
Abstract Accurately predicting future ocean acidification (OA) conditions is crucial for advancing OA 
research at regional and global scales, and guiding society's mitigation and adaptation efforts. This study 
presents a new model-data fusion product covering 10 global surface OA indicators based on 14 Earth System 
Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6), along with three recent 
observational ocean carbon data products. The indicators include fugacity of carbon dioxide, pH on total scale, 
total hydrogen ion content, free hydrogen ion content, carbonate ion content, aragonite saturation state, calcite 
saturation state, Revelle Factor, total dissolved inorganic carbon content, and total alkalinity content. The 
evolution of these OA indicators is presented on a global surface ocean 1° × 1° grid as decadal averages every 
10 years from preindustrial conditions (1750), through historical conditions (1850–2010), and to five future 
Shared Socioeconomic Pathways (2020–2100): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. These 
OA trajectories represent an improvement over previous OA data products with respect to data quantity, spatial 
and temporal coverage, diversity of the underlying data and model simulations, and the provided SSPs. The 
generated data product offers a state-of-the-art research and management tool for the 21st century under the 
combined stressors of global climate change and ocean acidification. The gridded data product is available in 
NetCDF at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental 
Information: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0259391.html, and global maps of 
these indicators are available in jpeg at: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-
system/synthesis/surface-oa-indicators.html.

Plain Language Summary A new data product, based on the latest computer simulations and 
observational data, offers improved projections of ocean acidification (OA) conditions from the start of the 
Industrial Revolution in 1750 to the end of the 21st century. These projections will support OA research at 
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Key Points:
•  This study presents the evolution of 

10 ocean acidification (OA) indicators 
in the global surface ocean from 1750 
to 2100

•  By leveraging 14 Earth System 
Models (ESMs) and the latest 
observational data, it represents 
a significant advancement in OA 
projections

•  This inter-model comparison effort 
showcases the overall agreements 
among different ESMs in projecting 
surface ocean carbon variables
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1. Introduction
Since the beginning of global industrialization, the ocean has taken up 20%–30% of all anthropogenic carbon 
dioxide (CO2) emitted from fossil fuel combustion, cement production, and land use change (Friedlingstein 
et al., 2022; Gruber et al., 2019, 2023; Sabine et al., 2004; Terhaar, Frölicher, & Joos, 2022). Without ocean 
uptake, the atmospheric CO2 (dry-air mixing ratio) would be ∼80 parts per million (ppm) greater than its current 
value of 419 ppm (2022 annual average, Tans & Keeling, 2023). The ocean is thus slowing down the rise of anthro-
pogenic CO2, a major contributor to global climate change (Friedlingstein et al., 2022; IPCC, 2021; IPCC, 2022).

The anthropogenic carbon dioxide taken up by the ocean alters the ocean's carbonate chemistry (DeVries, 2022). 
The mildly alkaline ocean is acidifying, and its carbonate ion content ([CO3 2−], a building block for calcifying 
marine organisms) is decreasing in a process commonly referred to as “ocean acidification (OA)” (Caldeira 
& Wickett,  2003; Doney et  al.,  2009; Fabry et  al.,  2009; Feely et  al.,  2004; Gattuso & Hansson,  2011; Orr 
et al., 2005). OA is making it more difficult for marine calcifiers to build shells and skeletal structures from 
calcium carbonate (CaCO3), thus negatively impacting their growth, reproduction, and survival rates (Fabry 
et al., 2009; Kroeker et al., 2013; Orr et al., 2005). These negative impacts on calcifying organisms are endan-
gering coral reefs (Albright et al., 2016; Andersson & Gledhill, 2013) and broader marine ecosystems (Connell 
et al., 2018; Doney et al., 2020; Gattuso et al., 2015; Kawahata et al., 2019).

From 1750 to 2000, the average pH of the global surface ocean decreased by ∼0.11 units, equivalent to an acid-
ity increase of ∼30% (Caldeira & Wickett, 2003; Jiang et al., 2019; Orr et al., 2005). From 2000 to 2100, this 
quantity is projected to decrease by 0.3–0.4 units (∼100%–150% increase in acidity) under the high-emission, 
low-mitigation SSP5-8.5 (Kwiatkowski et al., 2020). Such a profound and rapid change in ocean chemistry will 
likely jeopardize important ocean ecosystem goods and services—including food security, fisheries and aquacul-
ture industry, recreational enterprises, and other Blue Economy-related activities—for billions of people.

While Earth System Models (ESMs) enable simulating and projecting changes for some ocean carbon variables, 
for example, partial pressure of carbon dioxide (pCO2), total dissolved inorganic carbon content (DIC), and 
total alkalinity content (TA), they often suffer from model drift and may disagree in their ocean baseline condi-
tions (Kwiatkowski et al., 2020; Steiner et al., 2014; Terhaar, Frölicher, & Joos, 2022). Observational data and 
control simulations can often improve ESM-based projections by providing more realistic baseline conditions 
and benchmarks for modeled changes, thus reducing model bias and drift (Orr et al., 2005; Séférian et al., 2016). 
Following the approach pioneered by Orr et al. (2005), Jiang et al. (2019) created a model-data fusion product by 
combining ∼23 million observations in the 6th version of the Surface Ocean CO2 Atlas (SOCATv6, 1991–2018, 
Bakker et al., 2016) with a NOAA Geophysical Fluid Dynamic Laboratory (GFDL) Earth System Model, that 
is, GFDL-ESM2M (Dunne et al., 2013) to provide updated, expanded, and improved trends in pH on total scale 
(pHT), total hydrogen ion content ([H +]total), and Revelle Factor (RF, a measure of the ocean's buffer capacity) at 
all locations of the global surface ocean from 1850 to 2100.

Since the publication of the Jiang et al. (2019) product, observational data products, for example, a more recent 
version of the SOCAT (version 2022, Bakker et al., 2016), the Global Ocean Data Analysis Project version 2 
(GLODAPv2, version 2022, Lauvset et al., 2022), and the Coastal Ocean Data Analysis Product in North Amer-
ica (CODAP-NA, version 2021, Jiang et al., 2021), along with the next generation of ESMs, that is, those partic-
ipating in the Coupled Model Intercomparison Project Phase 6 (CMIP6), have been made public. From CMIP5 
to CMIP6, modeling centers have further developed their models, increased the models' resolutions, and imple-
mented more processes explicitly (Eyring et al., 2016; Séférian et al., 2020). For example, GFDL's 2nd generation 
Earth System Model (ESM2M) with a horizontal resolution of 1° × 1° in the ocean and no explicit representation 
of sediment processes has now been replaced with its successors: GFDL-ESM4.1 with a horizontal resolution of 
0.5° × 0.5° (Dunne, Horowitz, et al., 2020; Stock et al., 2020), and GFDL-CM4.0 with a horizontal resolution of 
0.25° × 0.25° (Dunne, Bociu, et al., 2020; Held et al., 2019), both of which now include an explicit representation 
of ocean sedimentation processes. The CMIP6 ESMs also have a higher equilibrium climate sensitivity (ECS), on 
average, than the CMIP5 ones (Nijsse et al., 2020; Tokarska et al., 2020; Zelinka et al., 2020). Compared to Jiang 

regional and global scales, and provide essential information to guide OA mitigation and adaptation efforts for 
various sectors, including fisheries, aquaculture, tourism, marine resource decision-makers, and the general 
public.
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et al. (2019), who used only one CMIP5 model, that is, GFDL-ESM2M (Dunne et al., 2013; Taylor et al., 2012), 
the present analysis used outputs from 14 CMIP6 models to reduce potential projection biases in OA indicators 
that are more likely in single ESMs than across an entire ensemble (Terhaar et al., 2020, 2021a).

