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Woodland Establishment Reduces Nutrient Losses to
Waterbodies in Urban Catchments: A Review of the Evidence
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UK Centre for Ecology and Hydrology, Wallingford, UK, ?Department of Earth Sciences, Royal Holloway University of
London, Egham, UK

Abstract Systematic review of peer-reviewed literature was undertaken to establish benefits of urban
forests on reducing nutrient concentrations in adjacent or downstream waterbodies. Following screening, a
small number of articles (40) were found relevant, representing studies quantifying non-point source nutrient
losses from urban and peri-urban environments. Evidence was split between plot- and catchment-scale.
Plot-scale studies often included evaluations of engineered nature-based solutions. At catchment-scale, studies
of streamwater quality typically investigated influence of contributory catchment nutrient sources. Wide
ranges of beneficial reductions were apparent, and at both scales not all studies identified significant benefits.
Summarizing against this backdrop, at plot (micro-) scale woodland reduces mean concentrations in runoff,
soil or groundwater by an average of 44.2% for total nitrogen (TN) and 47.0% for total phosphorus (TP). At
catchment (meso-) scale, evidence suggests a 20% areal addition of forest at the expense of mixed urban fabric
can reduce mean concentrations by 15.7% and 12.6% for TN and TP respectively. Additionally, some articles
reveal potential drawbacks reducing benefits provided specifically by street trees and riparian woodland.

Leaf litter falling on impervious surfaces can heighten risk of TP leaching to streams, but has little impact on
TN. Riparian woodland was found to have complex water quality impacts. Canopy cover suppresses stream
channel biological nitrogen uptake, which based on all evidence appears considerable. However, unshaded
headwaters can foster accelerated primary productivity with undesirable downstream consequences. Overall,
gathering further evidence is encouraged, given current uncertainties, especially to address differences between
impervious, permeable and riparian urban woodland settings.

1. Introduction

Woodland is increasingly recognised as providing a range of ecosystem services, for example, regulating air
pollution, enhancing soil quality and reducing flood risk (Burton et al., 2018). In urban environments in particu-
lar, nature-based solutions (NBS) are increasingly recognised as having capability to address many societal chal-
lenges and provide economic, societal and environmental benefits in a sustainable manner. Implementation is
especially advanced for the primary purposes of stormwater mitigation. A wide range of engineered solutions are
adopted such as green roofs, bioswales, rain gardens and permeable pavements (McGrane, 2016), but usually the
most commonly adopted approach is tree planting (e.g., as summarized across 100 European cities by Almassy
et al. (2018)). A spectrum of tools are available to support practitioners in evaluating the potential benefits of
urban NBS. These range from tools for rapid and extensive quantification of ecosystem services (e.g., INVEST:
Redhead et al., 2018) to detailed mechanistic models of urban water resources (e.g., SWMM: Baek et al., 2020).

Urban areas are exposed to increasing flood risk (Kundzewicz et al., 2018). Elevated nutrients are of widespread
concern in aquatic ecosystems (Smith & Schindler, 2009) and in drinking water supplies. It is widely recognised
that woodland can provide benefits for flood alleviation. For example, Stratford et al. (2017) show consensus
in reductions in river flood peaks by woodlands in temperate oceanic and sub-polar oceanic climatic regions.
Likewise inverse relationships at a range of scales between streamwater nutrient export and woodland cover in
the catchment contributing area are long recognised. In a comprehensive review, Beaulac and Reckhow (1982)
identified export rates of TN and TP to be 50% and 80% lower respectively in natural forested compared to urban
watersheds. Therefore, reduction in nutrient concentrations by woodland is potentially important for suppressing
eutrophication of waterbodies. Trees in riparian settings may provide unique water resource and quality benefits
(Feld et al., 2018). However, specific evidence for stormwater benefits in urban woodland environments remains
surprisingly scarce. Although identifying robust local scale evidence, Baker et al. (2021) find evidence of runoff
reduction at larger scale to be patchy with a paucity of studies incorporating adequate control conditions. Regard-
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4. Additional details and categories

Surface runoff, leaf litter leachate, soil water, groundwater, stream water, standing
water (e.g. wetlands)
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Types of comparison: (1) upslope/downslope, (2) before/after, (3) nearby contrasting

absence or a significantly different level of

control or difference in tree cover

Comparator

urban land use

trees in urban areas

Concentrations (e.g. event mean) or loads (e.g. annual flux) of total nitrogen or total

nutrient content in water

effects observed as a result of the

Outcome

phosphorus, or constituent species (ammonium, nitrate, dissolved phosphate etc.)

intervention

aDecision as to whether or not an area of study was urban was reliant on the primary authors’ description, combined sewer overflows were not excluded.

ing water quality benefits, a synthesis of literature evidence is lacking. This is despite the recognised
severity of non-point source urban nutrient pollution signatures in addition to those of wastewater effluent
(Groffman et al., 2004). A coherent understanding of urban water quality response is needed, especially
since urban trees are subject to more acute and chronic environmental stressors than rural counterparts
(Baxter et al., 2002; Falxa-Raymond et al., 2014). It may be incorrect to assume tree planting in urban
settings provides equivalent benefits to those achieved elsewhere.

