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ABSTRACT: The stability of ice crystal orientation is studied by modeling the airflow around ice crystals at moderate
Reynolds number, where an ice crystal is approximated by a cylinder with three parameters: diameter D, length L, and
zenith angle of the axis u. In this paper, the torque acting on ice crystals is simulated at different u first, and then a special u
with zero horizontal torque, denoted as ue, is sought as an equilibrium of ice crystal orientation. The equilibrium is classi-
fied into two kinds: stable and unstable. Ice crystals rotate to ue of stable equilibriums while deviating from ue of unstable
ones once they are released into quiet air. Multiple equilibriums of ice crystal orientation are found via numerical simula-
tions. A cylinder with D/L close to one has three equilibriums, two of which are stable (i.e., ue 5 08 and 908). A cylinder
withD/L away from one has only two equilibriums, one of which is stable (i.e., either ue 5 08 or 908). In addition, an asym-
metric cylinder has two, three, or five equilibriums, and their ue is sensitive to the distance between its geometrical center
and its center of gravity. The sensitivity of ue to crystal asymmetry suggests large symmetric ice crystals tend to become
asymmetric (or irregular) and subsequently oriented randomly.

SIGNIFICANCE STATEMENT: Ice crystal orientation impacts high-cloud reflectance and satellite-based observa-
tions of high clouds significantly. However, its laboratory and field observations look dissimilar: the percentage of hori-
zontally oriented ice crystals (HOICs) observed in the laboratory is quite high, while in the field it is often low and
varies greatly in space and time. The motivation for this study is to elucidate what causes the difference between the
laboratory and field observations. The torque acting on ice crystals are computed by modeling the airflow around ice
crystals, revealing the conditions for nonhorizontal orientations of ice crystals. In quiet air, an ice crystal is oriented
either horizontally or vertically when its shape is close to sphere. When its shape is elongated in one direction, its orien-
tation depends on its asymmetry in density and shape. The sensitivity of ice crystal orientation to ice crystal asymmetry
explains the low percentage of HOICs in the field, because asymmetric ice crystals are common in clouds. As an appli-
cation, this sensitivity together with the observed percentage of HOICs can be used to infer the processes of ice crystal
growth in clouds, providing clues to better representation of ice crystals in weather and climate models.
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1. Introduction

Ice crystal orientation plays an important role in the water
and energy processes in the atmosphere, for example, via its
effects on cloud albedo (Takano and Liou 1989; Zhou et al.
2012), ice crystal fall speed (Heymsfield and Iaquinta 2000),
and precipitating ice crystal formation (Zeng et al. 2022).
However, ice crystal orientation remains a puzzle because the
results of laboratory and field observations differ. Jayaweera
and Mason (1965) observed the orientation of cylinders as
they fell in a tank containing liquid and found the dominance
of horizontally oriented cylinders. This result was later con-
firmed by other laboratory experiments (e.g., Westbrook
2011). If the process leading to horizontal orientation was the

only process determining ice crystal orientation, horizontally
oriented ice crystals (HOICs) would dominate all ice clouds
at all latitudes. However, the prediction of HOICs is contrary
to field observations using a variety of different techniques:
the percentage of HOICs is often low and varies greatly in
space and time [Bréon and Dubrulle 2004; Noel and Chepfer
2010; Neely et al. 2013; Garrett et al. 2015; Goerke et al. 2017;
Gong et al. 2018; Zeng et al. 2019, 2021; Kikuchi et al. 2021;
see Zeng et al. (2022) for a review].

To understand the disparity in ice crystal orientation be-
tween the laboratory and field observations, we study the dy-
namics of ice crystal orientation first by modeling the airflow
around ice crystals. Our model setup is like the previous ones
(Hashino et al. 2014, 2016; Cheng et al. 2015; Tagliavini et al.
2021a,b) but aims at a hypothesis of multiple equilibriums of
ice crystal orientation.

