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How many independent quantities can be extracted from ocean color?

B. B. Cael ,1* Kelsey Bisson ,2 Emmanuel Boss ,3 Zachary K. Erickson4
1National Oceanography Centre, Southampton, UK; 2Oregon State University, Corvallis, Oregon; 3University of Maine,
Orono, Maine; 4NOAA Pacific Marine Environmental Laboratory, Seattle, Washington

Scientific Significance Statement

The reflectance of sunlight from the ocean can be observed from satellites and is used to derive many biologically relevant
parameters, such as the concentration of chlorophyll in the upper ocean. Reflectances are currently observed at about 10 differ-
ent wavelengths, but this will soon be expanded to hundreds with the upcoming launch of a new ocean color satellite, PACE,
in early 2024. Many new algorithms are being proposed to make use of the wealth of ocean color data which will be provided.
However, there are strong correlations between reflectances at different wavelengths; these correlations mean there will be far
fewer products that can be independently derived than there will be reflectance wavelengths observed. Here, we use ship-based
measurements similar to what will be provided from PACE to suggest that, on a global scale, only a few independent variables
can be calculated from hundreds of reflectance wavelengths. Current and past satellites provide a similar amount of indepen-
dent data to what is projected from PACE. We then show that, on a global scale, a set of six derived parameters only contains
one independent piece of information, suggesting that more information exists in ocean color data than is being
currently used.

Abstract
Products derived from remote sensing reflectances (Rrs λð Þ), for example, chlorophyll, phytoplankton carbon,
euphotic depth, or particle size, are widely used in oceanography. Problematically, Rrs λð Þ may have fewer
degrees of freedom (DoF) than measured wavebands or derived products. Here, we show that a global sea
surface hyperspectral Rrs λð Þ dataset has DoF = 4. MODIS-like multispectral equivalent in situ data also have
DoF = 4, while their SeaWiFS equivalent has DoF = 3. Both multispectral-equivalent datasets predict indi-
vidual hyperspectral wavelengths’ Rrs λð Þ within nominal uncertainties. Remotely sensed climatological multi-
spectral Rrs λð Þ have DoF = 2, as information is lost by atmospheric correction, shifting to larger
spatiotemporal scales, and/or more open-ocean measurements, but suites of Rrs λð Þ-derived products have
DoF = 1. These results suggest that remote sensing products based on existing satellites’ Rrs λð Þ are not
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independent and should not be treated as such, that existing Rrs λð Þ measurements hold unutilized information,
and that future multi- or especially hyper-spectral algorithms must rigorously consider correlations between
Rrs λð Þ wavebands.

Ocean color satellites have revolutionized the study of
ocean ecology and biogeochemistry in recent decades by pro-
viding a near-continuous global picture of surface ocean prop-
erties (Hovis et al. 1980; O’Reilly et al. 1998). Satellites
measure the spectral radiance emanating from the ocean and
atmosphere. Remote sensing reflectance (Rrs λð Þ) is obtained
following the removal of the contribution of atmospheric and
surface effects and normalization to downwelling solar irradi-
ance. Algorithms have been developed to estimate numerous
biogeochemcally relevant surface variables from Rrs λð Þ, such as
chlorophyll concentration (Chl, [μgL�1]) (O’Reilly et al. 1998;
Hu et al. 2012), the spectral slope of the particle size distribu-
tion (ξ) (Kostadinov et al. 2009), the concentrations of phyto-
plankton and particulate organic and inorganic carbon
(Cphyto, POC, and PIC, [μg L�1]) (Graff et al. 2015; Evers-King
et al. 2017; Mitchell et al. 2017), euphotic layer depth (Zeu

[m]) (Lee et al. 2007), and, using additional input variables,
net primary production (NPP, [mgm�2 d�1]) (Behrenfeld and
Falkowski 1997; Westberry et al. 2008; Silsbe et al. 2016). Such
products are used in a wide variety of applications, such as
validation of complex ocean ecosystem and biogeochemistry
models (Dutkiewicz et al. 2020; Cael et al. 2021) or as inputs
for simpler models that predict other variables such as vertical
particulate organic carbon fluxes from ocean color (Siegel
et al. 2014; Cael et al. 2017; DeVries and Weber 2017; Bisson
et al. 2020; Nowicki et al. 2022).

