 m of thinly-bedded marine strata are present in the area. In the Ecclefechan Burn a limestone with a marine fauna including Syringothyris cuspidata was recorded by Nairn (1956) in his Cementstone Group. More recently a section excavated for a pipeline north of Allfornought Hill [33200 57870] immediately to the east of the district also revealed a Harden Beds faunal assemblage (Brand, 1992a). It is possible that representatives of the Southerness Limestone Formation are present in the BGS Hoddom Borehole No.2 (NY17SE/3) but interpretation awaits detailed biostratigraphical collection and analysis. In the interim, the top c 100 m of sandstone-dominated strata resting on the cementstones are provisionally assigned to the Fell Sandstone Formation.

## Fell Sandstone Formation

South-west of the district, BGS Hoddom Boreholes Nos. 1 (NY17SE/2, 31641 57258) and 2 reveal up to 100 m of medium to coarse pink and white sandstone with seatearth and siltstone and subordinate mudstone. Some sandstones are conglomeratic with pebbles predominantly of quartz. These strata are provisionally assigned to the Fell Sandstone Formation (Group of Nairn 1956). Some bands are fossiliferous and although these have yet to be examined, a section in a pebbly sandstone exposed in the River Annan at Hallguards immediately up-dip and to the west of the borehole site yielded a fauna indicative of a Middle to Upper Border Group age (Brand, 1992b). Sandstone-dominated strata of the Fell Sandstone Formation are patchily exposed in the River Annan downstream from Hoddom to Brydekirk and may be part of the thick sequence of interbedded sandstones and seatrocks which form Repentance Hill, Woodcock Air and Pennersaughs Hill. Fossiliferous marine sandstones are found in the River Annan north of Brydekirk Mains [31872 57132] and in a recently exposed M74 motorway section at Pennersaughs [32105 57411]. Both faunal assemblages are indicative of Middle to Upper Border Group ages (Brand, 1992b).

The Fell Sandstone Formation may also be exposed in the Kirtle Water near Blackwoodridge where a succession of alternating red marls and conglomeratic sandstones overlying a fossiliferous mudstone were referred to top of the Lawston Linn Coal Group by Nairn (1956). He noted typical lithologies of the group from sections further east in the River Esk as comprising yellow-brown, micaceous, sandstones (locally fossiliferous) with subordinate fossiliferous marine mudstones, muddy limestones and thin coals. Nairn (1956) placed the Lawston Linn strata above tuffs of the Glencartholm Volcanic Formation which attain their maximum thickness in the River Esk but die out westwards. In the Ecclefechan area, the Glencartholm volcanic rocks are absent and the Kirtle Water sedimentary succession is provisionally subsumed in the Fell Sandstone Formation, on the grounds that it may simply be a facies variant which represents changing conditions of sedimentation.

## **Carboniferous: Liddesdale Group**

A sequence with thick limestones, formerly extensively worked at Blackwoodridge, Eaglesfield and Kelhead fall within the Lower Limestone Group (Nairn, 1956) and are biostratigraphical equivalents of part of the Lower Liddesdale Group (Lumsden et al., 1967). In this report, the strata remain unnamed but are placed near the base of the Liddesdale Group (undivided). In the district the sedimentary rocks are downthrown to the south-east by the Waterbeck Fault. The strata are characterised by rhythmical sequences of thick, massive limestones, mudstones, sandstones and thin coals. Biostratigraphical evidence indicates the strata to be of Asbian age (Brand, 1992a). In the Blackwoodridge-Eaglesfield area, Nairn (1956) estimated the sequence to be at least 90 m thick.

### **Volcanic Vents**

Several small volcanic plugs containing agglomerate and/or intrusive material occur to the east of the district in the Black Burn and Hartsgarth Burn catchments (Smith and Walker, 1996). While no direct genetic link has been established, it is likely that the vents acted as feeders for the Birrenswark lavas or the Glencartholm volcanic beds (the latter are not represented in the project area). Blocks and fragments of sedimentary debris in the agglomerate-filled necks include dolomite and chert of probable Upper Old Red Sandstone age, The principal igneous component is olivine-basalt, but unusually a block of carbonated, serpentinized peridotite has been recorded in the Black Burn-Rough Gill vent (Lumsden et al., 1967). Apart from small amounts of pyrite, no sulphide mineralisation has been noted in or at the margins of the vents.

#### Structure

The regional structure of the post-Silurian strata is dominated by a north-easterly strike, dip to the south-east, a few folds with mainly north-northeast-south-southwest orientation and a system of normal, *en echelon* north-easterly faults downthrowing predominantly to the south-east. A system of cross-cutting, north-westerly trending normal faults is also present. This structural pattern, which is largely the result of deformation during the end-Carboniferous to early Permian, Variscan Orogeny, probably reflects reactivation of older Caledonian structures within the underlying basement (Chadwick and Holliday, 1991).

Recent seismic interpretation and outcrop studies (Chadwick et al., 1993; 1995) in the Solway Basin have indicated that normal faulting near the basin margins was the result of rapid extensional subsidence during the early Dinantian, and that continuing movement on these syn-depositional faults accompanied deposition of the Border Group.

A major north-easterly fault, the Waterbeck Fault crosses the project area (Figure 2). This fault, one of several postulated along the northern margin of the Solway Basin, downthrows Liddesdale Group strata to the south-east and cuts out parts of the Border Group to the north. The north-westerly trending, south-westerly throwing Kirtleton Fault (Figure 2) and associated structures of similar trend to the west of the project area probably acted as block faults, accounting for the presence of Liddesdale Group strata in the High Muir to Eaglesfield area.

Abrupt transitions from relatively flat lying to tightly folded strata is a feature of the Border and Liddesdale Group strata in the district. This pattern is particularly well observed in the Fell Sandstone Formation of the River Annan. Lack of exposure over much of the district precludes a detailed structural analysis, but the structural pattern may be analagous to that observed in the Lower Carboniferous rocks of Berwickshire, where zones of steeply dipping, folded and thrust strata are believed to have formed during late Carboniferous times in response to regional compression (Shiells, 1963). The rapid disappearance to the north of tightly folded limestones at Eaglesfield and Blackwoodridge may be attributed to displacement along the line of the Waterbeck Fault.

The structures display no obvious sequence of events, although folding, which shows evidence of truncation by the major faults, probably took place prior to, or at the latest, contemporaneously with, the faulting.

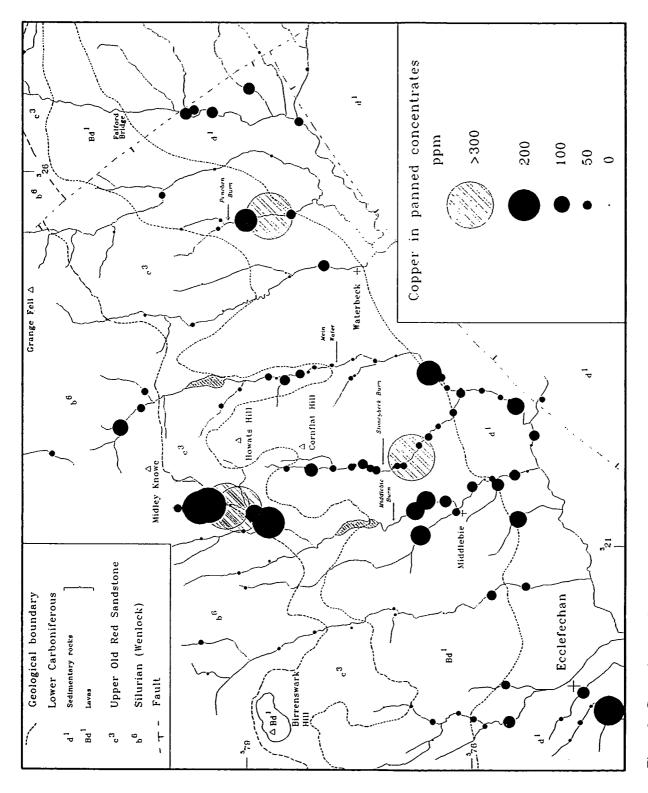
## **DRAINAGE GEOCHEMISTRY**

Geochemical sampling of panned concentrates in the Ecclefechan-Waterbeck area was originally undertaken in 1976 as part of a more extensive MRP reconnaissance survey at the northern margin of the Solway-Northumberland Basin. The results of this work are presented together with additional panned concentrate data collected in 1995 to confirm and improve sample density in the vicinity of anomalies discovered in the earlier reconnaissance survey. Visual inspection of the panned concentrates identified small amounts of sulphide minerals, pyromorphite, abundant baryte and hematite, and relatively coarse particles of gold in up to 15% of the samples indicating that many of the geochemical anomalies are related to mineralisation. However, mineralogical examination carried out on a selection of the anomalous concentrates showed that a high proportion of the streams close to habitation and roads were contaminated. The most common particulate contaminants recognised were fragments of lead-metal (often cerrusitised), glass, lead shot, pieces of rusty metal and wire (some with copper coating), accounting for the high levels of Pb, Sn and Sb seen in the most contaminated samples. Although Sn anomalies (>15 ppm) are a reliable indicator of contamination, high levels of Pb and Sb are also generated by mineralisation and the mineralogical data often indicate the presence of sulphides and contaminant grains in the same samples (Table 4a).

#### Sampling and analysis

Heavy mineral concentrates were obtained by wet screening an initial volume of 4 litres of -2 mm stream sediment and panning to a final volume of about 25-30 ml. Analysis for Cu, Zn, Pb, Ba, Ni, Fe, Sn, Sb and Mn was performed on 12 g of milled sample by X -Ray fluorescence spectrometry (XRF) at the BGS Geochemical Division laboratories in London (1976 reconnaissance samples, n=73, Table 2) and Keyworth (1995 follow-up samples, n=61, Table 3). The results of optical examination of the remaining unground excess material and of semi-quantitative XRF/electron microprobe analysis on separated grains from a selection of the anomalous samples (1995 survey) are given in Table 4a and 4b respectively.

## **Distribution of panned concentrate anomalies**


#### Copper

Copper values in panned concentrates show a wide range of concentration (0 - 801 ppm) (Tables 2 and 3; Figure 3), average values over the Border Group being comparable or slightly higher than in the Newcastleton (Smith and Walker, 1996) and Arnton Fell areas (Smith et al., 1996).

Many of the anomalous  $Cu_p^*$  values (>60 ppm) occur over the outcrop of the Birrenswark lavas or in streams draining across the lava-sediment boundary. Cupriferous pyrite and rare grains of chalcopyrite are minor but widespread constituents of panned concentrates in these streams, although the highest value of the dataset from Penoben Burn (801 ppm at [325430 578700]) is caused by contamination from fragments of oxidising Cu-coated wire. However, there may also be a local source of Cu mineralisation beneath the drift, since at the next site, only 300 m upstream, a high Cu value of 144 ppm at [325360 579020] is associated with small amounts of oxidising pyrite and one or two grains of ?chalcopyrite. A similar mineral association accounts for the Cu anomalies (113-124 ppm) north of Middlebie and close to the lava-sediment boundary south-west of Waterbeck (158 ppm at [323320 576580]). An unusually high value of 686 ppm Cu in Stoneybeck Burn at [322205 576802] may be related to a local source(s) of mineralisation as there was no evidence of contamination at the site and samples of deep till collected 400 m to the north contain over 2500 ppm Cu and visible chalcopyrite and copper-secondary minerals (see section on Deep Overburden Sampling and Figures 7 and 11).

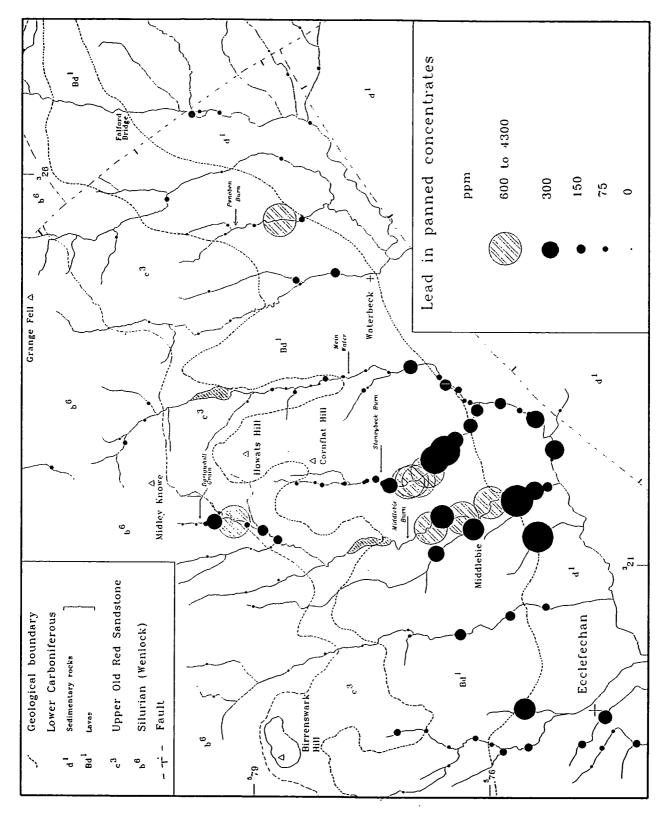
Over the Border Group sedimentary rocks anomalous Cu values are recorded to the west of Ecclefechan (187 ppm at [318700 574140]) and in upper Kirtle Water and its west draining tributaries (e.g. 66 ppm at [326800 579470]). At the former site a few grains of chalcopyrite and sphalerite were mineralogically confirmed (Table 4b), but some Cu-contaminants were also detected (Table 4a).

<sup>\*</sup> subscripts denote sample type, p=panned concentrate, u=panned till, t=sieved till





The most conspicuous group of high Cu values occur in six consecutive samples collected from the headwaters of Darlawhill Grain, south-west of Midley Knowe (Figure 3). At least two of the sites lie within the Silurian, but maximum values of 371 and 301 ppm are associated with the Silurian-Upper Old Red Sandstone boundary. The panned concentrates contain abundant hematite and baryte and, in one sample, a coarse grain of gold. In the area of the anomaly float boulders of carbonate-veined, brecciated, strongly haematised greywacke and grey sandstone were noted over several hundred metres of stream channel indicating the presence of an unexposed fault structure possibly forming the boundary between the Silurian and Upper Old Red Sandstone. Similar occurrences north-eastwards along strike, are associated with the unconformable or faulted Silurian-Upper Old Red Sandstone boundary (Colman et al., 1995), and in the Arnton Fell area Cu, Ba, and Au anomalies have been reported from a comparable hematised breccia close to the faulted Silurian-Lower Carboniferous boundary (Smith et al., 1996).


#### Lead

The pattern of high  $Pb_p$  values (Tables 2 and 3) is broadly similar to  $Cu_p$ , forming a distinct cluster in the two adjacent catchments of Middlebie Burn and Stoneybeck Burn (Figure 4), with scattered high values over the Lower Carboniferous sedimentary rocks around Ecclefechan and south of Middlebie. In contrast with other parts of the Solway-Northumberland Basin (Smith and Walker, 1996; Smith et al., 1996) where high  $Pb_p$  values tend to be patchily developed, the project area contains more coherent and higher amplitude anomalies.

Mineralogical studies showed that, in addition to primary lead minerals, many of the Pb-anomalous samples contain a variety of contaminant materials, the most frequently encountered being flattened fragments of pale grey Pb-metal sometimes coated by white cerussitic overgrowths. This form of contamination accounts entirely for the high Pb<sub>p</sub> values reported from Penoben Burn {1900 ppm at [325430 578700]) and from a small stream south of Middlebie (564 ppm at [321365 575400]). In both samples,  $Sn_p$  and  $Sb_p$  values are also enhanced and no Pb-minerals were detected.