The hypothesis of multiple equilibriums of ice crystal orien-
tation is schematized in Fig. 1. Consider a cylinder with diam-
eter D and length L. It mimics a column- and plate-like ice
crystal when D/L , 1 and .1, respectively. Its orientation is
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described by u the zenith angle of its axis. When it stays at a
steady state aloft, its orientation is described by u 5 ue, where
ue 5 08 and 908 for plate- and column-like types (or the solid
lines in Fig. 1), respectively, based on the laboratory observa-
tions of cylinders and hexagonal columns (Jayaweera and
Mason 1965; Westbrook 2011). Considering the continuity of
the steady cylinder orientation ue againstD/L, we hypothesize
that an ice crystal has two stable equilibriums of cylinder ori-
entation (i.e., ue 5 08 and 908) whenD/L; 1. If the two stable
equilibriums coexist, an unstable equilibrium must exist to
separate them (see the green line in Fig. 1), which raises a
new question on the regions of the three equilibriums as well
as their factors (e.g., D/L). In addition, we hypothesize that
an asymmetric ice crystal, whose geometrical center deviates
from its center of gravity, has multiple stable orientations of
ue Þ 08 and 908.

To test the hypothesis of multiple equilibriums of ice crystal
orientation, numerical simulations of airflow around cylinders
are carried out and their results are reported in this paper.
The paper consists of six sections. Section 2 introduces the nu-
merical model used as well as its evaluation. Sections 3 and 4
present the model results for the multiple equilibriums of
symmetric and asymmetric cylinders, respectively. Section 5
uses the multiple equilibriums to explain the difference in ice
crystal orientation between the laboratory and field observa-
tions. Section 6 concludes.

2. Evaluation of the numerical model

A numerical model of airflow around solid objects (see
appendix A) is used to simulate the torque acting on ice crystals
aloft. It is introduced first in this section as well as appendix A,
and then evaluated by comparing the modeled and observed
drag force coefficients of solid spheres in the air.

The model represents the momentum equation (or the
Navier–Stokes equation) and the continuity equation of com-
pressible air by

­tv 1 rq 3 v 1 =k 52r21=p 1 n=2v, (1)

­tr 1 = ? rv 5 0, (2)

respectively, where ­t stands for the partial derivative with
respect to time t, v the velocity vector, p the pressure, n the
kinematic viscosity, and r the mass density of air. In Eq. (1),
k; yv ? v is the kinetic energy per unit mass and q; r21= 3 v
vorticity divided by air density. The model connects the pres-
sure and density by

­tp 5 c2s­tr, (3)

where cs is the speed of sound waves. In this study large cs (or
small Mach number) is chosen so that the model can repre-
sent incompressible flow around solid objects.

The model is used to simulate a solid sphere with diameter
D that is immersed in an environmental flow with mean veloc-
ity U‘. The simulations are performed for Reynolds number
Re5 U‘D/n from 1 to 500 and the Mach numberM5 cs/U‘ 5

1.23 1023.
The model employs a stretched grid with fine resolution near

the sphere in the domain center and coarse resolution near the
lateral boundaries for a trade-off between domain center reso-
lution and domain size. It uses 2563 2563 256 grid points with
the minimum grid size Dxmin (or Dymin, Dzmin) 5 D/41. Its grid
size of 30 layers near the lateral boundaries is increased from
Dxmin at the innermost layer to 30Dxmin at the outermost layer
with a step of Dxmin. In addition, the model uses a dimensionless
time step DtU‘/D5 13 1024 for numerical integration.

The model is used to obtain the drag force coefficient CD

versus the Reynolds number. The modeled results are com-
pared with their laboratory observations in Fig. 2, showing
the model is accurate when Re , 500 the maximum Reynolds
number used in the present simulations.

FIG. 1. Schematic of three equilibriums of cylinder orientation
(shading). A cylinder with diameter D and length L, mimicking a
column-like (red) and plate-like (blue) ice crystal when D/L , 1
and .1, respectively, is oriented with a zenith angle of axis at equi-
librium (or u 5 ue), which is shown by a line. Two solid lines repre-
sent two stable equilibriums that correspond to the laboratory-
observed horizontal alignment of ice crystals; dashed lines are in-
ferred based on the continuity of cylinder orientation against
D/L. The green line represents an unstable equilibrium that is in-
ferred for the separation of the two stable equilibriums.

