
1. Introduction
Sea ice is a key element of the climate system at high southern latitudes that controls the exchanges of energy, 
water and CO2 between the ocean and atmosphere (Hobbs et al., 2016). Changes in sea-ice extent drive both 
regional and global ocean circulation and influence the melting of the Antarctic Ice Sheet (Caillet et al., 2023; 
Kusahara et al., 2019). Despite significant progress to document the sea ice dynamics over the last decades along 
with its interannual variability (Hobbs et al., 2016; Roach et al., 2022), uncertainties remain. While the shape of 
the seasonal cycle of the Antarctic sea-ice extent is mainly controlled by the seasonal cycle of insolation (Roach 
et al., 2022), atmospheric circulation plays a dominant role in the year-to-year variability at regional scale (P. R. 
Holland & Kwok, 2012; Hobbs et al., 2016; Kusahara et al., 2019). This is partly related to large-scale modes of 
atmospheric variability such as the Southern Annular Mode (SAM), which represents the strength and position 
of westerly winds, and El-Niño Southern Oscillation (ENSO) which have a large imprint on the spatial patterns 
of  sea ice variability (Hobbs et al., 2016; Lefebvre & Goosse, 2005; Stammerjohn et al., 2008).

Over the satellite era, a slight positive trend in Antarctic sea-ice extent has been observed between 1979 and 
2015, before a marked decrease over the last few years (Parkinson, 2019), with considerable emphasis placed on 
the extremely low sea-ice extent during recent years (Turner et al., 2022). Atmospheric modes of variability are 
associated with positive and negative anomalies of sea-ice extent in different regions, so their impacts on the total 
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sea-ice extent and their trends are not clear (Polvani et al., 2021). Oceanic feedback, connections with the tropics 
and the meltwater fluxes from the Antarctic Ice Sheet may also have contributed to the observed trends (Hobbs 
et al., 2016; Rye et al., 2020). Earth System Models generally simulate a decrease in sea-ice extent in response to 
the increase in atmospheric greenhouse gas concentration and thus fail to reproduce the observed trend over the 
past decades (Roach et al., 2020). However, it is unclear if the models overestimate the response of the Southern 
Ocean to the anthropogenic forcing or if internal variability may be large enough to mask the forced trend simu-
lated by the models (Polvani & Smith, 2013; Roach et al., 2020; Zunz et al., 2013).

While our knowledge of Antarctic sea ice change over annual to decadal timescales is improving, our understand-
ing of Antarctic sea ice variability at multi-decadal to centennial timescales remains very low, mainly because 
continuous satellite observations, that provide the main source of information on the evolution of the sea-ice 
concentration, are only available from the late 1970s. Based on instrumental surface air temperature and sea-level 
pressure observations, along with climate indices in the mid-latitudes of the southern hemisphere, a recent recon-
struction of sea-ice extent in the different sectors of the Southern Ocean suggests a sea-ice extent decrease over 
the first half of the 20th century, followed by an increase in the second half (Fogt et al., 2022) (hereafter Fogt22). 
The shift occurred around the 1960s, that is, more than a decade before the start of regular satellite observations. 
This general picture is consistent with many independent estimates based on Antarctic expeditions (Edinburgh 
& Day, 2016; Titchner & Rayner, 2014), whaler's observations (De La Mare, 1997), fast ice records (Murphy 
et al., 2014a), sea ice reconstructions derived from ice-core records (Abram et al., 2010; Curran et al., 2003; 
Thomas & Abram, 2016) and climate models constrained by 20th century observations (Goosse et al., 2009). 
Some of those estimates provide local information during specific seasons, and many may suffer from large 
uncertainties, but all the evidence converges toward an overall sea-ice extent decrease before the 1960s, with 
some regional variations.

