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A B S T R A C T

There is an immediate need to develop accurate and reliable global hydrological forecasts in light of the
future vulnerability to hydrological hazards and water scarcity under a changing climate. As a part of the
World Meteorological Organization’s (WMO) Global Hydrological Status and Outlook System (HydroSOS)
initiative, we investigated different approaches to blending multi-model simulations for developing holistic
operational global forecasts. The ULYSSES (mULti-model hYdrological SeaSonal prEdictionS system) dataset,
to be published as ‘‘Global seasonal forecasts and reforecasts of river discharge and related hydrological
variables ensemble from four state-of-the-art land surface and hydrological models’’ is used in this study.
The first step for improving these forecasts is to investigate ways to improve the model simulations, as global
models are not calibrated for local conditions. The analysis was performed over 119 different catchments
worldwide for the baseline period of 1981–2019 for three variables: evapotranspiration, surface soil moisture
and streamflow. This study evaluated blending approaches with a performance metric based (weighted)
averaging of the multi-model simulations, using the catchment’s Kling-Gupta Efficiency (KGE) for the variable
to define the weight. Hydrological model simulations were also bias-corrected to improve the multi-model
blending output. Weighted blending in conjunction with bias-correction provided the best improvement in
performance for the catchments investigated. Applying modelled weights during blending original simulations
improved performance over ungauged catchments. The results indicate that there is potential to successfully
and easily implement the bias-corrected weighted blending approach to improve operational forecasts globally.
This work can be used to improve water resources management and hydrological hazard mitigation, especially
in data-sparse regions.
1. Introduction

Freshwater supply is fundamental to human existence; however
droughts can be devastating (e.g., Wilhite et al., 2007), and floods
very destructive (e.g., Bubeck et al., 2017). Considerable advances in
rainfall predictions, at daily to seasonal timescales, in recent years do
not always solve the problem of predicting floods (e.g., Kobold and
Sušelj, 2005) and droughts (e.g., Ali et al., 2018) due to propagating
uncertainties, associated with hydrology and land processes. Any land
surface and hydrological model, dynamical or empirical or data-driven,
needs information about the properties of the geology, vegetation,
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soil types etc., which may not be easily available over data-sparse re-
gions. Thus, large-scale global hydrology and land surface models have
uncertainties associated with model parameters derived from global
datasets of soil properties, topography and vegetation cover (Sood and
Smakhtin, 2015). Despite this, Schellekens et al. (2017) show that using
the average of a suite of such models can perform as a reasonable proxy
for a locally calibrated model in some circumstances. This gives us hope
that we could provide reasonable regional forecasts of hydrological
conditions in data-sparse regions.
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The World Meteorological Organization’s (WMO) Global Hydro-
logical Status and Outlook System (HydroSOS) initiative, approved
for implementation at WMO Congress (Resolution 25 Cg-18), aims to
utilise global scale modelled products from multiple sources to provide
current global hydrological status and sub-seasonal to seasonal out-
looks (Jenkins et al., 2020). The HydroSOS initiative builds on existing
knowledge and data to deliver monthly global hydrological forecasts
that combine model output with local, national and regional scale data
so that the final product is locally informed (WMO, 2021). This is
achievable, as new sources of observations and state-of-the-art models
are closing the knowledge gap in the understanding of the water cycle
and its forecasting (Lahoz and De Lannoy, 2014; Lavers et al., 2020).
Multi-model hydrological forecasts have been shown to provide reliable
predictions for different regions (Velazquez et al., 2011; Wanders and
Wood, 2016). As blending forecasts from multiple models has been
successful regionally (e.g., Ajami et al., 2006), it can be applied globally
to provide holistic hydrological predictions. However, it is critical that
any new hydrological forecast’s blending is tested in a scientifically
justifiable and operationally implementable way.

Different multi-model blending techniques have long been used
to improve forecasts by leveraging the skill of certain models while
excluding the errors in others (e.g., Shamseldin et al., 1997; Roy
et al., 2020). The simplest blending method uses an average of all
model members, which can include model simulation standardisa-
tion, to remove forecast bias (Georgakakos et al., 2004; Ajami et al.,
2006). However, the simple average blending does not exploit en-
hanced skill of certain models selectively, which can be implemented
using weighted averaging methods by assigning weights to the model
members (e.g., Diks and Vrugt, 2010). Weights can be estimated based
on different methods e.g., multiple linear regression (Wanders and
Wood, 2016), sub-ensemble selection methods (Thober and Samaniego,
2014; Thober et al., 2015), constrained least squares technique (Ajami
et al., 2006), using machine learning methods (Zaherpour et al., 2019),
or Bayesian model averaging methods (Darbandsari and Coulibaly,
2019), which reward the skillful models and penalise the less skillful
ones (Arsenault et al., 2015). However, some of these methods can
become computationally intensive and time consuming when applied
at a global scale (Neuman, 2003; Jozaghi et al., 2021; Wang et al.,
2023). Studies can also assign weights to the models directly based
on their skill metrics such as in Arsenault et al. (2015), which can
be less computationally intensive methods but may not be optimal
over ungauged basins (Arsenault and Brissette, 2016). Further, al-
though weighted averaging outperforms individual models most of the
time (e.g., Abrahart and See, 2002; Duan et al., 2007), sometimes
the best performing individual model performs better (e.g., Arsenault
and Brissette, 2016). Thus, studies have shown that it is imperative
to rigorously investigate any new modelling system’s post-processed
output performance for generalised global applications (Duan et al.,
2007).

Our ultimate goal is to develop a methodology to improve global
hydrological predictions which can be best achieved by using global
multi-model forecast products. Such forecast products can help us
deliver holistic (i.e. forecasts for different variables over the same
catchments) and skillful predictions while sending a simplified mes-
sage to the users through multi-model blending (Roy et al., 2020).
Given the global nature of our end product, it is essential that the
blending method used should be computationally non-intensive while
being sophisticated enough to exploit the skill of models. Considering
the computational cost has a three-fold objective: the economic cost,
time-efficiency and carbon footprint, all are especially important if
these methods are to be applied in an operational set-up. The latter
(carbon footprint of intensive computational science) is a growing
concern in the scientific community in an era where international
efforts are focused in achieving Net Zero, as the energy needed to
power intensive computing is the main source of green-house gas
2

emissions from scientific activities (Eichhorn et al., 2022; Lannelongue
and Inouye, 2023). Since the model blending is a post-processing
step of an already computationally expensive product (ensemble of
global distributed hydrological simulations), it is paramount that the
additional carbon footprint of this step is kept as minimal as possible,
while still providing added value to the end product. Further, bias-
correcting the simulations using simple methods before blending the
multi-model output has shown to significantly improve performance for
the forecasts (e.g., Dion et al., 2021). Thus, in this study we analyse the
possibility of using the performance metric of the model as a weight
for blending a global multi-model output in a simple and computation-
ally inexpensive way, tested using the baseline simulations, and also
investigate the improvements by bias-correcting the simulations before
blending. We test our blending methods on ungauged catchments by
modelling the performance of the models over catchments without
observations for three different hydrological variables: streamflow, soil
moisture and evaporation. We compare our blending method, which
uses model performance metrics as weights, against the arithmetic
averaging method, which was used as the benchmark. These methods
investigated in the study provide a promising future for global water
resource management and flood forecasting, especially over data-sparse
regions.