The maximum  $Pb_p$  value of the dataset (4300 ppm), recorded in Stoneybeck Burn about 200 m upstream of the B-road intersection [322080 576915], is caused by abundant bright green fragments and euhedral grains of pyromorphite. One or two grains show a cubic habit suggesting derivation by low temperature alteration of galena. Detailed follow-up sampling in Stoneybeck Burn revealed highly anomalous  $Pb_p$  extending over a distance of 600 m with an apparent cut-off about 100 m upstream of the major anomaly. Unusually abundant hematite and magnetite, resulting in total  $Fe_2O_3$  contents of up to 58 % (Table 2), accompany the pyromorphite together with small amounts of baryte. Systematic downstream decrease of the anomaly is evident as far as the confluence of Stoneybeck Burn with Mein Water, although relatively high  $Pb_p$  values (200-300 ppm) continue for nearly 1 km below the confluence suggesting a contribution from other sources of Pb-mineralisation.

Many of the high Pb<sub>p</sub> values in Middlebie Burn and its west bank tributary, Smithy Cleuch, have been traced to the presence of small amounts of galena (Table 4a), although some contribution from metallic lead and dark grey fragments of contaminant slaggy material with microbotryoidal surfaces is evident. In several samples from this catchment and from West Gill [320343 575743], rare anhedral fragments of grey, waxy, secondary-Pb phases of the plumbogummite-beudantite group were identified. Occasional grains of these minerals are quite widely dispersed over the mineralised Lower Carboniferous rocks in the Westwater and Newcastleton areas (Gallagher et al., 1977; Smith and Walker, 1996). The exact nature of the primary phase from which they have developed is, however, difficult to establish, although one fragment from the West Gill site showed good cubic cleavage which may indicate that it is an alteration product after galena.





Several high  $Pb_p$  values (maximum 772 ppm at [321540 579270]) also define the zone of haematised fault breccia in upper Darlawhill Grain. Despite the presence of sphalerite, cupriferous pyrite, and baryte in the panned concentrate, no Pb minerals were observed and it is therefore likely that Pb is concentrated by adsorption onto the iron oxides. A heavily fractured and intensely reddened float boulder at the above site contained mainly dolomite with sandstone bands. The red colour is due to limonitic granules possibly after pyrite, but no fresh sulphides were seen. Within the carbonate matrix small quartz lenses and irregular hair veinlets contain minor amounts of carbonate and radiating fringes of bladed hematite.

## Zinc

In sharp contrast with the very high levels of Zn<sub>p</sub> which characterise the Border Group north-east of Langholm, especially in the Newcastleton area (Smith and Walker, 1996) where approximately 10% of values exceed 500 ppm, those of the project area are much lower (Tables 2 and 3; Figure 5). Only one very high value of 2373 ppm is reported, the remainder all falling below 400 ppm. The pattern of weakly anomalous  $Zn_p$  values (>200 ppm), however, is closely related to the distribution of  $Pb_p$  and to a lesser extent Cu<sub>p</sub>, showing a distinct cluster in Stoneybeck Burn, Middlebie Burn, and West Gill. Most of these anomalies are clearly related to the sub-outcrop of the Birrenswark Lavas, although around Ecclefechan the Border Group cementstones appear to exert greater influence with the highest value of the dataset 2373 ppm at [319145 575555] occurring very close to the inferred lava-sediment contact. Mineralogical examination of this sample revealed moderately abundant, relatively coarsegrained (mostly >500 µm), yellow-orange grains of resinous sphalerite (Table 4a) which are typical of the sphalerites separated from panned concentrates along most of the northern basin margin, northeast of the project area. In many instances the source of panned concentrate anomalies in the Westwater, Newcastleton and Arnton Fell areas has been traced to minor fracture-bound sphaleritepyrite mineralisation concentrated in narrow carbonate veins in limestones and cementstones (Gallagher et al., 1977; Smith et al., 1996; Smith and Walker, 1996). Since comparable carbonate facies rocks (Kirkbean Cementstone Formation) are present in the project area, it is likely that the observation of widespread, but scarce, sphalerite grains in panned concentrates is related to similar weak epigenetic mineralisation. Very little Zn was found in contaminant grains.

The only notable  $Zn_p$  concentrations in the northern part of the area are related to the zone of strongly haematised and carbonate-veined Silurian close to the unconformable or faulted Upper Old Red Sandstone boundary in the upper reaches of Darlawhill Grain and Grainhall Burn. Maximum Zn concentrations of 398 ppm at [321190 579050] are insufficient to suggest significant Zn mineralisation, however from the high concentrations of Fe recorded in this stream much of the Zn is likely to be adsorbed onto secondary iron oxides.

#### Barium

The distribution of high  $Ba_p$  values (>5000 ppm) (Tables 2 and 3) shows a similar pattern to that of  $Zn_p$  and  $Pb_p$  in being strongly enriched over the Birrenswark lavas in Stoneybeck Burn and Middlebie Burn (Figure 6). Abundant coarse white grains of baryte with well developed fracture surfaces and slightly reddened surface coatings were recognised in most samples from these catchments. The anomalies are probably due to baryte vein mineralisation which is relatively common in the Birrenswark lavas in the Westwater and Newcastleton areas (Gallagher et al., 1977; Smith and Walker, 1996). The best example, at Mine Sike near Westwater [32926 58174], is a 0.7 m wide vein breccia containing about 10% baryte and abundant coarse-grained galena and sphalerite. Other veins and occurrences of vesicles infilled by baryte were discovered in diamond drill cores from the lavas

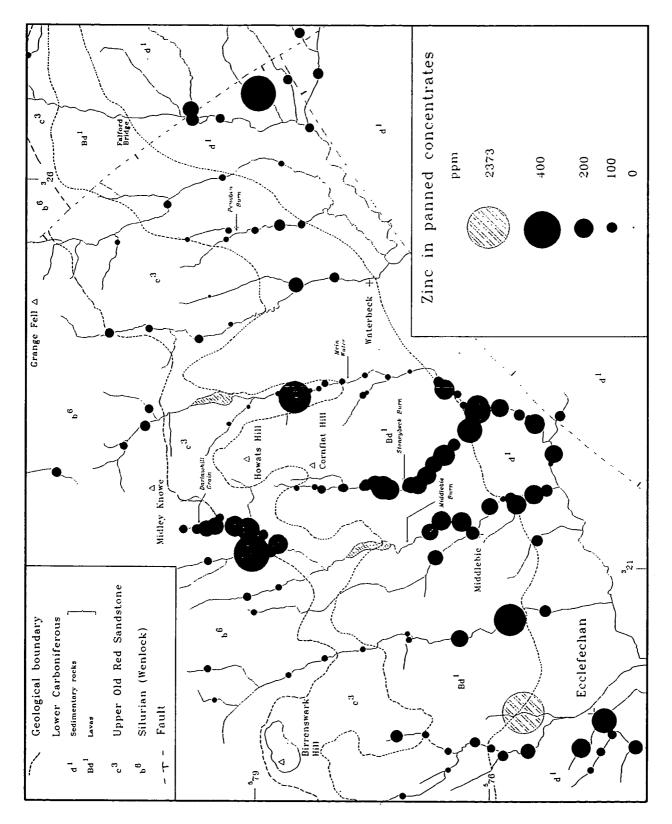
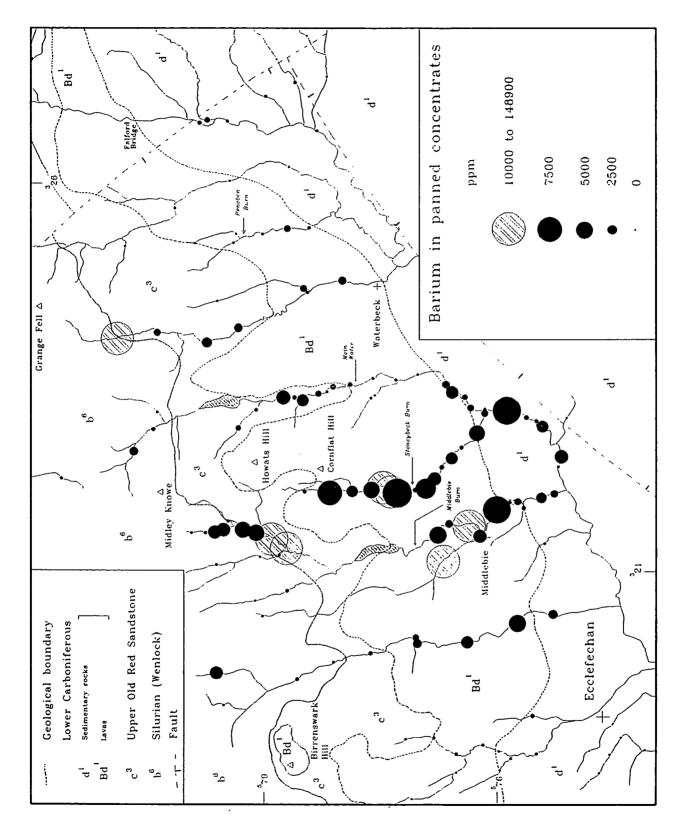




Figure 5 Zinc in panned concentrates





over a strike length of nearly 1.5 km between Mine Sike and Megsfield [32760 58100], close to the north-eastern edge of the project area.

Outside of the Birrenswark lavas the most prominent anomalies are located in streams intersecting the unconformable or faulted Silurian-Upper Old Red Sandstone boundary. Barium anomalies and coarse baryte accompany enhanced Pb, Cu and moderate Zn levels in panned concentrates from the headwaters of Darlawhill Grain, but in the geologically similar environment in the headwaters of Water Beck to the east, a major Ba<sub>p</sub> anomaly of 14.9% is not associated with other metals.

Other than a few high  $Ba_p$  values in Mein Water south of its confluence with Stoneybeck Burn, which are attributed to possible baryte veins within the lavas, there is no evidence of Ba enrichment associated with the Lower Carboniferous sedimentary rocks.

#### Gold observations

Visible gold grains were recorded in panned concentrates from 13 sites (Table 7) in the area. Most grains were relatively coarse (0.5-1.0 mm), flattened, and irregular or subrounded in shape, and their spatial distribution, mainly from Stoneybeck Burn, Middlebie Burn and Ecclefechan Burn, strongly suggests a source within the Birrenswark lavas. The largest number of grains was recovered from Middlebie Burn, in samples containing the highest coincident As and Sb values (e.g. BFP 7725 at [321960 575443]). Other gold sites in lower Mein Water, containing weakly anomalous As and Sb values, probably reflect downstream dispersion from a source area in Stoneybeck Burn. One gold observation from the headwaters of Darlawhill Grain may be associated with the zone of haematisation and carbonate-quartz veining in the Silurian near to its contact with the Upper Old Red Sandstone. Evidence of the southern dispersal of till deduced from the abundance of greywacke clasts in the upper parts of tills overlying the Birrenswark lavas, suggests that some gold, at least, may have its origin in the Silurian rocks.

## **OVERBURDEN GEOCHEMISTRY**

#### Sampling and analysis

Because outcrop is negligible over the Border Group and the stream network poorly developed and heavily contaminated, reconnaissance deep overburden sampling was undertaken at intervals of 200-400 m randomly located to intersect the lava-sediment boundary over a strike length of 9 km. The primary objective of this work was to look for evidence of base-metal concentration over the inferred surface trace of the Waterbeck Fault and to clarify the source of drainage anomalies in the Stoneybeck Burn-Middlebie Burn catchments. 51 bulk till samples were collected using a portable mechanical auger to sample as close to the till-bedrock interface as possible (Figures 7-14). The average penetration depth of the power auger at 51 sites was 4.8 m (1.8 to 11.5 m), (Tables 5 and 6).

At each site 8-10 litres of till, collected from the basal 1-2 m of the hole, was wet screened to remove clay and fine silt, and the remaining -2 mm fraction (normally 0.5-1.5 litres) reduced by panning to yield a concentrate of about 30 ml (BFU samples in Table 5). Additionally a sample of till from the maximum attainable depth was collected at each site and after drying and dissaggregation, sieved at 150  $\mu$ m to produce a fine-fraction for chemical analysis (BFT samples in Table 6). The lithology and morphology of clasts recovered during the wet screening operation was recorded to provide an indication of provenance and transport distance. Samples were analysed by XRF for the same range of elements as the drainage concentrates.