Existing Rrs λð Þ data are multispectral, measured at several
wavebands. Derived products generally rely only on a subset
of these wavebands and are commonly expressed as functions
of band ratios between just two wavelengths (Hu et al. 2012).
Some algorithms attempt to simultaneously estimate multiple
products to match the full Rrs λð Þ spectrum, for example, the
generalized inherent optical properties approach (Werdell
et al. 2013). However, the most widely used products, such as
for Chl and POC, treat all outputs as independent quantities
and are fully empirical.

Correlations between Rrs λð Þ at different wavebands are
strong (Huot and Antoine 2016) presenting multiple potential
issues for both users and developers of derived products. If
multiple products are used simultaneously and treated as
independent when they are in fact not, this can lead to over-
confidence in model skill or miscalculation of uncertainties.
Adding different (yet correlated) satellite products to a model
can result in model output redundancy (Bisson et al. 2020).
These issues will be exacerbated by the hyperspectral resolu-
tion of the next generation of ocean color satellites, namely
the Plankton, Clouds, Aerosols, and Ecosystems (PACE) satel-
lite scheduled to launch January 2024 (Werdell et al. 2019). In
addition to the common suite of multispectral products, PACE

also plans to enable characterizations of phytoplankton com-
munities, for example, Chase et al. (2017), substantially
increasing the number of products available from Rrs λð Þ.

The strong correlations among Rrs λð Þ wavelengths can be
framed in terms of the degrees of freedom (DoF) of Rrs λð Þ mea-
surements and suites of derived products. DoF represents the
effective number of dimensions of a dataset after accounting
for correlations and uncertainties between variables and is in
essence the number of independent variables in that dataset.
It has been shown that the DoF of globally distributed near-
surface measured hyperspectral absorption spectra is �5 (Cael
et al. 2020). This could be considered a possible upper limit
for the DoF of satellite-measured Rrs λð Þ given higher uncer-
tainties on satellite measurements—particularly associated
with atmospheric correction (Cael et al. 2020; Bisson
et al. 2021). The DoF of PACE’s hyperspectral measurements
might then be expected to be much lower than the number of
wavelengths for which it will measure Rrs λð Þ, which will appre-
ciably affect how hyperspectral satellite Rrs λð Þ products should
be constructed. For both existing and future satellite Rrs λð Þ,
understanding the DoF of Rrs λð Þ measurements and derived
products is crucial for appropriate usage and optimal construc-
tion of such products.

Here, we investigate the DoF of Rrs λð Þ. We show that a
global sea surface hyperspectral Rrs λð Þ database has four DoF.
Coarsening hyperspectral Rrs λð Þ to their moderate resolution
imaging spectrometer (MODIS) equivalent retains four DoF,
though the sea-viewing wide field of view sensor (SeaWiFS)
equivalent only has three DoF. Both multispectral equivalents
predict individual hyperspectral Rrs λð Þ wavelengths within
nominal uncertainties for satellite sensors. For climatological
Rrs λð Þ and derived products, both MODIS-Aqua and SeaWiFS
Rrs λð Þ have two DoF, suggesting Rrs λð Þ complexity is lost either
through atmospheric correction, relatively more inclusion of
open-ocean data, or averaging over larger scales in space and
time. Suites of derived products only retain one DoF. There-
fore derived products should not be treated as independent by
users. These findings have substantial implications for the
construction and use of multispectrally and hyperspectrally
derived ocean color products.

Sea surface Rrs: Hyperspectral vs. multispectral
We first analyze a global sea surface hyperspectral Rrs λð Þ

dataset to determine its DoF and how the DoF depends on
spectral resolution (Chase et al. 2017; Kramer et al. 2022). The
dataset includes Rrs λð Þ data at 191 locations at an effective
3.35nm resolution (Chase et al. 2017) from 400 to 800nm,
linearly interpolated to 1 nm (Fig. 1). We trimmed spectra to
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700nm due to the large fraction of missing values and zeros
> 700nm; our conclusions are not affected by using a lower or
higher maximum wavelength. The dataset includes measure-
ments taken from 2004 to 2018 evenly distributed across
months of the year, and from all major ocean basins ranging
in latitude from 41�S to 74�N. We also compare these data to
their MODIS-Aqua and SeaWiFS multispectral equivalents by
convoluting the hyperspectral Rrs λð Þ with the MODIS-Aqua
and SeaWiFS spectral response functions (available at https://
oceancolor.gsfc.nasa.gov/docs/rsr/HMODISA_RSRs.txt and
https://oceancolor.gsfc.nasa.gov/docs/rsr/SeaWiFS_RSRs.txt) to
generate 10-waveband and 6-waveband datasets which corre-
spond to what each instrument would have measured from
the same optical input that the radiometer received when gen-
erating the hyperspectral Rrs λð Þ data.