Not only have the participating ESMs changed from CMIP5 to CMIP6, but also the concentration pathways. 
The IPCC's AR6 (Working Group I) has now adopted the new Shared Socioeconomic Pathways (SSP1-1.9, 
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) (Table 1) (Meinshausen et al., 2020; O’Neil et al., 2014; O'Neill 
et  al.,  2016; Riahi et  al.,  2017), in place of the previous Representative Concentrations Pathways (RCP2.6, 
RCP4.5, RCP6.0, and RCP8.5) (Meinshausen et al., 2011; Riahi et al., 2011; van Vuuren et al., 2011) [used by 
Jiang et al. (2019)], which themselves replaced the IS92 emission scenarios (IS92a, IS92b, IS92c, IS92d, IS92e, 
IS92f) (IPCC, 2000) [used by Orr et al. (2005)]. These SSPs converge approximately to the same radiative forc-
ing in 2100 as the RCPs (indicated by the last two digits, e.g., 8.5 for 8.5 W m −2), but differ in the concentration 
levels of the various greenhouse gases and forcing agents, such as aerosols. For example, SSP5-8.5 assumes 
more CO2 emissions and fewer emissions of other greenhouse gases over the 21st century than RCP8.5, so 
that the atmospheric CO2 levels of SSP5-8.5 in 2100 are around 200 ppm higher than in RCP8.5 (Meinshausen 
et al., 2020).

Compared to Jiang et al. (2019), the present study also considers changes in other parameters besides DIC and 
temperature. For example, salinity changes due to climate change are already detectable (Durack et al., 2012; Zika 
et al., 2018) and may influence projections of OA indicators by reducing TA regionally, for example, in the Arctic 
Ocean (Terhaar, Torres, et al., 2021). While TA changes attributable to long-term climate feedbacks are difficult 
to detect globally at present (Carter et al., 2016; Ilyina et al., 2009), they can already be observed in some regions, 
for example, the Arctic (Drake et al., 2018; Woosley & Millero, 2020). TA redistribution from OA feedbacks may 
or may not be detectable by the end of the current century (i.e., 2100)—and the CMIP6 models differ in their 
parameterizations of these processes—but freshwater cycle changes alone would be expected to change regional 
TA distribution and OA by that time (Terhaar, Torres, et al., 2021).

In the present study, 10 surface OA indicators, that is, fCO2, pH on total scale (pHT), total hydrogen ion content 
([H +]total), free hydrogen ion content ([H +]free), carbonate ion content ([CO3 2−], aragonite saturation state (Ωarag), 
calcite saturation state (Ωcalc), Revelle Factor (RF), DIC, and TA, are calculated on a global surface ocean 1° × 1° 
grid as decadal averages every 10 years in 1750 and all decades from 1850 to 2100 based on the latest projections 
from 14 CMIP6 ESMs, together with three recent observational data products: the Surface Ocean CO2 Atlas 
(SOCAT, version 2022, Bakker et al., 2016), the Global Ocean Data Analysis Project Version 2 (GLODAPv2, 
version 2022, Lauvset et al., 2022), and the Coastal Ocean Data Analysis Product in North America (CODAP-NA, 
version 2021, Jiang et  al.,  2021). The resultant projections of global surface ocean OA indicators provide a 
state-of-the-art research and management tool for the 21st century under the combined global stressors of ocean 
warming and acidification.

SSP

Projected values in 2100

Description
Atmospheric CO2 

(ppm)
Surface air temperature increase 

( ∘C)
Radiative forcing 

(W m −2)

SSP1-1.9 393 1.1 (0.6–1.8) 1.9 “Low-emission, high-mitigation scenario” that reflects most 
closely a 1.5 ∘C target under the Paris Agreement

SSP1-2.6 446 1.6 (0.9–2.4) 2.6 “2 ∘C scenario” of the “sustainability” SSP1 socioeconomic family

SSP2-4.5 603 2.8 (1.8–4.1) 4.5 “Middle of the road scenario” of the SSP2 socioeconomic family

SSP3-7.0 867 4.4 (3.0–6.5) 7.0 “Medium-high emission scenario” within the “regional rivalry” 
socioeconomic family

SSP5-8.5 1135 5.8 (3.8–8.6) 8.5 “High-emission, low-mitigation scenario” that reflects fossil-
fuel based management and a high end of the range of future 
pathways

Table 1 
Shared Socioeconomic Pathways (SSPs) Based on Meinshausen et al. (2020)
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2. Methods
A model-data fusion product was created by applying adjustments to the outputs of 14 CMIP6 ESMs with the 
latest observational data in the steps below:

1.  Sea surface temperature (SST), sea surface salinity (SSS), DIC, and TA were extracted or calculated from 
SOCAT (version 2022), GLODAPv2 (version 2022), and CODAP-NA (version 2021). The temporally 
adjusted DIC (to the year of 2010), as well as SST, SSS, and TA were interpolated onto a global surface ocean 
1° × 1° grid.

2.  Proxy-based DIC and TA calculated with gridded temperature, salinity, and dissolved oxygen content (DO) 
from the World Ocean Atlas (WOA-2018) were used to further quality control (QC) the gridded observational 
DIC and TA data, especially in data-sparse regions.

3.  The temporal evolution (decadal averages of every 10 years) of global SST, SSS, DIC, and TA from 1850 to 
2100 out of 14 ESMs was adjusted with offsets that were derived based on the differences between the model 
output in 2010 and the corresponding observational data in 2010 at that grid point (see Section 2.4 for more 
details).

4.  The adjusted trajectories of SST, SSS, DIC, and TA from these ESMs, as well as constant phosphate and 
silicate content from WOA-2018, were used to calculate all surface OA indicators at all locations of the global 
surface ocean grid in all decades from 1850 to 2100.

5.  OA indicators in 1750 were approximated by assuming that sea surface fCO2 increased at the same rate as 
atmospheric CO2 levels from 1750 to 1850, while SST, SSS, and TA remained at their levels in 1850.

2.1. Observational Data

The latest observational ocean carbon data from SOCAT (version 2022, 1957–2021, 33.7 million surface-only 
fCO2 observations, Bakker et al., 2016), GLODAPv2 (version 2022, 1972–2021, 1.4 million discrete bottle-based 
surface and subsurface observations, Lauvset et al., 2022), and CODAP-NA (version 2021, 2003–2018, 3,391 
discrete bottle-based surface and subsurface observations, Jiang et al., 2021) were used for this analysis. SOCAT 
provides the best temporal and spatial coverage, but has only one ocean carbon parameter: fCO2. Only SOCAT 
data with a World Ocean Circulation Experiment (WOCE) QC flag of 2 (good data) and a cruise flag of A, B, 
C, and D (fCO2 accuracy ≤5 μatm) were used for this analysis (Bakker et al., 2016). TA, phosphate content, and 
silicate content, which are required to calculate the rest of the OA indicators, were estimated using the Empirical 
Seawater Property Estimation Routines (ESPER) from SST and SSS (Carter et al., 2021). ESPER is an empirical 
algorithm that is trained with global surface and interior ocean variables. It allows a user to estimate DIC, TA, 
and several other seawater properties from input variables, such as salinity (minimally required), temperature, and 
dissolved oxygen (DO), along with longitude, latitude, and depth. GLODAPv2 and CODAP-NA have substan-
tially sparser spatial coverage than SOCAT, but offer additional ocean carbon variables. Only data from these 
products with at least a pair of DIC and TA, DIC and pH, or TA and pH, and a sampling depth of ≤20 m were 
used for this analysis. If DIC, TA, and pH were all available, DIC and TA were used.

