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Energy budget diagnosis of changing climate feedback
B. B. Cael1*, Jonah Bloch-Johnson2, Paulo Ceppi3, Hege-Beate Fredriksen4, Philip Goodwin5,
Jonathan M. Gregory2,6, Christopher J. Smith7,8, Richard G. Williams9

The climate feedback determines how Earth’s climate responds to anthropogenic forcing. It is thought to have
been more negative in recent decades due to a sea surface temperature “pattern effect,” whereby warming is
concentrated in the western tropical Pacific, where nonlocal radiative feedbacks are very negative. This phenom-
enon has however primarily been studied within climate models. We diagnose a pattern effect from historical
records as an evolution of the climate feedback over the past five decades. Our analysis assumes a constant rate
of change of the climate feedback, which is justified post hoc. We find a decrease in climate feedback by 0.8 ± 0.5
W m−2 K−1 over the past 50 years, corresponding to a reduction in climate sensitivity. Earth system models’
climate feedbacks instead increase over this period. Understanding and simulating this historical trend and
its future evolution are critical for reliable climate projections.
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INTRODUCTION
Earth’s climate feedback—the amount of extra energy radiated to
space per degree of global warming [λ, (W m−2 K−1), a negative
number]—is a central object of study in climate science, being
one of the essential parameters determining Earth’s response to an-
thropogenic emissions of greenhouse gases and other forcing agents
(1). If λ is more negative, Earth’s global mean surface temperature T
(K) is less sensitive to the anthropogenic radiative forcing F
(W m−2), i.e., −λ is inversely proportional to effective climate sen-
sitivity (defined as the projected equilibrium warming following a
doubling of the preindustrial atmospheric CO2 concentration) (2).
Although myriad physical processes contribute to λ, a crucial factor
is the spatial pattern of warming. In particular, warming in the
western tropical Pacific produces a much larger global radiative re-
sponse and, hence, a more negative climate feedback than warming
elsewhere. This phenomenon has been termed the “pattern effect”
(3–7). Warming in this region, where air moves upward in the lower
atmosphere, results in increased stability of the lower tropical atmo-
sphere in remote subsidence regions. This far-field adjustment in
turn increases atmospheric stability and low cloud cover and
hence upward shortwave radiation. In recent decades, global
warming has been concentrated in this Western Pacific region of
very negative radiative feedbacks (4, 5, 8–13), leading to a more neg-
ative value of λ (hence, lower climate sensitivity). More generally, it
is the east-west tropical Pacific surface temperature gradient that is
of particular importance (14) and emphasizes that the recent
cooling in the eastern equatorial Pacific is important in setting λ.

When simulating the historical climate over recent decades,
Earth system models (ESMs) tend to produce spatial warming pat-
terns that lack this concentration of warming in regions of very neg-
ative radiative feedbacks. The ESM projections lead to less negative
λ (higher climate sensitivity) than when the observed spatial pattern
of sea surface temperature is imposed on the same atmospheric

models (11). Furthermore, for standard ESM simulations with
fixed atmospheric CO2 concentrations quadrupling from preindus-
trial levels—the primary model experiment for diagnosing the
global climate feedback λ—the spatial pattern of warming is again
quite different, leading to a less negative λ than indicated by obser-
vations (15). The pattern effect is thus sometimes quantified by the
difference between the λ values associated with a CO2-quadrupling
experiment and an experiment with prescribed sea surface temper-
atures (9). This equivalence is based on the argument that the
surface warming should eventually adjust to the modeled long-
term warming pattern. The pattern effect quantified as such has
been almost exclusively studied within ESMs, most notably using
Green’s functions (5) or comparing different model experi-
ments (11).

It would be advantageous to quantify a pattern effect from his-
torical records to assess the probability, magnitude, and implica-
tions of this effect for Earth’s recent climate and to provide a
benchmark with which to assess ESM performance. This observa-
tionally based viewpoint is especially important because it is in-
creasingly common to weight models in multimodel projections
by their relative performance in capturing historical trends (16–
19). If these weighting schemes do not account for the influence
of the pattern effect, the resulting model-averaged response may
produce biased projections because models may capture historical
trends for the wrong reasons.