We then apply principal component analysis (PCA) (Wold
et al. 1987) to these 301-, 10-, and 6-dimensional Rrs λð Þ
datasets. PCA is a widely used method to reduce the dimen-
sionality of datasets by identifying orthogonal vectors that
explain the most variance in the data. PCA is linear in nature,
which may result in an overestimation of effective dimensions
by poorly approximating nonlinear relationships between var-
iables (e.g., a PCA performed on the pair (x, y) where y = x2

will yield two DoF). Nonlinear generalizations do exist
(Weinberger et al. 2004; Scholz et al. 2008), though these are
less widely applied due to their additional complexity and
computational requirements that make interpretation chal-
lenging. One may therefore consider the DoF we report to be

upper bounds. We perform a PCA on each Rrs λð Þ dataset, after
standardizing each waveband. We use the broken-stick rule to
choose the DoF, which states that the DoF is equal to the

Fig. 1. Locations of the 191 stations considered in this study (red dots).

Fig. 2. Scree plot of percent variance explained vs. component for hyper-
spectral Rrs λð Þ dataset and MODIS-Aqua and SeaWiFS equivalents calcu-
lated from their spectral response functions. Black line indicates broken-
stick significance threshold for hyperspectral data; numbers in legend give
percent variance explained for each mode above this threshold in
each case.
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number of components that explain more variance than
would be expected by randomly distributed data; this method
was shown to be more consistent than a suite of others in a
comparison (Jackson 1993; note that this threshold
b ið Þ¼ 1

n

P
k¼i…n1=k is a function of the dimensionality of the

dataset, so the significance cutoffs are different in Figs. 2, 4).
These results can be shown visually as a “scree” plot, which
plots the percentage of variance explained by each compo-
nent and for randomly distributed data; the DoF is the num-
ber of components with a higher percentage of variance
explained than would be expected for randomly distributed
data. Our figures also visibly demonstrate that one would
get the same results from using the scree plot rule, which
states that the DoF is equal to the number of components
not sitting on the straight line made by the higher-order
components, and was found to consistently capture the
correct DoF plus one when the first point on this straight
line was included (Jackson 1993).

PCA reveals the hyperspectral Rrs λð Þ dataset has four DoF
(Fig. 2); the first four components explain 54%, 33%, 8%, and
2%, totalling 97%, of the variance. The first four MODIS-Aqua
equivalent Rrs λð Þ principal components have very similar per-
centages of variance explained: 49%, 37%, 10%, and 2%,
totalling 99% of the total variance. In contrast, the first three
SeaWiFS equivalent Rrs λð Þ principal components explain 63%,
28%, and 8%, totalling 99%, of the variance. This suggests
that the hyperspectral Rrs λð Þ have four DoF, or four indepen-
dent variables within the data, and that these four variables
are effectively captured when reducing spectral resolution to
the 10 MODIS-Aqua wavebands, but not to the 6 SeaWiFS
wavebands.

Note that this difference of 1 DoF between the SeaWiFS-
and MODIS-equivalent data is because MODIS includes a
band centered at 645 nm which captures spectral variation
in the range of � 610–650 nm, a spectral region which is
not covered by any SeaWiFS waveband. When this 645 nm-
centered waveband is excluded from the MODIS analysis,
we find three DoF for the remaining nine MODIS
wavebands (this is not true of other wavebands, e.g., the
fluorescence waveband at 673–683 nm). Irrespective of the
exact number of DoF, Fig. 2 demonstrates that the bulk of
the variance in these data, whether hyperspectral or multi-
spectral, collapses along a few modes of variation, with the
first two modes containing almost all (� 90%) of the
explanatory power. This suggests that only two indepen-
dent quantities can be estimated accurately with these data.
Even if one or two additional quantities can be estimated
independently (i.e., DoF = 3 or 4), regardless of the exact
number of quantities, these will necessarily be estimated
with low signal-to-noise ratios.