In all observational data products, DIC was adjusted to 2010 using ESPER. Two sets of ESPER calculations were 
conducted based on input variables of temperature, salinity, longitude, latitude, and depth: one with the atmos-
pheric CO2 dry-air mixing ratio at the sampling time and another one with the atmospheric CO2 dry-air mixing 
ratio at 2010. The difference in the output DIC between the two sets of ESPER calculations was assumed to be 
the temporal DIC change due to the ocean's absorption of anthropogenic CO2 from the sampling year to 2010. 
This difference was then used to adjust DIC to the year of 2010. The CO2 system calculation was performed using 
a Julia version of the CO2SYS (CO2System.jl, v2.0.5, https://github.com/mvdh7/CO2System.jl, Humphreys 
et al., 2022) with the dissociation constants and parameters as recommended by Jiang et al. (2022), that is, disso-
ciation constants for carbonic acid of Lueker et al. (2000), bisulfate (HSO4 −) of Dickson (1990), hydrofluoric acid 
(HF) of Perez and Fraga (1987), and the total borate content of Lee et al. (2010).

DIC adjusted to 2010, as well as SST, SSS, and TA from these three data products were then pooled as one 
observational database that was interpolated onto a global surface ocean 1° × 1° grid. This product is primarily 
based on SOCAT due to its much larger data quantity. 19,193,038 data points (or 99.8% of the total) compared 
to only 44,165 data points (0.2%) from the GLODAPv2 and CODAP-NA combined. That said, data points from 
GLODAPv2 and CODAP-NA play an unproportionally important role in filling up some data sparse regions (see 
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Figure 1 of Feely et al., 2023). Interpolation and gap-filling was done with a Julia version of the Data-Interpolating 
Variational Analysis (DIVAnd.jl, https://github.com/gher-ulg/DIVAnd.jl, Barth et  al.,  2014). The correlation 
lengths of 21° latitudinally and 42° longitudinally, as well as the noise to signal ratio of 0.1, were selected to strike 
a balance between retaining some regional variability and smoothing over fine scale variability that is present in 
synoptic measurements but not representative of climatological conditions (see also Jiang et al., 2019).

2.2. Proxy-Based DIC and TA

Proxy-based DIC and TA values, calculated with the gridded (1° × 1°) SST, SSS, and DO data (average of all 
values from 1981 to 2010, or “Climate Normal”) out of the World Ocean Atlas 2018 (Garcia et al., 2019) using 
the ESPER algorithms (Carter et al., 2021), were used to help establish a climatological state to identify unrealis-
tic values, anomalies, and outliers. Specifically, these proxy-based data were used to QC the gridded cruise-based 
observational DIC and TA data, primarily by identifying “bullseyes” on the interpolated maps, and blanking out 
regions with large differences between gridded values and the corresponding proxy-based values but little obser-
vational coverage (Tables S1 and S2 in Supporting Information S1).

2.3. Model Output

All CMIP6 ESMs use the new Shared Socioeconomic Pathways, for example, SSP1-1.9, SSP1-2.6, SSP2-4.5, 
SSP3-7.0, SSP5-8.5,  to simulate future societal choices in terms of greenhouse gas emissions (Meinshausen 
et al., 2020; O’Neil et al., 2014; Riahi et al., 2017). 18 CMIP6 ESMs provided ocean surface temperature (tos), 
surface salinity (sos), dissolved inorganic carbon (dissic), and total alkalinity (talk). These 18 ESMs used 14 
distinctive ocean biogeochemical models (Table S3 in Supporting Information S1). To avoid giving too much 
weight to the same ocean biogeochemical models that were used among different ESMs, only 14 ESMs were used 
in this study. These ESMs return output variables following Climate and Forecast convention designations for tos, 
sos, dissic, and talk (Hassell et al., 2017). Their outputs were used to reconstruct and project the temporal changes 
from 1850 to 2100. Note that not all of these ESMs provide output for all five SSPs (Table 1).

These ESMs provide dissic and talk output in mol m −3. Both variables were converted to content in μmol kg −1 
using either the simulated density at each grid point and each timestep or a model-specific density conversion 
factor for ESMs that did not use a spatially and temporally varying densities for conversion (Table S3 in Support-
ing Information S1). The density at each grid point of a timestamp was calculated from model output of SST, 
SSS, and latitude using the Thermodynamic Equation of Seawater—2010 (TEOS-10, http://www.teos-10.org) 
(IOC et al., 2010; McDougall & Barker, 2011).

To minimize the influences of modeled interannual variability in any particular year, all 10 years of model results 
for each decade were averaged to calculate a single value for that decade. For example, SST, SSS, DIC, and TA at 
each grid point of the global surface ocean in the decade of 2010 were calculated as the mean of all values at that 
location from January 2005 to December 2014. Outputs from models that were not originally on a 1° × 1° grid 
were re-gridded onto the same 1° × 1° grid using the DIVA tool with the same correlation lengths as mentioned 
above.

2.4. Bias and Drift Adjustments

Two adjustments were made to SST, SSS, DIC, and TA: one to remove model biases using observational data, and 
one to remove model drift using preindustrial control (piControl). The model biases were removed by subtracting 
from the modeled values the difference of the respective 2010 model output at a particular grid point and the 
corresponding observational value at the same location in the same decade. The same offset adjustment (absolute 
value) is then applied to all periods from 1850 to 2100 at that grid point.

In addition, the model drift was removed for DIC and TA using their corresponding piControl values. Similar 
to other variables, the piControl values were averaged over a 10-year period to remove interannual variabilities. 
The piControl start points were determined using the “parent_time_units” and “branch_time_in_parent” values 
stored in the “historical” model output file. For example, a “parent_time_units” of “days since 1850-01-01" and 
a “branch_time_in_parent” of “124,183 days” (340 years) would mean that the piControl start point for that 
historical variant is 1850 + 340 = 2190; that is, a piControl value of 1 January 2190 corresponds to the Gregorian 
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calendar date of 1 January 1850 for that variant of the model. Start points of different ESMs are listed in Table 
S3 in Supporting Information S1).

The model bias and drift adjustments were conducted at each grid point using Equation 1:

DIC[𝑖𝑖] = DIC[2010] + [(dissic[𝑖𝑖] − dissic_pi[𝑖𝑖]) − (dissic[2010] − dissic_pi[2010])] (1)

where DIC[i] is the adjusted DIC in the decade around year i (decadal mean) on a particular grid point; DIC[2010] 
is the observation-based DIC at the same location in 2010 (decadal mean); dissic[i] and dissic[2010] are the 
model-based DIC at that same location in the decade around year i (decadal mean) and 2010 (decadal mean), 
respectively; and dissic_pi[i] and dissic_pi[2010] are the piControl simulation DIC corresponding to the decades 
around year i (decadal mean) and 2010 (decadal mean), respectively.