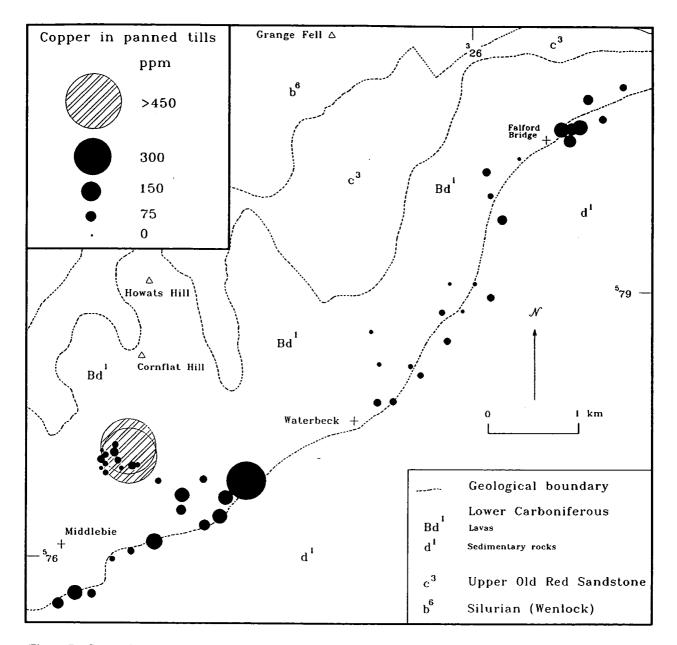



Figure 7 Copper in panned tills



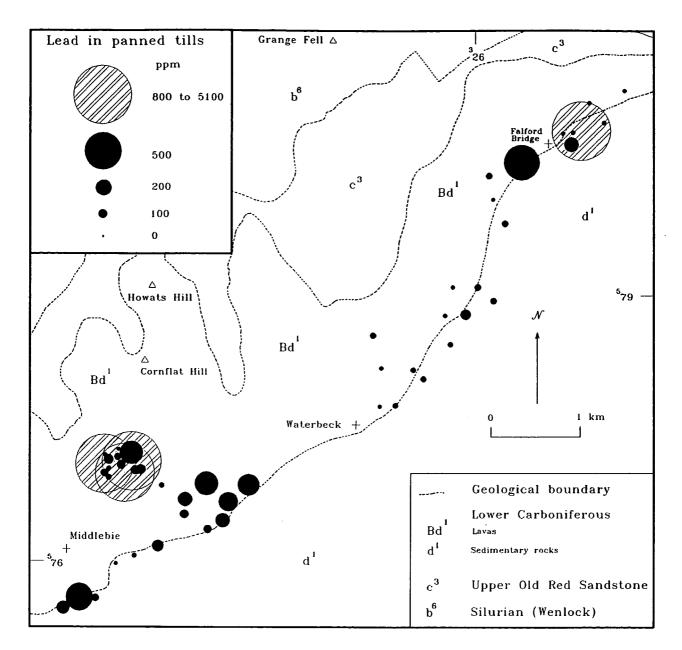



Figure 8 Lead in panned tills

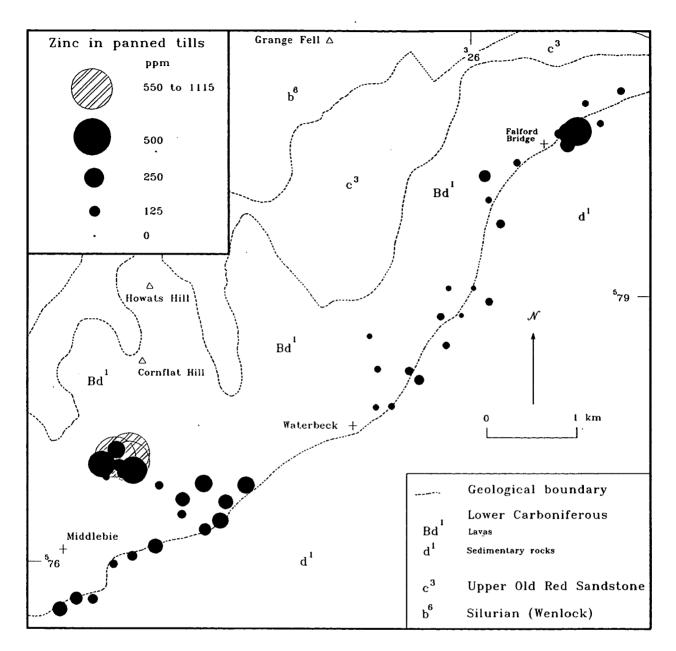



Figure 9 Zinc in panned tills

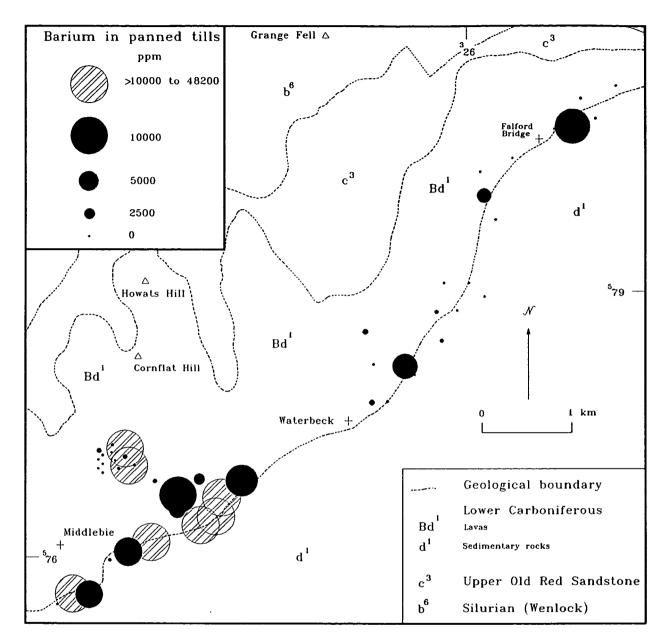



Figure 10 Barium in panned tills

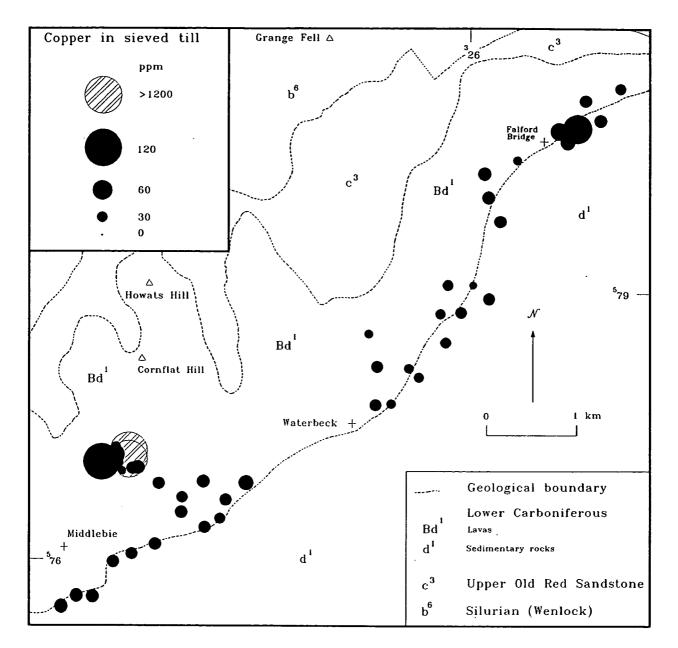



Figure 11 Copper in sieved tills

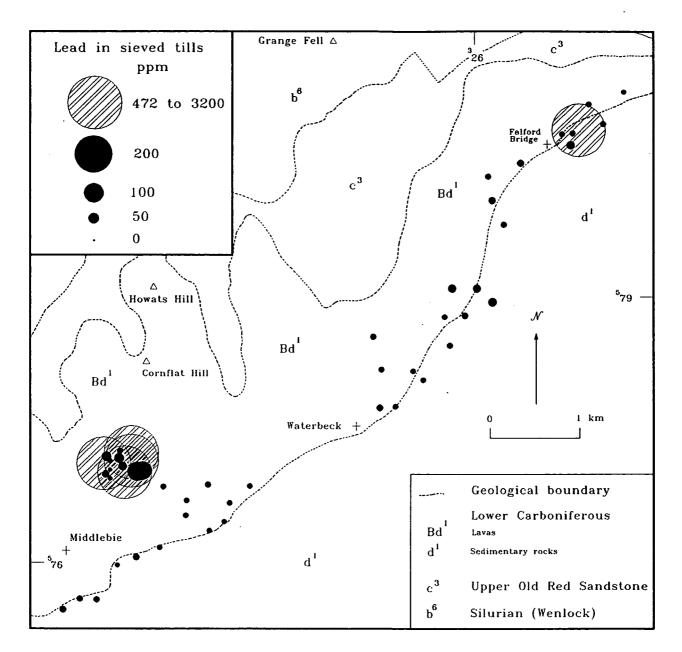



Figure 12 Lead in sieved tills

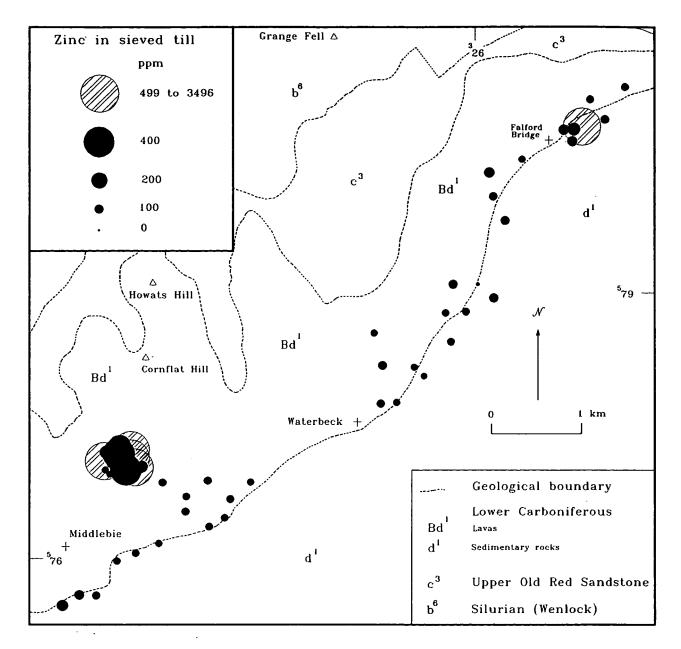



Figure 13 Zinc in sieved tills

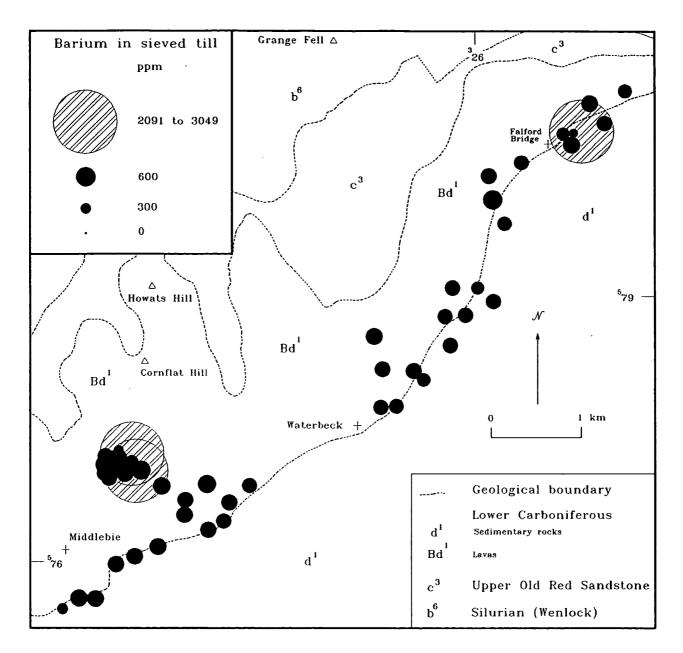



Figure 14 Barium in sieved tills

.

Compositionally the till over the Border Group sedimentary rocks is a very compact grey or greybrown clay or silty clay, containing in the lower part of profiles, numerous large boulders and pebbles of mainly local provenance. Ice meltout deposits comprising thick lenses of sand and gravel overlying till were encountered south of the road between Waterbeck and Middlebie. A distinct colour change to darker brown or red-brown till coincident with a marked increase in the abundance of basalt clasts occurs over the Birrenswark lavas, although in the upper parts of profiles farther travelled material derived from the Silurian and Upper Old Red Sandstone to the north is common.

Most of the till concentrates collected over the Border Group sedimentary rocks are characterised by pale-coloured, sandy compositions containing a relatively small heavy mineral component (samples containing <10 % Fe<sub>2</sub>O<sub>3t</sub> in Table 5). Magnetite, zircon, hematite and rutile are the principal phases in decreasing order of abundance. Concentrate samples collected over the Birrenswark lavas are readily distinguished by their dark brown appearance, and a significantly higher proportion of iron ores and ferromagnesian minerals (samples containing >15 % Fe<sub>2</sub>O<sub>3t</sub> in Table 5).

## Geochemical data for till samples

The geochemical data for panned and sieved tills are presented in Tables 5 and 6 respectively and the spatial distribution for Pb, Zn, Cu and Ba in the panned till shown in Figures 7 - 10, and sieved till in Figures 11 - 14. For conciseness in the text, results for the two sample types are differentiated by the subscripts u and t respectively after the symbol of the element concerned, for example Zn in panned till is abbreviated to  $Zn_u$ .

Three principal areas of coincident base-metal anomalies are evident near Falford Bridge, south-west of Waterbeck and in the Stoneybeck Burn catchment (Figures 7-14). At the north-eastern end of the area, near Falford Bridge, Pb shows strong enrichment in both the sieved and concentrate fractions ( $Pb_t = 1093$  ppm and  $Pb_u = 844$  ppm), together with modest enrichment of Zn, Cu and Ba (Tables 5 and 6) at a site located about 100 m south of the assumed lava-sediment boundary (BF 7804). Coarse grains of fresh sulphides noted in the panned concentrate were mineralogically confirmed as galena (with lesser amounts of pyrite, baryte and pyromorphite) (Tables 4a and 4b), indicating close proximity to a mineralised bedrock source. At a site situated about 800 m to the south-west (BF 7806) the concentrate sample contained high Pb (474 ppm) caused by galena and pyromorphite, although only background concentrations of Pb and other ore metals were recorded in the fine fraction.

Weak enhancement of  $Cu_u$ ,  $Pb_u$  and  $Zn_u$  (Figures 7-9) was recorded from three additional auger holes (BF 7849, 7850, and 7851) drilled a short distance to the south-west of site BF 7804 in an attempt to define the extent of the base-metal anomaly. This pattern and the absence of high values in the fine-till fraction could be the result of a clastic dispersion train, either from a single relatively large mineralised source in the vicinity of BF 7804, or from a number of small localised occurrences.

The second, and most coherent anomalous base-metal zone extends more or less continuously from 1.3 km south-west of Waterbeck to the south of Middlebie, the intervening ground between Falford and Waterbeck containing only one or two scattered high  $Ba_u$  values (Figure 10). Within the anomalous zone  $Cu_u$ ,  $Pb_u$  and  $Zn_u$  show very similar patterns of enrichment, although individual values are of insufficient magnitude to indicate the presence of major suboutcropping mineralisation in the near vicinity. There are no discernible base-metal or Ba anomalies in the sieved till fraction, and little spatial variation of any consequence (Figures 11-14). These results indicate a low degree of dispersion by chemical weathering, probably because of the predominantly alkaline nature of the drift and the diluent effect of the clay-rich tills.

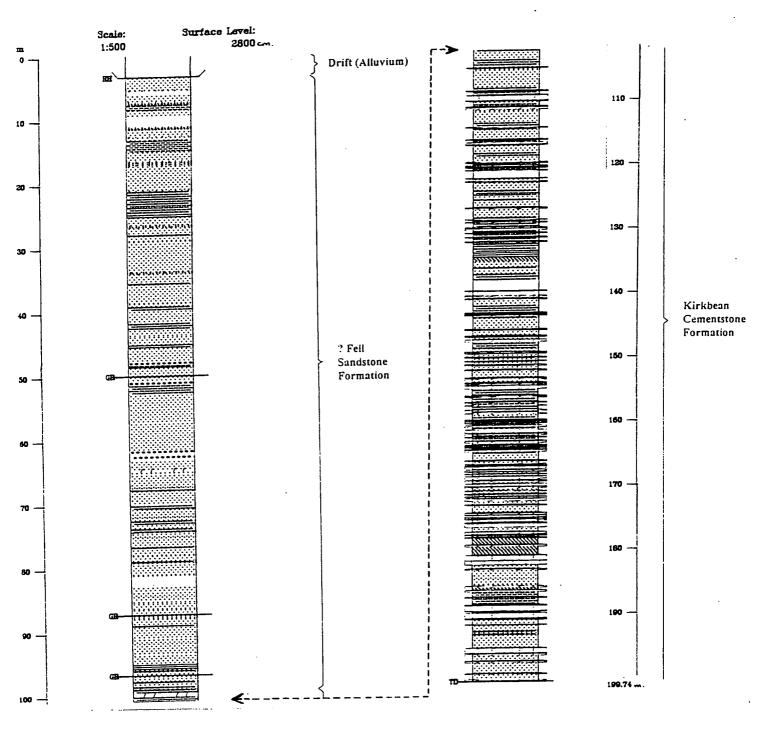
Mineralogical work identified fresh chalcopyrite, galena, baryte and pyrite from a sample (BFU 7823, Table 4a) located very close to the mapped lava-sediment junction, but no sphalerite was seen either in this or in other samples containing anomalous  $Zn_u$  values. Highly altered and brecciated lavas close to faulted lava-sediment contacts in the Westwater district, 2 km east of the project area, contain a major proportion of their anomalous Zn and Pb content in the Fe-oxide (mainly hematite) constituents of the rock (Gallagher et al., 1977), suggesting that primary sulphides which are occasionally observed in dolomitic veins and breccias in less altered lavas, may have undergone oxidation and localised redistribution.

Many of the base-metal anomalies are accompanied by very high  $Ba_u$  values, several in excess of 1%, reflecting the presence of appreciable amounts of coarse baryte. Since relatively abundant baryte (and  $Ba_u$  anomalies) was also noted in some samples (e.g. BFU 7826 and 7848) with no corresponding base-metal anomaly, it is likely that additional sources of baryte mineralisation, not associated with sulphides, also exist within this zone. The style of mineralisation is probably similar to the vein and vesicle-filling baryte occurrences reported from the faulted margin of the Birrenswark lavas in the Westwater and Newcastleton districts (Gallagher et al., 1977; Smith and Walker, 1996).

A brief follow-up investigation of the drainage anomalies in the Stoneybeck Burn catchment was undertaken involving close interval overburden sampling at 15 sites spaced approximately 100 m north-south and 200 m east-west. The results, (sample sites BF 7829-42, Tables 5 and 6) reveal the highest combined concentrations of  $Cu_u$ ,  $Pb_u$  and  $Zn_u$  so far reported in panned tills from the Solway-Northumberland Basin and clearly identify suboutcropping mineralisation near two adjacent sites (BFU 7834 and 7835), about 200 m east of Stoneybeck Burn. These occur immediately east of the upstream cut-off in anomalous  $Pb_p$  values and undoubtedly represent a major contribution to the persistant downstream dispersion of Pb over at least 800 m of stream section. Mineralogical examination of BFU 7835 identified moderately abundant galena and larger amounts of bright green pyromorphite, mainly in the -500 $\mu$ m fraction (Table 4a and 4b). Although the majority of till clasts are composed of basalt, several of the highly anomalous samples also contained substantial amounts of sedimentary material including sandstone and siltstone. It is therefore possible that the lavas are locally intercalated with sedimentary rocks as observed in several of the MRP diamond drill holes into the lavas near Westwater (Gallagher et al., 1977).