The ability of coarsened, MODIS-equivalent data to obtain
the same number of DoF as the hyperspectral dataset is fur-
ther supported by predictions of hyperspectral Rrs λð Þ from
multispectral equivalents. To illustrate this, for each

hyperspectral wavelength we perform a multivariate linear
regression of Rrs λð Þ at that wavelength regressed against Rrs λð Þ
at each waveband of both the MODIS-Aqua and SeaWiFS
equivalent Rrs λð Þ. For all wavelengths < 578nm in the SeaWiFS
case and 582nm in the MODIS-Aqua case, the root-mean-
square-error (RMSE) is smaller than 5% of the mean Rrs λð Þ at
that wavelength, where 5% is a nominal relative uncertainty
for satellite Rrs λð Þ (Fig. 3). Even for wavelengths greater than
this, the RMSE is still very small in absolute terms,
< 0.00007sr�1, far smaller than the nominal 0.0003 sr�1 abso-
lute error for 1 km-by-1 km pixels for PACE (Gordon and
Wang 1994). This underscores the extent to which different
wavelengths’ Rrs λð Þ are correlated and explains the ability of
MODIS-Aqua equivalent multispectral Rrs λð Þ to preserve the
dimensionality of hyperspectral Rrs λð Þ. The fact that SeaWIFS-
like Rrs λð Þ can accurately predict hyperspectral Rrs λð Þ to within
PACE uncertainties but has fewer DoF than the in situ hyper-
spectral dataset is a reflection of the lower uncertainty on the
in situ dataset than the expected PACE Rrs λð Þ, and suggests
that PACE Rrs λð Þ may have fewer DoF than the in situ hyper-
spectral dataset.

Climatologies: Rrs vs. products
The analysis above is based on instantaneous, sea surface

Rrs λð Þ values. The power of satellite Rrs λð Þ and derived prod-
ucts, however, lies in their near-continuous global spatial cov-
erage, and many users are primarily interested in
climatological data, that is, the the coarsest spatial and

Fig. 3. Root-mean-square-error of multivariate linear regressions of each
hyperspectral wavelength vs. the MODIS-Aqua and SeaWiFS equivalent
Rrs λð Þ. Solid line is 5% of the mean of each wavelength’s hyper-
spectral Rrs λð Þ.
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temporal scales. In this section we therefore analyze climato-
logical Rrs λð Þ and derived products, again via PCA to
determine DoF.

We generated a 1� � 1� monthly climatology for SeaWiFS
Rrs λð Þ, excluding 2009–2010 due to known instrument issues
(Siegel et al. 2014), using data downloaded from https://
oceancolor.gsfc.nasa.gov/. Note that as we are using climato-
logical data, this is a global scale analysis. We did the same for
MODIS-Aqua, spanning July 2002–June 2022. We generated
analogous climatologies, from each satellite over the same
periods and spatiotemporal resolutions, for Chl, Cphyto, POC,
PIC, Zeu, ξ, the fraction of biovolume in the microplankton
size class fmicro calculated from ξ as described in (Kostadinov
et al. 2009), the particulate backscatter to chlorophyll ratio
bbp : Chl, and NPP as estimated by the CAFE (Silsbe
et al. 2016) and CbPMv2 (Westberry et al. 2008) models. Chl,
POC, and PIC were downloaded from https://oceancolor.gsfc.
nasa.gov/, as was bbp to calculate Cphyto according to Graff
et al. (2015) and bbp : Chl and the diffuse attenuation
coefficent at 490nm to calculate Zeu according to Lee et al.
(2007); SeaWiFS ξ and fmicro were derived as in Kostadinov
et al. (2009); and NPP products were downloaded from http://
sites.science.oregonstate.edu/ocean.productivity/index.php.
In total we then have climatologies for MODIS-Aqua, SeaWiFS
Rrs λð Þ, and 10 derived products. We consider the six products
Chl, Cphyto, POC, PIC, ξ, and Zeu, to be core products and
fmicro, bbp : Chl, CAFE NPP, and CbPMv2 NPP to be ancillary
products as these are either derived from the core products or
rely on ancillary data other than Rrs λð Þ.

We note that a PCA on the MODIS-Aqua climatologies of
Rrs λð Þ and products other than ξ and fmicro yields the same
results as those for SeaWiFS below, so we focus here only on
the SeaWiFS climatologies because ξ and fmicro are not readily
available for MODIS-Aqua. We find two DoF for climatological
SeaWiFS Rrs λð Þ, but only one for the products (Fig. 4). This
result is not sensitive to which combination of products is
used; for example, including all the ancillary products as
well still results in one DoF for the products. This result is
also not sensitive to log-transformations of the variables
that are log-normally (e.g., Chl, POC, PIC, Cphyto; Camp-
bell 1995) or log-skew-normally (e.g., NPP; Cael 2021; Cael
et al. 2018) distributed, or removal of outliers, zeros, or neg-
ative values.