Several hypotheses, related to a possible role of wind changes, modification of the deep convection in the Southern 
Ocean, the stratospheric ozone depletion or the teleconnections with the tropics, have been proposed for changes 
in sea-ice extent over the 20th century but no convincing explanation is currently available (Goosse et al., 2009; 
Fan et al., 2014; L. Zhang et al., 2019; Fogt & Connolly, 2021; Fogt et al., 2022; Schneider & Deser, 2018; 
Landrum et al., 2017). Over longer timescales, sea ice reconstructions from marine sediment cores suggest the 
influence of the SAM and ENSO is maintained over the past millennium (Crosta et al., 2021). However, the 
sparsity of marine records, and their low sampling resolution, prevent us from obtaining a consistent picture prior 
to the 20th century (Thomas et al., 2019). Therefore, it is crucial to provide longer time-series of the historical 
Antarctic sea-ice extent to quantify the contribution of natural and forced variability in the observed changes. 
This could ultimately provide a physical explanation of the recent changes in concert with a more comprehensive 
picture of the issues of the models in reproducing the Antarctic sea ice changes over the satellite area, such as a 
potential underestimation of multi-decadal variability in models.

We describe here such a reconstruction using paleoclimate data assimilation (Hakim et al., 2016) covering the 
period 1700–2000 CE at annual resolution. Data assimilation has been applied in several recent studies to recon-
struct climate variations at high southern latitudes (Dalaiden et al., 2021; O’Connor et al., 2021). In this study, we 
expand the suite of paleoclimate archives in the data assimilation to include a new compilation of ice-core sodium 
records covering the past 2000 years (Thomas et al., 2022). This provides skilful sea ice reconstruction over a 
longer period and a larger fraction of the Southern Ocean compared to previous attempts. A strong advantage of 
data assimilation compared to other techniques is the joined reconstruction of several variables at the same time, 
in a physically consistent way. This allows investigation of the physical mechanisms responsible for the changes, 
specifically here the potential role of changes in atmospheric circulation and winds on the sea-ice extent.

2. Methods and Data
2.1. Data Assimilation Method

The objective of paleoclimate data assimilation (DA) is to optimally combine models and proxy observations 
to estimate historical climate variations (Goosse et al., 2010; Hakim et al., 2016; Widmann et al., 2010). DA 
employs a Bayesian framework (van Leeuwen,  2009), where a range of states of the climate system is first 
obtained from an ensemble of climate model simulations (referred to as the prior). DA then aims at generating 
as accurate as possible reconstructions of the state of the climate system by updating this prior based on model 
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results using available proxy observations. A large benefit of DA is to spread the information from the proxy 
locations into space but also into variables that are not assimilated, by relying on the covariance between variables 
provided by the climate model. DA-based reconstructions thus guarantee dynamical consistency among all the 
reconstructed variables.

The DA method employed in this study follows an offline (or non-cycling) approach, where existing climate 
model simulations are used to construct the prior distribution (Hakim et al., 2016; Steiger et al., 2017). The model 
simulations selected for our data assimilation-based reconstructions are made up of the three simulations of the 
isotope-enabled Community Earth System Model version 1 (iCESM1) (Brady et al., 2019; Stevenson et al., 2019) 
covering the 850–1850 CE period. Those simulations have been selected as it is the only available ensemble with 
an isotope-enable model over the past millennium. Such an ensemble is needed here to have enough particles to 
avoid degeneracy of the particle filter (Dubinkina et al., 2011) (typically here more than 1,000 particles; Figure 
S1 in Supporting Information S1).

The method is based on a particle filter (Dubinkina et al., 2011), with an implementation identical to several 
recent studies (Dalaiden et al., 2021; Klein et al., 2019; Rezsöhazy et al., 2022). In the offline version of the 
particle filter, all the years of the model simulations constitute our prior as the years are assumed to be independ-
ent (referred to as particles), which is a reasonable assumption for the variables of interest (Brennan et al., 2020; 
Hakim et al., 2016; Matsikaris et al., 2015; Okazaki et al., 2021; Steiger et al., 2017). Given that the assimilated 
proxies are annually resolved (see Section 2.2), the DA procedure operates on an annual time step. Consequently, 
the prior distribution consists of annually averaged variables and contains both the assimilated and the target 
reconstructed variables. Since the prior remains fixed throughout the DA process, the temporal variability of the 
reconstruction only comes from the assimilated proxies.