About 250 m due west, additional sources of mineralisation are indicated by substantial  $Pb_u$ , and  $Zn_u$ , anomalies at two adjacent sites (BF 7838 and 7839). The presence of As and Sb anomalies associated with high Pb and Ni is evident in several of the follow-up till concentrates (e.g. 7830 and 7839), confirming that the high levels of these elements recorded in drainage concentrates (Tables 2 and 3) from the Stoneybeck Burn, Middlebie Burn and West Gill catchments, are the result of mineralisation rather than contamination. This element association is considered to be indicative of hydrothermal alteration, a phenonema not hitherto recognised in MRP surveys over other parts of the Birrenswark lavas. In this context it is interesting to note that gold was observed in all of the anomalous Pb-As-Sb catchments, strongly suggesting a common source of sulphides and precious metal mineralisation within the lavas.

## MINERAL OCCURRENCES AND ROCK GEOCHEMISTRY


There is no history of metalliferous mining and only one recorded occurrence of mineralisation within the project area. The latter is represented by a reference to an 'Old Mine (Copper)' on the original, 1874, six inch to one mile geological field slip (sheet 52) at Old Torbeckhill [323400 579242]. A visit to the site revealed an unsuccessful exploration adit extending for about 10 m into Birrenswark lavas on the steep eastern side of Mein Water. A little minor haematisation and a few bright green patches of chloritic material was noted in the roof of the adit, but otherwise the lava appeared to be relatively unaltered and unmineralised. A sample (BFR 7915, Table 8) from the portal contained only slightly elevated Cu and Zn values, and from the low tenor of  $Cu_p$  in Mein Water downstream of the adit, a major source of Cu-mineralisation within the catchment is considered unlikely.

Detailed inspection of available outcrop and float material was routinely undertaken during the drainage survey leading to the collection of a further 14 samples (12 stream boulders and 2 outcrop samples) which showed evidence of either alteration, veining or possible mineralisation. The samples were analysed by X-ray fluorescence (XRF) for the same range of elements as the drainage and till samples (see Sample Preparation and Analysis, p 3). Geochemical data for the rock samples are presented in Table 8 and petrographic notes for two samples of basalt, based on the inspection of polished thin sections, are given in the Appendix.

The analytical data indicates that the carbonate veining seen in 4 stream clast samples of Border Group sedimentary rocks, are essentially barren of base-metals. All except two of the 11 basalt samples however, contain moderately anomalous concentrations of one or more metalliferous elements (Cu, Pb, Zn, Ba, Ni, As, Sb). They also exhibit strong pervasive alteration to clay/chlorite with patches and veins of carbonate and hydrothermal quartz, and show various shades of red and brown colouration due to secondary iron oxide formation.

Several basalt samples also contain massive patches and vesicle infillings of fine-grained, vivid green chlorite, which can easily be mis-identified in the field as copper secondary minerals (BFR 7910, 7914 and 7915, Table 8). In contrast to the drainage and till data, in which the concentration of Pb and Cu generally exceeds that of Zn, several of the basalts contain relatively high Zn, probably due to adsorption by chlorite and hematite. Apart from pyrite, seen in a sample of carbonate-veined basalt (BFR 7911), no sulphides were observed in hand specimen or thin section. This again may be accounted for by the intense alteration, particularly apparent in the highly amygdaloidal basalts, in which sulphide minerals are unlikely to survive oxidation. All of the 'mineralised' samples were collected in Stoneybeck or Middlebie burns, and BFR 7904 containing the highest Pb content of this suite of rocks, was a sample from a large angular boulder collected 400 m upstream from the northernmost  $Pb_{p}$  anomaly. An unusual rock type encountered in several large boulders in the lower reaches of Middlebie Burn (BFR 7912), had the appearance in the field of a strongly reddened glassy basalt. Thin section examination (Appendix) however, revealed the main component to be an ironstained micritic carbonate containing basalt clasts and a network of microfissures filled with quartz. Although no sulphides were seen, the analytical data suggests the presence of Zn mineralisation (1422 ppm Zn).

In summary it is evident that the basalts are, at least locally, highly altered. They are associated with a broad zone of baryte and sulphide mineralisation, and possibly also with gold mineralisation, extending over a potential strike length of about 1 km. Assessment of both the style of mineralisation and its economic significance in the most prospective area between Stoneybeck Burn and Middlebie Burn would require drilling because of the lack of outcrop in proximity to the major drainage and till anomalies.



Key to ornament (Solid)

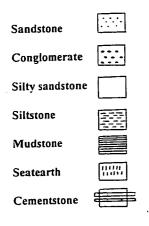



Figure 15 Summary lithological log of the Hoddom No. 2 Borehole core (NY17SE BJ)

#### Hoddom borehole core analysis

A summary lithological log of the Hoddom No. 2 borehole core, drilled in 1994 at Hoddom Bridge, about 2 km south-west of the the project area, is presented for the first time in this report (Figure 15). A brief inspection of the core for the presence of ore minerals revealed an essentially barren sequence of Lower Carboniferous sedimentary rocks apart from a few weak disseminations of pyrite within mainly dark, fine-grained sandstones and siltstones. The most economically interesting feature of the core is the presence of gypsum-anhydrite in veins, breccias and massive beds, most strongly developed over the lowermost 100 m of the hole (see section, *Gypsum - anhydrite development in the Hoddom No.2 Borehole (NY17SE/3))*. Comparable thicknesses of anhydrite in the lower sections of the 1200 m deep Easton 1 borehole, 10 km west of Bewcastle, suggest the widespread development of an evaporitic facies in the Solway-Northumberland basin (Colman et al., 1995).

Analytical data for 12 samples of split core taken from the most promising intersections of carbonateveined cementstone, iron sulphide enriched siltstones/sandstones/cementstones and gypsum-anhydrite veins/breccias in the Hoddom borehole confirm the absence of base-metal mineralisation (Table 9). Uniformly low metal values of the carbonate-veined cementstones contrast with lithologically similar rocks in the Langholm and Newcastleton areas which frequently contain weak, but widespread sphalerite-pyrite (± galena) in carbonate veins (Gallagher et al., 1977; Smith et al., 1996; Smith and Walker, 1996). However, primary dispersion haloes of base-metals are often very restricted, around MVT (Mississippi Valley Type) deposits, where ore metal concentrations typically decrease to background levels over distances of only 10's to 100's of centimetres (Jones, 1988).

Several major Pb-Zn deposits including the major MVT Pine Point deposits (Thiede and Cameron, 1978) are associated with underlying evaporitic sequences or, in the case of the Gays River deposit, with an overlying evaporitic seal or cap rock (Ravenhurst et al., 1989). Thus the existence of a substantial thickness of evaporites in the Solway-Northumberland Basin could provide a highly soluble and potentially permeable medium for metalliferous fluids migrating up deep syn-sedimentary faults, such as the Waterbeck Fault, or at higher levels, provide an effective seal to fluid expulsion.

## **CONCLUSIONS AND RECOMMENDATIONS**

1. Drainage panned concentrate data indicate a substantial zone of coherent Cu-Pb-Ba (and minor Zn) anomalies over the Birrenswark Volcanic Formation in the Stoneybeck Burn, Middlebie Burn and West Gill catchments. A second anomalous group is apparent close to the Silurian-Upper Old Red Sandstone boundary in Darlawhill Grain associated with a haematised fault breccia. Other, more scattered anomalies occur in the vicinity of the lava-sediment boundary or related to cementstones to the south-west of Ecclefechan.

2. The geochemical data for Pb, and to a lesser extent Cu and Sb, are affected by extensive and widespread contamination. Where very extensive contamination is present, such as in the lower reaches of Middlebie Burn, detailed mineralogical examination was necessary to discriminate contaminant grains from ore mineral phases in the drainage concentrates.

3. Major  $Pb_p$  anomalies in Stoneybeck Burn are caused by abundant bright green pyromorphite and small amounts of galena accompanied by coarse baryte, chalcopyrite, and hematite. The anomaly dispersion train can be traced over at least 1.8 km of the stream section with maximum values located about 1 km north of the inferred lava-sediment contact.

4. Gold grains and coincident As, Sb anomalies were identified at 13 sites mostly associated with, or dispersed a short distance downstream of, those containing base-metal anomalies.

5. Because of the thickness and almost continous cover of glacial deposits, follow-up investigations relied mainly upon deep overburden sampling. Reconnaissance-scale sampling along the lavasediment boundary identified sources of base-metal and baryte mineralisation beneath drift in the area east of Falford Bridge, and over a 1.5 km strike-parallel zone between Stoneybeck Burn and west of Middlebie village. Close interval sampling around the major Pb anomaly in Stoneybeck Burn yielded major coincident Cu, Pb concentrations at levels far in excess of those so far reported from recent MRP surveys at the northern basin margin (Gallagher et al., 1977; Smith et al., 1996; Smith and Walker, 1996). Enhanced As, Sb values are also associated with the highest Pb, Zn concentrations on the west side of Stoneybeck Burn, indicating a possible genetic association between gold and base-metal mineralisation.

6. The prospectivity of the northern basin margin is enhanced by the recent discovery of a thick evaporite sequence in the Hoddom borehole. Although no associated base-metal enrichment was detected, drilling was terminated within the anhydrite-bearing rocks and consequently their true thickness and the composition of the underlying sedimentary sequence is not known.

7. On the basis of the very encouraging geochemical data, further deep overburden sampling is merited to the south-west, over the remaining 9 km of lava-sediment suboutcrop between Ecclefechan and Dalton [3115 5740]. Diamond drilling to investigate the bedrock source of the principal overburden anomalies is also recommended.

## ACKNOWLEDGEMENTS

The geochemical samples were prepared and analysed by staff of the BGS Geochemistry Division. Sample collection was assisted by M Strutt of the BGS Geochemistry Group who supervised the deep overburden survey and voluntary workers, J Roberts, E Moutell and A Rodgers.

## REFERENCES

ANDREW, C J. 1993. Mineralisation in the Irish Midlands. 208 - 264 in *Mineralisation in the British Isles*. Pattrick, R A D and Polya D A, (Editors). (Chapman & Hall, London).

BRAND, P J. 1992a. Faunas collected from the Carboniferous rocks of Sheet 10E Scotland. British Geological Survey Technical Report WH/92/149R.

BRAND, P J. 1992b. Biostratigraphy of fossiliferous horizons on NY17NE and NY17SE. British Geological Survey Technical Report WH/92/343R.

BRITISH GEOLOGICAL SURVEY. 1993a. Regional geochemical atlas: Southern Scotland and part of Northern England. (Keyworth, Nottingham: British Geological Survey.)

BRITISH GEOLOGICAL SURVEY. 1993b. Dalbeattie, Scotland Sheet 5E. Solid Geology 1:50 000. Keyworth, Nottingham: British Geological Survey.

BRITISH GEOLOGICAL SURVEY. 1996 (in press). Kirkbean, Scotland Sheet 6W. Solid Geology 1:50 000. Keyworth, Nottingham: British Geological Survey.

BRITISH GEOLOGICAL SURVEY. (in preparation). Lochmaben, Scotland Sheet 10W. Solid Geology 1:50 000. Keyworth, Nottingham: British Geological Survey.

CHADWICK, R A and HOLLIDAY, D W. 1991. Deep crustal structure and Carboniferous basin development within the Iapetus Convergence Zone, northern England. *Journal of the Geological Society of London*, Vol. 148, 41-53.

CHADWICK, R A, HOLLIDAY, D W, HOLLOWAY, S and HULBERT, A G. 1993. The evolution and hydrocarbon potential of the Northumberland/Solway Basin. *In* Proceedings of the 4th Conference on Petroleum Geology of Northwest Europe. PARKER, J R (editor).

CHADWICK, R A, HOLLIDAY D W, HOLLOWAY S and HULBERT A G. 1995. The Northumberland-Solway basin and adjacent areas. Subsurface memoir of the British Geological Survey.

COLMAN, T, HOLLOWAY, S, SMITH, R T, NORTON, G E, KIMBELL, G S and WALKER, A S D. 1995. Regional appraisal of the potential for stratabound base-metal mineralisation in the Solway Basin. British Geological Survey, Mineral Reconnaissance Programme Open File Report, No. 17.

COOPER, D C, CAMERON, D G, YOUNG, B, CORNWELL, J D and BLAND, D J. 1991. Mineral exploration in the Cockermouth area, Cumbria. Part 1: regional surveys. British Geological Survey Technical Report WF/91/4 (British Geological Survey Mineral Reconnaissance Programme Report, No. 118).

CRAIG, G Y. 1956. The Lower Carboniferous Outlier of Kirkbean, Kirkcudbrightshire. Transactions of the Geological Society of Glasgow, Vol. 22, 113-132.

DAY, J B W. 1970. Geology of the country around Bewcastle. *Memoir of the Geological Survey of Great Britain*.

DEAN, M T. 1995. Faunas from and biostratigraphy of a temporary section in a road cutting at Pennersaughs, Dumfrieshire. *British Geological Survey Technical Report* WH/95/116R.

DEEGAN, C E. 1970. The petrology and sedimentology of the Lower Carboniferous rocks between White Port and Kirkbean, Kirkcudbrightshire. Unpublished PhD thesis, University College of Wales, Aberystwyth.

DE SOUZA, H A F. 1982. Age data from Scotland and Carboniferous time scale. Ch.24 in Numerical Dating in Stratigraphy (Odin, G S, editor). John Wiley & Sons.

ELLIOTT, R B. 1960. The Carboniferous volcanic rocks of the Langholm district. *Proceedings of the Geological Association*. Vol. 71, 1-24.

GALLAGHER, M J, DAVIES, A, PARKER, M E, SMITH, R T, FORTEY, N J and EASTERBROOK, G D. 1977. Lead, zinc and copper mineralisation in basal Carboniferous sediments at Westwater, south Scotland. *Mineral Reconnaissance Programme Report. Institute of Geological Sciences*, No. 17.

JONES, D G, PLANT J A and COLMAN T B. 1994. The genesis of the Pennine mineralization of Northern England and its relationship to mineralization in Central Ireland. 198-218 in Fontbote, L and Boni, M (Eds.), Sediment-Hosted Zn-Pb ores. Society for Geology Applied to Mineral Deposits Special Publication No. 10. (Springer-Verlag: Berlin).

LEEDER, M R. 1973. Sedimentology and palaeogeography of the Upper Old Red Sandstone in the Scottish Border Basin. Scottish Journal of Geology, Vol. 9, 117-44.

LEEDER, M R. 1974. Lower Border Group (Tournaisian) fluvio-deltaic sedimentation and palaeogeography of the Northumberland Basin. *Proceedings of the Yorkshire Geological Society*, Vol. 40, 129-180.

LEEDER, M R. 1976. Palaeogeographic significance of pedogenic carbonates in the topmost Upper Old Red Sandstone of the Scottish Border Basin. *Geological Journal*, Vol. 11, 21-28.

LUMSDEN, G I, TULLOCH, W, HOWELLS, M F and DAVIES, A. 1967. The geology of the neighbourhood of Langholm. *Memoir of the Geological Survey of Great Britain*, Sheet 11 (Scotland).

MACDONALD, R. 1975. Petrochemistry of the early Carboniferous (Dinantian) lavas of Scotland. Scottish Journal of Geology, Vol. 11 269-314.

MCMILLAN, A A in LINTERN B C and FLOYD, J D. in preparation. The Kirkcudbright - Dalbeattie district - a concise account of the geology. *Memoir of the British Geological Survey*, Sheets 5W, 5E and part of 6W (Scotland).

NAIRN, A E M. 1956. The Lower Carboniferous rocks between the rivers Esk and Annan, Dumfriesshire. *Transactions of the Geological Society of Glasgow*. Vol. 22, 80-93.

NAIRN, A E M. 1958. Petrology of the Whita Sandstone, southern Scotland. Journal of Sedimentary Petrology, Vol. 28, 57-64.

PALLISTER, J W. 1952. The Birrenswark Lavas, Dumfriesshire. Transactions of the Edinburgh Geological Society, Vol. 14, 336-48.