FIG. 2. Comparison between the modeled drag force coefficient
CD for spheres (blue) and the laboratory observations from Le
Clair et al. (1970) (red) and Clift et al. (1978) (green) at different
Reynolds numbers Re.
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Figure 3 displays the time series of the modeled drag force
coefficient CD, exhibiting the fluctuation of CD around its
mean average, where the dimensionless time is defined as
tU‘/D. The fluctuation resembles the laboratory observations
on “the onset of faint, periodic, pulsative motions down-
stream of the standing eddy” at Re . 100; the fluctuation be-
comes increasingly pronounced as Re increases, resembling
the laboratory observations (Pruppacher and Klett 1997;
Johnson and Patel 1999).

3. Multiple equilibriums of ice crystal orientation

In this section the numerical model is used to test the hy-
pothesis of multiple equilibriums of cylinder orientation (see
Fig. 1). To be specific, it is used to simulate the hydrodynamic
torque acting on cylinders, focusing on the torque versus cyl-
inder orientation.

a. Simulation setup

The model is set up as in Fig. 4. Consider a circular cylinder
with two Cartesian coordinate systems. One coordinate sys-
tem, (x, y, z), moves vertically with the cylinder. Its z axis
points upward and its x axis is chosen so that the cylinder axis
is in the x–z plane at y 5 0. The other coordinate system,
(x′, y′, z′), shares the same y axis with the first system and is
rotated around the y axis until the z′ axis is parallel to the axis
of the cylinder.

The model is embodied in the latter coordinate system.
Since the two coordinate systems share the same y axis, they
share the same component of the torque Ty acting on the cyl-
inder in the y-axis direction. In this study, Ty is computed first
in the coordinate system (x′, y′, z′), and then used to explain
the rotation of the cylinder in the coordinate system (x, y, z).
To be specific, when Ty , 0, the cylinder rotates around the y
axis to decrease u the zenith angle of cylinder axis; when
Ty . 0, the cylinder rotates to increase u; when Ty 5 0, the
cylinder is at an equilibrium. The present numerical experi-
ments aim to find the conditions for Ty 5 0.

The cylinder is described by two variables: diameter D and
length L. Its orientation is described by a third variable u, the
zenith angle of cylinder axis. Consider now a cylinder immersed

in an environmental flow with mean velocity U‘ (Fig. 4).1 Air
flows around the cylinder, which is simulated given the Rey-
nolds number. Please note the Reynolds number Re 5 U‘D/n
is defined for all cylinders (or crystals) for the sake of simplicity
even when the environmental velocity is not perpendicular to
the surface with diameter D. A real Reynolds number of a case
is related to Re with the real characteristic length.

b. Stability analysis of cylinder orientation

Numerical simulations are carried out for five cylinder shapes:
D/L5 1/2, 1/1.25, 1, 1.25, and 2. Given cylinder shape and orien-
tation (or u), the simulations are performed in turn with the Rey-
nolds numbers Re 5 40, 100, 200, and 400. All the simulations
are set up as those in section 2 with 2563 2563 256 grid points,
mimicking cylinders immersed in a wind tunnel with mean veloc-
ityU‘.

The simulations run until they reach steady state. Their Ty

at the steady state (or typically between dimensionless time
38 and 41) is displayed against u in Fig. 5, where Ty is normal-
ized by raU

2
‘(0:5D)3 (Hashino et al. 2014). The sign of Ty is

used to analyze the stability of cylinder orientation, which is
illustrated with the results at Re5 100.