During the reconstruction process, the prior is compared with the available observations for each year of the 
reconstructed period via a proxy system model (PSM) that relates the model variables to the observed quan-
tity (see Section  2.3). Based on the difference between the model results and observations at that time, and 
taking into account the uncertainties related to the model and proxies (see Supplements), each particle receives 
a weight proportional to its likelihood knowing the observations. Particles close to observations receive a large 
weight; particles far away from observations receive a small weight. The mean reconstruction is then given by the 
weighted mean of the particles, and the range of the weighted ensemble provides a measure of the uncertainty of 
the reconstruction.

2.2. Paleoclimate Observations

The paleoclimate (or “proxy”) records selected for the data assimilation are derived from ice-core and tree-ring 
archives. As in Dalaiden et al. (2021), it includes 46 snow accumulation records from Thomas et al. (2017a), one 
additional snow accumulation record (i.e., the B40 record) from Medley et al. (2018), 33 ratio of stable isotopes 
oxygen (δ 18O) records from Stenni et al. (2017a) in ice cores and 12 tree-ring records in the Southern Hemi-
sphere, three being located in New Zealand, three in Tasmania and six in South America from the PAGES2k 
database (PAGES2k Consortium et al., 2013; Emile-Geay et al., 2017a).

Additionally, in this study, we have also assimilated sodium records in Antarctic ice cores from a recent compi-
lation (Thomas et al., 2022). We have chosen to use the sodium fluxes and not the sodium concentration as they 
have a better correlation with observations with winds over the satellite period (Thomas et al., 2022). For all the 
67 sodium flux records, we kept only the ones covering at least 70% of the 20th century, in order to include a 
period that is long enough for our reconstructions. Furthermore, the records must have at least 20 years of data 
on the 1979–2019 CE period for the calibration. We finally end up with 17 records of sodium flux. Figure S2 in 
Supporting Information S1 displays all locations of proxy records.

2.3. Proxy System Models

As in Dalaiden et al. (2021), nearby ice-core records are grouped to reduce local noise and enhance the climatic 
signal in observations. In practice, records included in 500 km grid cells are averaged, resulting in composites. 
In order to perform the model-data comparison, we must derive from model results the variable that is observed, 
at the same location as it was measured. This is done through an observation operator or proxy system model 

 19448007, 2023, 21, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
104666 by B

ritish A
ntarctic Survey, W

iley O
nline L

ibrary on [30/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

DALAIDEN ET AL.

10.1029/2023GL104666

4 of 12

(Evans et al., 2013). It is performed in a simple way for δ 18O and snow accumulation as iCESM1 simulates δ 18O 
of precipitation and the amount of snowfall minus evaporation and sublimation over the continent. We assume 
here that those two variables can be directly compared to observations and include all additional processes, such 
as post-deposition effects, in the estimate of the error (Münch & Laepple, 2018).

As iCESM1 does not directly simulate sodium fluxes or tree growth, statistical proxy system models have been 
developed for those variables. They are based on a linear regression with the ERA5 atmospheric reanalysis 
(Hersbach et al., 2020a). As we assume that most of the sodium fluxes are mainly influenced by the atmospheric 
circulation (Legrand & Mayewski,  1997; Mayewski et  al.,  2017), each composite is first correlated with the 
ERA5 500-hPa geopotential height over 1979–2019 CE. The grid cell with the highest correlation coefficient in 
a 1,500 km radius (to approximately account for the size of the 500 km grid) is then identified. The explanatory 
variable corresponds to the area-mean of the ERA5 500-hPa geopotential height on the circle of 500 km radius 
centered on the highest correlation grid cell previously identified. The regression parameters are then calibrated 
over the 1979–2019 CE period using the ordinary least squares method. We then checked for consistency that 
the composites are significantly correlated with the explanatory variable (p-value < 0.1) and this is well the case 
for the 11 sodium flux composites. Sodium ice-core records are thus assimilated as 500-hPa geopotential obser-
vations. For the tree-ring width records, the proxy system models have been built with a uni- or bi-variate linear 
model on near-surface air temperature and/or precipitation variables (annual or seasonal) using the ordinary least 
squares method (see Dalaiden et al. (2021) for more details).