PEACH, B and HORNE J. 1903. The Canonbie Coalfield: its geological structure and relations to the Carboniferous rocks of the north of England and central Scotland. *Transactions of the Royal Society of Edinburgh*, Vol. 40, 835-877.

PLANT, J A and JONES, D G. 1991. Development of regional exploration criteria for buried carbonatehosted mineral deposits: a multidisciplinary study in northern England. *British Geological Survey Technical Report* WP/91/1C.

RAVENHURST, C E, REYNOLDS, P H, ZENTILLI, M, KREUGER, H W, and BLENKINSOP, J. 1989. Formation of Carboniferous Pb-Zn and barite mineralization from basin-derived fluids, Nova Scotia, Canada. *Economic Geology*, 84, 1471-1488.

SHEARMAN, D J, MOSSOP, G, DUNSMORE, H and MARTIN, M. 1972. Origin of gypsum veins by hydraulic fracture. *Transactions of the Institution of Mining and Metallurgy*, Vol. 81, B149-155.

SHEILLS, K A G. 1964. The geological structure of North-East Northumberland. *Transactions of the Royal Society of Edinburgh*, Vol. 65, 449-481.

SMITH, R T, WALKER, A S D and BLAND, D J. 1996. Mineral investigations in the Northumberland Trough: Part 1, Arnton Fell area, Borders, Scotland. British Geological Survey, Mineral Reconnaissance Programme Open File Report, No. 18. SMITH, R T and WALKER, A S D. 1996. Mineral investigations in the Northumberland Trough: Part 2, Newcastleton area, Borders, Scotland. British Geological Survey, Mineral Reconnaissance Programme Open File Report, No. 20.

STONE, P, FLOYD, J D, BARNES, R P and LINTERN, B C. 1987. A sequential back-arc and foreland basin thrust duplex model for the Southern Uplands of Scotland. *Journal of the Geological Society*, *London*, Vol.144, 753 -764.

THIEDE, D S and CAMERON, E N. 1978. Concentration of heavy metals in the Elk Point evaporite sequence, Saskatchewan. *Economic Geology*, 73, 405-415.

TUCKER, M E. 1988. Sedimentary Petrology: an introduction. Blackwell Scientific Publications.

APPENDIX Petrographic notes on two polished thin sections from the Middlebie area.

#### 1) Sample BFR7911

Olivine-basalt, sparsely porphyritic, with euhedral olivine phenocrysts (<=2 mm) and tabular plagioclase microphenocrysts, hosted in holocrystalline groundmass rich in slender tabular plagioclase crystals. The matrix of the groundmass is subopaque due to alteration and the formation of hematite, minute grains of which are apparent under reflected light. The olivine crystals have been completely replaced by pseudomorphs consisting of very fine-grained green chlorite, crystals of carbonate and, in many cases, slender rims of possible prehnite.

The rock is highly vesicular. Vesicles range from <1 mm to several mm in size, including irregular vesicular fissures which traverse the thin section. Vesicles are occupied by amygdaloidal fills which in many cases consists of a fine-grained polygonal carbonate mosaic, while other examples consist of 'clay' margins surrounding a central pocket of carbonate mosaic, or contain massive patches of very fine-grained vivid green chlorite with opaque microgranules. However, across the centre of the thin section runs a fissure filled by fine- to very fine-grained quartz mosaic which hosts in its margins patches of iron-stained rhombic carbonate as well as isolated patches of chlorite.

No sulphide or other ore minerals were seen in the thin section.

#### 2) Sample BFR7912

Micritic carbonate rock in which clasts of pumiceous olivine-basalt are embedded.

The main component of the micrite is the massive, very fine-grained carbonate component. However, this hosts numerous 1-3 mm pockets of cherty quartz, very fine-grained (almost cryptogranular) or forming a <0.2 mm grain-size polygonal mosaic. The cherty quartz itself hosts isolated iron-stained rhombic carbonate crystals <=0.1 mm in size (possibly ankerite or siderite), and similar rhombic carbonate also forms fringes surrounding the silica pockets. In addition, the host micrite contains, in some areas, a network of delicate intercommunicating microfissures filled by more cherty quartz. Traces of dark "smudgy" staining of the micrite and of opaque coatings to some carbonate rhombs may indicate the presence of relict hydrocarbon in the rock.

The basalt clasts vary from c 0.2 mm in size to one several mm wide which forms almost half of the thin section. They appear to be unbroken fragments which may have become incorporated by simply dropping as pyroclastic particles into the unconsolidated lime mud. They now consist of an opaque glassy basalt groundmass surrounding innumerable ovoid vesicles up to mm scale in size, filled by cherty very fine-grained quartz and very fine-grained brown iron-stained carbonate. The groundmass appears brick red to the naked eye, and under reflected light numerous hematite-like grains are clearly present.

No sulphide or other ore minerals were found in the thin section.

| Sample   | Easting         | Northing        | Cu    | Pb    | Zn    | Ba     | Ni    | As    | Sn      | Sb    | Fe₂O₃t |
|----------|-----------------|-----------------|-------|-------|-------|--------|-------|-------|---------|-------|--------|
| Ref. No. | -               |                 | (ppm) | (ppm) | (ppm) | (ppm)  | (ppm) | (ppm) | (ppm) ( | (ppm) | (ppm)  |
| BFP2017  | 326820          | 579780          | 54    | 39    | 164   | 1241   | 40    | nd    | 6       | 0     | 13.82  |
| BFP2018  | 326 <b>78</b> 0 | 579820          | 68    | 102   | 122   | 827    | 81    | nd    | 14      | 0     | 19.17  |
| BFP2366  | 327600          | 581980          | 10    | 14    | 48    | 207    | 27    | nd    | 1       | 11    | 6.43   |
| BFP2590  | 320430          | 579020          | 12    | 18    | 53    | 429    | 38    | nd    | 0       | 4     | 8.94   |
| BFP2591  | 320630          | 579110          | 13    | 14    | 79    | 221    | 50    | nd    | 4       | 8     | 6.35   |
| BFP2592  | 321210          | 578800          | 29    | 8     | 107   | 394    | 40    | nd    | 1       | 0     | 6.69   |
| BFP2593  | 320790          | 578700          | 9     | 12    | 58    | 698    | 31    | nd    | 0       | 4     | 6.88   |
| BFP2608  | 325200          | 580780          | 8     | 26    | 43    | 228    | 31    | nd    | 42      | 4     | 7.19   |
| BFP2610  | 325690          | 580130          | 35    | 65    | 73    | 398    | 32    | nd    | 35      | 6     | 9.72   |
| BFP2611  | 325240          | 579880          | 9     | 7     | 39    | 207    | 18    | nd    | 7       | 4     | 4.10   |
| BFP2613  | 324510          | 579600          | 0     | 17    | 17    | 255    | 9     | nd    | 1       | 0     | 4.65   |
| BFP2614  | 324760          | 577990          | 66    | 152   | 95    | 2197   | 46    | nd    | 2       | 6     | 24.18  |
| BFP2615  | 324610          | 578440          | 9     | 23    | 30    | 654    | 23    | nd    | 1       | 0     | 7.23   |
| BFP2616  | 324660          | 578490          | 0     | 106   | 151   | 1737   | 60    | nd    | 8       | 15    | 36.26  |
| BFP2617  | 324150          | 579330          | 0     | 17    | 39    | 2339   | 24    | nd    | 8       | 9     | 10.52  |
| BFP2618  | 323960          | 579730          | 22    | 14    | 82    | 2784   | 20    | nd    | 3       | 8     | 9.22   |
| BFP2619  | 324090          | 580360          | 12    | 17    | 69    | 1845   | 35    | nd    | 0       | 5     | 6.99   |
| BFP2620  | 324030          | 580880          | 4     | 0     | 89    | 148906 | 27    | nd    | 0       | 0     | 2.13   |
| BFP2621  | 322870          | 579350          | 25    | 0     | 37    | 1299   | 11    | nd    | 1       | 2     | 3.82   |
| BFP2622  | 323090          | 579100          | 17    | 12    | 31    | 706    | 14    | nd    | 2       | 3     | 7.43   |
| BFP2623  | 321310          | 578710          | 204   | 143   | 208   | 18425  | 41    | nd    | 1       | 3     | 10.87  |
| BFP2624  | 321650          | 579460          | 36    | 21    | 75    | 456    | 33    | nd    | 2       | 3     | 8.92   |
| BFP2625  | 321510          | 579630          | 216   | 68    | 166   | 3837   | 52    | nd    | 0       | 6     | 11.58  |
| BFP2626  | 321090          | 579610          | 9     | 11    | 75    | 461    | 32    | nd    | 0       | 3     | 5.38   |
| BFP2627  | 321190          | 579050          | 15    | 3     | 398   | 303    | 22    | nd    | 0       | 0     | 3.86   |
| BFP2634  | 318840          | 577170          | 0     | 106   | 123   | 281    | 40    | nd    | 11      | 9     | 20.95  |
| BFP2635  | 318070          | 577090          | 0     | 15    | 58    | 150    | 16    | nd    | 8       | 6     | 6.21   |
| BFP2636  | 318410          | 576520          | 3     | 24    | 42    | 186    | 15    | nd    | 0       | 1     | 6.05   |
| BFP2648  | 319700          | 579610          | 25    | 11    | 66    | 3672   | 53    | nd    | 1       | 0     | 7.59   |
| BFP2649  | 319290          | 579520          | 9     | 11    | 40    | 280    | 36    | nd    | 3       | 8     | 6.58   |
| BFP2658  | 326800          | 579470          | 66    | 53    | 81    | 545    | 45    | nd    | 14      | 0     | 10.67  |
| BFP2659  | 327300          | 578600          | 0     | 30    | 88    | 573    | 23    | nd    | 2       | 0     | 4.89   |
| BFP2660  | 327380          | 578210          | 15    | 40    | 105   | 153    | 28    | nd    | 18      | 5     | 9.84   |
| BFP2661  | 326680          | 578320          | 49    | 45    | 84    | 474    | 42    | nd    | 27      | 3     | 10.28  |
| BFP2662  | 326220          | 578680          | 9     | 47    | 50    | 278    | 30    | nd    | 22      | 5     | 6.85   |
| BFP2663  | 326040          | 579440          | 10    | 17    | 59    | 247    | 42    | nd    | 3       | 0     | 5.99   |
| BFP2665  | 323420          | 577 <b>88</b> 0 | 15    | 28    | 46    | 662    | 26    | nd    | 4       | 6     | 11.57  |
| BFP2666  | 323300          | 578300          | 50    | 15    | 39    | 1535   | 23    | nd    | 4       | 5     | 11.04  |
| BFP2667  | 323240          | 578610          | 6     | 18    | 46    | 1049   | 31    | nd    | 0       | 8     | 9.89   |
| BFP2668  | 323280          | 577570          | 8     | 10    | 34    | 229    | 28    | nd    | 0       | 0     | 6.03   |
| BFP2669  | 322060          | 577050          | 8     | 3061  | 99    | 1164   | 43    | nd    | 1       | 7     | 20.46  |
| BFP2670  | 322000          | 577280          | 7     | 58    | 91    | 1024   | 49    | nd    | 42      | 4     | 17.23  |
| BFP2671  | 322060          | 577610          | 38    | 50    | 87    | 4807   | 44    | nd    | 3       | 4     | 10.41  |
| BFP2672  | 322040          | 577890          | 10    | 19    | 66    | 438    | 38    | nd    | 1       | 2     | 7.29   |
| BFP2673  | 322050          | 578240          | 1     | 31    | 51    | 706    | 29    | nd    | 3       | 0     | 11.07  |
| BFP2674  | 321900          | 575840          | 4     | 47    | 42    | 648    | 29    | nd    | 10      | 5     | 13.94  |
| BFP2675  | 322010          | 575280          | 6     | 155   | 120   | 1840   | 64    | nd    | 16      | 19    | 44.29  |
| BFP2676  | 322360          | 575230          | 7     | 27    | 38    | 383    | 27    | nd    | 2       | 2     | 9.32   |
|          |                 |                 | -     |       |       |        |       |       | -       |       |        |

# Table 2 Ecclefechan Panned Concentrate Data (Reconnaissance Survey, 1976)

---

.

#### Table 2 Continued

| Sample   | Easting | Northing | Cu    | Pb    | Zn          | Ba    | Ni    | As    | Sn    | Sb    | Fe <sub>2</sub> O <sub>3</sub> t |
|----------|---------|----------|-------|-------|-------------|-------|-------|-------|-------|-------|----------------------------------|
| Ref. No. |         |          | (ppm) | (ppm) | (ppm)       | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm)                            |
| BFP2677  | 322950  | 575510   | 16    | 64    | 66          | 806   | 36    | nd    | 4     | 0     | 16.79                            |
| BFP2679  | 323120  | 576340   | 29    | 47    | 64          | 1738  | 39    | nd    | 0     | 3     | 18.14                            |
| BFP2680  | 323420  | 576660   | 29    | 73    | 100         | 2039  | 50    | nd    | 26    | 7     | 24.02                            |
| BFP2681  | 323550  | 577020   | 8     | 242   | 34          | 338   | 24    | nđ    | 0     | 9     | 8.86                             |
| BFP2682  | 319620  | 578570   | 12    | 12    | 47          | 753   | 32    | nd    | 1     | 0     | 5.56                             |
| BFP2683  | 319840  | 578100   | 13    | 21    | 55          | 435   | 39    | nd    | 8     | 1     | 5.98                             |
| BFP2684  | 319900  | 577600   | 8     | 9     | 48          | 854   | 34    | nd    | 0     | 7     | 4.90                             |
| BFP2685  | 320080  | 577020   | 10    | 34    | 49          | 2287  | 33    | nd    | 9     | 3     | 9.21                             |
| BFP2686  | 320160  | 577040   | 11    | 19    | 40          | 1597  | 34    | nd    | 0     | 4     | 8.56                             |
| BFP2687  | 320100  | 576380   | 0     | 188   | 175         | 3435  | 82    | nd    | 10    | 19    | 43.84                            |
| BFP2694  | 322210  | 581610   | 28    | 46    | 95          | 554   | 33    | ' nd  | 12    | 2     | 5.78                             |
| BFP2715  | 327900  | 578450   | 0     | 13    | <b>99</b> · | 91    | 22    | nd    | 0     | 6     | 10.79                            |
| BFP2716  | 327600  | 578840   | 8     | 6     | . 0         | 33    | 4     | nd    | 0     | 3     | 2.39                             |
| BFP2717  | 327120  | 578980   | 70    | 1850  | 385         | 494   | 45    | nd    | 188   | 16    | 27.88                            |
| BFP2772  | 323390  | 578110   | 20    | 80    | 62          | 1395  | 29    | nd    | 2     | 7     | 18.90                            |
| BFP2843  | 323060  | 580360   | 39    | 37    | 83          | 465   | 59    | nd    | 31    | 6     | 9.62                             |
| BFP2844  | 322840  | 580410   | 46    | 26    | 104         | 905   | 45    | nd    | 2     | 4     | 7.63                             |
| BFP2845  | 322600  | 580730   | 3     | 7     | 15          | 100   | 11    | nd    | 0     | 0     | 2.37                             |
| BFP2846  | 322580  | 580690   | 100   | 60    | 70          | 2362  | 49    | nd    | 10    | 4     | 8.65                             |
| BFP4995  | 321500  | 579920   | 44    | 6     | 81          | 358   | 29    | nd    | 0     | 0     | 4.85                             |
| BFP4996  | 321500  | 579750   | 108   | 18    | 95          | 577   | 31    | nd    | 0     | 2     | 7.04                             |
| BFP4997  | 321540  | 579520   | 230   | 271   | 176         | 3928  | 36    | nd    | 4     | 11    | 11.73                            |
| BFP4998  | 321540  | 579270   | 371   | 772   | 218         | 4785  | 44    | nd    | 1     | 15    | 20.79                            |
| BFP4999  | 321500  | 579100   | 301   | 68    | 249         | 4823  | 41    | nd    | 9     | 4     | 14.61                            |
| BFP5000  | 321430  | 578900   | 112   | 179   | 101         | 13021 | 36    | nd    | 0     | 0     | 11.27                            |