The article is organised as follows: Section 2 introduces the data;
the methods used are provided in Section 3; the results are described
in Section 4; the recommendations from our results (Section 5.1),
limitations of our study (Section 5.2) and future avenues of research
(Section 5.3) are discussed in Section 5; and summary and conclusions
are given in Section 6.

2. Data

For this study, we used 119 sample catchments across the world
(Fig. 1). All of the study catchments have Global Runoff Data Cen-
tre (GRDC; BfG, 2020) daily streamflow data available, along with
catchment characteristics (Table S1). We wanted to evaluate the per-
formance of more than 100 basins, with extensive spatial coverage
across the world and large hydroclimatic heterogeneity to be able to
investigate the performance of ULYSSES forecasts across the globe for
different types of catchments. Thus, the 119 catchments were chosen
on the following criteria: (i) catchments are larger than 5000 km2;
ii) distributed in most hydroclimatic zones (based on the Budyko
nalysis); (iii) manual quality check of observations did not reveal
ignificant errors (abrupt changes or constant values); (iv) at least
years of GRDC observed data were available on record between 1981–
019; (v) subjective selection of catchments to be spread across the
lobe (Samaniego et al., 2020). Setting a larger threshold for observa-
ion years for catchment selection would have led to fewer catchments
vailable over Africa, Asia and South America. Our selection criteria
eft us with 7 catchments in Africa, 16 in Asia, 34 in South America,
5 in Northern America, 10 in Australia and 17 in Europe (Fig. 1).

We used output from the ULYSSES contract (mULti-model hYdro-
ogical SeaSonal prEdictionS system; Samaniego et al., 2020; UFZ,
020) in this study, which will be available at Copernicus Climate
hange Service (C3S) as global seasonal forecasts and reforecasts of
iver discharge and related hydrological variables ensemble from four
tate-of-the-art land surface and hydrological models. For brevity, we
efer to this dataset as ULYSSES dataset. The four land surface and
ydrological models are:

• mesoscale Hydrologic Model (mHM; Samaniego et al., 2010; Kumar
et al., 2013) is a spatially explicit distributed hydrological model
developed by Helmholtz Centre for Environmental Research.

• PCR-GLOBWB (PGB; Sutanudjaja et al., 2018) is a grid-based
global hydrology and water resources model developed at Utrecht
University.

• Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land
(HTESSEL; Johnson et al., 2019) is the land-surface model of the
coupled European Centre for Medium-Range Weather Forecasts

system 5 seasonal forecasting model.
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Fig. 1. 119 Catchments used in this study (shaded). Please see Table S1 for full details of each catchment.
• Joint UK Land Environment Simulator (JULES; Best et al., 2011;
Clark et al., 2011) is a land-surface model developed by a wide
community of researchers, coordinated by the UK Met Office
and UK Centre for Ecology and Hydrology. It is used both as a
standalone model and as the land surface component in the Met
Office Unified Model.

ULYSSES uses the four hydrological models to output multiple
hydrological variables as gridded output (e.g., runoff, evapotranspira-
tion, soil moisture; Samaniego et al., 2020). The streamflow output of
different rivers for all four models is derived through the multiscale
routing model (mRM; Thober et al., 2019). In this study we evaluate
blending of three output variables: evapotranspiration (ET), surface soil
moisture (SM), and streamflow (SF) for the modelled baseline period
of 1981–2019. We use monthly-mean values for the three variables
extracted for the 119 catchments. SF is extracted at the catchment
outflow point on the river network for each of the 119 catchments
to compare against the observations (Figure S1). ET and SM are ex-
tracted as area-averaged values for the same 119 catchments from
gridded output (Figures S2; S3). We derive the catchment extent from
the digital elevation information from Global Multi-resolution Terrain
Elevation Data 2010 (GMTED2010; Danielson and Gesch, 2011) for
each catchment.

We validate our blended output against observations for the three
variables. For ET, we use Global Land Evaporation Amsterdam Model
(GLEAM) version 3.5a actual evaporation data (Figure S2a; Martens
et al., 2017). For SM, we use the European Space Agency (ESA) Cli-
mate Change Initiative (CCI) volumetric soil moisture product version
02.2 (Figure S3a; Liu et al., 2011; Dorigo et al., 2017). For SF, we
use GRDC observed SF from The Global Runoff Data Centre, D-56002
Koblenz, Germany (Figure S1; GRDC-WMO, 2021). Using these obser-
vations leads to some missing observations for SF (Figure S1) and some
catchments having no observed data for SM (Figure S3a), implications
of which is discussed in Section 5.2. However, we evaluate all the
three variables for the same 119 catchments, as we would like to
analyse if the ULYSSES output can provide skillful yet holistic hydro-
logical forecasts over different regions of the world. Further, as we
are evaluating the performance of the models at catchment-scale, we
need to have observations representing the whole catchment, which are
usually generated through remote sensing or modelling network of in-
situ observations for ET and SM, rather than using station (or point)
observations, which may not be able to represent intra-catchment
variability. Thus, this method of analysis allows us to investigate if
ULYSSES can provide hydrologically consistent global forecasts.
3

3. Methodology

To provide a skillful blended hydrological products using the
ULYSSES simulations, we evaluate different blended approaches ap-
plied on native (original) and bias-corrected model variables at a
monthly time step for all the 119 catchments for the baseline period
1981–2019. We also evaluate the application of our methods on daily
vs. monthly SF values. We further investigate the application of blend-
ing approaches on ungauged stations. Fig. 2 summarises the methods
used in this study as a flow chart. The following subsections describe
these approaches in detail.

3.1. Blending approaches

We use the following two blending approaches, to generate blended
output for native and bias-corrected simulations.

1. Arithmetic average: The simplest form of blending multi-model
output is an average of the four model variables without any
weighting, as used in Shamseldin et al. (1997), Arsenault et al.
(2015), and will be referred to as the ‘‘arithmetic blending’’
approach. Fig. 3 shows an example of the observed and native
simulated variables along with the arithmetic blended versions,
which is referred to as native arithmetic output. We also blend
the bias-corrected variables (discussed in Section 3.2) and the
blended output is referred to as bias-corrected arithmetic output
(Figs. 2; 3). The performance of the arithmetic blended output
is used as a benchmark to compare other blending approaches
in this study.