The adjusted SST, SSS, DIC, and TA at a grid point in a particular decade were then used to calculate the 
rest of the OA indicators using CO2System.jl (Humphreys et al., 2022) with the set of constants described in 
Section 2.1. As some ESMs do not simulate silicate and phosphate contents, for consistency purposes, gridded 
values of both nutrient contents were derived from observations, that is, WOA-2018 (“Climate Normal”, Garcia 
et al., 2019) and assumed to be constant over time. While absolute values of OA indicators are sensitive to these 
inputs, these sensitivities are sufficiently small that the omission of temporal trends in these inputs is unlikely to 
be an important contributor to uncertainty in our data product (Orr et al., 2018).

2.5. Estimating OA Indicators in 1750

As most ESMs start their historical simulations at model year 1850, an approximation of OA indicators in 1750 
is obtained using ice core-based atmospheric CO2 data from 1752 (276.39ppm) and 1852 (288.57ppm) (Ethridge 
et al., 1996; MacFarling Meure et al., 2006). These data were used to approximate the oceanic fCO2 change from 
1750 to 1850 at all locations of the global ocean under the assumptions that SST, SSS, and TA were constant 
from 1750 to 1850. Similarly, the other OA indicators for 1750 were calculated using CO2System.jl with the 
recommended set of parameters described in Section 2.1.

2.6. DIC Versus fCO2 as “Anchor” Variables

The results of this study are based on calculations using the bias- and drift-adjusted SST, SSS, DIC, and TA, 
and silicate and phosphate contents from WOA-2018 to calculate the OA indicators. However, such calculations 
could also be done with DIC and TA replaced by other ocean carbon variables. Because not all ESMs use the 
same equilibrium constants in their ocean biogeochemical model components, the choice of the input variables 
may affect the resulting OA indicators. An analysis in which DIC was replaced with fCO2 yields similar results 
(Figure S1 in Supporting Information S1). In this manuscript, DIC was used instead of fCO2 because it is avail-
able for more ESMs.

3. Results and Discussion
Unless otherwise noted, the results of this study are based on the bias-adjusted and drift-adjusted model output. 
Throughout the manuscript, the inter-model median values of the 14 ESMs and their standard deviations are 
provided. Median values were chosen instead of mean values to avoid the possibility that one outlier significantly 
skews a result. In addition, bias- and drift-adjusted model outputs for each of the individual ESMs are availabled 
in the published data product.

3.1. Comparison of Different Models

A comparison of SST, SSS, DIC, and TA (area-averaged globally), as well as the other OA indicators calculated 
based on these quantities, from all 14 ESMs are presented in Table S4 in Supporting Information S1 for 1850, 
2010, and 2100. The inter-model standard deviations of the globally area-averaged SST, SSS, and sea surface 
DIC and TA in all decades from 1850 to 2100 are approximately 0.6°C (ranging between decades from 0.48 to 
0.95°C), 0.17 (0.16–0.18), 42 μmol kg −1 (38–52 μmol kg −1), and 49 μmol kg −1 (47–55 μmol kg −1), respectively 
(Figure 1). The large variations across the model ensemble indicate that the models perform differently due to 
differences in their representations of processes, resolutions, and baseline conditions.
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3.2. Bias- and Drift-Adjusted Model Outputs

Our results show that adjusting model output with observational data reduces the inter-model differences of 
the OA indicators across all decades and not just in 2010 when the differences are forced to zero (Figure 1 and 
Figures S2 and S3 in Supporting Information S1). For example, the standard deviations of DIC are reduced from 
an average of 26 μmol kg −1 (ranging between decades from 25 to 34 μmol kg −1) to an average of 4 μmol kg −1 
(ranging from 0 in 2010 to 15 μmol kg −1). Overall, the largest projection uncertainties of OA indicators come 

Figure 1. Temporal changes of suface ocean temperature, salinity, total dissolved inorganic carbon content (DIC), and total alkalinity content (TA) (area-averaged 
globally) from 1850 to 2100 under the historical and Shared Socioeconomic Pathway (SSP5-8.5). The four leftmost panels (a, d, g, and j) show raw model output. The 
four panels in the middle column (b, e, h, and k) show the results after applying the bias adjustment to the model output using observational data (drift-adjustment have 
been applied for DIC and TA). The four rightmost panels (c, f, i, and l) show the inter-model median values (dots) and 1σ ensemble spreads (error bars) after adjusting 
the model output with observational data (in blue) and the inter-model median values before the adjustment (dashed red lines).
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from differences in the simulated pre-industrial state and not from changes over time (Figure 1). Whereas the 
sum of the processes simulated by ESMs provides the best estimates of changes in surface OA indicators over 
time, the observational fields represent the best estimates for the true values of those variables in 2010. So, in 
addition to enhancing consistency among individual models, adjusting model output with observational fields 
ensures  that  the magnitudes of the OA indicators reported here, either past reconstructions or future projections, 
converge as nearly as possible to their true values.

Overall, the adjustments forfCO2, pHT [H +]total, and [H +]free are less than those for the rest of the OA indicators, 
for example, DIC, TA, [CO3 2−], calcium carbonate mineral saturation states, and RF (Figure 1 and Figures S2 
and S3 in Supporting Information S1). ESMs tend to agree on surface seawater fCO2, pHT, [H +]total, and [H +]free 
(Figure S2 in Supporting Information S1). Surface seawater fCO2 is strongly controlled by its equilibrium with 
the atmosphere, which is prescribed in all ESMs by the same trajectories (Tjiputra et al., 2014). Furthermore, 
surface seawater fCO2 is strongly correlated with [H +]total, [H +]free, and pHT (Figure S4 in Supporting Informa-
tion S1) (Caldeira & Berner, 1999). In comparison, DIC and TA are more biased (Figure 1), and biases in DIC are 
of similar magnitude and same direction as biases in TA, as the surface DIC adjusts during the spin-up via air-sea 
CO2 flux to biases in TA, keeping fCO2 close to its equilibrium with the atmosphere.

3.3. Global Surface OA Indicators in 1750 and From 1850 to 2100

Most OA indicators, including fCO2, DIC, pHT, [H +]total, [H +]free, [CO3 2−], Ωarag, Ωcalc, and RF show large changes 
with time and rapid increases in their rates of change with time, especially under the high-emission scenar-
ios of SSP3-7.0 and SSP5-8.5 (Figure 2–4 and Figure S5 in Supporting Information S1). In comparison, these 

Figure 2. Temporal changes of global average surface ocean ocean acidification (OA) indicators as reconstructed and projected from 14 CMIP6 Earth System Models 
(Table S3 in Supporting Information S1) after applying adjustments with observational data: (a) fugacity of carbon dioxide (fCO2), (b) total hydrogen ion content  
([H +]total), (c) carbonate ion content ([CO3 2−]), (d) total dissolved inorganic carbon content (DIC), (e) pH on total scale (pHT), (f) aragonite saturation state (Ωarag),  
(g) total alkalinity content (TA), (h) Revelle Factor (RF), and (i) calcite saturation state (Ωcalc). The asterisk signs on the left-side y-axes show the values in 1750. The 
numbers along right-side y-axes, that is, 1–1.9, 1–2.6, 2–4.5, 3–7.0, and 5–8.5, indicate the Shared Socioeconomic Pathways: SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, 
and SSP5-8.5, respectively. These are missing from panel g because the trajectories were more dependent on the model than the SSPs.
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OA indicators show only slight changes from current levels under the low-emission, high-mitigation SSP1-1.9 
(Figure S6 in Supporting Information S1). Most models project an area-averaged TA change of <1% from 2010 
to 2100. ESMs differ in how various biogeochemical model components simulate alkalinity fluxes from rivers 
and into sediments (Planchat et al., 2022; Séférian et al., 2019) and in how they parameterize feedbacks from OA 
on carbonate mineral cycling. For instance, the GFDL models allow for decreased surface ocean export of CaCO3 
with declining saturation states of aragonite and calcite from OA, which results in TA accumulation within the 
surface ocean in the later portions of the projections (Figure 2g). However, many models do not contain this 
potential feedback and therefore primarily exhibit TA trajectories dominated by dilution from increasing fresh-
water content with continued icemelt.