When Re 5 100 and D/L 5 1, there are three orientation
equilibriums with Ty 5 0: two stable equilibriums at u 5 08
and 908, and an unstable one at u 5 36.58. If initial u , 36.58,
the cylinder rotates to ue 5 08 eventually; if initial u . 36.58,
the cylinder rotates to ue 5 908. Hence, the two equilibriums
of ue 5 08 and 908 are stable. Since u never returns to 36.58
once deviating from 36.58, the equilibrium of ue 5 36.58 is
unstable. In summary, ue 5 08, 36.58, and 908 represent the
three orientation equilibriums of a cylinder with D/L 5 1 at

FIG. 3. Time series of the modeled drag force coefficient CD for
spheres at Re5 100 (red), 200 (green), 400 (blue), and 500 (black),
where the coefficient is normalized by its mean time average be-
tween dimensionless times 38 and 41.

1 The terminal velocity of a crystal U‘ is determined through
the condition of balance between the gravitation force and the
drag force acting on the crystal. Given crystal size, shape, and den-
sity, U‘ can be known via numerical simulation (Hashino et al.
2014, 2016; Cheng et al. 2015; Tagliavini et al. 2021a,b). In this pa-
per we take a new approach to decouple U‘ and crystal orienta-
tion and then achieve a “simple” relationship between crystal
shape and orientation (e.g., Fig. 6).

If an air parcel containing ice crystals has no horizontal acceler-
ation, the ice crystals move horizontally with the parcel and thus
do not move horizontally relative to the parcel. As a result, U‘ is
not related to the horizontal velocity of the parcel. If an air parcel
undergoes horizontal acceleration caused by other processes, its
crystals do move horizontally relative to the parcel, and thus, their
orientations are changed by the acceleration. To represent the
horizontal acceleration of the parcel, the z axis of the noninertial
framework of a crystal in Fig. 4 is used to point in the opposite di-
rection to the sum of the inertial and gravitation forces on the crys-
tal, and the sum of the inertial and gravitation forces is balanced
by the drag force acting on the crystal. When the z axis is not verti-
cal, a stable equilibrium of ue 5 08 (or 908) corresponds to a canting
mode where crystals align neither horizontally nor vertically.

The orientation of a stable equilibrium in the Earth frame-
work, referred to here as a target orientation of a crystal, is related
to both ue and the orientation of the z axis. Since turbulence and
gravity waves change the orientation of the z axis, they change the
target orientation. Hence, the effects of turbulence and gravity
waves on crystal orientation can be described by a simple model: a
crystal is always rotating to approach a varying target orientation.
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Re 5 100. This result of Fig. 5 can be used to infer the orien-
tation of ice crystals given Re or U‘.

2

The equilibriums vary with D/L. When Re 5 100, there are
only two equilibriums at D/L 5 1/2 (column-like): a stable
equilibrium of ue 5 908 and an unstable one of ue 5 08, indi-
cating that the cylinder rotates to ue 5 908 eventually no mat-
ter what its initial u is. In contrast, there are two different
equilibriums at D/L 5 2 (plate-like): a stable equilibrium of
ue 5 08 and an unstable one of ue 5 908, indicating that
the cylinder rotates to u 5 08 eventually no matter what its
initial u is.

The equilibriums change with not only D/L but also Re.
When Re5 100, there are three equilibriums atD/L5 1/1.25, 1,
and 1.25, and two equilibriums at D/L 5 1/2 and 2. In contrast,
there are three equilibriums only at D/L 5 1 when Re 5 40 but
atD/L5 1/2, 1/1.25, 1, 1.25, and 2 when Re5 400. This sensitiv-
ity of the equilibriums to Re is understandable, because Re
changes the wake vortexes and thus Ty. In short, these modeling
results in Fig. 5 support the hypothesis of multiple equilibriums

FIG. 4. Vertical cross section of the first Cartesian coordinate sys-
tem (x, y, z) (black) that moves vertically with a cylinder (red) and
the second Cartesian coordinate system (x′, y′, z′) (blue) that is ro-
tated around the y axis until the z′ axis is parallel to the axis of the
cylinder. The numerical model is embodied in the second coordi-
nate system.

FIG. 5. Torque Ty acting on cylinders with diameter D and
length L vs the zenith angle of cylinder axis u when Re 5 (top) 40,
(middle) 100, and (bottom) 400. A symbol corresponds to a numer-
ical experiment. An equilibrium of cylinder orientation is described
by u with Ty 5 0 (i.e., ue).