The objective of the present study was to identify evidence for the benefits of trees in reducing TN and
TP transport specifically to urban waterbodies. It did not set out to comprehensively review relationships
between trees and water quality in a more general context, for which readers are referred to other reviews
(e.g., Neary et al., 2009). Literature was collated systematically, assessed using ratified approaches for
screening and exclusion, and framed using the following primary and secondary questions: (Q1) How
much improvement in water quality in urban runoff arises from a specified increase in urban forests? (Q2)
Does the occurrence of trees in specific types of urban setting bring about differing consequences for water
quality? From the evidence identified, we summarized findings by:

¢ An evidence mapping exercise covering a range of key characteristics including geographic distribu-
tion, morphological setting (impermeable [e.g., street trees], permeable [e.g., in parkland] or riparian),
tree species and whether or not the woodlands studied were part of NBS initiatives,

¢ A meta-analysis to derive best estimates of quantified effects of urban woodland on hydrological nutri-
ent transport, with a view to directly improving the rigor of the scientific evidence underpinning mode-
ling tools for urban NBS evaluation.

2. Methodology
2.1. Evidence Gathering

Literature searches were undertaken in Web of Science (WoS) and Scopus databases on 17 August 2021
using the following Boolean “topic search” term: “(urban* OR cit* OR town*) AND (tree* OR forest* OR
wood* OR canop*) AND (("water quality" OR pollut*) AND nutrient*).” The searches yielded a return
of 1,118 papers excluding articles not written in English and those published prior to 1 January 1990. The
Population-Intervention-Comparator-Outcome (PICO) structure (Collins et al., 2015) was used to facilitate
screening at abstract and full-text level. The PICO scheme originated in medical science has been shown
demonstrably preferable to other approaches (Methley et al., 2014). It represents an industry standard
approach in environmental science (James et al., 2016). At each screening stage, those articles clearly
failing to meet the requirements of the four PICO elements (Table 1) were not retained for further analysis.
Emphasis with PICO is usually on impacts of management interventions, and whilst the scope of the pres-
ent review is wider, the structure PICO provides for defining screening criteria is suitable for the process
of excluding material not directly relevant. Separately, a set of 10 publications were collated which passed
the full-text screen of 19 potentially relevant abstracts previously identified from a search cited in a review
by Baker et al. (2021) which had been tailored to find evidence specifically in an NBS context (topic
search term: “(urban* OR cit* OR town*) AND (tree* AND (“green infrastructure” OR “green space”
OR “nature based solution*” OR NBS OR “low-impact development” OR LID)) AND (("water quality"
OR pollut*) AND (nutrient* OR metal*).” In addition to those already identified by Baker et al. (2021),
a total of 94 of the 1,118 newly found papers passed the abstract level screen of which 30 were retained
following full-text screening. The complete set of 40 papers retained for analysis were then assessed for
categorization (Table 1: Column 4 criteria) along with further elements of critical appraisal (criteria in
Table 2). Together as a whole these were to be used in an evidence mapping exercise to describe the extent
of the knowledge base. Additionally, key results which specifically addressed the primary and secondary
questions above were summarized for subsequent meta-analysis.

The results were organized into four different preliminary categories (Figure 1) upon which interpretative
meta-analysis was undertaken. The objective of the meta-analysis was to define quantitative benefits of
trees on nutrient water quality. These were presented as box-whisker plots (Figures 2b and 2d).

For articles to contribute to our objectives it was necessary for findings to be readily extractable from data
reported in the main article or from Table Al. In a number of cases where papers passed screening at the
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Figure 1. Description of the evidence base: (a) a map of distribution of studies, (b) conceptual distinction between catchment
(Meso), plot (Micro) and riparian (R) study types (c) contexts for the fate of leaf litter (L study type) on streets, lawns or in
rivers.