2. Weighted average: The weighted average method uses weights
based on model performance, and from here on is referred to
as ‘‘weighted blending’’ approach. Model performance at each
catchment was assessed for monthly-mean variables (ET, SM,
SF) from all four models over the baseline period, using the
Kling-Gupta Efficiency (KGE; Gupta et al., 2009). The KGE met-
ric evaluates the model performance for contribution of mean,
variance and correlation (see Section 3.4 for more detail). For
this approach, the KGE metric for each model and variable is
identified as their respective weights, and the blended output is
calculated using weighted averaging (native weighted and bias-
corrected weighted). Please note that each catchment has its
own set of weights. Here we apply weighted arithmetic mean,
in which sum of the catchment values multiplied with their
respective weights is divided by the sum of weights. We only use
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Fig. 2. Schematic showing the different blending approaches, based on different types of weighting, used for native (original) simulations from ULYSSES (blue –> red) and
bias-corrected product (yellow –> green), to generate five different blended products (black). * denotes that we weighted the native and bias-corrected simulations using each
variable’s own KGE (native weighted and bias-corrected weighted) but also used SF KGE as weights for ET and SM blending (native SF-weighted and bias-corrected SF-weighted).
† modelled KGE as weights are only applied for SF native simulations.
Fig. 3. Monthly time series for 1993 of observed (black solid line), individual models (coloured dotted lines) and blended output (grey dashed lines) for (a–c) native and (d–f)
bias-corrected simulations of (a, d) ET (×10−5 kg m−2 s−1), (b, e) SM (×10−1 m3 m−3), (c, f) SF (×105 m3 s−1) over an example catchment for Sao Paulo De Olivenca, Amazon River,
Brazil (ID = 3623100).
positive KGE values as weights; for any model with a negative
KGE metric the weight is set to zero, and thus ignored. For
any catchment and variable with all models showing negative
KGE metric, we use arithmetic blending approach instead i.e. all
model weights are set to one. This only occurs for 25 catchments
for SM, 1 catchment for SF and no catchments for ET for native
simulations and only 8 catchments for SM bias-corrected simu-
lations. Fig. 3 shows examples of the native and bias-corrected
variables for each model along with their weighted blended
counterparts, referred to as native weighted and bias-corrected
weighted output (Fig. 2). We also test another version of the
original ‘‘weighted blending’’ approach, in which we use the KGE
metric calculated for SF, and apply it to the ET and SM simula-
tions. We will refer to this method as ‘‘SF-weighted blending’’
(native SF-weighted and bias-corrected SF-weighted outputs for ET
and SM). This approach is intended to derive blended hydro-
logical products that still maintain the catchment hydrological
balance, which for some applications can be more important
than getting the ‘‘best’’ possible estimate for all three variables.
4

3.2. Bias-correction

The bias-correction methodology tested here is based on Farmer
et al. (2018), and is applied by Sanchez Lozano et al. (2021) to opera-
tionally bias-correct GEO Global Water Sustainability (GEOGloWS) SF
forecasts. Although Farmer et al. (2018) recommend 14 complete years
of observed data to be able to accurately calculate the percentiles, the
method is applied here to all stations, regardless of the length of record
(shortest record is of 5 years). However, the median length observations
is 29 years over all study catchments (compared to the full period of
39 years between 1981–2019) and out of 119 catchments, 98 have
more than 14 years of observations. Please note we have not performed
bias-correction for SM over catchments with fully missing data.

For bias-correction of SF model output, we first calculate a Flow
Duration Curve (FDC) for all data (for daily data this is done for
each month separately) in observed and simulated time series. Fig. 4
shows an example of the FDCs for an example catchment for the model
HTESSEL. Using the FDCs, the non-exceedance probability of every
simulated value can be estimated. The observed SF value corresponding
to that non-exceedance probability can be deduced. The simulated
value is then converted by replacing it with the equivalent observed
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Fig. 4. Percentage of non-exceedance against the SF rate for observed (blue) and native simulated (red) SF for HTESSEL over an example catchment for Sao Paulo De Olivenca,
Amazon River, Brazil (ID = 3623100). The yellow arrows show the steps involved in the bias-correction process: (1) For a given native simulated flow, the point on the simulated
FDC (red line) is identified; (2) the non-exceedence corresponding to that simulated flow is determined, and (3) the observed flow for that same non-exceedence is determined
from the observed FDC (blue line), and this value corresponds to the bias-corrected flow.
SF to the same non-exceedance probability (i.e. quantile mapping
method). This will be referred to as the bias-corrected SF. KGE metrics
are calculated for all the bias-corrected SF simulations from the four
models, and arithmetic and weighted blending approaches are applied
to get bias-corrected arithmetic and bias-corrected weighted blended
SF time series. For bias-correction of ET and SM, the same approach is
applied replacing SF in the FDC by the variable in question. Please note
that for the daily SF, bias-correction was performed for each month
separately, whereas for the monthly data (SF, ET and SM), the time
series was not split into months, as the records were not long enough.

3.3. Modelling KGE weights at ungauged basins

To apply the weighted average blending technique (Section 3.1) at
ungauged basins, the KGE metric needs to be modelled, which can then
be used as weights for each model at the ungauged basins for blending.
In this study we refer to the ungauged basins where the observed data
is hidden for testing the method over regions with no observations. This
method is only tested for SF, as other hydrological variables (ET and
SM) have observations from remote measurements available all over
the globe in the form of gridded data and thus do not have ‘‘ungauged’’
catchments.

Catchment characteristics extracted for all 119 study catchments
from the HydroATLAS dataset (Linke et al., 2019) were used to build
the KGE statistical model (KGE-stats-model) to estimate SF KGE at ‘‘un-
gauged’’ catchments using statistical approaches. From the full list of 56
catchments attributes available in HydroATLAS, 17 attributes most rel-
evant to hydrology and land surface modelling were retained (Table 1).
For a full description of the variables, please see the HydroATLAS
RiverATLAS catalogue (Lehner, 2019).

The number of variables were then further reduced by analysing the
cross-correlation between the catchment attributes and the hydrologi-
cal models performance (KGE metric). Cross-correlation between the
17 variables allows for the identification of a subset of 9 variables with
high correlations. For the modelling of KGE at ungauged catchments,
we tested different machine learning methods: Multiple Linear Re-
gression, Polynomial Regression, Support Vector Regression, Decision
Tree Regression, Random Forest Regression, and XGBoost Regression.
For each of these six methods, we conducted two combinations of
experiments: (i) with all 17 variables, and with a subset of 9 variables
(selected after cross-correlation analysis) as input predictors; (ii) with
5

Principal Component Analysis (PCA) to reduce dimensionality, and
without PCA.

In addition to the Regression methods, an Artificial Neural Network
(ANN) with one hidden layer was also built. The ANN was tested
with a range of different number of neurons in the hidden layer,
different batch sizes and number of epochs. All the regression and ANN
models were built separately for each of the four hydrological models,
and assessed individually to identify the best KGE-stats-model. This
means that each hydrological model has a different statistical model
to estimate KGE. Therefore, the best KGE-stats-model for HTESSEL is
not necessarily the same as the one for JULES, for example.