3. Results
3.1. Antarctic Sea Ice Reconstruction Over the Past Centuries

The data assimilation-based reconstruction provides the spatial distribution of several variables, at the resolution 
of the climate model prior but we will discuss here only the sea-ice concentration, as this is the focus of this study, 
and the sea-level pressure, as a measure of atmospheric circulation changes over the past centuries.

The sea-ice extent has been computed for five sectors of the Southern Ocean (Raphael & Hobbs,  2014) by 
integrating the ocean surface covered by at least 15% of ice (Figure 1). The reconstruction is significantly corre-
lated (p-value < 0.05) with satellite observations over 1979–2000 CE and provides a skilful estimate, defined 
here as a positive Coefficient of Efficiency, for all sectors except for King Hakon (15°W–70°E; Table S1 in 
Supporting Information S1). The inclusion of sodium records enhanced the accuracy of our sea ice reconstruction 
compared to a previous study that did not utilize sodium records (Dalaiden et al., 2021) (Figure S2 and Table 
S2 in Supporting Information S1). This improvement is particularly noteworthy in the Weddell Sea and Ross 
Sea regions. Most sodium records are located in West Antarctica, explaining this improvement in these regions. 
Additionally, including sodium records allow us to extend the reconstructed period by 100 years. More generally, 
the performance of the sea ice reconstruction is poor in the Indian sector (0°W–90°E) (Figure S3 in Supporting 
Information S1), likely because of the small number of records available from East Antarctica (Figure S2 in 
Supporting Information S1). The highest correlation coefficients are obtained for the two sectors with the largest 
extent, the Weddell Sea sector (70°W–15°W), and the Ross Sea sector (165°–250°E) with values of 0.59 and 0.62 
respectively (p-value < 0.05). In these two sectors, the correlation coefficient remains high and significant even 
when using only the longest records (Table S1 in Supporting Information S1). However, for the other sectors, the 
correlations decrease when using only the longest records, indicating a decrease in the skill of the reconstruction 
prior to 1850 (Table S1 in Supporting Information S1). Additionally, removing the linear trend before computing 
the correlation leads to very similar results, indicating that our skill over the instrumental era primarily comes 
from interannual variability.

Unlike Fogt22, which is calibrated using those satellite observations, our methodology uses no direct information 
on the observed state of the sea-ice extent. This provides a reconstruction that is totally independent of the satellite 
observations, but this naturally results in lower correlations with those observations than that of Fogt22. Never-
theless, the correlation with Fogt22 in the Weddell Sea is high over the whole 20th century, with a correlation 
coefficient reaching 0.63 (Figure 1). Our reconstruction also displays good agreement with an independent sea 
ice reconstruction in the northern Weddell Sea (Murphy et al., 2014a) (Figure S4 in Supporting Information S1). 
This indicates a strong consensus on the evolution of the sea-ice extent in the Weddell Sea over the 20th century 
showing a significant decrease of 0.25 million km 2 in one century (Table 1; 0.259 ± 0.031 and 0.245 million km 2 
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for our reconstruction and Fogt22, respectively), despite strong multi-decadal variability. The decreasing sea-ice 
extent trend in the Weddell Sea is also consistent with the analyses of early Antarctic expeditions (Titchner & 
Rayner, 2014) that display a retreat of the summer sea-ice extent of more than 1° in latitude between the 1897–
1917 CE and 1989–2014 CE periods. Our longer reconstruction allows to put those 20th century changes in a 
longer context and indicates that values at the end of the 20th century are the lowest for the past three centuries.