Here, we propose an alternative metric for the pattern effect—
the trend in the climate feedback λ over recent decades—that can be
diagnosed from historical records without reference to hypothetical
scenarios. This approach is based on an integral equation and there-
fore estimates an effective climate feedback (20). We show that the
trend we diagnose is significantly different from zero over the past
five decades of global energy budget records and large in amplitude
with substantial implications for global warming. We also show that
ESMs fail to capture this trend, irrespective of their climate sensitiv-
ity. We use the past five decades because this is the time period over
which reliable records exist (Methods) (21). The bulk of global
warming has occurred since 1970, with four of the first 6 years of
the 1970s being within 0.2°C of the 1850–1900 average (22). The
bulk of the increase in ocean heat content H (W y m−2) and radi-
ative forcing (21, 23) has also occurred since 1970. (Note that
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throughout this paper, script letters indicate a time integral; here,
ocean heat content change is the time integral of the rate of ocean
heat uptake.) We stress from the outset that we only investigate this
period of 1970–2019; we do not make any assumptions or specula-
tions about the future trends in λ.

RESULTS AND DISCUSSION
The method we present is described in detail in Methods—the
reader interested in the full derivation should read the “Theory”
section before proceeding further. Briefly, we work from a simple
Earth energy balance equation, which states that the rate of global
warming is proportional to the net rate of energy storage in the
upper ocean

η _TðtÞ ¼ FðtÞ þ λðtÞTðtÞ � HðtÞ ð1Þ

where T (K) is the global mean surface temperature anomaly, η
(W y m−2 K−1) is the heat capacity of the upper ocean layer,
F (W m−2) is the radiative forcing imposed upon Earth’s surface,
λ (W m−2 K−1) is the climate feedback, and H (W m−2) is the rate
of ocean heat uptake (the flux of energy into the deeper ocean from
the upper layer). From this equation, one can derive the energy
budget F (τ) − H(τ) = R(τ), where F (τ) is the cumulative energy
fluxed to the top of the atmosphere via radiative forcing by time τ;
H(τ) is the ocean heat content anomaly at time τ (including the
upper layer), which approximates the Earth’s energy imbalance;
and R(τ) is the cumulative energy fluxed back to space by time τ;
this is just a restatement of conservation of energy. We then make
the ansatz that λ changes linearly with time from 1970, i.e., λ(t) =
λ1970(1 + μt), where t is time in years since 1970 and μ (y −1) is the
annual rate of change in λ relative to the initial value λ1970 {i.e.,
μ ¼ 1

Δt
λð1970þΔtÞ

λ1970
� 1

h i
for some number of years Δt}. This ansatz

is justified post hoc by the absence of systematic behavior in the

residuals (Methods). The choice of a linearly changing λ is motivat-
ed by its simplicity as a means to capture the expected change in λ
from 1970 to 2019 as warming concentrated in the western tropical
Pacific. The term λ1970 × μ (W m−2 K−1 y−1) captures the average
annual rate of change in λ over this period. An approximately linear
evolution in λ over this period could arise for multiple reasons, but
arguably the most plausible is the convolution of a changing
warming pattern with spatial variation in regional climate feedbacks
(24). If there is sufficient spatial variation in the feedback per
warming in different locations (5), and the spatial pattern of
warming changes over time (25), then the area-integrated global ef-
fective feedback parameter λ will likewise evolve over time, with its
value depending on how much warming occurs in places with more
or less negative feedbacks. If this warming pattern evolves gradually
(25), then the change in the effective feedback parameter λ on a 50-
year time scale will be approximately linear in time.

Substituting this ansatz into the energy budget yields

F ðτÞ � HðτÞ ¼ � λ1970T ðμ; τÞ ð2Þ

where T (μ, τ) is a weighted integral of the temperature anomaly
(Methods). The parameter combinations (λ1970, μ) that minimize
the residuals of this equation are selected. Ensembles for F , T ,
and H are used to quantify uncertainty; the HadCRUT5 (22)
global annual mean surface temperature T product (with different
dataset realizations that sample the measurement uncertainty), the
F ensemble from the recent Working Group I contribution to the
Intergovernmental Panel on Climate Change’s Sixth Assessment
Report (23), and anH ensemble generated from three observational
ocean heat content products are used (26–28). Figure 1 shows a re-
gression that illustrates this process for the median radiative forcing
and temperature anomaly, as well as the associated parameter
values. Heuristically, we choose the μ that makes the relationship
between T (μ) and F − H most linear. The slope of this linear re-
lationship then corresponds to λ1970. (In comparison for a choice of
μ = 0, there is significant curvature in this relationship; see fig. S1.)