2 Consider a column-like ice crystal with L 51020 mm,D/L 5 0.2,
and density 5 0.34 g cm23. Thus, its terminal velocity U‘ 5 1 m s21

and Re 5 40 (Heymsfield and Iaquinta 2000). Using these parame-
ters, the torque acting on the ice crystal and the orientation of the ice
crystal can be estimated based on Figs. 5 and 6, respectively.
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in Fig. 1, and show the conditions for multiple equilibriums vary
withD/L and Re.

c. Distribution of cylinder orientations in quiet air

The equilibriums determine the orientation of cylinders in
quiet air. Specifically, the zenith angle of crystal axis at unsta-
ble equilibrium ue determines the distribution of cylinder ori-
entations. Suppose, for example, that many cylinders with the
same size, shape (D/L 5 1), and Re 5 100 are released ran-
domly in two (zenith and azimuth angles) dimensions into
quiet air (with neither turbulence nor gravity waves). Since
the cylinders possess an unstable equilibrium of ue 5 36.58,
those with initial u , 36.58 rotate eventually to the stable equi-
librium at ue 5 08 while the remainder, with initial u . 36.58,
rotate to the stable equilibrium at ue 5 908. As a result, a pro-
portion of the cylinders reaches their steady state with orienta-
tion u 5 08, whereas the remainder reaches their steady state
with orientation u 5 908. The percentage of cylinders with ori-
entation u 5 908 is equal to cosue 5 80.4%; the percentage of
cylinders with orientation u 5 08, (12 cosue)5 19.6%.

Since ue of unstable equilibrium varies with D/L and Re,
the numerical experiments in Fig. 5 as well as additional ones
are used to obtain ue of unstable equilibrium at different D/L
and Re. Figure 6a displays ue of unstable equilibrium against
D/L at different Re. Generally speaking, ue of thin disks
(D/L .. 1) at the unstable equilibrium ’908 and ue of long
column (or D/L ,, 1) approaches 08 but is still .08 at rela-
tively high Reynolds numbers.

The percentage of cylinders with the steady-state zenith an-
gle u 5 908, determined from ue of unstable equilibrium, is dis-
played in Fig. 6b. When D/L ,, 1, the percentage of long
column with u 5 908 is close to 100% (i.e., most long columns
are horizontally oriented, while a small proportion is verti-
cally oriented especially at relatively high Reynolds number).
In contrast, for thin disks (D/L .. 1) there is no unstable
equilibrium between 08 and 908. Thus, the percentage of thin
disks with u 5 08 is close to 100%, or almost all thin disks are
horizontally oriented. These results are consistent with the

laboratory observations of Jayaweera and Mason (1965) and
Westbrook (2011).

4. Orientation of asymmetric cylinders

As shown in section 3, symmetric thin disks have a stable
equilibrium of ue 5 08; long columns, ue 5 908. In this section,
the numerical model is used to study the sensitivity of stable
equilibrium to cylinder asymmetry and show asymmetric cyl-
inders possess ue Þ 0 and 908.

a. Disk simulations

Consider a cylinder withD/L5 4 (i.e., a disk). It is assumed
to be asymmetric in density so that its mass center deviates
from its geometrical center. Let d denote the distance be-
tween the mass center and the geometrical center. Thus, d/D
measures its asymmetry. Hence, the torque acting on the
cylinder with respect to the mass center, instead of the geo-
metrical center, varies with d/D.

To simulate the flow around the cylinder accurately,
10243 5123 1024 grid points are used and the minimum grid
size Dxmin 5 D/161 is set. The grid size at the 60 layers near
the lateral boundaries is increased from Dxmin at the inner-
most layer to 60Dxmin at the outermost layer with a step of
Dxmin, providing a large domain to accommodate the flow
around the cylinder. In addition, the mass center of the cylin-
der is located at (d, 0, 0) in the coordinate system (x′, y′, z′).