abstract level it proved difficult to extract the required information with confidence. Making inordinate efforts
to achieve this might have been successful but would have greatly detracted from the systematic nature of the
exercise. Common examples of this were where comprehensive presentation of raw data had not been made, with
focus instead on key summaries related to the specific objectives of the study. Exclusion of articles was not reflec-
tive of their overall quality and value. Similarly, assigning low scores for weighting purposes (see Section 2.2)
should not be regarded as a criticism of the quality of the research but merely a reflection of its suitability for
extracting the specific evidence we sought.
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Figure 2. Evidence for decrease in nitrogen (TN) and phosphorus (TP) nutrient concentrations due to forest establishment in
place of mixed urban land use fabric. Concentrations usually represent event mean concentrations in storm runoff or annual
mean concentrations in soil solution, groundwater or stream water (for details see Table A1): (a) proportions and numbers

of Micro-studies showing no change or a decrease; using the weightings described in Section 2.2 this equates to weighted
likelihood of change (WL) of 0.76 for TN and 0.89 for TP, (b) range of impact of forest on nutrient concentrations in surface
runoff, soil solution or groundwater (from Micro-studies, where n = 10 for TN and n = 9 for TP) (x: unweighted mean);
median TN and TP benefit is 46% and 39% respectively, (c) proportions and numbers of Meso-studies showing no change

or a decrease; using the weightings described in Section 2.2 this equates to weighted likelihood of change (WL) of 0.71 for
TN and 0.57 for TP, (d) range of impact of a 20% areal addition of forest within a catchment on nutrient concentrations in
stream water (as derived from Meso-studies, where n = 11 for TN and n = 11 for TP) (x: unweighted mean); median TN and
TP benefit is 10% and 6.5% respectively. NB: upper whiskers are obscured by the upper quartiles which have identical values

(0%) in panel (b and d).

2.2. Categorization, Meta-Analysis and Weighting of Evidence
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In preparation for establishing aspects of urban forest benefit in quantitative terms (Section 3.2), information
pertaining to the criteria (Tables 1 and 2) together with other details (e.g., basin size) were used for broad thematic
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Table 2 categorization to map the evidence (Figure 1) including its geographic distri-
Critical Appraisal Criteria bution. Categories of evidence were identified: (a) plot scale work or find-

. . ings related to individual trees (termed Micro-studies), (b) catchment-scale
Criterion Appraisal entry . . . . . L.

findings broadly discriminated from Micro-studies by drainage basin size

Study type Primary quantitative observational (QO)

Primary quantitative experimental (QE)

Review (R)
Forest as NBS Yes/No
Tree location (if known) Urban in-situ

Urban ex-situ

Riparian tree location Yes/No
Geographic location Continent (plus city/country)
Inclusion of modeling Statistical model (SM)

Deterministic model (DM)

None
Study area size Descriptive
Monitoring period 3 = long (>2 years)

2 = moderate (1-2 years)

1 = short (<1 year)

Monitoring frequency 3 = high (>fortnightly)
2 = moderate (fortnightly—seasonal)

1 = low (<seasonal)
Number of sites including control 3 = many (>6)

2 = moderate (3—6)

1 = few (<3)

(Meso-studies), (c) studies relating the impact on water quality of urban
woodland setting including riparian environments (as described further in
Section 3.1). The categories are not mutually exclusive.

Whilst many studies included observations of various nutrient species, the
majority of studies (26) presented data on total nitrogen (TN) and total
phosphorus (TP). For representing wider water quality health and its conse-
quences, we argue these are the most useful nutrient indicators. Where indi-
vidual species were reported rather than TN or TP, we assumed total nutrient
concentrations would respond similarly. In each study (Table A1) the tempo-
ral characteristics of the underpinning quantitative water quality evidence
was placed in one of three classes (storm event-based, campaign-based or
annual). To answer Q1 above, information between studies was assessed
for direction of change and where possible specific magnitude of change.
Regarding direction, this involved a basic establishment (from primary
authors' assertions) of whether or not findings demonstrated statistically
significant changes or differences related to woodland influence. Regarding
magnitude, the bringing together of findings between studies was, out of
necessity, harmonized and rationalized. For all studies, this process involved
the re-casting of the primary question in more specific terms. Findings
from Micro-studies were expressed in terms of the level to which woodland
affected nutrient concentration in soil solution, surface runoff or ground-
water samples. For Meso-studies, the quantity established was the amount
of change in stream water nutrient concentration arising from a 20% areal
addition of woodland in a catchment, which represents a substantial yet real-
istically achievable level of landuse change.

To summarize findings as representatively as possible by giving greater weight to more comprehensive and reli-
able evidence, we weighted the results using a value range of 3—10. Each study was assigned a weighting defined
as the sum of scores from the three data criteria describing monitoring period, monitoring frequency and number
of sites (Table 2). Where specific data criteria were not defined, a score of 1 was assigned by default. To represent
an additional level of confidence in findings an extra point was awarded for studies which used either determin-
istic or statistical models. Modeling applications are generally effective in accounting for confounding factors,
so this proxy for confidence was used as it could readily be assessed objectively. For each permutation of study
type (Micro- or Meso-) and nutrient (TN or TP), the weighting approach was applied to all contributing studies,
including those not showing significant change. The weighted likelihoods of decrease in nutrient concentrations
(WL values: Figures 2a and 2c) were defined as the ratios of the aggregated total weighting for studies showing
change to the aggregated total weighting for all studies.