3.3.1. Fugacity of Carbon Dioxide (fCO2)

Surface ocean fCO2 is strongly controlled by air-sea CO2 gas exchange (Broeker et al., 1979). Over the 100 years 
from 1750 to 1850, ice-core records suggest that the global area-averaged surface ocean fCO2 increased by 
12 μatm from 267 ppm μatm to 279 μatm (Tables S5 and S6 in Supporting Information S1). In the following 
160 years from 1850 to 2010, the increase in surface ocean fCO2 as estimated by ESMs was 89 μatm to reach 
368 μatm (Tables S7 and S8 in Supporting Information S1). Over the 21st century, the global area-averaged 
surface ocean fCO2 is projected to peak in 2050 at 422 μatm and to decrease to 385 μatm in 2100 under the 
low-emission, high mitigation SSP1-1.9. In comparison, if CO2 emissions continue over the entire 21st century, 
the global area-averaged fCO2 is projected to increase steadily to 573, 804, and 1051 μatm in 2100 under SSP2-
4.5, SSP3-7.0, and SSP5-8.5, respectively (Tables S7 and S8 in Supporting Information S1; Figures 3 and 5).

Air-sea gas exchange tends to bring surface ocean fCO2 close to equilibrium with the atmosphere, but disequi-
libria (e.g., due to sea-ice cover, or upwelling of high-fCO2 water, or following biological drawdown of DIC or 

Figure 3. Temporal changes of global surface ocean acidification indicators (inter-model median values out of 14 CMIP6 Earth System Models after applying 
adjustments with observational data, area-averaged). Refer to Figure 2 for the full names of the variable abbreviations on the Y-axes. The x-axes labels, that is, 1–1.9, 
1–2.6, 2–4.5, 3–7.0, and 5–8.5 indicate the Shared Socioeconomic Pathways: SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively.
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remineralization events, or rapid cooling or warming after fast vertical advection) do persist in the surface ocean 
(Weiss, 1974). For example, sea surface fCO2 in the Arctic in 2010 was 71–74 μatm (∼20%) lower than that in 
tropical areas (Tables S9 and S10 in Supporting Information S1, Figure 4a; Fransner et al., 2022). This latitudinal 
difference is projected to gradually decrease. By 2100, the difference between Arctic and tropical surface fCO2 is 
projected to be reduced to 19–61 μatm (2%–4%). This is because: (a) the loss of sea ice cover allows more CO2 
to enter the ocean through air-sea gas exchange (Qi et al., 2022; Steinacher et al., 2009; Yamamoto et al., 2012); 
(b) there is substantial lateral transport of anthropogenic DIC from outside the Arctic (Anderson & Olsen, 2002; 
Olsen et al., 2015; Terhaar, Orr, Gehlen, et al., 2019; Tjiputra et al., 2010), which could enhance surface ocean 
fCO2 in the Arctic and even lead to outgassing of anthropogenic DIC (Caínzos et al., 2022; Terhaar et al., 2020); 
(c) the loss of sea-ice cover also drives enhanced warming of Arctic waters in summer, which contributes to 
the rise in summer time seawater fCO2 through thermodynamics (Carton et al., 2015; Orr et al., 2022; Ouyang 
et al., 2021); (d) waters outside the Arctic lag the atmospheric CO2 rise such that there is an increase in the global 
air-to-sea ΔfCO2. As in the Arctic Ocean, fCO2 in the North Atlantic also increases due to cooling of the north-
ward flowing waters and increased anthropogenic DIC in these waters (Caínzos et al., 2022; Völker et al., 2002) 
(Figure 5).

3.3.2. Total Hydrogen Ion Content ([H +]total)

Seawater acidity is defined by its hydrogen ion content ([H +]), although it is often reported on logarithmic pH 
scales (Section 3.3.3). However, the logarithmic scale can be misleading when comparing pH changes across 
domains and timescales, making it necessary to report [H +] (Fassbender et al., 2021). This model-data fusion 
product contains both total hydrogen ion content ([H +]total) and free hydrogen ion content ([H +]free). Due to their 
similar behaviors, only the former is discussed in the text.

Figure 4. Decadal changes of global surface ocean acidification indicators along the latitudinal bands (inter-model median, area-averaged): 85°S (90°S to 80°S), 75°S 
(80°S to 70°S), …, 85°N (80°N to 90°N) from 1750 to 2100 under different Shared Socioeconomic Pathways (SSPs). Black dots and lines represent values in 1750. 
Green dots and lines represent values in 2010. The gray dots and lines are values from 1850 to 2000 under the historical simulation, and 2020 to 2090 under SSP5-8.5. 
Dots and lines from blue to red are values for 2100 under the SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively. Refer to Figure 2 for the full names 
of the variable abbreviations on the Y-axes.
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[H +]total exhibits a nearly perfect linear relationship with fCO2, within the range of oceanic fCO2 at current and 
future conditions (Figure S4 in Supporting Information S1). This linear relationship can be explained by examining 
the relation between these two quantities from the carbonate system equilibrium equations (Millero, 1995). fCO2 
can be expressed by Equation 2:

𝑓𝑓CO2 =
DIC ×

[

H+
]

total

𝐾𝐾0𝐾𝐾1

(

1 +
[H+]total

𝐾𝐾1

+
𝐾𝐾2

[H+]total

) (2)

where K0 is the solubility coefficient of CO2 in seawater, and K1 and K2 are the first and second dissociation constants 
of carbonic acid. DIC remains relatively constant, for example, an increase from 2,000 to 2,100 μmol kg −1 (e.g., 
Figure 3c) represents only a change of 5%, and the quantity in parentheses in the denominator ranges from only 
∼1.05 to ∼1.1 for pHT between ∼7.5 and ∼8.0. Thus, changes in [H +]total are driven largely by those in fCO2 and 
vice versa, and a nearly linear relationship exists between these two quantities, although the slope of this relation-
ship could vary between waters with different temperatures because of the temperature dependences of K0 and K1.