In the Bellingshausen-Amundsen sector our reconstruction indicates a 20th century sea ice retreat (−0.153 ± 0.007 
million km 2), while in the Ross Sea, we observe a sea-ice extent increase (0.199 ± 0.015 million km 2), in agree-
ment with the dipole pattern obtained in a recent synthesis based on a large selection of sea ice reconstructions 
(Thomas et al., 2019), as well as with independent regional reconstructions based on the Methanesulfonic acid 
(MSA) content of nearby ice cores (Figure S4 in Supporting Information S1). By contrast, Fogt22 suggests a 
small decrease in the sea-ice extent in both the Bellingshausen-Amundsen and Ross sectors over that period. Sea 
ice anomalies are generally anti-correlated between these two sectors due to the atmospheric circulation in the 

Figure 1. Time series of anomalies of sea-ice extent for the main Antarctic regions and pan-Antarctic (in 10 6 km 2). Anomalies are relative to the 1979–2000 CE period. 
Red curves represent our DA-based reconstruction while black curves are the reconstructions from Fogt et al. (2022) and blue curves correspond to satellite-derived 
observations (Parkinson, 2019). Thin and thick lines are annual and 5-yr mean (lowess smoothing), respectively. Shading represents the standard deviation of the 
ensemble mean from our DA-based reconstruction. Annual and 5-yr correlation coefficients between our DA-based reconstruction and the one from Fogt et al. (2022) 
are displayed (the smoothing is taken into account when calculating the statistical significance). Stars indicate statistically significant correlation (95% confidence). The 
regions are defined following Raphael and Hobbs (2014): the Bellinghausen/Amundsen Sea sector (110°–70°W), the Weddell Sea sector (70°–15°W), the King Hakon 
sector (15°W–70°E), the East Antarctica sector (70°–165°E) and the Ross Sea sector (165°–250°E). We also consider the Southern Hemisphere (SH) as a whole.
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Amundsen Sea (Dalaiden et al., 2021; Hobbs et al., 2016). Due to this compensation, when integrating the trends 
over the two sectors, the total 20th century trend from Fogt22 and our reconstruction is very similar. Although 
relatively low for the Bellingshausen-Amundsen, the reconstructed values at the end of the 20th century remain 
in the range of the past 300 years for those sectors.

The total sea-ice extent in the Southern Ocean decreased by 0.287 ± 0.076 million km 2 over the 20th century 
(i.e., 2.9% per century), a value very close to the value for the Weddell Sea (0.259 ± 0.031 million km 2). A large 
multi-decadal variability is superimposed over the long-term negative trend. The sea-ice extent decrease occurred 
mainly between 1940 and 1980 CE, after which it stabilized at a consistently low level. This is in agreement 
with satellite observations and Fogt22. Our results thus indicate that the starting of satellite observations has 
been preceded by a large decrease in sea-ice extent. Reconstructing the sea-ice extent over the whole Southern 
Ocean is notoriously more difficult than locally because of strong and contrasting regional changes. However, our 
reconstruction of Antarctic sea-ice extent and Fogt22 are also significantly correlated over the 20th century, with 
a coefficient higher than 0.5 after a 5-yr smoothing (Figure 1), increasing the confidence in this result.

3.2. Changes in Atmospheric Circulation

In addition to providing a sea ice reconstruction, the data assimilation framework allows us to investigate the 
dynamical relationship with other variables, in particular wind changes. Our reconstruction of the sea-level pres-
sure is skilful over most of the Southern Ocean, with the best performance in the Atlantic and Pacific sectors 
(Figure S3 in Supporting Information S1). The reconstruction of the SAM index is significantly correlated with 
the index obtained from instrumental data (G. J. Marshall, 2003) and in good agreement with previous recon-
structions over the period 1700–2000 CE (Figure S5 in Supporting Information S1), with for instance a correla-
tion with Dätwyler et al. (2018) that reaches 0.55 (p-value < 0.05) for 5-yr smoothed series. Our reconstruction 
is not independent of theirs as we share some of the proxy times-series as input but the methodology is totally 
different since the previous reconstructions used a regression-based approach. Compared with the Dalaiden 
et al. (2021) reconstruction, the wind reconstruction is improved in the Weddell Sector, in line with enhanced 
skill in that region for sea ice.