Within this framework, we begin by testing the null hypothesis
of a constant climate feedback from 1970 to 2019, i.e., μ = 0. We
reject this hypothesis for three reasons. When we fit our statistical
model with μ = 0 to the historical records, 92% of ensemble
members yield curvature of the same sign in the residuals, indicat-
ing systematic behavior not captured by a constant climate feedback
(fig. S2 and Methods). When we compare the μ = 0 model with a
model with a nonzero μ, 91% of ensemble members yield higher
Akaike information criterion (AIC) values for the μ = 0 model
(fig. S2 and Methods), indicating that a time-varying climate feed-
back describes these data better even after penalizing for the addi-
tional free parameter. Last, when μ is allowed to be nonzero, we find
a decreasing climate feedback trend for 92% of ensemble members
(fig. S2).

Our analysis thus suggests that λ became more negative with
time (decreasing climate sensitivity) over the period 1970–2019
(i.e., μ > 0). Figure 2 shows our main result; we find that λ has de-
creased by 0.8 ± 0.5 W m−2 K−1 (± indicates half of 66% range or ∼1
SD throughout) from −1.0 ± 0.7 W m−2 K−1 in 1970 to −1.8 ± 0.2
W m−2 K−1 in 2019. This corresponds to an annual decrease of μ ×
λ1970 = 0.016 ± 0.010 W m−2 K−1 y−1. The reduced uncertainty in
the 2019 values is because uncertainties in μ and λ1970 are strongly
correlated (Spearman rank correlation of 0.98) because

Fig. 1. Illustration of diagnosis of model parameters from time series of inte-
gral quantities using Eq. 2 and the medians of global area-weighted mean
radiative forcing, surface temperature, and ocean heat content (see
Methods for details). x axis is the time-weighted temperature anomaly integral.
y axis is the cumulative anomaly in energy radiated to space (F − H). Color indi-
cates the year.
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observational uncertainties, and hence uncertainties in the climate
feedback, reduce with time. This is a large change from a λ estimate
that moves from the low end of a priori expectations [−1.3 ± 0.44W
m−2 K−1 (9); Fig. 2] in 1970 to the high end in 2019. Our estimate of
the change over this period of 0.8 ± 0.5 W m−2 K−1 is consistent
with the ESM-based quantifications of the pattern effect of 0.5 ±
0.5 W m−2 K−1 (9) or 0.6 W m−2 K−1 with a range of 0.3 to 1.0
W m−2 K−1 (11). However, as noted above, we are estimating an
alternative metric of the pattern effect than these studies based on
comparison of different forcing scenarios; these numbers should
thus be compared cautiously. We note that our results are consistent
with the sliding window method applied to the same time series (fig.
S3) (8, 11), but that this latter method has drawbacks (Methods).

One way to estimate the impact of this trend is in terms of the
time taken to reach a certain warming threshold, such as those laid

out in the Paris agreement (29). To this end, we compare the time
taken to reach 1.5° and 2°C for the 1970 and 2019 values of λ
(Methods; Fig. 3 calculations). Under the idealized scenario where
atmospheric CO2 concentrations increase 1% each year (30), this
scenario results in a substantial difference in the time taken to
cross these temperature thresholds; in a world with the 2019 λ
value, it takes 21 ± 14 (28 ± 19) additional years to reach 1.5°C
(2°C) than in a world with the 1970 value (Fig. 3, left). While this
case is an idealized scenario and calculation, this difference demon-
strates the importance of understanding and predicting the evolu-
tion of λ in recent and coming years. Similarly, we estimate that if λ
had remained at its 1970 value for 1970–2019, an additional ∼0.4°C
(66% range, 0.1 to 1.0) warming would have occurred by 2019
(Fig. 3, right) in addition to the ∼1.2°C that has occurred since 1900.

We repeated our analysis of the historical time series with time
series of model output of ensembles of historical simulations from
six ESMs from Coupled Model Intercomparison Project phase 6
(CMIP6) (30) spanning a range of climate sensitivities. The ESM
λ trends are either of the opposite sign to the observed trend or con-
sistent with zero (Fig. 4) because many of the climate models do not
capture observed surface warming patterns (14, 15).

On the basis of observations alone, with minimal reference to
climate models, our analysis exposes the substantial negative
trend in the climate feedback over recent decades. Other work attri-
butes this trend to changing patterns of sea surfacewarming (5, 7). It
remains a substantial challenge to understand this pattern effect and
the evolution of climate feedback, and addressing that challenge is
of paramount importance for climate projections.