Suppose, for example, the cylinder is oriented with a ze-
nith angle of axis u 5 108. Two simulations are carried
out, with Re 5 100 and 400. Modeled streamlines for
these cases at y 5 0 and dimensionless time t 5 36.82 is dis-
played in Fig. 7, showing that the two vortexes behind the
cylinder are not symmetric. Clearly the asymmetry be-
tween the two wake vortexes is stronger at Re 5 400 than
at Re 5 100.

The modeled torque at the steady state (specially, its aver-
age over time 36.1 to 36.8) is displayed against d/D in Fig. 8a.
The torque equals zero at d/D 5 0.0492 when Re 5 100 and
at d/D 5 0.0273 when Re 5 400. In other words, a cylinder

FIG. 6. (a) Steady-state zenith angle of cylinder axis at the unstable equilibrium ue vs D/L for cylinders with diameter
D and length L. Symbols denote the results based on the numerical experiments (including those in Fig. 5).
(b) Percentage of cylinders with the zenith angle of 908 if all the cylinders are initially released randomly into quiet air.
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with d/D 5 0.0492 has an equilibrium of ue 5 108 when
Re 5 100, and another cylinder with d/D 5 0.0273 has an
equilibrium with the same ue when Re 5 400. This sensitivity
of cylinder orientation to Re is understandable. Consider a
cylinder with d/D 5 0.0492. Its Ty 5 0 at Re 5 100 but Ty . 0
at Re 5 400 (see Fig. 8a), showing that the strong asymmetry
between two wake vortexes at Re 5 400, in contrast to that at
Re 5 100 (Fig. 7), tends to drive the cylinder away from hori-
zontal alignment.

Figure 8b shows that the distance between the mass center
and the geometrical center that maintains zero torque fluctu-
ates slightly at Re5 400 but very little at Re5 100, indicating
that the shedding of eddies from the rear of falling cylinders
impacts cylinder orientation slightly. This weak effect of eddy
shedding on cylinder orientation resembles to some extent
the influence of eddy shedding on drag coefficient for spheres,
seen in Fig. 3. The weak effect is understandable because faint

and pulsative motions downstream of the standing eddy occur
only for large Re.

To quantify the sensitivity of cylinder orientation to asym-
metry, many numerical simulations with different cylinder ori-
entation (or u) are carried out, and the torque modeled for a
range of asymmetry levels is displayed against u in Fig. 9a.
The green line in Fig. 9a, for example, for a cylinder with
d/D5 0.12 versus u shows that the torque equals zero at u 5 74.58
and 908. SinceTy. 0 (Ty, 0) when u , 74.58 (u . 74.58), the cyl-
inder with d/D 5 0.12 rotates to ue 5 74.58 eventually, assuming
its initial u , 908. Hence, the equilibrium of ue 5 74.58 is stable
and the one at ue5 908 is unstable.

Similar analysis is performed to obtain ue of the stable equilib-
rium with other d/D. Figure 9b displays the ue of the stable equi-
librium against d/D, showing that ue increases significantly with
asymmetry especially near d/D 5 0.1. Clearly 08 , ue , 908 at
the stable equilibrium where the hydrodynamic force and gravity

FIG. 7. Vertical cross section of streamlines around a disk at y5 0 and t5 36.82 with Re5 (left) 100 and (right) 400,
whereD/L5 4 and u 5 108. The horizontal and vertical axes are normalized by the disk diameterD.

FIG. 8. (a) Torque acting on a cylinder (averaged over times 36.1 and 36.8) vs the dimensionless distance between
the mass center and the geometrical center. (b) The distance for zero torque vs time, whereD/L5 4 and u 5 108 with
Re5 100 (green) and 400 (red).
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reaches balance. In other words, disks with mass asymmetry are
oriented neither horizontally nor vertically.

b. Column simulations

Consider a cylinder with D/L 5 1/4 (i.e., a column). Unlike
for the thin disk, its mass center is located at cylinder axis. In
the present simulations, its mass center is located at (0, 0, 2d)
in the coordinate system (x′, y′, z′) so that ue falls in [08, 908]
(the setup with the mass center at (0, 0, d) brings about no
new information because of the symmetry between (0, 0, 2d)
and (0, 0, d) except that ue fall in [908, 1808]).