The SAM is the dominant mode of atmospheric variability of the extra-tropical circulation in the Southern 
Hemisphere. Therefore, the SAM index provides information on many elements of the southern hemisphere 
climate. However, sea-ice extent in the various sectors is mainly controlled by regional atmospheric patterns, 
which are themselves connected with large-scale variations (Hobbs et al., 2016; Raphael & Hobbs, 2014) (Figure 
S6 in Supporting Information S1). Specifically, during the 19th century, we observe sea-ice expansion in the 
Bellingshausen-Amundsen and eastern part of the Antarctic Peninsula, which might be caused by the cyclonic 
circulation anomaly located west of the Drake Passage bringing cold air from the continent to the Bellingshaus-
en-Amundsen Sea (Figure 2). In contrast, a sea-ice extent decrease in the Weddell and Bellingshausen-Amundsen 
sectors combined with the increase in the Ross Sea over the 20th century is noticed. This can be explained in our 
reconstructions by a decrease in the sea-level pressure in the West Pacific Sector. This sea-level pressure decrease 
is consistent with the strengthening trend in the Amundsen Sea Low, a low-pressure system whose center of 

DA-based reconstruction Fogt et al. (2022) PMIP3 mean CESM1 mean

Bellingshausen/Amundsen Sea −0.153 ± 0.007* −0.019 −0.09* [−0.214;0.101] −0.094* [−0.257;−0.005]

Weddell Sea −0.259 ± 0.031* −0.245* −0.252* [−0.668;−0.049] −0.262* [−0.421;−0.112]

King Hakon −0.055 ± 0.034* −0.069* −0.417* [−1.098;−0.027] −0.512 [−0.694;−0.288]

East Antarctica −0.019 ± 0.004* −0.069 −0.423* [−0.825;0.044] −0.392 [−0.472;−0.305]

Ross Sea 0.199 ± 0.015* −0.032 −0.222* [−0.372;0.068] −0.220 [−0.499;−0.011]

SH −0.287 ± 0.076* −0.184* −1.404* [−2.818;−0.242] −1.479 [−2.039;−0.938]

Note. Asterisks indicate statistically significant trends at 95% level.

Table 1 
Regional 20th Century Trends of Regional Sea-Ice Extent (in 10 6 km 2 per Century) in the Reconstruction of Fogt et al. (2022) (Fogt et al., 2022), Our DA-Based 
Reconstruction (the Uncertainty Is Estimated as the Interquartile Range of the Posterior), PMIP3 Mean and CESM1 Mean (the Numbers in Brackets Correspond to 
the Range of the Ensemble)
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action is located off the Amundsen Sea coast (Hosking et al., 2013; Raphael et al., 2016), indicated in two recent 
reconstructions (Dalaiden et al., 2021; O’Connor et al., 2021). Southerly winds associated with a deeper Amund-
sen Sea Low bring cold air from Antarctica to the Ross Sea and push the sea ice northward, resulting in a higher 
sea-ice extent in the Ross Sea. The opposite situation occurs in the Weddell Sea and part of the Bellingshausen 
Sea as more northerly winds reduce the sea-ice extent when the Amundsen Sea Low is stronger.