| Sample   | Easting | Northing | Cu    | Pb    | Zn    | Ba    | Ni    | As    | Sn    | Sb    | Fe <sub>2</sub> O <sub>3</sub> t |
|----------|---------|----------|-------|-------|-------|-------|-------|-------|-------|-------|----------------------------------|
| Ref. No. |         |          | (ppm)                            |
| BFP7701  | 322205  | 576802   | 686   | 1700  | 192   | 3835  | 79    | 89    | 25    | 15    | 55.89                            |
| BFP7702  | 322080  | 576915   | 37    | 4300  | 189   | 6000  | 68    | 40    | 101   | 17    | 41.53                            |
| BFP7703  | 322080  | 577000   | 35    | 668   | 167   | 1272  | 71    | 64    | 14    | 10    | 34.90                            |
| BFP7704  | 322020  | 577280   | 47    | 271   | 216   | 8900  | 78    | 50    | 24    | <5    | 40.08                            |
| BFP7705  | 322100  | 577460   | 58    | 113   | 163   | 10900 | 67    | 37    | 18    | <5    | 29.53                            |
| BFP7706  | 322045  | 577360   | 40    | 101   | 250   | 30900 | 59    | 43    | 10    | 6     | 32.28                            |
| BFP7707  | 322080  | 577575   | 20    | 58    | 115   | 2813  | 32    | 28    | <5    | <5    | 15.86                            |
| BFP7708  | 322040  | 577860   | 35    | 49    | 81    | 3226  | 38    | 15    | 6     | <5    | 20.59                            |
| BFP7709  | 322020  | 57850    | 79    | 62    | 81    | 7500  | 34    | 17    | 6     | <5    | 21.61                            |
| BFP7710  | 322035  | 578475   | 31    | 41    | 46    | 769   | 23    | 21    | 23    | <5    | 7.23                             |
| BFP7711  | 322355  | 576712   | 34    | 519   | 174   | 1018  | 72    | 53    | 35    | 12    | 42.10                            |
| BFP7712  | 322470  | 576585   | 40    | 555   | 227   | 3451  | 75    | 96    | 73    | 16    | 54.26                            |
| BFP7713  | 322610  | 576458   | . 27  | 292   | 122   | 837   | 55    | 46    | 23    | 14    | 32.02                            |
| BFP7714  | 322795  | 576260   | 40    | 249   | 262   | 4619  | 90    | 133   | 31    | 16    | 52.15                            |
| BFP7715  | 323050  | 576160   | 51    | 208   | 275   | 1789  | 86    | 114   | 8     | 14    | 49.49                            |
| BFP7716  | 325440  | 578420   | 53    | 77    | 71    | 632   | 44    | 41    | 8     | 5     | 21.78                            |
| BFP7717  | 325430  | 578700   | 801   | 1900  | 111   | 1715  | 50    | 44    | 87    | 41    | 25.08                            |
| BFP7718  | 325360  | 579020   | 144   | 33    | 64    | 460   | 28    | 22    | <5    | <5    | 11.92                            |
| BFP7719  | 325359  | 579361   | 14    | 29    | 57    | 185   | 41    | 39    | <5    | <5    | 11.27                            |
| BFP7720  | 325245  | 579392   | 20    | 13    | 45    | 351   | 32    | 9     | <5    | <5    | 6.40                             |
| BFP7721  | 323105  | 576160   | 10    | 70    | 236   | 504   | 31    | 17    | 39    | <5    | 12.32                            |
| BFP7722  | 323260  | 576415   | 43    | 95    | 69    | 1278  | 37    | 23    | 8     | <5    | 13.64                            |
| BFP7723  | 323320  | 576580   | 158   | 190   | 209   | 3606  | 78    | 104   | 24    | 15    | 39.62                            |
| BFP7724  | 321365  | 575400   | 104   | 564   | 112   | 449   | 68    | 51    | 90    | 8     | 32.20                            |
| BFP7725  | 321960  | 575443   | 62    | 329   | 202   | 2948  | 100   | 147   | 22    | 18    | 58.82                            |
| BFP7726  | 321830  | 575665   | 73    | 587   | 203   | · 916 | 77    | 124   | 265   | 15    | 53.60                            |
| BFP7727  | 321910  | 575740   | 31    | 205   | 116   | 1678  | 52    | 45    | 25    | 9     | 28.64                            |
| BFP7728  | 321805  | 576005   | 61    | 648   | 172   | 8400  | - 94  | 109   | 101   | 9     | 56.72                            |
| BFP7729  | 321460  | 576220   | 43    | 389   | 132   | 3739  | 66    | 81    | 33    | 11    | 36.13                            |
| BFP7730  | 322490  | 575190   | 59    | 337   | 186   | 3864  | 86    | 91    | 78    | 30    | 56.91                            |
| BFP7731  | 322970  | 575090   | 29    | 24    | 98    | . 196 | 28    | 9     | 37    | 6     | 6.68                             |
| BFP7732  | 322880  | 575430   | 106   | 312   | 206   | 3267  | 99    | 89    | 26    | 14    | 51.45                            |
| BFP7733  | 322895  | 575490   | 39    | 154   | 120   | 702   | 56    | 43    | 9     | 7     | 29.64                            |
| BFP7734  | 322995  | 575632   | 27    | 77    | 108   | 1059  | 46    | 41    | 16    | 7     | 22.61                            |
| BFP7735  | 323085  | 575880   | 29    | 189   | 184   | 8500  | 71    | 99    | 15    | 15    | 37.37                            |
| BFP7736  | 321145  | 576690   | 124   | 284   | 156   | 15600 | 63    | 84    | 10    | 15    | 27.26                            |
| BFP7737  | 321475  | 576760   | 113   | 694   | 170   | 5084  | 72    | 93    | 148   | 15    | 41.74                            |
| BFP7738  | 321620  | 576617   | 116   | 424   | 200   | 2049  | 90    | 79    | 111   | 23    | 34.38                            |
| BFP7739  | 321605  | 576360   | 69    | 1600  | 206   | 30200 | 101   | 124   | 133   | 21    | 48.08                            |
| BFP7740  | 320458  | 575295   | 46    | 108   | 115   | 2410  | 72    | 57    | 16    | <5    | 29.77                            |
| BFP7741  | 320343  | 575743   | 56    | 160   | 344   | 5005  | 87    | 139   | 28    | 23    | 48.81                            |
| BFP7742  | 318860  | 576805   | 13    | 49    | 65    | 484   | 25    | 10    | <5    | <5    | 9.76                             |
| BFP7743  | 318650  | 576520   | 30    | 34    | 64    | 624   | 37    | 7     | <5    | <5    | 9.01                             |
| BFP7744  | 318765  | 576180   | 24    | 75    | 97    | 546   | 48    | 40    | 8     | 6     | 28.15                            |
| BFP7745  | 318685  | 575975   | 31    | 56    | 73    | 341   | 44    | 40    | <5    | <5    | 21.43                            |
| BFP7746  | 318590  | 575825   | 23    | 109   | 102   | 454   | 43    | 22    | <5    | <5    | 17.91                            |
| BFP7747  | 318650  | 575505   | 69    | 122   | 150   | 581   | 46    | 37    | 21    | <5    | 27.67                            |
| BFP7748  | 319145  | 575555   | 49    | 385   | 2373  | 891   | 54    | 58    | 22    | <5    | 18.70                            |
|          |         | 2.2000   | 77    | 505   | 2313  | 071   | 54    | 50    | 22    | ~ 5   | 10,70                            |

# Table 3 Ecclefechan Panned Concentrate Data (Follow-up Survey, 1995)

.

1

1

.

#### Table 3 Continued

| Sample   | Easting                               | Northing | Cu    | РЪ    | Zn    | Ba    | Ni    | As    | Sn    | Sb    | Fe <sub>2</sub> O <sub>3</sub> t |
|----------|---------------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|----------------------------------|
| Ref. No. | · · · · · · · · · · · · · · · · · · · |          | (ppm)                            |
| BFP7749  | 318700                                | 574140   | 187   | 112   | 143   | 143   | 18    | 14    | 388   | 13    | 7.35                             |
| BFP7750  | 318860                                | 574440   | 11    | 36    | 80    | 92    | 17    | . 14  | 68    | <5    | 6.35                             |
| BFP7751  | 318640                                | 574580   | 23    | 64    | 79    | 153   | 22    | 19    | 3871  | 294   | 7.27                             |
| BFP7752  | 318405                                | 574710   | 10    | 21    | 57    | 128   | 15    | 5     | 130   | <5    | 3.05                             |
| BFP7753  | 318690                                | 574830   | 17    | 120   | 198   | 91    | 30    | 14    | 206   | <5    | 13.10                            |
| BFP7754  | 319040                                | 574540   | 70    | 234   | 260   | 85    | 30    | 19    | 330   | 8     | 14.84                            |
| BFP7755  | 323260                                | 578715   | 38    | 39    | 44    | 4110  | 30    | 43    | <5    | 8     | 20.61                            |
| BFP7756  | 323215                                | 578500   | 59    | 45    | 347   | 3398  | 49    | 30    | 89    | 7     | 19.41                            |
| BFP7757  | 323325                                | 578190   | 11    | 14    | 46    | 424   | 25    | 15    | <5    | <5    | 5.54                             |
| BFP7758  | 323420                                | 577890   | 11    | 32    | 50    | 1027  | 26    | 18    | 8     | <5    | 10.07                            |
| BFP7759  | 323480                                | 577300   | 20    | 29    | 48    | 473   | 23    | 16    | 5     | <5    | 8.55                             |
| BFP7760  | 323245                                | 577620   | 23    | 55    | 62    | 469   | 34    | 16    | 15    | <5    | 17.58                            |
| BFP7761  | 323500                                | 577595   | 12    | 27    | 51    | 546   | 27    | 16    | 43    | <5    | 8.87                             |

| Table 4a Electron microprobe identification of selected grains in panned tills (BFU) and panned concentrates (BFP), from the Ecclefechan area | ctron micre                      | oprobe ic                   | lentification                                    | of selected [ | grains in pan | ned tills (BF | U) and par | nned conc | centrates (B) | FP), from ti | he Ecclet | lechan a | rea    |       |       |                      |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|--------------------------------------------------|---------------|---------------|---------------|------------|-----------|---------------|--------------|-----------|----------|--------|-------|-------|----------------------|-----|
| Sample No                                                                                                                                     | 1                                | 2                           | 3                                                | 4             | 5             | 6             | 7          | 00        | 6             | 10           | 11        | 12       | 13     | 14    | 15    | 16                   | 17  |
| BFU7804 ]                                                                                                                                     | Pyro                             | Руго                        | Pyro (Ca)                                        | Gal           | Gal           | Bar           | Bar        |           |               |              |           |          |        |       |       |                      |     |
| 5                                                                                                                                             | Gal                              | Gal                         |                                                  | Pyro (Ca)     | Py            | Copper        | Py         | Pyro      | Rut           | Sil          | Sil       |          | Ortho  | Ortho | Ругох | Ortho Pyrox Titanite | Gal |
| BFU7821                                                                                                                                       | Alum                             | Bar                         |                                                  |               |               | Ł             | Chalco     | Rut       | Rut           | Chlor        | Amph      |          |        |       |       |                      |     |
| BFU7823                                                                                                                                       | Gal                              | Gal                         | Gal                                              | Bar           |               | Σ.            | Py         | Py+Cu     | Chalco        | Chalco       | Sil       | Sil      | Chalco |       |       |                      |     |
| BFU7835                                                                                                                                       | Gal                              |                             |                                                  | Pyro (Ca)     |               | Qtz/Ortho     | Gal        | Gal       | Gal           | Sil          | Sil       |          | Sil    | Sil   | Sil   |                      |     |
| BFP7701                                                                                                                                       | Bar                              | Bar                         |                                                  | Pyro (Ca)     |               | Pyro          | Sil        | Sil       | Sil           |              |           |          |        |       |       |                      |     |
| BFP7702                                                                                                                                       | Qız                              | Qtz                         | Pyro                                             | Pyro          | Titanite      | Pyro          | Pyro       | Qtz       | Siderite      | Topaz        | Sil       | Pyrox    | Sil    |       |       |                      |     |
| BFP7711                                                                                                                                       | Pyro                             | Pyro                        |                                                  | Pyro (Ca)     | Siderite      | Sil           | Chlor      | Gal       |               |              |           |          |        |       |       |                      |     |
| BFP7713                                                                                                                                       | Qtz                              | Qız                         |                                                  | Pyro          | Dol           | Dol           | Dol        | Qtz       | Sil           | Pyrox        | Pyrox     | Sil      |        |       |       |                      |     |
| BFP7724 ]                                                                                                                                     | Rut                              | Sil                         |                                                  | Sil           | Sil           | Plag          |            |           |               |              |           |          |        |       |       |                      |     |
| BFP7726                                                                                                                                       | Py                               | Ł                           |                                                  | Pyrox         | Ругох         | Pyrox         | Bar        |           |               |              |           |          |        |       |       |                      |     |
|                                                                                                                                               | Qtz                              | Gal                         |                                                  |               | Bar           | Topaz         | Gal        | Rut       | Pyrox         | Sil          | Sil       | Qtz      |        |       |       |                      |     |
| BFP7728                                                                                                                                       | Pyro (Ca)                        | Bar                         | Bar                                              | Gal           | Qtz           | Chlor         | Chlor      | Gal       |               |              |           |          |        |       |       |                      |     |
|                                                                                                                                               | Pyro                             | Pyro                        | Pyro                                             | Bar           | Bar           | Qız           | Rut        | Chlor     | Chlor         |              |           |          |        |       |       |                      |     |
| BFP7735                                                                                                                                       | Sphal                            | Qtz                         | Py                                               | Bar           | Dol/Pyrox     | Rut           | Chalco     | Chlor     | Chlor         | P,Ag,Ca      |           |          |        |       |       |                      |     |
| BFP7748 ]                                                                                                                                     | Py                               | Py                          | Bar                                              | Bar           | Gal           | Gal           | Gal        | Gal       | Sphal         | Sphal        | Sphal     | Ą        | Chlor  | Chlor |       |                      |     |
| BFP7749                                                                                                                                       |                                  | Chlor                       | Cu,S ?O                                          | CuS           | Py            | Py            | Cu-ox      | Cu-ox     | Pb,Sn,Ca      | Chlor        | Albite    |          |        |       |       |                      |     |
| <b>Pyro=Pyromorphite</b>                                                                                                                      | rphite                           | Cu-ox=                      | Cu-ox=Copper oxide                               | e             |               |               |            |           |               |              |           |          |        |       |       |                      |     |
| Gal=Galena                                                                                                                                    | ı                                | Sil=Silicate                | icate                                            |               |               |               |            |           |               |              |           |          |        |       |       |                      |     |
| Bar=Baryte                                                                                                                                    |                                  | <b>Dol=Dolomite</b>         | olomite                                          |               |               |               |            |           |               |              |           |          |        |       |       |                      |     |
| Sphal=Sphalerite                                                                                                                              | srite                            | Qtz=Quartz                  | lartz                                            |               |               |               |            |           |               |              |           |          |        |       |       |                      |     |
| Py=Pyrite                                                                                                                                     |                                  | Rut=Rutile                  | ıtile                                            |               |               |               |            |           |               |              |           |          |        |       |       |                      |     |
| Chalco=Chalcopyrite Pyrox=Pyrox<br>Vanad=Vanadinite Chlor=Chlor<br><b>Probable contaminants in bold text</b>                                  | copyrite<br>dinite<br>(taminants | Pyrox=<br>Chlor=<br>in bold | Pyrox=Pyroxene<br>Chlor=Chlorite<br>in bold text |               |               |               |            |           |               |              |           |          |        |       |       |                      |     |
|                                                                                                                                               |                                  |                             |                                                  |               |               |               |            |           |               |              |           |          |        |       |       |                      |     |