METHODS
Theory
We begin with the energy balance equation, which states that the
rate of warming of Earth’s surface is proportional to its net
energy imbalance at the top of the atmosphere, here approximated

Fig. 2. Median and 66% range (∼±1 SD) of the climate feedback λ as estimat-
ed from Eq. 2. The black error bar represents the estimated feedback correspond-
ing to a doubling of CO2 (9).

Fig. 3. Differences in years to reach warming levels and in recent warming due to the diagnosed change in the climate feedback. (Left) Histogram of additional
years necessary to reach 1.5° or 2°C under a 1%-per-year increase in atmospheric CO2 concentrations using the 2019 values of λ versus the 1970 values of λ in a simple
energy balance model (Eq. 1). Note that as described in the text, this analysis is only illustrative to indicate the impact of the observed trend in λ from 1970 to 2019, and
only the 1970 and 2019 values are compared herewithout making assumptions about the future extrapolation of the observed trend. (Right) Difference in T as a function
of time between a scenario with observed λ trend versus constant 1970 λ value.
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by the net rate of surface and ocean heat uptake

η _TðtÞ ¼ FðtÞ þ λðtÞTðtÞ � HðtÞ ð1Þ

where T is the global mean surface temperature anomaly (K), η (W y
m−2 K−1) is the heat capacity of the layer represented by T, F is the
radiative forcing (W m−2), λ is the climate feedback (W m−2 K−1),
andH is the heat uptake in the ocean below the layer represented by
T (W m−2). Note that different authors use different sign conven-
tions for λ; here, a stable climate has a negative λ. Here, we are in-
terested in the evolution of the climate feedback λ(t). We
approximate this evolution with the ansatz λ(t) = λ1970(1 + μt);
for simplicity, t is set to zero at 1970. We choose 1970 because
both ocean heat content and global mean surface temperature in-
crease very little before 1970 compared with uncertainty and inter-
annual variability. Ocean heat content in particular before 1970 is
very uncertain and sparsely observed. Inserting this ansatz and in-
tegrating both sides of this equation yields

ηTðτÞ � ηTð1970Þ ¼
ðτ

1970
FðtÞ dt þ λ1970

ðτ

1970
ð1þ μtÞTðtÞ dt

�

ðτ

1970
HðtÞ dt

We then define the integrals

F ðτÞ ¼
ðτ

1970
FðtÞ dt;RðτÞ ¼ �

ðτ

1970
λðtÞTðtÞ dt;HðτÞ

¼ η½TðτÞ � Tð1970Þ� þ
ðτ

1970
HðtÞ dt

such that F is the cumulative energy fluxed to Earth’s surface via
radiative forcing, R is the cumulative energy it has fluxed back to
space, and H(τ) is the cumulative energy stored in the ocean and
Earth’s surface. These last two are combined for two reasons: (i)
The energy stored as warming of the Earth’s surface boundary
layer, ηT, is predominantly stored in the upper ocean. (ii)

Observational records of ocean heat content cannot distinguish
between the portion of energy storage in the ocean, which corre-
sponds to this layer (ηT ) versus below this layer [

Ð τ
1970HðtÞ dt], so

combining these terms is essential for comparison to observations.
We can then use our ansatz and the defintion of R(τ) to define

T ðμ; τÞ ¼
ðτ

1970
ð1þ μtÞTðtÞ dt

which after substituting in these integral terms above and rearrang-
ing yields

F ðτÞ � HðτÞ ¼ � λ1970T ðμ; τÞ ð2Þ

which simply states that the amount of excess energy radiated back
to space is equal to the excess energy added to the climate system by
radiative forcing minus the amount stored in Earth’s system. The
term on the right-hand side encodes the assumption that the
climate feedback is changing with time at a constant rate. If the
ansatz is valid and the correct μ is selected, this μ will capture the
time dependence of λ and the slope of the regression of the left hand
side against the right-hand side of the above equation will be cons-
tant in time, i.e., there will be no systematic behavior or curvature in
the residuals of F (τ) − H(τ) regressed against T (μ, τ) (see Fig. 1).

The bulk of surface warming, and hence the bulk of the concen-
tration of warming in very negative feedback regions, occurred since
1970 (25). Thus, the diagnosed difference between λ in 1970 versus
2019 is to some extent qualitatively comparable to the pattern effect,
defined as the difference between the climate feedback in the
absence versus the presence of historical warming in very negative
feedback regions.

Data
For F, we use the time series ensemble (2237 members) from the
Intergovernmental Panel on Climate Change’s Working Group I
contribution to the Sixth Assessment Report (23), which is available
through 2019.