3. Results and Discussion

3.1. Evidence Mapping

The evidence base was summarized (Figure A1) and details of the findings in each individual article tabulated

(Table A1). The prevalence of relevant studies has increased greatly in recent years with 35 of the 40 studies

published since 2010. Of the remainder, only 1 was published before 2000. Geographically at continental reso-

lution (Figure 1a), the distribution of evidence is weighted toward North America (20) with substantial numbers

in Asia (10) and the majority of remaining studies in Europe (4) and Australasia (5). Of the 40 studies, 12 related

specifically to woodland as NBS. Experimental studies (QE) comprised 8 of the 40 studies, all others being
observational (QO, including modeling-based studies). No review articles passed full-text level screening. In
a number of studies, either process-based (9 studies) or statistical (11 studies) model applications were funda-
mental for quantitative determination of the water quality benefits of woodland. Not all statistical modeling
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applications were recorded in the primary studies. Use of statistical modeling was only deemed of relevance to
our objectives where it was applied directly to explore relationships between land use assemblage (including
woodland) and nutrient concentrations.

Micro-studies (e.g., Tirpak, Hathaway, & Franklin, 2019) often included research addressing impacts of engi-
neered NBS and typically comprised measurements of soil solution, groundwater or surface runoff, as opposed to
studies of stream water and larger standing waterbodies. A number of Micro-studies included throughfall meas-
urements and often contrasted these to bulk rainfall and stemflow. Unless including observations in other media
(surface runoff, soilwater or groundwater), these were omitted as findings could not be readily related to transport
in surface waters. Many of the articles classified as Meso-studies (e.g., Shupe, 2017) used statistical modeling to
bring together earth observation of landcover with surveys of streamwater quality across a range of catchments
covering urban and forest gradients.

Regarding urban morphological setting (Q2), some studies were deemed representative of impermeable settings.
Whilst these theoretically might relate to parking lots and playgrounds, they were unanimously focused on streets
(i.e., street trees). These primarily addressed leaf litter, and associated rapid leaching and transport pathways
on impermeable surfaces. Hence these were denoted L-studies, a group worthy of particular emphasis. Activ-
ity in this area appears very geographically focused in central USA. The impact of leaf litter is of potentially
high significance, with distinct implications for urban environmental management. In contrast to impermeable
settings, trees on parklands, lawns, gardens or other permeable land were not additionally assessed in any specific
way and were not categorized as such. Other studies were specifically related to river riparian settings (classi-
fied as R-studies). These largely fell into two sub-sets. First, we found those which identified longitudinal water
quality changes along a river stretch attributable to differing levels of riparian canopy coverage. In contrast, a
second set provided information on the varying efficacy of woodland riparian buffers depending on their width
or species composition.

3.2. Primary Question: How Much Improvement in Water Quality in Urban Runoff Arises From a
Specified Increase in Urban Forest?

3.2.1. Plot-Scale Findings

Due to their small spatial extent, Micro-studies represented the core data set from which to identify effects of
woodland most likely to be unequivocal, therein having absence of or suitable control of confounding factors.
Four R-studies focused on riparian woodland buffers (Line et al., 2002; Matteo et al., 2006; van Looy et al., 2013;
Xu et al., 2021) but provided evidence of terrestrial nutrient retention at a plot scale akin to those classified as
Micro-studies. Therefore they were included in a meta-analysis of 19 studies.

Overall, the evidence showed the presence of woodland has resulted in significantly lower nutrient concentrations
in a majority of studies (Figure 2a). Of those 15 studies covering both nitrogen and phosphorus, 13 demonstrated
lower concentrations for both nutrients. The other two identified lower phosphorus concentrations attributable to
woodland but no discernible reduction in nitrogen (Barr et al., 2017; Nidzgorski & Hobbie, 2016). In some cases,
quantitative plot-scale effects were not readily extracted, mostly those where studies of riparian buffers revealed
different and distinct findings which are discussed separately later. The overall range of magnitude of effect was
considerable (Figure 2b). The respective WL scores (Figure 2a) indicate more confidence in the existence of
significant beneficial effects for TP than for TN.