3.3. Comparison With Climate Model Results

Climate models are generally not able to reproduce the observed trends in Antarctic sea-ice extent over the 
past half century, most of them simulating a large decrease in contrast to the relatively stable observed values 
(Roach et al., 2022). A similar situation is obtained here for the 20th century, with a moderate decrease in both 
our reconstruction and in Fogt22 that is a factor 5 smaller than the mean of the simulations covering the past 
centuries but still marginally in the range provided by the ensemble (Table 1). However, part of this apparent 
agreement can be due to models that might strongly overestimate the variability of the sea-ice extent, providing 
a wide range of model results (Roach et al., 2022; Zunz et al., 2013). The models tend to simulate a retreat of sea 
ice in most sectors, although an increase in sea-ice concentration can also be found at some locations (Figure S7 

Figure 2. Reconstructed 19th (top) and 20th (bottom) century trends of sea-level pressure (left; in hPa per century) and sea-ice concentration (right; in % per century) 
in our DA-based reconstruction. Stippling indicates statistically significant trends (95% confidence), which result from a method taking into account the false-discovery 
rate (FDR) (Benjamini & Hochberg, 1995).
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in Supporting Information S1). For instance, the 12 members of the CESM1 display a decreasing trend that is 
much larger than the reconstruction, showing that for this model, internal variability cannot compensate for the 
large retreat imposed by the forcing (Table 1). On a regional scale, the simulated trends of the sea-ice extent in 
the Weddell and Bellingshausen-Amundsen sectors are similar to what we obtain in our reconstruction (Table 1). 
For the East Antarctica and King Hakon sectors, a large melting is also obtained in the models but the low skill 
of our reconstruction there prevents any robust comparison. Nevertheless, a clear disagreement is obtained in the 
Ross Sea, with no model being able to reproduce the positive trend in sea-ice extent associated with the stronger 
southerly winds reconstructed for this sector.

4. Discussion and Conclusions
Our reconstruction indicates a decreasing trend in the Weddell Sea over the 20th century of 0.259 ± 0.031 million 
km 2, with the largest decrease occurring before the 1960s. This contrasts with the relatively stable sea-ice extent 
over the preceding 200 years. As a consequence, the sea-ice extent of the Weddell Sea at the end of the 20th 
century is lower in our reconstruction than any other period between 1700 CE and 2000 CE (Figure 3). Associat-
ing a significance level to this value is difficult because of the uncertainty in the reconstruction and the complex 
distribution of the anomalies. However, the sea-ice extent averaged over 1980–2000 CE is lower than the mean 
over 1800–1900 CE by more than five standard deviations of overlapping 20-yr averages over that period, show-
ing the robustness of the signal. This also suggests that the minimum values observed in the area over the past few 
years (Turner et al., 2022) are exceptional in the context of the past 300 years.

The sea ice reduction over the Weddell Sea drives a decrease of the same magnitude of the sea-ice extent over 
the whole Southern Ocean, leading also to a low value at the end of the 20th century compared to the preceding 
centuries. In our reconstruction, this similar magnitude of the trend for the Weddell Sea and the whole Southern 
Ocean is due to a strong compensation between a positive trend in the Ross Sector and a negative trend in the 
Bellingshausen-Amundsen Sector. This compensation is caused by the intensification of cyclonic circulation in 
the eastern Pacific sector, associated with a deepening of the Amundsen Sea low over the 20th century.

Despite regional variations in the sea ice trends present in some model simulations, models tend to simulate a 
larger and more spatially homogeneous retreat than our reconstruction. This is particularly the case in the prior 