That Rrs λð Þ have more DoF for the data in the previous
section than for satellite-derived climatologies suggests that
some reduction of complexity of the data occurs via some
combination of increased sensor noise relative to ship-based
data, atmospheric correction, or averaging over large space
and time scales (Scott and Werdell 2019). Two DoF remain in
satellite climatological Rrs λð Þ for both SeaWiFS and MODIS-
Aqua, indicating the possibility of generating two indepen-
dent products from these data. The suite of products tested
above, however, has one DoF. This is likely due to derived
products’ appreciable uncertainties and/or strong correlations
with chlorophyll. POC, ξ, and Zeu, for instance, have Spear-
man rank correlations (across all months and 1� grid cells) of
> 0.9 with Chl. Cphyto’s rank correlation with Chl is still fairly
high, at 0.61, and is lower largely due to small fluctuations
when both are small; a simple spline fit of log(Cphyto) against
log(Chl) yields an r2 of 0.7.

The exception is PIC, which has a rank correlation with
Chl of 0.11. For typical Rrs λð Þ values, however, PIC is highly
uncertain—that is, PIC estimates are very sensitive to small
variations in Rrs λð Þ—as substantiated by the following analy-
sis. We performed a simple sensitivity analysis with the stan-
dard two-band PIC algorithm used by NASA for all but the
most optically bright waters (see https://oceancolor.gsfc.nasa.
gov/atbd/pic/). We calculated PIC for the climatological
median Rrs λð Þ at 443 and 555nm and for 5% variations, con-
verting to normalized water-leaving radiance by multiplying
by the global mean extraterrestrial solar irradiance. We then
perturbed these Rrs λð Þ values with Gaussian noise at the 5%
level, corresponding to the nominal uncertainty in Rrs λð Þ. This
noise at 443nm results in 68% noise in PIC. By contrast, POC
only varies 5% with these 5% variations in Rrs λð Þ at either
wavelength. This indicates that in the bulk of cases, satellite-
derived PIC is highly uncertain, on the order of 70% (and
note the PIC uncertainty will be magnified more when con-
sidering documented uncertainties for Rrs λð Þ of 15–40% in
some regions; Bisson et al. 2021). In contrast, for relatively
bright waters, the same exercise resulted in PIC variations of
< 10%, indicating that this algorithm performs well in
instances when PIC values are high. Nonetheless, the high

Fig. 4. Scree plot of percent variance explained vs. component for cli-
matologies of SeaWiFS Rrs λð Þ and of six SeaWiFS Rrs λð Þ-derived products.
Black line indicates broken-stick significance threshold for six-dimen-
sional data.
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sensitivity to typical uncertainty in Rrs λð Þ for median waters
explains why we find one DoF for the products even though
PIC and Chl are not strongly correlated: derived PIC is noisy
most of the time.

These results have two key implications. One is that there
is additional information in climatological Rrs λð Þ that is not
included in current derived products, because climatological
Rrs λð Þ has more DoF than a suite of climatological products.
The other implication is that these products are not at all
independent, because a suite of them only has one DoF. For
instance, a numerical ecosystem model that reproduces the
satellite-derived climatology of chlorophyll and of the particle
size distribution’s spectral slope should not be considered to
be capturing two independent properties of the Earth system.
When using satellite products as inputs to other models, these
products and their propagated uncertainties must be treated
simultaneously rather than independently.

The results presented here are appropriate for global and
hence primarily open ocean analyses, composed primarily of
Case 1 waters where optical variability is dominated by chlo-
rophyll (Morel and Prieur 1977). It is therefore arguably
unsurprising that the suite of Rrs λð Þ-derived products produced
one DoF. Coastal and inland waters’ optical variability is
influenced by other constituents, such as colored dissolved
organic material (CDOM), inorganic particles, and other pig-
ments (Brown et al. 2008; Nelson and Siegel 2013). Analyses
focused on these waters is likely to reveal a higher number of
DoF from both Rrs λð Þ and derived products. However, we note
that the in situ dataset used here (Fig. 1) represents waters
with Rrs λð Þ variability similar to that of the ocean as a whole,
which can be seen by comparing the variation in Rrs λð Þ at
each MODIS-Aqua wavelength from global satellite data with
the same satellite data subsampled to the locations with in
situ measurements (or the closest non-cloudy location).
Subsampled satellite measurements have similar, and slightly
lower, Rrs λð Þ in bluer wavelengths, indicating that the in situ
dataset is oriented more toward optically complex coastal
waters with substantial CDOM. This suggests that part of the
explanation for the drop in DoF in satellite-derived climatol-
ogies comes from the fact that the in situ dataset sampled, as
a whole, more optically complex waters. For future work, it
would be valuable to perform a similar analysis to what we
have done here for coastal waters, regional or shelf seas, or
other more optically complex environments.