For T, we use the HadCRUT5 temperature record for global
mean surface temperature because uncertainties being expressed
as ensemble members make the propagation of uncertainty straight-
forward when integrating in time, and the HadCRUT5 ensemble
captures the uncertainty across other temperature time series (31).
T is defined as the temperature anomaly versus 1850–1900.
HadCRUT5 is provided as a 200-member ensemble, with different
dataset realizations that sample the measurement uncertainty, de-
scribed in detail in (22); T in HadCRUT5 is a combination of
surface air temperature over land and sea surface temperature else-
where. From this ensemble a 2237-member ensemble is generated
by estimating the multivariate mean and Gaussian covariance
matrix from the 200-member ensemble and then randomly gener-
ating 2237-member ensemble with the same covariance properties
and mean by sampling from a multivariate Gaussian probability
distribution with this multivariate mean and covariance matrix. Re-
peating the analysis resampling directly from the 200-member en-
semble had a negligible impact on the results. To test for the possible
issue of Earth’s climate not being well represented as being in equi-
librium in 1850–1900, we added 0.08 ± 0.03 W m−2 to F following
(32) to correspond to the energy imbalance during the latter part of
the 19th century; including this correction term had a negligible
impact on the results. Note also that there was no relationship

Fig. 4. Median and 66% range of the trend of the climate feedback [i.e.,
μ × λ1970 (W m−2 K−1)] for the historical records (black) and their analogs
from historical simulations of six climate models (color). Ensemble size for
the climate models is given in parentheses.
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(Pearson, Spearman, and Kendall correlations <0.1) between μ or
λ1970 and the initial temperature T(1970).

For H, we use the same method as in (31). The Japanese Mete-
orological Agency, (26), Cheng (27), and National Centers for En-
vironmental Information (28) ocean heat content records are
provided as ocean heat content over 0 to 2000 m. A 2237-
member ensemble is generated from these by estimating the multi-
variate mean and Gaussian covariance matrix from the three time
series and then randomly generating ensemble members with the
same covariance properties and mean by sampling from a multivar-
iate Gaussian probability distribution with this multivariate mean
and covariance matrix. Years 1970 onward are considered because
ocean heat content changes are more sparsely observed and uncer-
tain before this year; furthermore, changes in both ocean heat
content and temperature are very small over the years where
ocean heat content data are available in a subset of these products
before 1970 compared to both this uncertainty and interannual var-
iability, indicating that there is little to no signal to extract.

Primary analysis
To generate an estimate of λ1970 and μ for each F, T, andH ensemble
pair, the following procedure is followed: we (i) sample a large range
of λ1970 and μ values (we sampled these at sufficiently large ranges
that no parameter estimates were at the boundaries of our sampled
parameter space and, at a sufficiently fine resolution in parameter
space, that increasing resolution by an order of magnitude did not
change our results to the significant digits we report), (ii) calculate
the residuals in Eq. 2 for these parameter values, and (iii) select the
parameter values for which the linear regression has the lowest re-
sidual sum of squares. The linear ansatz is justified post hoc by per-
forming a quadratic regression of the residuals against T (μ, τ); for
99% of ensemble members, the quadratic term of this regression is
not significantly different from zero, and it is positive for 57% of
ensemble members and negative for the other 43%. This indicates
that the assumption that λ changes constantly in time successfully
captures the temporal variation in λ.

Sliding window method
Changes in λ over time have been studied in climate model simula-
tions (particularly atmospheric simulations with prescribed sea
surface temperatures) by regressing the change of global annual
mean radiative response dR against surface air temperature
change dT over a sliding 30-year window, e.g., (11). This method
thus estimates a differential climate feedback (20). We performed
the same analysis on the historical time series, estimating dR as
d(F − H ), with the standard 30-year window size. Figure S3
shows that this method agrees with our main result in Fig. 2.
However, it gives larger uncertainties; is dependent on the ad hoc
choice of window size, and can only provide estimates for the
central 20 years of the time series, over which period no significant
trend in λ can be detected from either method, and the use of a
shorter sliding window produces estimates with large uncertainties
and implausible fluctuations.