26

Table 4b Mineralogical Examination of -500µm and +500µm superpanned fraction of heavy mineral concentrates prepared from panned till (BFU) and panned stream sediment (BFP)

| Sphalerite     Galena     Other     Contan       Mod (small)     Several     Mod pyromorphite     Cu s       Few     Sev pyrite+pyromor.     Cu s       Few     Sev pyrite+pyromorphite     Pb s       Mod     Abun pyromorphite     Pb n       Mod     Pyromorphite     Pb n       1     1     1     Pb n | Tomor. Contaminants<br>Tromor. Cu shard<br>te<br>orphite Pb shot<br>orphite Pb metal<br>rphite Pb metal<br>Pb metal |         | Barite Chalco. 2<br>Several<br>Mod<br>Abun<br>Several<br>Abun | Sphalerite | Galena Other Contaminants<br>1<br>Sev. pyrite | Contaminants |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------|------------|-----------------------------------------------|--------------|
| Several Mod pyromorphite<br>Few Sev pyrite+pyromor.<br>Few Sev pyrite<br>Mod Abun pyromorphite<br>Abun pyromorphite<br>Abun pyromorphite<br>Few pyromorphite<br>Few pyromorphite                                                                                                                           |                                                                                                                     |         |                                                               |            |                                               |              |
| Few Sev pyrite+pyromor.<br>Few Sev pyrite<br>Mod Abun pyromorphite<br>Abun pyromorphite<br>Mod pyromorphite<br>Few pyromorphite<br>I 1 pyrite                                                                                                                                                              |                                                                                                                     |         |                                                               |            | Sev. pyrite                                   |              |
| Sev pyrite<br>Abun pyromorphite<br>Abun pyromorphite<br>Mod pyromorphite<br>Few pyromorphite<br>I pyrite                                                                                                                                                                                                   |                                                                                                                     |         |                                                               |            | Sev. pyrite                                   |              |
| Sev pyrite<br>Abun pyromorphite<br>Abun pyromorphite<br>Mod pyromorphite<br>Few pyromorphite<br>I pyrite                                                                                                                                                                                                   |                                                                                                                     |         |                                                               |            | Sev. pyrite                                   |              |
| Abun pyromorphite<br>Abun pyromorphite<br>Abun pyromorphite<br>Few pyromorphite<br>I pyrite                                                                                                                                                                                                                |                                                                                                                     |         | _                                                             |            |                                               |              |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                     |         | _                                                             |            |                                               |              |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                     |         | _                                                             |            |                                               |              |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                     | Abun    |                                                               |            |                                               |              |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                     |         |                                                               |            |                                               |              |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                     |         |                                                               |            |                                               | Pb metal     |
|                                                                                                                                                                                                                                                                                                            | Ph me                                                                                                               | tal Mod |                                                               |            |                                               | Pb metal     |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                     | tal     |                                                               |            |                                               |              |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                     | Mod     |                                                               |            |                                               |              |
|                                                                                                                                                                                                                                                                                                            | Pb metal                                                                                                            | tal Mod |                                                               | 1 (cent    | l (cerussitised)                              |              |
|                                                                                                                                                                                                                                                                                                            | rphite Pb metal                                                                                                     |         |                                                               |            |                                               |              |
|                                                                                                                                                                                                                                                                                                            | I                                                                                                                   |         |                                                               |            |                                               |              |
| Few                                                                                                                                                                                                                                                                                                        |                                                                                                                     | Mod     |                                                               | Mod        |                                               |              |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                     | Mod     | 1                                                             |            | 1                                             |              |

27

Estimated number of grains Abun = >100

Few = up to 20 Several = 3 to 10

Mod = 20-100

# Table 5 Ecclefechan Panned Till Data

| Sample   | Easting | Northing       | Depth    | Cu    | Pb    | Zn    | Ba    | Ni    | As    | Sn    | Sb    | Fe <sub>2</sub> O <sub>3t</sub> |
|----------|---------|----------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------------------------------|
| Ref. No. |         |                | (metres) | (ppm) | %                               |
| BFU7801  | 327670  | 581320         | 3.00     | 45    | 35    | 79    | 185   | 59    | 31    | <5    | 8     | 13.81                           |
| BFU7802  | 327280  | 581180         | 4.00     | 70    | 32    | 67    | 275   | 53    | 26    | <5    | <5    | 11.2                            |
| BFU7803  | 327445  | 580955         | 2.00     | 50    | 40    | 71    | 264   | 53    | 29    | <5    | <5    | 14.08                           |
| BFU7804  | 327190  | 580865         | 3.00     | 112   | 844   | 379   | 9300  | 161   | 33    | 12    | <5    | 28.72                           |
| BFU7805  | 326160  | 580360         | 4.50     | 53    | 71    | 141   | 222   | 83    | 19    | <5    | <5    | 14.31                           |
| BFU7806  | 326520  | 580510         | 2.00     | 15    | 474   | 78    | 45    | 32    | 30    | 11    | 11    | 19.8                            |
| BFU7807  | 326204  | 580090         | 3.80     | 34    | 33    | 69    | 3594  | 45    | 15    | <5    | <5    | 6.93                            |
| BFU7808  | 326335  | 579820         | 4.10     | 66    | 69    | 97    | 228   | 65    | 22    | <5    | <5    | 18.22                           |
| BFU7809  | 326210  | 578945         | 3.10     | 49    | 66    | 87    | 193   | 47    | 14    | <5    | <5    | 9.7                             |
| BFU7810  | 326035  | 579100         | 1.80     | 20    | 72    | 50    | 167   | 35    | . 9   | <5    | <5    | 6.46                            |
| BFU7811  | 325755  | 579100         | 3.50     | 15    | · 37  | 53    | 247   | 32    | 19    | <5    | <5    | 8.59                            |
| BFU7812  | 325900  | 578790         | 4.50     | 17    | 125   | 46    | 260   | 28    | 8     | 6     | <5    | 4.42                            |
| BFU7813  | 325730  | 578450         | 3.60     | 46    | 50    | 77    | 626   | 42    | 25    | 7     | <5    | 14.24                           |
| BFU7814  | 325670  | 57877 <u>5</u> | 3.20     | 36    | 37    | 78    | 716   | 46    | 16    | <5    | <5    | 10.54                           |
| BFU7815  | 325430  | 578060         | 4.20     | 37    | 60    | 115   | 47    | 49    | 24    | <5    | <5    | 20.44                           |
| BFU7816  | 325320  | 578160         | 6.00     | 28    | 53    | 90    | 6600  | 48    | 21    | 5     | 6     | 17.32                           |
| BFU7817  | 325125  | 577760         | 3.50     | 46    | 52    | 69    | 321   | 38    | 13    | 6     | <5    | 10.58                           |
| BFU7818  | 324874  | 578550         | 6.80     | 21    | 62    | 55    | 1110  | 40    | 14    | 5     | <5    | 12.68                           |
| BFU7819  | 324968  | 578180         | 4.00     | 25    | 39    | 71    | 258   | 48    | 13    | <5    | <5    | 10.04                           |
| BFU7820  | 324949  | 577748         | 4.40     | 51    | 34    | 63    | 1072  | 42    | 18    | <5    | 7     | 9.51                            |
| BFU7821  | 323015  | 576880         | 3.60     | 48    | 310   | 225   | 2634  | 114   | 117   | 10    | 14    | 35.31                           |
| BFU7822  | 323262  | 576672         | 9.00     | 109   | 247   | 182   | 17600 | 57    | 41    | 9     | <5    | 25.08                           |
| BFU7823  | 323487  | 576864         | 10.50    | 310   | 280   | 217   | 8400  | 56    | 21    | <5    | <5    | 10.55                           |
| BFU7824  | 322520  | 576858         | 2.90     | 37    | 50    | 92    | 750   | 52    | 21    | <5    | <5    | 15.92                           |
| BFU7825  | 322779  | 576700         | 5.40     | 107   | 177   | 175   | 9900  | 77    | 35    | 12    | <5    | 28.17                           |
| BFU7826  | 322770  | 576530         | 5.40     | 68    | 98    | 99    | 4056  | 41    | 23    | 9     | <5    | 17.06                           |
| BFU7827  | 323030  | 576360         | 5.50     | 77    | 94    | 147   | 10600 | 52    | 18    | <5    | 5     | 16.84                           |
| BFU7828  | 323200  | 576460         | 11.50    | 109   | 178   | 204   | 11100 | 68    | 48    | 11    | <5    | 29.82                           |
| BFU7829  | 322290  | 577038         | 4.50     | 30    | 110   | 230   | 308   | 155   | 26    | 12    | 12    | 34.5                            |
| BFU7830  | 322110  | 577000         | 4.50     | 24    | 808   | 132   | 333   | 65    | 60    | 5     | 29    | 43.75                           |
| BFU7831  | 322070  | 577090         | 6.60     | 43    | 102   | 154   | 124   | 70    | 38    | 8     | 9     | 32.63                           |
| BFU7832  | 322030  | 577180         | 2.90     | 59    | 77    | 556   | 50    | 120   | 41    | 9     | 12    | 50.49                           |
| BFU7833  | 322040  | 577265         | 2.70     | 40    | 32    | 220   | 307   | 164   | 9     | 7     | <5    | 14.61                           |
| BFU7834  | 322185  | 577225         | 7.10     | 2759  | 296   | 664   | 10100 | 210   | 27    | 6     | 6     | 13.61                           |
| BFU7835  | 322185  | 577130         | 5.80     | 452   | 5100  | 1115  | 823   | 155   | 25    | 8     | 19    | 15.98                           |
| BFU7836  | 322230  | 577030         | 5.40     | 52    | 99    | 328   | 48200 | 187   | 26    | 6     | <5    | 21.55                           |
| BFU7837  | 321890  | 577200         | 6.60     | 17    | 38    | 67    | 883   | 36    | 12    | 8     | 6     | 11.48                           |
| BFU7838  | 321930  | 577150         | 7.10     | 38    | 113   | 120   | 279   | 57    | 50    | 10    | 10    | 28.19                           |
| BFU7839  | 321880  | 577100         | 4.60     | 49    | 802   | 431   | 230   | 161   | 189   | 9     | 48    | 39.26                           |
| BFU7840  | 321930  | 577050         | 10.20    | 14    | 32    | 32    | 229   | 19    | 7     |       | <5    | 10.94                           |
| BFU7841  | 321880  | 577000         | 3.20     | 20    | 82    | 69    | 92    | 39    | 22    | 7     | 8     | 22.78                           |
| BFU7842  | 321930  | 576950         | 3.60     | 32    | 59    | 68    | 204   | 55    | 13    | <5    | <5    | 17.95                           |
| BFU7843  | 322220  | 576060         | 4.70     | 44    | 45    | 114   | 7600  | 44    | 17    | <5    | 6     | 11.41                           |
| BFU7844  | 322480  | 576170         | 5.50     | 122   | 140   | 182   | 31000 | 69    | 43    | 9     | 7     | 20.74                           |
| BFU7845  | 322010  | 575970         | 1.80     | 32    | 35    | 89    | 472   | 43    | 13    | <5    | <5    | 9.53                            |
| BFU7846  | 321595  | 575588         | 6.40     | 110   | 369   | 155   | 14200 | 105   | 51    | 9     | <5    | 33.54                           |
| BFU7847  | 321408  | 575468         | 6.10     | 80    | 159   | 184   | 76    | 101   | 52    | 10    | 7     | 43.57                           |
| BFU7848  | 321780  | 575580         | 5.10     | 59    | 84    | 112   | 7200  | 57    | 24    | 9     | <5    | 43.57<br>20                     |
|          |         | 2.2200         | 5.10     |       | 07    |       | . 200 | 51    | 24    | -     | -0    | 20                              |

# Table 5 Continued

| Sample   | Easting | Northing | Depth    | Cu    | РЬ    | Zn    | Ba    | Ni    | As    | Sn    | Sb    | Fe <sub>2</sub> O <sub>3t</sub> |
|----------|---------|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------------------------------|
| Ref. No. |         |          | (metres) | (ppm) | %                               |
| BFU7849  | 327100  | 580847   | 2.80     | 87    | 39    | 279   | 50    | 178   | 10    | 9     | 8     | 25.49                           |
| BFU7850  | 326985  | 580838   | 3.70     | 110   | 33    | 102   | 37    | 194   | 17    | 10    | 9     | 31.3                            |
| BFU7851  | 327080  | 580712   | 2.60     | 88    | 182   | 180   | 50    | 128   | 31    | 6     | <5    | 26.98                           |
| BFU7853  | 322230  | 577030   | 5.40     | 52    | 105   | 362   | 30300 | 215   | 23    | 13    | 5     | 22.96                           |
| BFU7854  | 321930  | 577150   | 7.10     | 14    | 38    | 61    | 282   | 32    | 18    | 9     | <5    | 10.56                           |
| BFU7855  | 321880  | 577100   | 4.60     | 50    | 851   | 353   | 184   | 147   | 130   | <5    | 36    | 37.14                           |
| BFU7856  | 321930  | 577050   | 10.20    | 30    | 46    | 55    | 171   | 19    | 28    | <5    | <5    | 15.31                           |
| BFU7857  | 321930  | 576950   | 3.60     | 17    | 25    | 54    | 208   | 37    | 6     | <5    | <5    | 7.33                            |

 Table 6 Ecclefechan Sieved Till Data

.