To assess the performance of each KGE-stats-model, their R2 score
(coefficient of determination) was compared using the Leave-One-Out
Cross-Validation (LOOCV) method (Sammut and Webb, 2010). LOOCV
consists of leaving one observation out from the dataset to build the
model, and using the observation left out to assess the model. This
process is repeated for every observation available in the dataset, where
each time a different observation is left out. The best KGE-stats-model
based on this assessment was selected for each of the four hydrological
models, and were used to produce a set of estimated KGE metric for
all four models at all 119 case study catchments. We expand on the
modelling of KGE metrics in Section 4.3.

The blended output is calculated after applying the new mod-
elled KGE metrics as weights to the native SF simulations (referred
to as native modelled weighted). This ‘‘modelled weighted blending’’ ap-
proach, identifies how well the weighted blended approach for SF per-
forms over ungauged stations. KGE of the resulting modelled weighted
blended product is calculated to quantify and compare its performance
with the original weighted approach.

3.4. Validation

Using the methods described in Section 3.1–3.3 we develop different
blended products (Fig. 2) for the three variables (ET, SM, SF) over the
baseline period (1981–2019) for the 119 catchments:

1. Native arithmetic blended output
2. Native weighted blended output (along with native SF-weighted

blended output for ET and SM)
3. Native modelled weighted blended output (only for native SF

simulations)
4. Bias-corrected arithmetic blended output
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Table 1
17 Catchment characteristics used in this study, extracted from the HydroATLAS dataset.

Variable full name Abbreviation used Source data Reference

Natural Discharge discharge WaterGAP v2.2 Döll et al. (2003)
Land Surface Runoff runoff WaterGAP v2.2 Döll et al. (2003)
Lake Volume lake HydroLAKES Messager et al. (2016)
Reservoir Volume reservoir GRanD v1.1 Lehner et al. (2011)
Degree of Regulation degree_regulation HydroSHEDS & GRanD Lehner et al. (2011)
Catchment Area area HydroSHEDS & WaterGAP Lehner and Grill (2013)
Terrain Slope slope EarthEnv-DEM90 Robinson et al. (2014)
Climate Zones climate_zone GEnS Metzger et al. (2013)
Precipitation precip WorldClim v1.4 Hijmans et al. (2005)
Potential Evaporation pet Global-PET Zomer et al. (2008)
Snow Cover Extent snow MODIS/Aqua Hall and Riggs (2016)
Forest Cover Extent forest GLC2000 Bartholome and Belward (2005)
Cropland Extent crop EarthStat Ramankutty et al. (2008)
Pasture Extent pasture EarthStat Ramankutty et al. (2008)
Irrigated Area Extent (Equipped) irrigation HID v1.0 Siebert et al. (2015)
Soil Water Content soil_water_content Global Soil-Water Balance Trabucco and Zomer (2010)
Human Development Index human_dev_index HDI v2 Kummu et al. (2018)
s
t
m
o
a

5. Bias-corrected weighted blended output (along with
bias-corrected SF-weighted blended output for ET and SM)

The respective observed datasets are used to validate the native and
ias-corrected model simulations and the blended outputs. Validation
an only be carried out for the period over which the observed data
s available, and thus, model simulations and blended output (for SM
nd SF) are masked over the period where the corresponding observed
ata is missing. Please note that some catchments are missing for SM
ue to missing observations for the whole study period (see Figure S3a;
ection 2).

We verify the bias, mean and variance of the model simulations and
lended output using the KGE and Nash–SutcliffeEfficiency (NSE; Nash
nd Sutcliffe, 1970) metrics calculated at monthly time step.

𝐺𝐸 = 1 −
√

(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚
𝜎𝑜𝑏𝑠

− 1)2 + (
𝜇𝑠𝑖𝑚
𝜇𝑜𝑏𝑠

− 1)2 (1)

where r is the linear correlation coefficient between observations and
model simulations, 𝜎𝑠𝑖𝑚 and 𝜎𝑜𝑏𝑠 are standard deviations of the simula-
tions and observations respectively, and 𝜇𝑠𝑖𝑚 and 𝜇𝑜𝑏𝑠 are means of the
simulations and observations respectively. KGE equal to 1 indicates a
perfect agreement between the simulations and observed; KGE less than
0 indicates poor model performance Gupta et al. (2009).

𝑁𝑆𝐸 = 1 −
∑𝑡=𝑇

𝑡=1 (𝑉𝑠𝑖𝑚(𝑡) − 𝑉𝑜𝑏𝑠(𝑡))2
∑𝑡=𝑇

𝑡=1 (𝑉𝑜𝑏𝑠(𝑡) − 𝜇𝑜𝑏𝑠)2
(2)

where 𝑇 is the total number of time steps, 𝑉𝑠𝑖𝑚(𝑡) is the model sim-
ulation at time t, 𝑉𝑜𝑏𝑠(𝑡) is the observations at time t, and 𝜇𝑜𝑏𝑠 is the
mean observed variable. NSE equal to 1 indicates perfect correspon-
dence between model and observations; NSE equal to 0 indicates that
the model simulations have similar performance as the mean of the
observations; and NSE less than 0 indicates model simulation is worse
than the observed mean.

The KGE metric is one of the most commonly used metric to
evaluate model performance in the field of hydrology (Knoben et al.,
2019) and has been extensively used for model calibration and evalu-
ation (e.g., Siqueira et al., 2018; Sutanudjaja et al., 2018). For clarity,
we would like to draw the reader’s attention to the different uses made
of the KGE metric throughout this study:

• KGE was used to define the ‘‘weights’’ assigned to each of the four
models for the weighted blending approach. The KGE metric is
used instead of NSE metric, because KGE improves upon some
of the drawbacks of NSE, associated with underestimating runoff
variability, by better representing the constitutive components:
correlation, variability bias and mean bias (Gupta et al., 2009).
For native and bias-corrected simulations respective KGE values
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have been calculated for each catchment and each model. As c
each variable will have its own set of weights, the water balance
of the blended product will not be maintained. Therefore, as a
separate experiment, KGE calculated for SF is also applied to ET
and SM (SF-weighted blending), so that the same set of weights is
used for all variables, which maintains catchment water balance
within each model. KGE for SF was also modelled using statistical
approaches, to be used as weights for the native simulations
to produce the modelled weighted blending to be tested for
ungauged catchments.

• KGE was used as one of the ‘‘validation’’ metrics, to compare
the performance of the different individual models and blending
approaches for each variable (ET, SM and SF) and for native and
bias-corrected simulations.

This study also compares the baseline model simulations and
blended output as categorical forecasts, divided into 5 categories:
low (0%–10%), below normal (10%–33%), normal (33%–67%), above
normal (67%–90%) and high (90%–100%). These categories can be
combined to consider the outputs simply as equal terciles, but the
five categories provide the likelihood of more extreme events better.
The categorical verification of simulation allows for the evaluation
of forecast skill for specific categories rather than for models identi-
fying the exact value of the variable. Simulated, bias-corrected and
blended outputs’ categorical skill is measured using Accuracy (ACC;
Wilks, 2011) and Heidke skill score (HSS; Heidke, 1926). These skill
scores represent absolute categorical skill (ACC) of the output and skill
relative to that of a random chance (HSS).