The majority of experimental studies characterizing stormwater nutrient retention considered trees as part of
NBS installations. These typically involved controlling stormwater inputs and soil hydrological conditions
in mesocosms, either representing modular (Lim et al., 2021) or street-scale bioretention systems (Denman
et al., 2016; Tirpak, Hathaway, & Franklin, 2019) including those initiatives forming part of suspended pave-
ment installations (Page et al., 2015; Tirpak et al., 2019b). The studies largely showed NBS to be beneficial,
although those of Tirpak, Hathway & Franklin (2019), Tirpak, Hathway, Franklin, et al. (2019) were excep-
tions, in notable contrast to the others measuring ortho-phosphate rather than total phosphorus. In a study
primarily assessing green roofs, Barr et al. (2017) also identified beneficial stormwater TP retention by
woodland. Otherwise, and unrelated to NBS, Hathaway et al. (2012), Line et al. (2002) and Zhao et al. (2007)
all observed nutrient reductions due to woodland in stormwater runoff in sets of very small catchments of
contrasting levels of tree cover. Some studies used spatial deterministic models. Revelli and Porporato (2018)
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identified lower nitrogen loads in areas influenced by urban street trees, although deriving quantified esti-
mates of these from the study was not possible. For both TN and TP, model prediction for NBS establishment
gave substantial forest benefits of over 60% in one case (Tsegaye et al., 2018) but much smaller benefits
(6%—7%) in another where street and riparian tree buffers were simulated in an 80% urban area (Matteo
et al., 2006).

Other plot scale findings were related to soil water or groundwater compartments. Parkland lysimeter studies
revealed considerable soil solution nutrient benefits of woodland compared to grassland and attributed these
differences to soil moisture effects (Setdld et al., 2017). However, these were only achieved in sufficiently
mature deciduous plantations. Oldest trees also gave unclear effects. Nidzgorski and Hobbie (2016) found simi-
lar benefits for soil phosphate and studied implications for groundwater quality using hydrological modeling.
Nitrogen impacts were inconsistent, seemingly differing between years due to climate variability (Nidzgorski
& Hobbie, 2016), although Wang et al. (2018) identified some evidence of urban forest benefits for groundwa-
ter dissolved organic nitrogen. Whilst Decina et al. (2018) studied nutrients in throughfall and soil solution for
individual trees, they did not report soil concentrations under contrasting landcover, so data were not included in
meta-analysis.

3.2.2. Catchment-Scale Findings

From the articles passing the full-text screen, 14 studies were classified as Meso-studies. Compared to the
Micro-studies, which with a few exceptions are confined to less than a few hectares, these cover a much
wider range of spatial extent and mostly represent stream water sites. Most sites drain areas between 10
and 100 km?. It was useful to isolate these studies as they represent integrated effects of woodland nutrient
retention in a basin-wide context. Compared to the Micro-studies, a larger proportion of Meso-studies did not
show significant benefits of woodland (Figure 2¢). Of those studies covering nitrogen and phosphorus, 5 of 9
demonstrated lower concentrations for both nutrients. In the remaining studies, 2 solely showed TN benefits
with the other 2 solely showing TP benefits. Due to their larger spatial extent it was less easy to take account
of confounding factors. Most commonly it was uncertain whether the influence of point source pollution
from wastewater effluents had been avoided in site selection or removed during analysis. Brett et al. (2005)
explain these issues in detail but few studies were explicit, hence it was usually not possible to account for
confounding influences of this type. Arable land uses with high nutrient signatures were often also the source
of confounding factors. In studies where quantification of change was possible, the spread of benefits was
displayed (Figure 2d).

As to be expected from the larger scales involved, the majority of studies focused on stream waters. Two studies
(Janke et al., 2014, 2017) covered a range of domains (soils, groundwater and surface waters) and are concerned
with impacts of leaf fall on water quality at a range of scales. These are discussed in more detail in Section 3.3.1.
In addition, three studies reported stormwater runoff (Alfonso et al., 2015; Kumar et al., 2016) and soil solu-
tion (Zhang et al., 2019), the latter two studies using process-based modeling. Kumar et al. (2016) focused on
inorganic nitrogen and ortho-phosphate. A further study reported modeling of stream quality (Li et al., 2018).
A number of studies used statistical techniques which helped us ascertain effects of woodland on nutrient water
quality (Brett et al., 2005; Haidary et al., 2015; Middleton et al., 2020; Shupe, 2017; Viau et al., 2011). The
inclusion in studies of modeling techniques, either deterministic or statistical, can help isolate confounding
factors and gave more confidence when identifying the specific relationships between urban forest and nutrient
concentrations, acting amongst the myriad of other influences in a catchment. On the other hand, model skill
was not always reported. Unreported and poor model performance undermined our objectives of attributing
forest effects.

3.3. Secondary Question: Does the Occurrence of Trees in Specific Types of Urban Setting Bring About
Differing Consequences for Water Quality?