The simulations are set up as those in the preceding subsec-
tion, also using 10243 5123 1024 grid points. Their minimum
grid size Dxmin 5 D/161 is set so that the flow around the edge
of the cylinder is resolved with sufficient grid points. The simu-
lations use Re 5 400 and different cylinder orientation (or u).
The computed torque is displayed against u in Fig. 10a.

The torque acting on a column is quite different from that
on a disk. The green line in Fig. 10a, for example, shows that
the cylinder with d/D 5 0.12 has three equilibriums: two

stable ones of ue 5 08 and 84.58, and an unstable one of
ue 5 88. If its initial u , 88, the cylinder rotates to ue 5 08; oth-
erwise, the cylinder rotates to ue 5 84.58. In contrast, the pur-
ple line in Fig. 10a shows that the cylinder with d/D 5 0.27
has five equilibriums: three stable ones of ue 5 08, 378, and
738, two unstable ones at ue 5 108 and 468. If its initial u , 108,
the cylinder rotates to ue 5 08; for initial u between 108 and
468, to ue 5 378; for initial u . 468, to ue 5 738.

Figure 10b uses purple and blue lines to denote ue of, respec-
tively, stable and unstable equilibriums as a function of
the asymmetry d/D. In other words, the blue lines divide the
plane into several regions so that an initial point in a region (or
the initial status of cylinder) will travel toward a stable equilib-
rium (or purple line) while deviating from an unstable one.
When d/D , 0.25, a cylinder above the lower blue line travels
toward the upper purple line; below the lower blue line, toward
the lower purple line. When d/D . 0.25, an initial status of cyl-
inder above the upper blue line travels toward the upper purple
line; between the two blue lines, toward the middle purple line;
below the lower blue line, toward the lower purple line. Hence,

FIG. 9. (a) Torque acting on asymmetric cylinders with D/L 5 4 (i.e., a disk) at Re 5 400 (averaged over the time
interval from 36.1 to 36.8) vs the zenith angle of cylinder axis given the dimensionless distance d/D between the mass
center and the geometrical center (numbers beside lines). (b) The zenith angle of cylinder axis at zero torque vs the
dimensionless distance (asymmetry).

FIG. 10. As in Fig. 9, but for a cylinder with D/L 5 1/4 (i.e., a column) computed for Re 5 400. In (b), Purple and
blue lines represent stable and unstable equilibriums, respectively, vs the dimensionless distance (asymmetry).
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the final, steady-state orientation of asymmetric columns is
quite sensitive to d/D.

If asymmetric columns are released with random orienta-
tion into quiet air, they rotate eventually to the orientations
of their two (or three) stable equilibriums (represented by the
purple lines in Fig. 10b). The percentages of ice crystals with
different orientations depend on the locations of the unstable
equilibriums that are represented by the blue lines in Fig. 10b.
Roughly speaking, when d/D , 0.25, the percentage of col-
umns with vertical orientation (or u 5 08) is ;1.5%, whereas
the percentage of columns with approximately horizontal ori-
entation (or u ’ 858) is ;98.5%; when d/D . 0.25, the col-
umns with three final orientations of u ’ 08, 358, and 758 have
percentages of ;1.8%, 27.5%, and 70.7%, respectively. This
modeled sensitivity of equilibrium to d/D is consistent with
the modeled sensitivity of orientation in Hashino et al. (2016),
to some extent. The three stable equilibriums explain the ob-
servations of Garrett et al. (2015) that asymmetric particles
(e.g., aggregates, moderately rimed particles, and graupel)
have a much broader range of orientation angles.