𝐴𝐶𝐶 = 1
𝑁

𝐶
∑

𝑖=1
𝑛(𝑆𝑖, 𝑂𝑖) (3)

where 𝑁 is the total number of simulations, C is the number of
categories (5 for this study) and 𝑛(𝑆𝑖, 𝑂𝑖) are the number of times that
the model simulates correctly for the category i. ACC measures how
many times the model hits the correct category, but it can be influenced
by the most common category. ACC has range of 0 to 1 with 1 for a
perfect simulation.

𝐻𝑆𝑆 =
1
𝑁

∑𝐶
𝑖=1 𝑛(𝑆𝑖, 𝑂𝑖) −

1
𝑁2

∑𝐶
𝑖=1 𝑛(𝑆𝑖)𝑛(𝑂𝑖)

1 − 1
𝑁2

∑𝐶
𝑖=1 𝑛(𝑆𝑖)𝑛(𝑂𝑖)

(4)

where 𝑁 is the total number of simulations, C is the number of
categories (5 for this study), 𝑛(𝑆𝑖, 𝑂𝑖) are the number of times the model
imulates correctly for the category and 𝑁(𝑆𝑖)𝑁(𝑂𝑖) is the product of
he number of simulations and observed for a particular category i. HSS
easures only the correct model simulations which occur beyond that

f a random chance. HSS ranges from –∞ to 1, 1 is the perfect score and
nything less than 0 shows that correct simulations are due to random

hance.
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Fig. 5. KGE-monthly range over all 119 catchments (boxplots) for (a) ET, (b) SM and (c) SF shown for all 4 models simulations (the first four boxplots in colours), native arithmetic
blended product (the fifth boxplot in light grey), native weighted blended product (the sixth boxplot in dark grey). The six boxplots on the right hand side are same as the left
hand side ones showing the KGE for the bias-corrected model simulations (coloured boxplots), blended bias-corrected arithmetic blended product (in light grey), bias-corrected
weighted blended product (in dark grey). Please note weights are derived from KGE metrics for each individual variable. (d–f) same as (a–c) but for NSE-monthly.
4. Results

4.1. Arithmetic and weighted blending

For each catchment, arithmetic average and weighted average
blended output is calculated from all four model native and bias-
corrected simulations for all three variables (Section 3.1). Fig. 3a–c
shows an example catchment native model time series for all four
models for the three variables and the native blended model outputs
for 1993. For the Sao Paulo De olivenca River catchment all models
underestimate ET (Fig. 3a), overestimate SM (Fig. 3b) and have their
phase shifted for peak SF (Fig. 3c). Native PGB simulations perform best
over this catchment. Blending native simulations reduces the errors,
but the weighted blending only shows improvement over arithmetic
blending for SM in this catchment. We note that different catchments
and different years have very different errors and improvements with
blending and bias-correction (not shown). Thus, we summarise our
results using KGE metric (Figure S4; Fig. 5).

Comparison between the native simulations and weighted blended
SF shows that the blended product out-performs the individual models
for 75% of the catchments (Figure S4c; Fig. 5c), but there is only mod-
erate improvement for ET and SM (Figure S4a, b; Fig. 5a, b). The native
arithmetic blended has lower performance than the native weighted
blended output for all three variables (Fig. 5). For ET and SF, mHM
native simulations have similar performance to the native arithmetic
blended output. mHM may be performing better as it uses multiscale
parameter regionalisation (MPR) technique which can parameterise
across basins and scales using nonlinear transfer functions and is shown
to perform better than standard regionalisation (Samaniego et al.,
2010).

SM has the largest spread in KGE metric compared to ET and SF,
despite lower number of catchments verified (Figure S4b; Section 2).
7

For SM, 15 catchments (Figure S4b) have no observations for the
whole baseline period (Figure S3a). For all four models, KGE metric
for SM is, in general, lower than for the other two variables suggesting
that SM is particularly challenging to estimate from global models or
from satellite sensors for observations. Please see Section 5.2 for more
detailed discussion.

The same arithmetic and weighted blending methods are also used
to blend the bias-corrected simulations using the KGE metric from the
bias-corrected simulations (Fig. 3d–f). Modelled KGE metric is used for
weighted averaging of native simulations to evaluate performance of
the method over ungauged catchments for SF. These two points will be
discussed in the subsequent subsections.

4.2. Bias-correction of variables

Each model simulation is bias-corrected using the method described
in Section 3.2. As the ULYSSES global product cannot be calibrated to
every location, the bias-correction further aligns the estimated stream-
flow to local conditions, and thus provides an added value for users
applying the forecasts at local-scale. The new KGE metric from the bias-
corrected model simulations is used as weights for blending the bias-
corrected model simulations, to calculate the bias-corrected weighted
blended output. Bias-corrected simulations are also simply averaged to
get the bias-corrected arithmetic blended product. Fig. 3d–f shows an
example of bias-corrected and blended output. Bias-correction (Fig. 3d,
e) improves the native ET and SM simulations (Fig. 3a, b). For SF, bias-
correction (Fig. 3f) improves the magnitude but does not correct the
timing i.e. the phase shift seen in the native SF simulations (Fig. 3c).

As expected, the bias-corrected simulations for individual mod-
els outperform the native simulations for all three variables (Figure
S4), showing that bias-correction improves model performance. Other
studies also show the importance of bias-correction of hydrological
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Fig. 6. Scatter plot of KGE metric between native SF simulations vs. bias-corrected SF simulations (blue crosses) and modelled SF KGE (red circles) for the model (a) HTESSEL,
(b) JULES, (c) PGB and (d) mHM.
forecasts to improve prediction skill (e.g., Zalachori et al., 2012). The
improvement is smaller with ET, where the native simulations already
perform well (Fig. 5a), but the improvement is larger for SM and SF
(Fig. 5b, c). Bias-correction almost always improves the performance of
any model output, as shown for the SF simulations in Fig. 6. The bias-
corrected (arithmetic or weighted) blended output outperforms native
(arithmetic or weighted) blended output for almost all the catchments
for the three variables (Figure S4; Fig. 5).

It should be noted that this bias-correction method for SF can only
be performed over gauged catchments which have observed data avail-
able. Bias-correction of ungauged catchments is beyond the scope of
this study, but bias-correcting simulations before producing a blended
product is important for any operational implementation.