We found detailed evidence in two respects, first on how leaf litter affects nutrient export (L-studies) and second
the influence riparian woodland has on within-channel aquatic processes (R-studies). Otherwise, we also recorded
tree species information, but detailed assessment of its influence on nutrient fluxes proved complex and out of
scope of the present study. Evergreen trees did give comparably less benefit than deciduous trees in some studies
(Nidzgorski & Hobbie, 2016; Setili et al., 2017).
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3.3.1. Effects of Leaf Litter and Riparian Canopies

The fate of nutrients in leaf litter greatly depends on where it falls, either on impervious surfaces, grassland or
directly into waterbodies (Figure 1c). Six articles, mostly from central USA, assessed leaf litter decomposition
and associated nutrient release. Of these studies, 5 of 6 identified clear dis-benefits of leaf litter on leaching of
TP to waterbodies. Only 1 of 5 studies identified TN dis-benefits. Compared with phosphorus there are many
other substantial sources of nitrogen to impervious surfaces (e.g., atmospheric deposition and vehicles) (Janke
et al., 2017) making for more complex relationships.

Much higher rates of leaching of soluble reactive phosphorus were found from litter across a range of tree
species than from grass cuttings (Wallace et al., 2008). We found minimal comparable information on release
of nutrients from litter falling directly into rivers. Rapidity of leaf litter decomposition increases with frag-
mentation (Wang et al., 2020) and half-lives appear much shorter on roads (a few days) than on lawns (up to
3 months) (Bratt et al., 2017; Hobbie et al., 2014). With this understanding of leaching rates, budgeting stud-
ies in small urban basins can potentially identify significant leaf fall contributions. From a controlled study
comparing nutrient export with and without leaf removal, Selbig (2016) found that leaf litter contributed 64%
of the entire TP load to an urban river in a small basin where 13% of the woodland comprised street trees.
Similarly, Janke et al. (2017) implied a leaf litter contribution of 58% to TP from an urban basin with 17%
street tree fraction, and Bratt et al. (2017) attributed 40% of stream water TDP to leaf litter in a basin with
a similar street tree fraction. The findings of Selbig (2016) equated to an annual leaf litter contribution of
244 mg TP m~2 canopy, whilst Bratt et al. (2017) estimated a lower flux of 84 mg TP m~2. Both these estimates
markedly exceeded the reported benefits of parkland trees compared to grassland. As derived from lysimeter
drainflow observations, retention under parkland tree stands exceeded that under grassland by approximately
17 mg TP m~2 (Setili et al., 2017). Across 19 urban catchments, Janke et al. (2017) identified a strong rela-
tionship between the fraction of streets with overhanging canopies (covering a gradient 0-0.45) and stream
TP concentrations during storm events. The calculations of leaf litter influence by Bratt et al. (2017) and
Selbig (2016) represented the higher end of this street canopy gradient (between 0.36 and 0.57). Yet, as none
of the Micro- and Meso-scale studies defined relative contributions of street trees to total woodland, it was
not possible to put evidence from the L-studies of street tree TP export pathways in context. Of the articles
surveyed, only Zhang et al. (2019) and Shupe (2017) appeared to use sufficiently high-resolution earth obser-
vation to facilitate this distinction.

Four of the 9 studies classed as riparian (R) provided evidence for plot-scale retention and contributed data for
meta-analysis (Figure 2). All 9 studies also contributed other types of evidence. Characteristics of woodland
buffers enabling effective nutrient mitigation were revealed (Matteo et al., 2006; Moon et al., 2013; van Looy
et al., 2013; Xu et al., 2021). Line et al. (2002) observed beneficial effects from 9 to 15 m of riparian woodland.
Some studies used models. Matteo et al. (2006) predicted small levels of nutrient retention (3.5%—4%) in urban
environments under 60 m riparian buffers. To achieve a 10% reduction in nutrient load, Moon et al. (2013) used
modeling to prescribe 7080 m wide deciduous buffers but narrower (60-70 m) evergreen buffers. Significant
positive effects on nutrient retention of the presence of forest within 200 m of urban stream channels were
predicted (Xu et al., 2021).

Relations between riparian canopy cover and longitudinal change in river water quality have been found pervasive
across disparate studies assessing impacts of organic pollution (Ledford et al., 2017), river restoration (Ramido
et al., 2020) and stream habitat (Sudduth et al., 2011). Light blockage by canopies, despite suppressing undesir-
able filamentous algae, curtailed autotrophic nitrate uptake and resulted in much higher nutrient concentrations
than in corresponding open stretches of river (Ledford et al., 2017; Sudduth et al., 2011). Strong seasonal variation
is apparent. Only 200 m of shaded river brought about 8-fold increases in summer concentration, whereas rapid
denitrification of leaf litter from riparian trees suppressed autumn elevations in nitrate (Ledford et al., 2017).
However, findings of Ramido et al. (2020) appear contradictory; with increasing nitrate concentrations observed
along urban reaches and decreases along natural forested reaches.