Figure 5. Surface ocean fugacity of carbon dioxide (fCO2, inter-model median) in the decades around (a) 1850, (b) 2010, (c) 2100 (SSP1-2.6), (d) 2100 (SSP2-4.5), (e) 
2100 (SSP3-7.0), and (f) 2100 (SSP5-8.5). SSP is short for Shared Socioeconomic Pathway.
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Surface ocean [H +]total shows relatively homogeneous spatial distributions (Figure 6). From 1750 to 2010 global 
area-averaged [H +]total increased by ∼30% (from 6.5 to 8.5  ×  10 −9  mol  kg −1) (Tables S5—S8 in Supporting 
Information S1) and will continue to increase by ∼4% (to 8.8 × 10 −9 mol kg −1) under SSP1-1.9 or by ∼150% 
(to 21.2 × 10 −9 mol kg −1) under SSP5-8.5 (Tables S7, S8, S11, and S12 in Supporting Information S1). The 
Arctic Ocean shows the fastest increase in [H +]total (Table S9 and Figure S8 in Supporting Information S1). The 
area-averaged [H +]total in the Arctic, which was 15%–20% lower than that in the tropical region during preindus-
trial period, is projected to become highest among all regions by 2050 under SSP5-8.5 (Tables S9 and S10 in 
Supporting Information S1). Our results show that acidity in the Arctic will have increased ∼50% from 1850 to 
2050, compared to ∼40% for the rest of the ocean. Because of the nearly linear relation between fCO2 and [H +]total 
(Figure S4 in Supporting Information S1), the relatively large increase of [H +]total in the Arctic Ocean is similar 
to that of fCO2.

Figure 6. Surface ocean total hydrogen ion content ([H +]total, inter-model median) in the decades around (a) 1850, (b) 2010, (c) 2100 (SSP1-2.6), (d) 2100 (SSP2-4.5), 
(e) 2100 (SSP3-7.0), and (f) 2100 (SSP5-8.5). SSP is short for Shared Socioeconomic Pathway.
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3.3.3. pH on Total Scale (pHT)

Like [H +]total, latitudinal variations of pHT are relatively small (Figure 7), despite the large temperature gradients 
from the tropical to the polar regions. This is because although temperature changes affect pH in a closed system 
(e.g., decreasing temperature elevates pH), this change is compensated by temperature-driven changes in surface 
ocean DIC that result from air-sea CO2 fluxes driven by changes in seawater temperature and hence the CO2 
solubility (e.g., colder temperature enables a body of water to absorb more CO2 in order to maintain equilibrium 
with the atmosphere, thus increasing its DIC but not TA, affecting the DIC/TA ratio) (Weiss,  1974). These 
two temperature effects have opposite signs and similar magnitudes, therefore effectively canceling each other 
(Jiang et al., 2019). Overall, air-sea CO2 exchange with the globally well-mixed atmosphere tends to dampen 
regional ocean pH variability, just as it reduces variability in the closely related quantity fCO2. On the other hand, 
processes such as upwelling, biological activities, heat exchange, etc., can have a large impact on the local fCO2 
and pH distribution (Feely et al., 2009; Orr et al., 2005), as it takes several months for surface ocean fCO2 to 
equilibrate with the atmosphere (Broecker & Peng, 1974).

Figure 7. Surface ocean pH on total scale (pHT, inter-model median) in the decades around (a) 1850, (b) 2010, (c) 2100 (SSP1-2.6), (d) 2100 (SSP2-4.5), (e) 2100 
(SSP3-7.0), and (f) 2100 (SSP5-8.5). SSP is short for Shared Socioeconomic Pathway.
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From 1750 to 2010, the area-averaged surface ocean pHT decreased by ∼0.12 units from 8.19 to 8.07 (Tables 
S5–S8 in Supporting Information S1). The rate of change is slowest in the tropical and subtropical region (−0.11 
units) and fastest in the Arctic (−0.14 units) (Figure 4e, Figure S9 in Supporting Information S1). By 2100 the 
global area-averaged surface ocean pHT is projected to decrease by 0.01 to 8.06 under SSP1-1.9 or by 0.39 to 
7.68 under SSP5-8.5. The latter estimate in 2100 is even lower than the previously reported value of 7.74 under 
RCP8.5 based on the GFDL-ESM2M model (Jiang et al., 2019). The difference is due to the different land and 
energy use assumptions that lead to higher atmospheric CO2 trajectories over the 21st century for the SSPs in 
CMIP6 than their RCP counterparts in CMIP5 (Meinshausen et al., 2011, 2020) and hence globally and locally 
greater surface ocean acidification (Kwiatkowski et al., 2020; Terhaar, Torres, et al., 2021).

3.3.4. Carbonate Ion Content ([CO3 2−]), and Saturation States of Aragonite (Ωarag) and Calcite (Ωcalc)

Unlike fCO2, [H +]total, and pHT, [CO3 2−] shows a large latitudinal gradient, with values in the tropics being twice 
as high as those in the Arctic (Figures 4c and 8). Similar to pHT, [CO3 2−] is strongly controlled by the indirect 
temperature effect (see Section 3.3.2), that is, colder waters have higher DIC and hence lower [CO3 2−]. However, 

Figure 8. Surface ocean carbonate ion content ([CO3 2−], inter-model median) in the decades around (a) 1850, (b) 2010, (c) 2100 (SSP1-2.6), (d) 2100 (SSP2-4.5), (e) 
2100 (SSP3-7.0), and (f) 2100 (SSP5-8.5). SSP is short for Shared Socioeconomic Pathway.
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unlike pHT, the direct temperature effect leads to a further reduction of  [CO3 2−] in colder waters (despite its 
much smaller magnitude), thus allowing these two effects to reinforce each other (see also Jiang et al., 2019; Orr 
et al., 2005).

From 1750 to 2010, the global area-averaged [CO3 2−] decreased by ∼16% from 228 to 190 μmol kg −1 (Tables S5—
S8 in Supporting Information S1). From 2010 to 2100, it is projected to further decrease by 2% to 186 μmol kg −1 
under SSP1-1.9 or by 48% to 99 μmol kg −1 under SSP5-8.5 (Tables S7, and S9–S12 in Supporting Informa-
tion S1). Regionally, surface ocean [CO3 2−] is projected to decrease more in the tropics (∼100 μmol kg −1) than in 
the Arctic (∼60 μmol kg −1) from 2010 to 2100 under SSP5-8.5 (Tables S9 and S10 and Figure S10 in Supporting 
Information S1). The greater decrease in the tropics can largely be attributed to higher initial values there. In fact, 
the Arctic Ocean shows a stronger relative decrease, that is, ∼60% compared to that of 45%–50% in the tropics 
(Feely et al., 2009).

[CO3 2−] also mainly determines the saturation states of carbonate minerals (unitless), which are defined as:

Ω =
[Ca2+] × [CO2−

3 ]

K′
sp

 (3)

where Ω is the saturation state (Ω > 1 favors precipitation and Ω < 1 favors dissolution), [Ca 2+] is the calcium 
content, and K′sp is the apparent solubility product of the calcium carbonate mineral. As [Ca 2+] in seawater is 
nearly directly proportional to salinity (Millero, 1995), and K´sp is a function of only temperature and pressure, 
Ω in surface seawater is nearly directly proportional to [CO3 2−], with a constant of proportionality that depends 
mostly on temperature.