Null hypothesis
The time evolution of λ is tested initially by performing the primary
analysis described above with μ = 0. To test for systematic behavior
in the residuals of the μ = 0 model, a quadratic regression of Eq. 2
with μ = 0 is performed for each ensemble member. For 92% of

ensemble members the quadratic term is positive—i.e., F (τ) −
H(τ) increases superlinearly with T (0, τ)—indicating that μ is sig-
nificantly positive and a necessary parameter. We demonstrate this
further by comparing the models with μ ≠ 0 and μ = 0 in terms of
their AIC (33), the difference of which between two models esti-
mates the difference in model quality. Figure S2 shows that for
91% of ensemble members, the ΔAIC values are negative,
meaning the μ ≠ 0 model is a better description of the data even
after being penalized for having an additional parameter. Similarly,
we see no systematic behavior in the residuals of the main regres-
sion, indicating that unlike the μ = 0 case, there is no systematic be-
havior in the data that our λ = λ1970(1 + μt) ansatz does not capture,
although of course there are multiannual fluctuations that such a
simple model cannot be expected to explain. Last, fig. S2 also
shows that 92% of estimates of the trend in λ are negative, indicating
that μ is significantly different from zero.

Earth system models
We perform our primary analysis on ensembles of historical simu-
lations using six ESMs for which global F, T, and top-of-atmosphere
energy imbalance are available, whose time integral is approximate-
ly equal to H, for which we therefore use the cumulative integral
noted N . The ESMs we use are the following: CanESM5 (n = 25
realizations), CNRM-CM6-1 (n = 10), EC-Earth3 (n = 21), GISS-
E2-1-G (n = 10), IPSL-CM6A-LR (n = 11), and MIROC6 (n =
50), obtained via the CMIP6 archive (30). We append the F, T,
and N estimates from these model realizations’ Shared Socioeco-
nomic Pathway 2-4.5 simulations for 2015–2019, because historical
F is only available up until 2014, but excluding years 2015–2019 had
a negligible impact on the results. We also obtained five realizations
from HadGEM3-CG31-LL, one from GFDL-CM4, and three from
NorESM2-LM, but these are not included in Fig. 4 because only one
of these nine realizations (a HadGEM3-CG31-LL realization where
λ1970 × μ = + 0.02 W m−2 y−1 K−1) was within the range of the 2237
estimates from the observational historical ensemble, while the rest
lie outside the y-axis range of Fig. 4.

Figure 3 calculations
To estimate the difference in years taken to surpass 1.5° or 2°C in a
world that has the 1970 parameter values versus one that has the
2019 values (each as time-invariant constant values), a 1% scenario
is performed using each ensemble member’s (i) λ1970 value versus
(ii) its climate feedback in 2019, i.e., λ1970(1 + 49μ). Under the 1%
scenario, atmospheric CO2 concentrations increase by 1% per year,
which, under the assumption of logarithmic forcing (34), results in
a linear increase in F from zero until it reaches F2×CO2

∼ N(4.0,0.3)
W y m−2 after 70 years (9). A random value of F2×CO2

is sampled
from N(4.0,0.3) for each ensemble member. We use the time-
mean ocean heat uptake efficiency values, κ = 0.58 ± 0.08 W m−2

K−1, estimated in a similar fashion to our primary analysis for 1970–
2019 (31) to simulate ocean heat uptake asH(t) = κT(t); κ values for
each ensemble member are drawn form a N(0.58,0.08) distribution.
We use η values corresponding to the assumption that the surface
layer represented by T has a heat capacity equal to the ocean’s mixed
layer, sampling from aN(9.67,0.8) W y m−2 K−1 distribution follow-
ing the calculation in (35). Note that this η estimate is a conservative
upper limit and that reducing the η estimate to ∼0 had a negligible
impact on the results. Using these values for F(t), η, λ, and κ, we
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simulate T using Eq. 1, find the year at which T > 1.5∘C and T > 2∘C
for the 1970 and 2019 parameter values, and plot the difference
between these in Fig. 3. Note that this is a heuristic metric and is
only intended to illustrate the potential impact of the change in λ
diagnosed here. To estimate the difference in T resulting from the
trend in λ over the period 1970–2019, Eq. 1 is simulated using the
historical ensembles’ T(1970) values and F time series, the same η
and κ values as above, and either a fixed λ = λ1970 or the time-evolv-
ing λ = λ1970(1 + μt). The right panel of Fig. 3 shows the difference
between these two λ cases’ T evolutions. This difference therefore
approximates the additional warming from 1970 to 2019 averted
due to the increase in λ over this period. Note that when the histor-
ical ensembles’ H time series are used instead of a constant κ value,
this difference is larger, with a median of 0.6°C (66% range, 0.1
to 1.4).

Supplementary Materials
This PDF file includes:
Figs. S1 to S3
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