3.3.2. Management Implications Related to the Secondary Question

In all settings, urban trees provide benefits by lowering TN and TP concentrations in soils and runoff and reducing
nutrient transfer to waterbodies. Trade-offs are identified in impervious and riparian environments; and although
based on limited evidence, these require specific management considerations.
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The specific pathways of nutrient loss from leaf litter to urban rivers are important and unique. Impervious surfaces
act as highly connected and ephemeral headwater conduits, with capacity to intercept and accelerate the transport
of atmospheric pollutants and derivatives of leaf litter to waterbodies (Fork et al., 2018). From a planning perspec-
tive, this has a strong bearing on whether tree planting might be preferentially focused in permeable areas (Decina
et al., 2018). More frequent street sweeping is recommended (Selbig, 2016), although risk of nutrient delivery
from leaf litter will remain substantial even if undertaken every week. In summary, whilst there is considerable
evidence for mechanisms by which water quality dis-benefits of street trees arise, at catchment scale the extent to
which leaf litter export is exacerbated in street settings compared to urban parkland is currently unknown.

The R-studies show woodland buffers effectively preventing nutrient input to rivers, but they also illustrate
complex trade-offs for water quality brought about by presence or absence of riparian canopies. Unshaded rivers
may foster localized benefits in the growing season and reduce overall levels of net ecosystem respiration. They
may however contribute to detrimental effects further downstream in urbanized river systems where nutrients
are in excess. Photosynthetic uptake only represents a temporary sink of nutrients, and reaches fed by headwa-
ters which have been warmed by direct sunlight and contain elevated phytoplankton biomass will become more
susceptible to excessive eutrophication and its unwanted secondary impacts. Sudduth et al. (2011) reflectively
summarize the difficulty and uncertainty in how to best manage urban rivers and riparian zones, which necessi-
tates balance between enhancement of ecosystem function (demonstrated by faster nutrient uptake) and habitat
restoration.

3.4. Synthesis of Overall Effects and Provision of Coefficients for Modeling Applications

The evidence collated for assessing the influence of woodland on nutrient losses to waterbodies reflects a
heterogeneous mix of study types. These include comparative studies of different land cover (e.g., Nidzgorski
& Hobbie, 2016), effects of land use change (such as establishment of NBS: e.g., Tirpak et al. (2019b)) and
process studies along hydrological pathways. Whilst this provides for a diverse set of comparators and reference
conditions, any significant benefits will all arise from the same mechanisms. These comprise an interactive
set of hydrological and biogeochemical processes, whereby woodlands reduce precipitation inputs via intercep-
tion, detain surface water and take up water and nutrients through the root system (Baker et al., 2021; Lucash
et al., 2007). This serves to reduce runoff and the attendant nutrient transfers to waterbodies.

Summary presentation of woodland nutrient retention in Meso-studies (Figure 2d) involved standardizing results
to a relatively small 20% change in total land use to forest. Standardization to 20% change reflected the weight of
evidence in the papers passing the screening process. The evidence base only covers relatively small variability
in landcover in mixed urban settings with a paucity of studies from catchments strongly dominated by one land
use. As the range of land use assemblage comprising the evidence was limited and because we took measures to
exclude from the synthesis any data reflecting the most polluting sources of nutrients (intensive agriculture and
wastewater effluent), we assume: (a) stream nutrient response to a change in woodland coverage to be linear and
independent of the initial proportion of woodland, and (b) insubstantial locational variability in the sensitivity
of stream nutrient response to change in woodland. Interpretation and application of the findings is only recom-
mended in environments within the bounds covered by the evidence base. Furthermore, we stress that carrying
out a synthesis across studies involves bringing together information that is heterogeneous in many respects.
These heterogeneities encompass a range of temporal characterizations of water quality that have contrasting
levels of focus on storm events as opposed to baseflow conditions. The type of ground cover beneath canopies
may also act as an important factor controlling water quality response, yet few studies identify whether underlying
ground is permeable let alone if the surface is thickly vegetated or bare soil. These features introduce substantial
known and unknown sources of uncertainty and we emphasize the need for caution when using the synthesis.