Figure 3. Distributions of probability density of reconstructed 20-year anomalies of sea-ice extent for the five Antarctic regions and Antarctic as a whole. Anomalies 
are computed over 1801–1900 CE period. Gray bars correspond to the 1700–1949 CE period while red bars represent the 1950–2000 CE period. Green vertical lines 
correspond to the 1980–2000 CE anomalies.
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used in these reconstructions. All the ensemble members display a largely uniform sea-ice cover decrease over 
the 20th century, despite variations in atmospheric circulation changes between the ensemble members (Figure 
S8 in Supporting Information S1). Specifically, the models are not able to reproduce the reconstructed increasing 
trend in the Ross sector, the region where the main disagreement between models and observed trends over the 
past decades occur (M. M. Holland et al., 2017; Hobbs et al., 2015). Several processes could be responsible of 
these model biases, including a misrepresentation of ocean–sea-ice feedback (Lecomte et al., 2017), of the impact 
of the meltwater flux (Rye et al., 2020) and of the effect of the winds (Blanchard-Wrigglesworth et al., 2021; X. 
Zhang et al., 2021; Sun & Eisenman, 2021). Although we did not make specific diagnostics on the sea-ice budget 
to quantify the role of those processes, our results are consistent with an underestimation of the influence of the 
wind changes in models as the reconstructed increase in southerly winds likely contributed to the annual mean 
expansion of the sea-ice extent in the Ross Sea (Blanchard-Wrigglesworth et al., 2021).

Discerning the contributions of the internal and forced variability on the observed sea ice changes is critical to 
provide accurate projections for the coming decades. Our findings underscore the key role of winds in the sea 
ice changes. Yet, several studies have identified a clear impact of the stratospheric ozone depletion and of the 
increase in greenhouse gases in the observed trends in the SAM and the related Amundsen Sea Low (Dalaiden 
et al., 2022; England et al., 2018; Thompson et al., 2011), which play a central role in the reconstructed sea ice 
changes. However, albeit our reconstructions provide skilful estimates over a majority of the Southern Ocean, 
a comprehensive circumpolar perspective requires additional information in East Antarctica, in particular in 
the Indian sector. Such circumpolar reconstructions could ultimately be used for placing the recent Antarctic 
sea-ice extent minima (Turner et  al.,  2022) within a broader historical context. Additionally, quantifying the 
relative contributions of internal and forced variability would require a clear identification of the fingerprint of 
the response to anthropogenic forcing, which is still a challenge because of the current biases in climate model 
results (Roach et al., 2022). Therefore, future work is needed to extend the paleo-based reconstruction to East 
Antarctica and improve climate models to be able to estimate the contributions of internal and forced variability 
in recent sea ice changes.

Data Availability Statement
Our reconstructions of sea ice and winds are publicly available on Zenodo (Dalaiden et  al.,  2023). Sea-ice 
concentration data set from the NSIDC is freely available (NSIDC, 2023). Regional reconstructions of sea-ice 
extent of Fogt et al. (2022) is publicly available (Fogt et al., 2023). The Marshall index is stored on the British 
Antarctic Survey website (G. Marshall, 2003). The SAM reconstruction of Dätwyler, Grosjean, et al. (2019) is 
available via the NOAA website (Dätwyler, Neukom, et al., 2019). The ERA5 atmospheric reanalysis (Hersbach 
et al., 2020a) was downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store (Hersbach 
et al., 2020b). PMIP3 model outputs can be downloaded on the esgf website (PMIP, 2018). The last millennium 
large ensemble of CESM1 (Otto-Bliesner et al., 2015b) and iCESM1 (Brady et al., 2019; Stevenson et al., 2019) 
is freely accessible (Otto-Bliesner et al., 2015a). The Global Meteorological Forcing Data set for land surface 
modeling version 2 (Sheffield et  al.,  2006a) used for calibrating the TRW PSMs can be freely downloaded 
(Sheffield et al., 2006b). δ 18O and snow accumulation can be accessed via the NOAA World Data Center for 
Paleoclimatology (Stenni et al., 2017b), British Antarctic Survey website (Thomas et al., 2017b) and the tree-ring 
width records are available on figshare (Emile-Geay et al., 2017b). The database of Na+ ice-core records from 
Thomas et al. (2022) is stored at the UK Polar Data Centre (Thomas, et al., 2017c). The South Orkney Fast-Ice 
Series (SOFI) of Murphy et al. (2014a) is stored on the British Antarctic Survey website (Murphy et al., 2014b).
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