As a consequence of the nearly linear dependence of Ωarag on [CO3 2−], surface ocean Ωarag shows a similar spatial 
distribution as [CO3 2−] (Figure S11 in Supporting Information S1). Area-averaged surface ocean Ωarag in 2010 
ranges from as high as 3.4–3.6 in tropical regions to as low as 1.5–1.9 in polar regions, similar to previous stud-
ies (IPCC, 2013; Jiang et al., 2015; Orr et al., 2005; Steinacher et al., 2009). On average, global surface ocean 
Ωarag decreased by ∼17% from a global area-average of 3.6 in 1750 to 3.0 in 2010 (Tables S5—S8 in Supporting 
Information S1). Regionally, the rate of change of Ωarag between 1750 and 2010 ranges from −16% in the tropics 
to −24% in the Arctic (Table S9 and Figure S12 in Supporting Information S1). From 2010 to 2100, the global 
area-averaged Ωarag is projected to decrease by 2% to 2.9 under SSP1-1.9 or by 47% to 1.6 under SSP5-8.5 (Tables 
S7 and S8 in Supporting Information  S1). The latter value is lower than the previous estimate of 1.7 under 
RCP8.5 of the GFDL-ESM2M (Jiang et al., 2019), again due to the higher atmospheric CO2 under SSP5-8.5 than 
under RCP8.5. Similar to [CO3 2−], Ωarag shows a larger magnitude of change in the tropics (about −1.6) than in 
polar regions (about −1.0), although the percentage of change is lower (−44% to −47% compared to −55% to 
−60%) (Tables S9 and S10 in Supporting Information S1). A comparison of the spatial distribution of the abso-
lute change in this quantity to the percent change is presented in Figure 7 of Feely et al. (2009).

Calcite is a less soluble form of calcium carbonate mineral than aragonite, and at 25°C, Ωcalc is ∼50% greater 
than Ωarag (Mucci, 1983); thus Ωcalc shows very similar spatial and temporal variations to Ωarag (Figure S13 in 
Supporting Information S1). From 1750 to 2010, the global area-averaged Ωcalc had also dropped by 17%, and 
from 2010 to 2100, it is expected to drop further by 2% to 4.5 under SSP1-1.9 or 49% to 2.4 under SSP5-8.5 
(Tables S7 and S8 and Figure S14 in Supporting Information S1). Unlike Ωarag, surface Ωcalc remained >1 in 
2100 under all SSPs except for SSP5-8.5, where undersaturated water (Ωcalc < 1) is seen in the Southern Ocean 
(Figure S13 in Supporting Information S1). However, studies have shown that a rapid change of saturation state 
and extreme events (Burger et al., 2020, 2022) may affect marine organisms more than the saturation state itself 
(Doney et al., 2020; Gattuso et al., 2015; Kawahata et al., 2019).

3.3.5. Revelle Factor (RF)

The Revelle Factor (RF), a measure of the ocean's buffer capacity for the carbonate system, is defined as the ratio 
of the fractional change in fCO2 to the fractional change in DIC at constant TA (Revelle & Suess, 1957). The 
higher the RF, the smaller the change in DIC (or mass of carbon taken up by the ocean) for a given change in 
sea surface fCO2 (often equilibrated with atmospheric CO2), reflecting the ocean's lower CO2 buffering capacity 
(Broeker et al., 1979).

RF and [CO3 2−] are strongly anti-correlated regionally, because [CO3 2−] buffers the ocean CO2 uptake (Broek-
eret al., 1979; Orr et al., 2005). Like [CO3 2−], RF exhibits strong latitudinal gradients, with area-averaged RF in 
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2010 ranging from ∼9.4 in the tropics (higher buffer capacity) to between 13 and 15 in the polar regions (lower 
buffer capacity). The latitudinal gradients are projected to strengthen by 2100 under all scenarios (Figure 9). 
From 1750 to 2010, the global area-averaged RF had increased by 12.5% from 9.6 to 10.8 (Tables S5—S8 in 
Supporting Information S1). From 2010 to 2100, it is projected to increase by 1% to 10.9 under SSP1-1.9 or by 
38% to ∼14.9 under SSP5-8.5 (Tables S7 and S8 and Figure S15 in Supporting Information S1).

3.3.6. Total Dissolved Inorganic Carbon Content (DIC)

As the ocean continues to accumulate anthropogenic CO2, its DIC—defined as the sum of dissolved carbon 
dioxide ([CO2(aq)]), bicarbonate ion content ([HCO3 −]), and carbonate ion content ([CO3 2−])—will increase over 
time. Surface ocean DIC (area-averaged globally) increased by 58 μmol kg −1 (3.1%) from the preindustrial level 
of 1,969  to 2,027 μmol kg −1 in 2010 (Tables S5—S8 and Figures S16 and S17 in Supporting Information S1). 
From 2010 to 2100, surface ocean DIC is projected to increase by 0.2% (5 μmol kg −1) to 2,032 μmol kg −1 under 
SSP1-1.9 or by 7.5% (150  μmol kg −1) to 2177  μmol  kg −1 under SSP5-8.5 (Tables S7 and S8 in Supporting 
Information S1).

Figure 9. Surface ocean Revelle Factor (RF, inter-model median) in the decades around (a) 1850, (b) 2010, (c) 2100 (SSP1-2.6), (d) 2100 (SSP2-4.5), (e) 2100 
(SSP3-7.0), and (f) 2100 (SSP5-8.5). SSP is short for Shared Socioeconomic Pathway.
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Regionally, the projected accumulation of DIC over the 21st century (from 2010 to 2100) is lowest in the 
Arctic (67 μmol kg −1) and Southern oceans (124 μmol kg −1) and strongest in the tropical and subtropical ocean 
(150–200 μmol kg −1) under SSP5-8.5 (Tables S9 and S10 in Supporting Information S1). The lower accumula-
tion of DIC in the polar regions compared to the tropical and subtropical ocean is due to the higher RF and lower 
buffer capacity in polar regions because of the relatively higher DIC in colder waters (Figure S16 and Table S9 
in Supporting Information S1; Weiss, 1974). The spatial changes in surface ocean DIC also reflect the changes of 
large scale ocean circulation patterns, for example, the projected slowing of the upper cell of the Atlantic meridi-
onal overturning circulations leads to the convergence of surface anthropogenic carbon in the subtropical Atlantic 
Ocean and less anthropogenic carbon in the subpolar Atlantic Ocean (Tjiputra et al., 2010).

3.3.7. Total Alkalinity Content (TA)

TA is the only OA indicator that is not subject to changes directly associated with air-sea CO2 exchange. When 
CO2 reacts with water, two bicarbonate ions (each with one charge and one equivalent TA unit) are produced for 
each carbonate ion (two charges, and two equivalent TA units) consumed, thus keeping TA constant:

CO2 + H2O + CO2−
3 ⇌ 2HCO−

3 (4)

Nevertheless, TA plays a pivotal role in ocean buffering, and consequently on the biogeochemical processes 
governing pHT, [H +]total, [H +]free, [CO3 2−], and saturation states in the ocean (Middelburg et al., 2020).

Across the ESM ensemble, globally area-averaged surface ocean TA does not show a consistent temporal change 
(Figure S18 in Supporting Information S1 and Figure 2g; Tables S7—S10 in Supporting Information S1). In 
some models (e.g., GFDL-CM4 and GFDL-ESM4), the removal of alkalinity from the surface ocean through 
the production of sinking calcium carbonate is assumed to be a positive function of saturation state, that is, the 
lower the saturation state, the lower the alkalinity removal. Thus, alkalinity content in the surface ocean increases 
as saturation state decreases. Other models lack saturation dependence (e.g., CESM2), and calcium carbonate 
production declines in parallel to overall productivity declines, thus increasing alkalinity under climate warming 
(Kwiatkowski et al., 2020). CMIP6 ESMs with higher TA at present also have higher [CO3 2−] and higher buffer 
capacity (lower RF), and hence show a stronger increase in surface ocean DIC (Terhaar, Frölicher, & Joos, 2022). 
This larger increase in surface ocean DIC will lead to a stronger decrease of [CO3 2−] and a stronger increase of 
RF over time.