In order to quantify likely benefits of NBS, geospatial models of urban areas are often used. Typically, indi-
vidual model applications require single values to define inputs or retention coefficients rather than a distribu-
tion. Spatial models typically use nutrient delivery ratios, which reflect the retention capacity of specific land
use types. InVEST includes urban and sub-urban land uses. In a similar manner, the SWMM model requires
inputs of typical pollutant runoff loadings for a more detailed set of specific urban landuses. For evaluation of
prospective urban tree planting using numerical modeling approaches, we recommend incorporating findings
from our synthesis as follows:
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¢ To quantify reduction of nutrient loads in runoff due to trees, use Figure 2b to define retention coefficients,
scaling them accordingly to represent the proportion of a land use unit being converted to woodland.

e As process-based catchment hydrological models such as SWMM include runoff dynamics and river network
representation, validate the level of reduction in nutrient concentration simulated downstream at small urban
basin outlets against summary information from Micro-studies (Figure 2d).

¢ In cases where modeling covers a larger downstream spatial extent, use Micro-studies to characterize urban
tributary inputs, by applying Figure 2d to quantify the influence of differing tree coverage in contributory
basins on nutrient concentrations.

Benefits appear more limited at catchment scale (Figure 2d) than at plot scale (Figure 2b). For each permutation
of study type (Micro- or Meso-) and nutrient (TN or TP) the following was undertaken to summarize benefit. For
the subset of studies showing significant decrease, a single weighted mean percent change was calculated. As
change is by definition unidentifiable in studies not showing significant benefit, these were attributed a change
of zero. Therefore, to include consideration of the non-significant studies in the overall estimates of change, the
single weighted mean percent change (for studies showing significant decrease) was multiplied by the weighted
likelihood of decrease (WL: see Section 2.2).

Using the weighting approach, the overall summarized results of the meta-analysis are 44.2% and 47.0% decrease in
mean concentrations for TN and TP respectively in Micro-studies. For Meso-studies the decreases in mean concentra-
tion are 15.7% and 12.6% respectively for TN and TP. Introduction of weighting slightly increases the mean estimate
of change in all cases. Within the possible range (3—10), slightly higher quality scores were found for Meso-studies
(mean: 7.5) than Micro-studies (mean: 6.6) although monitoring was typically less frequent in Meso-studies. The
approach minimizes the influence of outliers, as does use of median values, which are also reported (Figures 2b
and 2d). The weighted means are slightly higher than the median values, especially for TP Meso-studies. As well as
those showing significant change, studies not showing significant change in TN and TP were included in derivation
of medians. Prior expectation for scaling-up of results was that Meso-studies would show only one-fifth the level
of retention in Micro-studies, based on the assumption that catchment-scale confounding factors such as other land
uses and groundwater sources balance out. Greater than expected retention in Meso-studies arose, perhaps implying
that riparian-related nutrient retention is substantial. This was especially the case for TN.

4. Conclusions

A number of conclusions are drawn from the review:

¢ The body of evidence identifying relationships between forest and water quality from diffuse sources in urban
settings is relatively limited. This followed exclusion of numerous studies having tenuous relevance, which
looked at wider chemical and ecological water quality impacts of land use change in larger mixed land use
river basins.

e Benefits of urban tree planting are considerable. Weighted mean and median TN and TP concentrations are
reduced by 39%—47%. Summarized findings can be incorporated into numerical models. In this context it is
important to emphasize the wide range of response found and the substantial number of studies not identifying
significant benefits.

e Although riparian tree planting reduces nutrient transfer to waterbodies, there is some evidence that it brings
about a complex set of additional water quality benefits and trade-offs. This requires further investigation,
especially the downstream consequences and for establishing a holistic picture of river health including for
example, ecosystem metabolism estimates.

e Whilst effectively taking up nutrients, street trees are a source of rapid transport of degraded leaf litter. Albeit
based on limited evidence, this can potentially be a very important pathway for TP to waterbodies. Establish-
ment of NBS does not always have positive consequences for all affected ecosystem services, and the intro-
duction of urban woodland, especially roadside planting, is no exception (Taguchi et al., 2020).

e The extent of the evidence about specific effects arising from trees in riparian and impermeable settings
is limited to very few articles, and the need for further studies of these environments is very strongly
recommended.

e Opverall, rather than providing robust conclusions, these are preliminary findings from limited available data
and set a strategic forward-looking direction for necessary activity in the field.
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As priorities for future research we recommend:
¢ Given the relative dearth of information, further gathering of general evidence for links between urban wood-
land and attenuation of polluting nutrients. For effective synthesis, it is important that future studies are suit-
ably designed to conform to the uniformity of reporting we have outlined.
¢ Investigation of the contribution of leaf litter to nutrient leaching especially in parkland and riparian environ-
ments. This would place understanding of leaf litter leaching on impervious surfaces in wider context.
e Catchment-scale studies, which discriminate between street trees, parkland trees and riparian trees when
attributing land use influences on water quality.
Appendix A
Word cloud and descriptive evidence base arising from literature search (Figure A1 and Table Al).
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