4.3. KGE estimation at ungauged stations

At ungauged catchments, where observed data is not available to
calculate performance metrics, KGE-weights for SF need to be estimated
in order to implement the weighted blending approach. We model
SF KGE using the method described in Section 3.3. Cross-correlation
analysis between the different catchment characteristics (Fig. 7a), and
correlation of each of the catchment characteristics (Table 1) with
the KGE of each of the four hydrological model variables (Fig. 7b)
shows that some characteristics are highly correlated amongst them-
selves. Where two catchment characteristics were highly correlated,
the one that was most correlated to the KGE of the hydrological
models was retained. Thus, we select a subset of 9 catchment char-
acteristics: discharge, lake, area, slope, precip, pet, snow, forest and
soil_water_content (see Table 1 for the list of full names of catchment
characteristics).

From (Fig. 7b), we can observe that in general, the correlations
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between the models’ KGE and the various catchment characteristics are
weak. One notable exception is the high correlation observed between
JULES’ KGE and Soil Water Content (positive correlation) and Pasture
cover (negative correlation). These two catchment characteristics are
highly correlated between them (negatively). This observation indicates
that JULES struggles to simulate river flows for catchments where
pastures are the dominating land cover. All models’ performances are
negatively correlated with the degree of regulation. PGB’s performance
increases with snow cover extent, which suggests the snow module of
this model is more efficient than the other models. With the exception
of HTESSEL, models are generally worse at predicting flow in regions
with high evaporative demand (PET). HTESSEL is worse than the other
models at simulating flows where lakes are present.

From the different KGE-stats-models tested (Section 3.3), the best
performing model was selected based on the R2-score (coefficient of
determination) for each of the four hydrological models (Table 2). PCA
did not improve the R2-score for any of the KGE-stats-model tested
and the ANN model did not outperform the ‘‘best’’ regression model
in any of the cases. The sample size is believed to be too small to
effectively train an ANN model. Note that the R2-score even with
the best of the KGE-stat-models is relatively low, especially for mHM,
which means that KGE is difficult to predict accurately from catchment
characteristics alone.

Using the KGE-stats-model shown in Table 2, the modelled KGE
metric for each of the 119 study catchments for all four hydrological
models was derived (Fig. 6). For example, the Support Vector Re-
gression method is applied to estimate KGE values (which we called
the modelled KGE) of the PGB model for all catchments, as if the
real KGE values for these catchments cannot be calculated due to the
observations being unavailable. One modelled KGE value is derived
for each catchment and each hydrological model. These modelled KGE
values are then used for the weighted averaging of the four model
simulations to derive the ‘‘native modelled weighted’’ blended output

(Section 3.3).
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Fig. 7. (a) Correlation matrix of all 17 variables (discharge, runoff, lake, reservoir, degree_regulation, area, slope, climate_zone, precip, pet, snow, forest, crop, pasture, irrigation,
soil_water_content and human_dev_index). (b) Correlation between the same 17 variables and SF KGE of the four hydrological models (HTESSEL, JULES, mHM, PGB). The higher
the correlation, the ‘‘flatter’’ and darker the ellipse. Blue ellipses and tilted to the left indicate negative correlations, whereas red ellipses and tilted to the right indicate positive
correlations.
Table 2
KGE-stats-model for SF selected for the four hydrological models, with their respective LOOCV R2-score (i.e.
Leave-One-Out Cross-Validation method coefficient of determination).

Model Selected KGE-stats-model Variables used LOOCV R2-score

HTESSEL Random Forest Regression Subset of 9 variables 0.184
JULES Support Vector Regression All variables 0.218
mHM Support Vector Regression All variables 0.148
PGB Support Vector Regression All variables 0.207
Over most catchments, the modelled KGE closely matches the native
KGE for all four models, except for catchments with very low KGE
values (red dots in Fig. 6). The statistical models estimate ‘‘improved’’
KGE in such catchments, which is not an accurate representation of hy-
drological model performance and thus not useful for blending methods
over ungauged catchments. The errors in modelled KGE metric over
such catchments may stem from failure in dynamically modelling such
catchments (e.g., very dry basins are challenging to model), and thus it
may be beyond the capability of these statistical models to estimate the
KGE metric based on catchment characteristics alone. Further in-depth
research may be required to develop these methods further.

These new modelled KGE metrics were used as weights for the
native SF simulations to derive the modelled weighted blended product
(see Section 3.3, 3.4). The modelled weighted blended product has
similar performance as native weighted blended output over catch-
ments where the KGE-stats-model estimates the KGE metric well, as
expected, and different (poorer or better in some cases) performance
over catchments where the KGE-stats-model estimates the KGE metric
poorly (not shown). Modelled weighted simulations outperforms arith-
metic blended in most cases, but not as much as weighted blending
using observed KGE-weights (Fig. 8a).
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4.4. Validation

From the methods discussed in above three subsections, a combina-
tion of blended products are derived: native arithmetic average, native
weighted average (also alternatively native SF-weighted average for
ET and SM), modelled weighted average (only for SF), bias-corrected
arithmetic average and bias-corrected weighted average (also alter-
natively bias-corrected SF-weighted average for ET and SM). Fig. 5
shows that blending of any type improves KGE achieved compared with
the native simulations from the four individual models, except for SM
arithmetic blending. As discussed before, bias-correction improves indi-
vidual model simulation (Fig. 6), although the degree of improvement
is catchment and model specific (Figure S4). Blending bias-corrected
simulations shows the highest improvement compared to all the other
approaches. For example, only 6 out of the 119 catchments show poorer
performance for the bias-corrected weighted blended SF compared to
the native weighted blended SF (Figure S4). The comparison between
bias-corrected weighted blended product and bias-corrected arithmetic
blended product shows improvement for all three variables, albeit only
marginal, except for SM (Figs. 5; 8a, c). For SM, the bias-corrected
weighted blending performs much better than bias-corrected arithmetic
blending, especially for stations where the catchments have a negative
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Fig. 8. (a) The difference between the KGE for the native and bias-corrected weighted blended output (light red boxplot) and the modelled weighted blended output (dark red
boxplot) against the corresponding arithmetic blended output for the SF simulations. Please note for SF, there is no boxplot showing the difference between bias-corrected modelled
weighted output and arithmetic weighted bias-corrected output. Difference between the KGE for the weighted and arithmetic blended product (light blue boxplot) and between
the KGE of SF-weighted and arithmetic blended product (dark blue boxplot) for the ET and SM variables with (b) native and (c) bias-corrected simulations.
KGE for native simulations (not shown). Further, for the blending of the
native simulations, performance of the blended output is improved by
the use of KGE weights (Figs. 5; 8b). Thus, weighted blending is useful
with both native and bias corrected simulations.

As mentioned in Section 3.1, we also test the original weighted
blending method against the SF-weighted for ET and SM, and we show
the differences of these two weighted blending approaches against
arithmetic blending of native and bias-corrected simulations in
Fig. 8b, c. For both native and bias-corrected simulations, weighted
blended outperforms the SF-weighted blended for both ET and SM. In
fact, the SF-weighted blending mostly performs similarly or slightly
worse than the arithmetic blending. The performance difference is
larger in SM than in ET (Fig. 8b, c), as the KGE spread in SM simulations
is larger (Fig. 5b).