| Sample   | Easting | Northing | Depth    | Cu    | Рb    | Zn    | Ba    | Ni    | As    | Sb    | MnO   | Fe <sub>2</sub> O <sub>3t</sub> |
|----------|---------|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------------------------------|
| Ref. No. |         |          | (metres) | (ppm) | %     | %                               |
| BFT7801  | 327670  | 581320   | 3.00     | 32    | 19    | 87    | 411   | 72    | 8     | <5    | 0.099 | 7.46                            |
| BFT7802  | 327280  | 581180   | 4.00     | 35    | 22    | 86    | 506   | 75    | 12    | <5    | 0.087 | 7.34                            |
| BFT7803  | 327445  | 580955   | 2.00     | 37    | 22    | 95    | 466   | 91    | 9     | <5    | 0.109 | 7.97                            |
| BFT7804  | 327190  | 580865   | 3.00     | 91    | 1093  | 776   | 2091  | 163   | 15    | <5    | 0.129 | 10.84                           |
| BFT7805  | 326160  | 580360   | 4.50     | 39    | 25    | 123   | 485   | 84    | 6     | <5    | 0.091 | 7.53                            |
| BFT7806  | 326520  | 580510   | 2.00     | 24    | 30    | 75    | 434   | 48    | 3     | <5    | 0.026 | 5.45                            |
| BFT7807  | 326204  | 580090   | 3.80     | 38    | 31    | 94    | 593   | 81    | 10    | <5    | 0.1   | 7.24                            |
| BFT7808  | 326335  | 579820   | 4.10     | 35    | 25    | 101   | 430   | 79    | 8     | <5    | 0.09  | 7.34                            |
| BFT7809  | 326210  | 578945   | 3.10     | 35    | 39    | 106   | 460   | 76    | 9     | <5    | 0.084 | 6.97                            |
| BFT7810  | 326035  | 579100   | 1.80     | 20    | 35    | 27    | 383   | 30    | 7     | <5    | 0.031 | 3.69                            |
| BFT7811  | 325755  | 579100   | 3.50     | 31    | 36    | 105   | 473   | 69    | 10    | <5    | 0.08  | 6.87                            |
| BFT7812  | 325900  | 578790   | 4.50     | 33    | 28    | 89    | 455   | 71    | 15    | <5    | 0.079 | 6.90                            |
| BFT7813  | 325730  | 578450   | 3.60     | 31    | 24    | 86    | 469   | 65    | 9     | <5    | 0.074 | 6.71                            |
| BFT7814  | 325670  | 578775   | 3.20     | 29    | 22    | 82    | 463   | 66    | 8     | <5    | 0.068 | 6.78                            |
| BFT7815  | 325430  | 578060   | 4.20     | 28    | 22    | 67    | 402   | 52    | 10    | <5    | 0.055 | 6.15                            |
| BFT7816  | 325320  | 578160   | 6.00     | 26    | 21    | 76    | 491   | 64    | 8     | <5    | 0.095 | 6.82                            |
| BFT7817  | 325125  | 577760   | 3.50     | 26    | 22    | 77    | 446   | 58    | 10    | <5    | 0.094 | 6.22                            |
| BFT7818  | 324874  | 578550   | 6.80     | 24    | 25    | 80    | 520   | 66    | 8     | <5    | 0.091 | 6.95                            |
| BFT7819  | 324968  | 578180   | 4.00     | 34    | 24    | 103   | 484   | 78    | 9     | <5    | 0.088 | 7.69                            |
| BFT7820  | 324949  | 577748   | 4.40     | 34    | 29    | 89    | 466   | 68    | 9     | <5    | 0.082 | 6.85                            |
| BFT7821  | 323015  | 576880   | 3.60     | 38    | 24    | 89    | 556   | 82    | 16    | <5    | 0.106 | 7.59                            |
| BFT7822  | 323262  | 576672   | 9.00     | 35    | 23    | 90    | 489   | 75    | 12    | <5    | 0.09  | 7.33                            |
| BFT7823  | 323487  | 576864   | 10.50    | 45    | 21    | 75    | 454   | 70    | 13    | <5    | 0.092 | 7.09                            |
| BFT7824  | 322520  | 576858   | 2.90     | 35    | 23    | 88    | 531   | 78    | 8     | <5    | 0.096 | 7.57                            |
| BFT7825  | 322779  | 576700   | 5.40     | 32    | 22    | 83    | 480   | 71    | 10    | <5    | 0.086 | 6.98                            |
| BFT7826  | 322770  | 576530   | 5.40     | 37    | 22    | 90    | 495   | 78    | 9     | <5    | 0.089 | 7.44                            |
| BFT7827  | 323030  | 576360   | 5.50     | 35    | 21    | 85    | 490   | 72    | 9     | <5    | 0.094 | 7.16                            |
| BFT7828  | 323200  | 576460   | 11.50    | 31    | 20    | 82    | 462   | 67    | 8     | <5    | 0.091 | 6.78                            |
| BFT7829  | 322290  | 577038   | 4.50     | 40    | 94    | 141   | 591   | 111   | 15    | <5    | 0.144 | 8.93                            |
| BFT7830  | 322110  | 577000   | 4.50     | 23    | 719   | 416   | 521   | 137   | 22    | 8     | 0.183 | 13.41                           |
| BFT7831  | 322070  | 577090   | 6.60     | 28    | 38    | 188   | 420   | 149   | 9     | <5    | 0.11  | 10.10                           |
| BFT7832  | 322030  | 577180   | 2.90     | 61    | 44    | 421   | 544   | 137   | 16    | <5    | 0.211 | 14.27                           |
| BFT7833  | 322040  | 577265   | 2.70     | 30    | 23    | 294   | 270   | 236   | 7     | <5    | 0.214 | 11.80                           |
| BFT7834  | 322185  | 577225   | 7.10     | 1624  | 475   | 1714  | 3049  | 265   | 38    | <5    | 0.964 | 14.59                           |
| BFT7835  | 322185  | 577130   | 5.80     | 1225  | 3200  | 3496  | 404   | 442   | 28    | 15    | 0.727 | 12.33                           |
| BFT7836  | 322230  | 577030   | 5.40     | 36    | 98    | 499   | 2963  | 251   | 15    | <5    | 0.131 | 13.35                           |
| BFT7837  | 321890  | 577200   | 6.60     | 34    | 44    | 155   | 464   | 85    | 10    | <5    | 0.046 | 7.41                            |
| BFT7838  | 321930  | 577150   | 7.10     | 17    | 19    | 50    | 477   | 34    | 8     | <5    | 0.062 | 3.99                            |
| BFT7839  | 321880  | 577100   | 4.60     | 118   | 472   | 580   | 549   | 164   | 11    | <5    | 0.217 | 9.97                            |
| BFT7840  | 321930  | 577050   | 10.20    | 11    | 14    | 38    | 474   | 28    | 9     | <5    | 0.058 | 3.71                            |
| BFT7841  | 321880  | 577000   | 3.20     | 21    | 31    | 74    | 459   | 53    | 10    | <5    | 0.141 | 5.98                            |
| BFT7842  | 321930  | 576950   | 3.60     | 23    | 17    | 68    | 487   | 64    | 8     | <5    | 0.081 | 6.54                            |
| BFT7843  | 322220  | 576060   | 4.70     | 34    | 27    | 84    | 511   | 71    | 12    | <5    | 0.092 | 7.23                            |
| BFT7844  | 322480  | 576170   | 5.50     | 36    | 21    | 79    | 518   | 71    | 8     | <5    | 0.094 | 7.24                            |
| BFT7845  | 322010  | 575970   | 1.80     | 36    | 19    | 79    | 504   | 69    | 12    | <5    | 0.077 | 7.23                            |
| BFT7846  | 321595  | 575588   | 6.40     | 40    | 25    | 112   | 526   | 88    | 12    | <5    | 0.106 | 7.80                            |
| BFT7847  | 321408  | 575468   | 6.10     | 42    | 28    | 133   | 315   | 107   | 12    | <5    | 0.063 | 9.19                            |

#### Table 6 Continued

| Sample   | Easting | Northing | Depth    | Cu    | Pb    | Zn    | Ba    | Ni    | As    | Sb    | MnO   | Fe <sub>2</sub> O <sub>3t</sub> |
|----------|---------|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------------------------------|
| Ref. No. |         |          | (metres) | (ppm) | %     | %                               |
| BFT7848  | 321780  | 575580   | 5.10     | 38    | 25    | 90    | 508   | 81    | 10    | <5    | 0.092 | 7.48                            |
| BFT7849  | 327100  | 580847   | 2.80     | 55    | 22    | 153   | 233   | 149   | 7     | <5    | 0.079 | 10.99                           |
| BFT7850  | 326985  | 580838   | 3.70     | 54    | 22    | 121   | 378   | 133   | 6     | <5    | 0.088 | 9.65                            |
| BFT7851  | 327080  | 580712   | 2.60     | 43    | 36    | 118   | 515   | 89    | 7     | <5    | 0.077 | 8.00                            |

.

.

.

| Sample<br>Ref. No. | Easting | Northing | Number of<br>Gold grains | Location                       | Lithostratigraphy        |
|--------------------|---------|----------|--------------------------|--------------------------------|--------------------------|
| BFP4998            | 321540  | 579270   | 1                        | Darlawhill Grain               | Silurian/UORS unconform. |
| BFP7711            | 322355  | 576712   | 1                        | Stoneybeck Burn                | Birrenswark Lava Fmn.    |
| BFP7713            | 322610  | 576458   | 1                        | Stoneybeck Burn                | Birrenswark Lava Fmn.    |
| BFP7725            | 321960  | 575443   | 2                        | Middlebie Burn                 | Border Gp Cementstones   |
| BFP7726            | 321830  | 575665   | 1                        | Minor W trib. Middlebie Burn   | Birrenswark Lava Fmn.    |
| BFP7727            | 321910  | 575740   | 3                        | Middlebie Burn                 | Birrenswark Lava Fmn.    |
| BFP7728            | 321805  | 576005   | 2                        | Middlebie Burn                 | Birrenswark Lava Fmn.    |
| BFP7730            | 322490  | 575190   | 1                        | Lower Mein Water               | Border Gp Cementstones   |
| BFP7732            | 322880  | 575430   | 1                        | Lower Mein Water               | Border Gp Cementstones   |
| BFP7735            | 323085  | 575880   | 1                        | Lower Mein Water               | Border Gp Cementstones   |
| BFP7743            | 318650  | 576520   | 1                        | Upper Ecclefechan Burn         | Birrenswark Lava Fmn.    |
| BFP7744            | 318765  | 576180   | 1                        | Upper Ecclefechan Burn         | Birrenswark Lava Fmn.    |
| BFP7749            | 318700  | 574140   | 1                        | Small stream SW of Ecclefechan | Border Gp Cementstones   |

# Table 7 Ecclefechan Panned Concentrate Gold Observations

.

32

.

.

1

1

•

Table 8 Ecclefechan Surface Rock Data

| Sample   | Easting | Northing | Northing Rock Type/Samp Typ. Mineralisation N | Mineralisation | Minerals                    | Cu  | Ъb  | Zn   | Ba   | ïŻ   | As  | Sb  | Fe2O3t | MnO   |
|----------|---------|----------|-----------------------------------------------|----------------|-----------------------------|-----|-----|------|------|------|-----|-----|--------|-------|
| Ref. No. |         |          |                                               | Style          |                             | bm  | bpm | bpm  | mqq  | bpm  | ppm | bpm | %      | %     |
| BFR7904  | 322120  | 577880   | Basalt/clast                                  | Vein           | Carbonate, Hematite         | 10  | 401 | 781  | 195  | 32   | 16  | 17  | 7.06   | 0.406 |
| BFR7905  | 325415  | 578710   | Sandstone/clast                               | Vein           | Carbonate, Hematite         | 11  | 4   | 47   | 1795 | S    | ŝ   | ♡   | 2.21   | 0.224 |
| BFR7906  | 325480  | 578385   | Cementstone/clast                             | Vein           | Carbonate                   | 30  | Ŷ   | 18   | 239  | 16   | ŝ   | \$  | 5.76   | 0.303 |
| BFR7907  | 325420  | 578520   | Siltstone/clast                               | Vein           | Carbonate                   | 17  | 6   | 35   | 91   | 33   | ٢   | ŝ   | 7.23   | 0.382 |
| BFR7908  | 321475  | 576760   | Basalt/clast                                  | Vein           | Carbonate                   | 6   | 37  | 308  | 192  | 59   | ŝ   | \$  | 4.42   | 0.328 |
| BFR7909  | 321981  | 575365   | Basalt/clast                                  | Dissem.        | Carbonate                   | 16  | 28  | 82   | 119  | 27   | 80  | ♡   | 6.59   | 0.356 |
| BFR7910  | 321981  | 575365   | Basalt/clast                                  | Dissem.        | Copper secondaries?         | 51  | 22  | 104  | 445  | 237  | 21  | ♡   | 8.68   | 0.462 |
| BFR7911  | 321981  | 575365   | Basalt/clast                                  | Vein           | Carbonate, Pyrite, Hematite | 802 | 144 | 385  | 1978 | 106  | 37  | ♡   | 8.03   | 0.304 |
| BFR7912  | 321948  | 575443   | (Micrite+basalt)/clast                        | Vein/Breccia   | Hematite, Quartz, Carbonate | 15  | 19  | 1422 | 152  | 20   | 9   | ŝ   | 4.59   | 0.447 |
| BFR7913  | 321365  | 575395   | Siltstone/clast                               | Vein           | Carbonate                   | 18  | 6   | 49   | 195  | 36   | ŝ   | ѷ   | 5.06   | 0.139 |
| BFR7914  | 321605  | 576360   | Basalt/clast                                  | Dissem.        | Malachite                   | 2   | 25  | 87   | 126  | - 79 | Ś   | ŝ   | 14.06  | 0.119 |
| BFR7915  | 323400  | 579242   | Basalt/in situ                                | Dissem.        | Malachite, Hematite         | 62  | 38  | 230  | 186  | 133  | ٢   | ŝ   | 11.46  | 0.167 |
| BFR7916  | 322218  | 576798   | (Vn. qtz.+ basalt)/clast Vein                 | Vein           | Hematite                    | S   | Ś   | S    | 25   | e    | ŝ   | ٢   | 0.51   | 0.011 |
| BFR7917  | 322218  | 576798   | Basalt/in situ                                | Pod            | Carbonate/?Baryte           | 29  | 86  | 229  | 274  | 347  | 15  | Ŷ   | 14.34  | 0.064 |
| BFR7918  | 32224   | 576760   | Basalt/in situ                                | Vein           | Hematite                    | 11  | 18  | 1297 | 206  | 33   | ₽   | ŝ   | 5.55   | 0.408 |
|          |         |          |                                               |                |                             |     |     |      |      |      |     |     |        |       |

.

•

Table 9 Lithology and chemical analysis of Hoddom borehole core samples

| Sample          | Intersection    | Lithology                                                                                                          | ວື                | P.    | Cu Pb Zn Ba Ni Cd | Ba    | 5        | M<br>P | MnO Fe <sub>2</sub> O <sub>3</sub> | 203<br>203 |
|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------|-------------------|-------|-------------------|-------|----------|--------|------------------------------------|------------|
| Ref. No.        | Ħ               |                                                                                                                    | md mdd md mdd mdd | 1 md  | dd ma             | E E   | mq m     |        | %                                  | %          |
| <b>BFD 7920</b> | 21.65 - 21.69   | Pink massive siltstone with fine calcite veinlets                                                                  | <b>∞</b>          | 4     | 23 I.             | 31 3  | 60<br>€2 |        | 0.185                              | 2.60       |
| <b>BFD 7921</b> | 36.40 - 36.50   | Grey-pink mottled fine sandstone with FeS disseminations and in calcite veinlets                                   | ₽                 | ₽     | <2 <2 8 143 33    | 43 3  | ي<br>د   | <5 0.2 | 0.273                              | 1.39       |
| BFD 7922        | 39.35 - 39.41   | Sandy siltstone with soft orange dolomitic patches                                                                 | 6                 | 4     | 32 139            | 39 4  | 43 <     | <5 0.( | 0.091                              | 3.65       |
| BFD 7923        | 42.97 - 43.06   | Pink sandstone with dolomitic patches and fine ox. clusters of FeS                                                 | 10                | Ś     | 18 1              | 72 2  | 24 <     | <5 0.0 | 0.061                              | 3.65       |
| <b>BFD 7924</b> | 48.90 - 49.07   | Red-pink sandstone with numerous calc. vnlts and patches of fine sulphide (upto 1cm)                               | 80                | 9     | 6 36 139          | 39 3  | 34 <     | <5 0.1 | 0.128                              | 2.70       |
| <b>BFD 7925</b> | 61.03 - 61.08   | Pink sandstone containing a few coarse clasts; thin band of FeS parallel to bedding                                | Ś                 | ×     | 27                | 87 5  | 52 <     | <5 0.2 |                                    | 1.45       |
| <b>BFD 7926</b> | 87.52 - 87.60   | Fine grained pink sandstone with oxidised FeS in veinlets upto 0.2 cm wide.                                        | 4                 | ŝ     | 21                |       | 28 <     | <5 0.1 |                                    | 2.85       |
| BFD 7927        | 118.82 - 118.89 | 118.82 - 118.89 Pink cementstone with 0.2 cm crystal ?PbS                                                          | m                 | ₽     | <2 17 90          | 90    | 18 <5    |        |                                    | 1.23       |
| <b>BFD 7928</b> | 131.96 - 132.02 | 131.96 - 132.02 Dark grey siltstone with numerous bands of gypsum/anhydrite (0.2 - 2 cm) generally par. to bedding | 53                | 2 7   | 1                 | 10    | ∨<br>∞   | <5 0.0 | 0.003                              | 0.18       |
| BFD 7929        | 162.63 - 162.68 | 162.63 - 162.68 Grey fine-grained sandstone with coarse clasts and thin silty bands, dissem coarse patches FeS     | \$                | 11 14 |                   | 82 2  | 21 <     | <5 0.0 | 0.002                              | 1.83       |
| <b>BFD 7930</b> | 163.08 - 163.15 | 163.08 - 163.15 Grey banded siltstone, gypsum in veins and thin beds; coarse patches (0.3 cm) of dissem. FeS       | 6                 | 11    | 13 137            |       | 21 <     | <5 0.0 | 0.040                              | 1.89       |
| BFD 7931        | 175.75 - 175.78 | 175.75 - 175.78 Grey fine-grained sandstone with minor FeS                                                         | 17                | 11    | 15                | 237 2 | 20 <     | <5 0.0 | 0.020                              | 2.38       |