Regionally, however, TA does show consistent temporal changes across the ESM ensemble (Figures S19 and S20 
in Supporting Information S1). For example, in the Arctic Ocean, large changes in salinity and TA (driven by 
melting of sea ice, increased riverine runoff, and enhanced precipitation minus evaporation) are projected by all 
of the CMIP6 ESMs (Terhaar, Torres, et al., 2021; Wang et al., 2022). Despite the different projections of global 
ocean TA over the 21st century, these differences remain relatively small compared to changes in DIC due to the 
increase of atmospheric CO2 (Figure 1) and hence do not lead to large inter-model differences in the projections 
of the OA indicators.

3.4. Caveats

Although the latest observational data provide better observational coverage and CMIP6 ESMs simulate more 
processes explicitly and offer greater spatial resolutions, their use in determining OA indicators comes with 
important caveats. Observational coverage of biogeochemical variables remains limited and hence leads to uncer-
tainties in the base state in 2010, especially in remote regions such as the Arctic and the Southern Ocean and 
during winter (Lauvset et al., 2022). Recent developments of statistical methods such as machine learning (e.g., 
Gregor & Gruber, 2021; Landschützer et al., 2016) might allow extrapolation of biogeochemical measurements in 
space and time, although such extrapolations also have regional and seasonal biases, especially in undersampled 
regions (Bushinsky et al., 2019; Gloege et al., 2021; Gregor et al., 2019).

Projections from ESMs also have biases and uncertainties on both regional and global scales. The CMIP6 
ESM ensemble includes, for example, a relatively large number of models with high ECS, which likely project 
an overly strong warming over the 21st century (Tokarska et  al.,  2020), which may affect projections of 
temperature-sensitive variables such as [H +]. Biases also exist in the circulation, leading to overly small sea 
surface salinities and overturning in the Southern Ocean, thus causing biases in OA indicators in that region 

 19422466, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003563 by U
niversity O

f Southam
pton, W

iley O
nline L

ibrary on [04/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

JIANG ET AL.

10.1029/2022MS003563

18 of 23

(Terhaar, Frölicher, & Joos, 2021). Furthermore, biogeochemical biases across the CMIP6 models exist toward 
too high surface ocean [CO3 2−] in the equatorial Pacific (Vaittinada Ayar et  al.,  2022) and too low globally 
averaged surface ocean [CO3 2−] and TA (Figure 1; Terhaar, Frölicher, & Joos, 2022) and consequently too high 
globally averaged surface ocean RF (Terhaar, Frölicher, & Joos, 2022). Finally, the reported inter-model median 
values are not robust in coastal regions (Hauri et al., 2021; Terhaar, Orr, Gehlen, et al., 2019) because of low 
resolution and non-changing boundary conditions, such as river discharge, and changing DIC, TA, and nutrient 
fluxes (Terhaar, Orr, Ethé, et al., 2019).

Another inherent caveat of CMIP6 projections is that these projections follow prescribed atmospheric CO2 mixing 
ratio trajectories, thus resulting in widely different end-of-century global atmospheric surface temperatures 
(Tokarska et al., 2020), while global warming policy goals are aiming at limiting global warming to prescribed 
temperature targets (UNFCCC, 2015). Different simulation set-ups using adaptive emission approaches such as 
the Adjusting Mitigation Pathway (AMP) (Goodwin et al., 2018) or the Adaptive Emission Reduction Approach 
(AERA) (Terhaar, Frölicher, Aschwanden, et  al.,  2022) allow model simulations to converge to a prescribed 
temperature target. Depending on a model's transient climate response or equilibrium climate sensitivity and 
the amount of reductions in non-CO2 greenhouse gas emissions and other radiative agents, the CO2 emissions 
and hence CO2 trajectories that allow reaching a given temperature target vary greatly (Goodwin, 2018; Terhaar, 
Frölicher, Aschwanden, et al., 2022). These largely different atmospheric CO2 trajectories lead to uncertainties 
that exceed the range of model projections under any SSP by an order of magnitude globally (Terhaar et al., 2023) 
and in the coastal ocean (Nicholls et al., 2018). While such projections with an ESM of Intermediate Complex-
ity Bern3D-LPX (Lienert & Joos,  2018; Roth et  al.,  2014) and the AERA (Terhaar, Frölicher, Aschwanden, 
et al., 2022) allow for an estimation for future OA conditions for a given temperature target, regionally more reli-
able gridded projections of OA for a given policy-relevant warming target could only be achieved by an ensemble 
of higher-resolved ESMs simulations with the AERA.

Lastly, the product presented here covers only projections of surface OA indicators, although subsurface OA 
projections are equally important for marine ecosystems, especially for vertically migrating organisms (Berge 
et al., 2015). Subsurface OA projections across models tend to vary much more than those at the surface because 
they are often dependent on the ventilation of surface waters to the deeper ocean (Fraser et al., 2022; Steiner 
et al., 2014; Terhaar et al., 2020, 2021b, 2022a). Subsurface OA projections will be reported in future publications.

4. Conclusions
A model-data fusion product was created by synthesizing 14 CMIP6 ESMs (Table S3 in Supporting Informa-
tion S1) and three observational data products. This product provides distributions of 10 global surface OA indi-
cators, including fCO2, pHT, [H +]total, [H +]free, [CO3 2−], Ωarag, Ωcalc, RF, DIC, and TA, under past-reconstruction 
(1750), historical (1850–2010), and future (2020–2100) scenarios. The model outputs were bias-adjusted with 
the most recent and highest quality ocean carbon observations available, and drift-adjusted with preindustrial 
control (piControl) values to highlight the fundamental agreements among the CMIP6 models on the evolution 
of most carbonate system variables under historical to future scenarios. Despite several caveats, the use of the 
most recent observational datasets and a large ESM ensemble represents a major step forward in the projection 
of future surface ocean OA indicators and provides critical information to guide OA mitigation and adaptation 
efforts.

Data Availability Statement
All model simulations are available at the CMIP6 data portals: https://esgf-node.llnl.gov/projects/cmip6/.
Observational data used in this study:

 -  The Surface Ocean CO2 Atlas (SOCAT, version 2022): https://www.ncei.noaa.gov/data/oceans/ncei/ocads/
metadata/0253659.html (https://doi.org/10.25921/1h9f-nb73).

 -  The Global Ocean Data Analysis Project version 2 (GLODAPv2, version 2022): https://www.ncei.noaa.gov/
data/oceans/ncei/ocads/metadata/0257247.html (https://doi.org/10.25921/1f4w-0t92).

 -  The Coastal Ocean Data Analysis Product in North America (CODAP-NA, version 2021): https://www.ncei.
noaa.gov/data/oceans/ncei/ocads/metadata/0219960.html (https://doi.org/10.25921/531n-c230).

 -  World Ocean Atlas (2018): https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/.
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The generated data product is available in NetCDF format at National Oceanic and Atmospheric Administration 
(NOAA) National Centers for Environmental Information (NCEI), with a link of https://www.ncei.noaa.gov/
data/oceans/ncei/ocads/metadata/0259391.html (https://doi.org/10.25921/9ker-bc48). The data package consists 
of three folders: (i) “ESMs,” which includes bias- and drift-adjusted model output for each of the 14 ESMs; (ii) 
“median,” which contains the inter-model median values of the OA indicators; and (iii) “std,” which contains 
the inter-model standard deviations of the OA indicators. Pre-plotted global maps are also available through this 
interface: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/synthesis/surface-oa-indi-
cators.html.
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