We also test the weighted blending approaches over ‘‘ungauged’’
stations for SF by modelling KGE using catchment characteristics (mod-
elled weighted blending; Section 4.3). For the native simulations, mod-
elled weighted performs slightly worse than weighted blending, but is
still overall better than arithmetic blending (Fig. 8a). Thus, overall the
KGE-stats-model was capable of estimating the SF KGE for ‘‘ungauged’’
catchments to a certain degree, but as mentioned in Section 3.3, KGE
is not solely attributable to catchment characteristics. Please note that
we have not compared weighted and modelled weighted blending for
bias-corrected SF simulations (Fig. 8a), as this was beyond the scope of
this study.

The performance of models’ native and blended simulations is
also measured with another performance metric, NSE (Fig. 5d–f).
Performance with NSE shows similar results to performance with KGE:
blended products show higher performance compared to individual
models (except for mHM in ET and SF); bias-correction improves model
performance (more in SM and SF than ET); and KGE based weights
improve performance (more when applied to native simulations than
bias-corrected simulations). We also compare the application of our
methods on daily vs. monthly SF simulations using KGE and NSE
performance metrics (Figure S5). Applying our methods to daily sim-
ulations shows similar improvement in performance as compared to
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methods applied to monthly simulations, and the overall conclusions
for blending and bias-correction methods’ performance remain the
same.

Categorical forecast skill, calculated for five categories (see Sec-
tion 3.4), is measured using ACC and HSS skill scores. Compared to
the performance metrics (KGE and NSE), using skill scores (ACC and
HSS) show smaller improvements after blending (Fig. 9). HSS for ET
and SF are positive, which indicates that the accuracy of getting each
category right is better than that from a random chance (Fig. 9d, f), but
SM has some negative HSS values (Fig. 9e). There is no improvement
in performance with bias-correction, which is to be expected as the
bias-correction will not modify the relative values of the variables.
There is improvement in the native (arithmetic and weighted) blended
products as compared to individual models in SF, but this improvement
is not very large in ET and SM. PGB performs the worst amongst the
individual models with both skill scores for the native SF simulations;
mHM outperforms the other models for SF and has similar skill to the
blended products (Fig. 9c, f). This may be due to the fact that mHM
uses the MPR technique to parameterise across basins and scales (see
Section 4.1). Further, it should be noted that there are large gaps in the
observed data for some stations with SF (Section 2), which shortens
the length of the time period of evaluation, and may lead to poorer
categorical skill for SF with blended products for certain stations.

5. Discussion

In this study we aimed to identify simple blending approaches
and thus their feasibility for implementation in operational forecasts.
However, this is a pilot study and has only been conducted for baseline
simulations for just three variables and 119 catchments. Thus, more
future work is required before implementation of these methods oper-
ationally. In this section, we discuss the practical implications of our
study that need to be carefully considered before implementation.

5.1. Recommendations

Our results show that arithmetic blending rarely improved perfor-

mance over that of the best performing individual model, which has
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Fig. 9. Same as Fig. 5 but for (a–c) Accuracy and (d–f) for Heidke Skill Score (HSS).
also been shown by other studies (e.g., Mo and Lettenmaier, 2014).
Weighted blending adds value to native simulations, but bias-correction
leads to much higher improvement. Other studies have also found
that bias-correction of forecasts, as a post-processing method, is very
effective for multi-model ensemble hydrological forecasts (e.g., Dion
et al., 2021). Bohn et al. (2010) also show that individual best bias-
corrected model outperforms the multi-model arithmetic average; and
blending after bias-correction only marginally improves forecast perfor-
mance over individual bias-corrected models. Thus, bias-correction is
recommended wherever possible. When providing categorical forecasts,
bias-correction is not necessary, as the improvement in performance
in bias-corrected weighted blending is modest, thus native weighted
blended product can be used instead. However, multi-model blending
for categorical forecasts could still be beneficial in order to simplify the
message to the end users.

Where the application of bias-correction is difficult (e.g., ungauged
catchments), weighted blending, using modelled KGE, is a good alterna-
tive, and performs better than arithmetic averaging. Applications of the
multi-model merging improves the quality of forecasts by maintaining
the ensemble dispersion with lead time (e.g., Thiboult et al., 2016; Xu
et al., 2019) and enhances the reliability of any forecasting system
by incorporating the model uncertainty (e.g., Ahmed et al., 2019).
Merging multi-model streamflow forecasts, using methods like Bayesian
model averaging, leads to an improvement in skill (e.g., Duan et al.,
2007; Luo and Wood, 2008); however, these are approaches that have
been investigated on the multi-model probabilistic forecasts rather than
baseline simulations as in this study. Probabilistic forecasts include
hydrological model uncertainty, as in baseline simulations, but also
have uncertainty related to the atmospheric ensemble forecasts used
to drive the models (e.g., Krzysztofowicz, 2001). As the skill of these
forecasts vary in space and time, the effect of the uncertainties from
the atmospheric forcing on the hydrological forecasts could also vary
with lead-time and catchment characteristics. At shorter lead-times,
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forecasts will be influenced more by the initial conditions, whereas for
longer lead-times, the climate forcing will have a stronger effect (e.g.,
Li et al., 2009). For slow-responding catchments, the uncertainties in
the climate forcing will have less importance than for flashy catch-
ments (e.g., Sutanto and Van Lanen, 2022). This means that the benefits
of our blending and bias-correction method found in this study for
the baseline might not transfer directly or uniformly when applied
to forecasts. Thus, there is further need to investigate the uncertainty
before implementing our method to probabilistic forecasts.

Using consistent weights for all variables (i.e. SF-KGE weighted
blended product) has poorer performance as compared to using KGE
from respective variables. Thus, it is expected that we use the better
performing blending approach (i.e. the weighted blended product) for
operational forecasts. Using weights, based on skill of the individual
models, to merge multi-model ensemble simulations has been shown to
reduce the bias in climate simulations (Thober and Samaniego, 2014).
However, weighting each variable with different KGE weights provides
us with forecasts without local hydrological balance, and will not be
suited for certain user requirements. For applications where water bal-
ance closure is necessary (e.g., drought forecasting systems predicting
water availability in both rivers and soils), blended product using SF
weights gives an alternative to arithmetic averaging, which optimises
SF blended product, with ET and SM blended product similar or slightly
worse than arithmetic blended product. Multi-model blending at daily
timesteps has similar performance to blending at monthly timesteps,
and we therefore recommend the use of simulations at either timestep
as per the user requirement. This result is different in snowmelt-
dominated catchments, where the performance generally improves on
aggregating the SF merged simulations from daily to monthly time
scales (e.g., Bohn et al., 2010).

5.2. Limitations

Our study is limited by the number of catchments evaluated and

the missing data for the variables (SM and SF). Although, we attempt
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to make our results as robust as possible, we could not ascertain the
exact influence nested catchments have on the results. Uncertainty
analysis performed using bootstrapping different sample sizes of catch-
ments (not shown) suggests that our recommendations from Section 5.1
remain valid even with a smaller sample catchments.