We find that both Rrs λð Þ and variables derived from Rrs λð Þ
are highly inter-correlated, reducing the number of DoF asso-
ciated with each, with a greater reduction in DoF in the
derived products. This becomes a problem when products are
derived using empirical relationships with Rrs λð Þ, and espe-
cially when the same wavelengths are used for the products
that are assumed to be independent of each other; for exam-
ple, over much of the ocean PIC, POC, and chlorophyll all are
functions only of Rrs λð Þ at two wavelengths, at (or near,
depending on the sensor) 443 and 555nm. Certain

combinations of PIC, POC, and chlorophyll, which may occur
in the surface ocean, are therefore impossible to find using
these algorithms. This is distinct from algorithms, typically
called “quasi-analytical” or “semi-empirical”, that use known
or assumed spectral shapes for absorption and scattering prop-
erties of optical constituents that can be related to the same
derived products, such as PIC, POC, and chlorophyll (Werdell
et al. 2013). These approaches may result in similar correla-
tions and DoF between derived products, but do not inher-
ently have the same problems as empirical approaches. We
note that PACE will have, in addition to hyperspectral visible
bands, UV bands from 350nm as well as spectral polarized
bands. These measurements are expected to both improve the
atmospheric correction (hence reduce the Rrs λð Þ uncertainties)
as well as provide their own ocean signals, both of which may
increase the DoF compared to those found here. UV data in
particular is potentially rich with information about phyto-
plankton physiology and community structure, and indepen-
dent of variability at other wavelengths, though there will be
challenges associated with simultaneously using it for atmo-
spheric correction and extracting biogeochemical informa-
tion, and not enough data exist at present for reliable
statistical analysis. In addition, it has been shown that adding
other environmental variables such as SST can add useful
information to inversions of phytoplantkon groups, for exam-
ple, Chase et al. (2022) and thus another approach to increase
DoF for inversions by adding relevant and independent infor-
mation (e.g., mixed-layer depth and nutrients from BGC-Argo
assimilating models). It may also be fruitful to include spatio-
temporal information to specify, for example, where blooms
of a particular plankton type are expected.

Conclusion
The results presented here highlight the high degree of

codependence between remote sensing reflectances at dif-
ferent wavelengths and of the products derived from these
reflectances. For users of products based on existing reflec-
tances, this primarily means factoring in the relationships
between products when using more than one simulta-
neously. For the algorithms that generate these products
from existing reflectances, these results indicate a potential
to improve the suite of available products to be more accu-
rate and precise, and to account for the relationships
between products and Rrs λð Þ wavebands. One way to do this,
consistent with the findings above, would be to derive a single
product such as chlorophyll as a function of all reflectance
wavebands, derive an anomaly from chlorophyll-based expec-
tations of a secondary product, then specify all other products
explicitly as a function of these two, along the lines of Alvain
et al. (2005).

These findings are most relevant for algorithms that will
generate products from hyperspectral reflectances in the
future. The small number of DoF in hyperspectral
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reflectances indicates that only a few quantities can be esti-
mated independently, and that different wavelengths’
reflectances as measured from space will be strongly corre-
lated. Complex algorithms that utilize the full spectrum of
reflectance will need to factor in these correlations in order
to generate reliable products. Crucially, if more than a few
products are generated from hyperspectral reflectances, as is
likely the case, such algorithms will also need to output the
covariance information encoding the uncertainty in each
product and the relationships between them. The fact that
hyperspectral reflectances can be predicted within nominal
uncertainties by their multispectral equivalents suggests
that hyperspectral resolution can play a role in improving
ocean color products, but that it will be challenging to pro-
vide a substantially finer-grained picture of surface ocean
ecosystems and biogeochemical cycles. In particular, these
results present a fundamental challenge to (or at least ceil-
ing on the ecological resolution of) algorithms that attempt
to extract the abundance of different phytoplankton func-
tional types from remote sensing reflectance. Here by rely-
ing on PCA we have focused on broad, first-order
variations, but where such resolution may be most useful
and generate novel insights is in investigating outliers and
rare events, such as blooms or binning data over coherent
features like eddies, where e.g., monospecific signatures
may be resolved with spectral precision.
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