Another limitation of our study is that we consider the validation
data to be ‘‘the truth’’, but in reality it has its own errors. The errors
in SM observations play an important role in poor performance of SM
simulations over the catchments studied (e.g., Rakovec et al., 2016).
The SM ‘‘observations’’ are derived from a remote sensing product that
has some errors and the ET ‘‘observations’’ are a blended observed-
modelled product. However, these validation datasets are the best
estimate of ‘‘observations’’ available to us for such a global analysis
investigating the performance of all three variables over the same
catchment sample, but we do recognise the observational uncertainty
inherent in our methodology. Further, many previous studies have
used these same ET and SM observations to calibrate hydrological
models to improve SF forecasts (e.g., López López et al., 2017; Dem-
bélé et al., 2020; Ding and Zhu, 2022). GLEAM ET dataset performs
well at a regional (e.g., Yang et al., 2017) or global (e.g., Miralles
et al., 2011) scale when validated against in-situ observations in dif-
ferent studies (e.g., Martens et al., 2018). Similarly, studies have also
shown that CCI SM product performs well against in-situ observa-
tions regionally (e.g., González-Zamora et al., 2019) and globally (e.g.,
Dorigo et al., 2015). We ourselves have validated the CCI SM product
against international soil moisture network (ISMN) stations using the
QA4SM platform (https://qa4sm.eu/ui/home) using multiple metrics.
The results from mean squared error (MSE; Figure S6a), unbiased root
mean squared difference (ubRMSD; Figure S6a) and other metrics (not
shown) clearly show that CCI-SM has high performance and skill when
validated against observations. These findings have given us confidence
that we can use these datasets as proxy for observations to validate the
ULYSSES model simulations, especially over data sparse regions.

For SM, an additional source of error stems from the fact that SM
depth from models is different to the measurements from satellites,
as satellites only estimate moisture in the top few centimetres of soil
whereas land surface models simulate moisture at greater depth. Some
studies (e.g., Beale et al., 2021) have investigated the possibility to
correct for the mismatch in depth using soil moisture depth profile
modelling when comparing soil moisture from different sources, and
have shown that this can account for large differences. However, these
methods require a range of input parameters (soil hydraulic properties,
vegetation cover and type, etc.) which are not readily available for
global studies such as ours. Therefore, we have followed the approach
taken in other studies (e.g., Peng et al., 2021; Schellekens et al., 2017),
and have directly compared the modelled SM with the SM observations,
although we do acknowledge that this may lead to some uncertainties,
and our calculated model performance may not reflect the true model
performance.

5.3. Future work

Blended forecast products derived from the ULYSSES project are
not limited to the three variables evaluated in this study. Thus, there
is a need to assess the skill of the blended products for the whole
set of forecast variables (e.g., runoff, snow cover, terrestrial water
storage). Implementing our blending approaches over more catchments
will provide better estimates of uncertainty. Further research may
also evaluate blending approaches on a grid-point level rather than
just catchment-level. Modelling KGE for ungauged catchments SF have
shown somewhat promising results. However, as noted in the results,
catchment characteristics do not completely represent the KGE for
ungauged catchments. Improved modelling of KGE in future research
can lead to improved weighted blending approaches.

Multi-model streamflow forecast show an improvement in skill upon
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merging the individual ensembles of all models (e.g., Duan et al., 2007;
Luo and Wood, 2008). However, the blending and bias-correction ap-
proaches, used in this study, were tested on the model simulations from
baseline period (1981–2019) which have a single simulated output per
model. As a next step, ULYSSES data should be evaluated for all of its
initialisations and the full ensemble of hindcasts and forecasts, to assess
its skill and ascertain the uncertainty of the forecasts at different lead
times. ULYSSES provides global hindcasts (1993–2019) and operational
forecasts (2020–2021) for each model at monthly lead times with 6
months extent each. All model forecasts have a five member ensemble
for each initialisation, except for February, May, August and November
initialisations, which have 25 members each. For operational blended
forecasts, performance metrics for weighting derived from the hindcast
period might yield forecasts with better skill. However, additional
uncertainty coming from errors in atmospheric forecasts may mean that
the improvements found in our research do not directly translate into
improvements in hydrological forecasts. Thus, further assessment on
the hindcasts are needed. Further, understanding of the performance
using the hindcasts will allow identification of forecast and ensemble
uncertainty. Skill for blended products should also be assessed for
anomalies or categories of variables rather than just for absolute values,
to identify the best forecast product that can be provided to the users.

6. Summary and conclusions

This study analyses different approaches for blending multi-model
simulations derived from the ULYSSES project, focusing on computa-
tionally inexpensive methods in an effort to limit the carbon footprint
and cost of this post-processing step. The verification of the blend-
ing methods has been performed for 119 sample catchments for the
baseline period of 1981–2019 using ET, SM and SF variables. The
blending approach tested here is weighted averaging of the native
multi-model simulations, using catchment performance metric (KGE)
for each variable as the weight. The arithmetic multi-model averaging
method is used to identify the added value of the weighted blended
approach. The analysis also includes bias-correction of model sim-
ulations before applying the two blending approaches. Further, the
blending approaches are also tested for SF over ungauged catchments
by modelling the KGE metric based on catchment characteristics. We
also apply SF KGE weights for weighted blending of ET and SM to have
a hydrologically balanced forecast.

Our results show that the weighted blending approach has added
value over the arithmetic blending when applied to the native sim-
ulation over most catchments. Weighted blending also adds value
when applied to the bias-corrected simulations, but the improvement
seen is lower than with native simulations. Bias-correction improves
individual model simulations for all three variables absolute values but
not the categorical forecasts. Results indicate that greater improvement
is achieved through bias-correction than through weighted blending.
From all the approaches tested, the best performing method is the bias-
correction followed by weighted blending. Therefore, bias-correction of
simulations before blending using weights is the recommended method,
unless only categorical forecasts are considered, in which case native
weighted blending is the recommended method.

Modelling of KGE for SF has proven to be a viable option to
apply weighted blending at ungauged catchments. Applying consis-
tent weights for blending across all the three variables (based on
SF KGE metric) for hydrologically consistent forecasts, shows poorer
performance than using variables’ respective weights. However, using
consistent weights for blending for all variables is a possible option if
the local water balance needs to be maintained. The SF-weighted blend-
ing shows similar performance to arithmetic blending for ET, slightly
poorer for SM, but shows vastly improved performance for SF. Thus,
this method might be the most suited for certain applications where
the water balance closure is more important (e.g., drought forecasting
systems predicting water availability in both rivers and soils) than the

accuracy of each individual variable.

https://qa4sm.eu/ui/home
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The findings of this study show promising results for the application
of blending approaches, along with bias-correction, for global hydrolog-
ical forecasts. More detailed investigations are required for application
of this method for providing operational quality hydrological forecasts
to the end users.
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