Since the stable equilibrium of the top purple line in
Fig. 10b has ue ’ 808, it is referred to as the horizontal mode
of column orientation. The horizontal mode has high proba-
bility (;98.5%), which agrees with the field observations of
Kajikawa (1976). In contrast, the stable equilibrium of the
bottom purple line in Fig. 10b has ue 5 08, and it is referred to
as the vertical mode of column orientation. The vertical mode
has low probability (;1.5%), which agrees with the observa-
tions of Zikmunda and Vali (1972) that some of the rimed
crystals fell with their major axis vertical.

5. Discussion

We postulate that the difference in ice crystal orientation
between the laboratory and field observations can be ex-
plained by two contributing factors: 1) the difference in turbu-
lence and gravity waves between the laboratory and the field
and 2) the difference between the very symmetric crystal
models used in the laboratory and the asymmetric crystals
formed in clouds (Kajikawa 1992), which are discussed below
in turn.

a. Effects of turbulence and gravity waves

The effect of turbulence on crystal orientation is usually
studied by modeling spheroids in turbulent air. Since sphe-
roids approach a stable equilibrium or a target orientation in
quiet air, turbulence leads to the random orientation of sphe-
roids by changing the acceleration of air and subsequently
interrupting the approach of spheroids to their target orienta-
tion (Cox 1965; Klett 1995; Siewert et al. 2014). However, ice
crystals in clouds are more complicated than spheroids be-
cause of their sharp edges and asymmetry. Ice crystals with
sharp edge and asymmetry usually have multiple stable and
unstable equilibriums, and consequently, their orientations
depend on their initial orientations in quiet air (see section 3).
In turbulent air, turbulence drives the target orientation of ice
crystals from one stable equilibrium to another, bringing
about the random orientation of ice crystals, which explains

the broad range of orientation angles of asymmetric particles
(e.g., aggregates, moderately rimed particles, and graupel) ob-
served by Garrett et al. (2015).

Turbulence is strong in convective regions, and its effect on
crystal orientation is observed (Garrett et al. 2015; Zeng et al.
2019). In contrast, turbulence is weak or virtually nonexistent
in thin cirrus clouds with high static stability (Zeng et al.
2020). Hence, the random distribution of crystal orientation
observed in thin clouds (Noel and Chepfer 2010; Kikuchi et al.
2021) can be attributed to gravity waves, because gravity
waves can switch crystal target orientation between stable
equilibriums, too.

In nature, both turbulence and gravity waves contribute to
the low frequency of HOICs observed in optically thin ice
cloud layers (Noel and Chepfer 2010; Kikuchi et al. 2021). In
thin cirrus clouds, ice crystals are small, and thus, their aspect
ratio (or D/L) tends to be close to one (Auer and Veal 1970).
As a result, prismatic ice crystals possess an unstable equilib-
rium of orientation and two stable ones (i.e., the vertical and
horizontal modes of crystal orientation). Since gravity waves
and/or turbulent eddies frequently alter the slope of stream-
lines of the environmental airflow around ice crystals (or the
direction of mean flow U‘ in Fig. 4; see footnote 1), ice crystal
orientation swings frequently across the unstable equilibrium,
and thus, its target alternates between the two stable equilibri-
ums, bringing about the observed random orientation of ice
crystals.

b. High frequency of irregular ice crystals

The stable equilibrium of ice crystal orientation can be
used to (partly) explain the irregular (or asymmetric) ice crys-
tals commonly observed in the field (Heymsfield et al. 2002;
Heymsfield and Miloshevich 2003; Stoelinga et al. 2007) and
laboratory (Bailey and Hallett 2004). Consider an asymmetric
ice crystal with distance d between the geometrical center and
the center of gravity. It stays at a stable equilibrium with axis
zenith angle ue. Since the gradient of water vapor near the up-
stream crystal surface is larger than that near the downstream
crystal surface (Ji and Wang 1999; also see Fig. 7), water va-
por deposits more near the upstream surface than near the
downstream surface, increasing d. Once d is increased, ue of
the stable equilibrium is increased (see Fig. 9b), working as
positive feedback between d and ue.

The positive feedback between d and ue intensifies the
asymmetry of disk-like ice crystals. Furthermore, ue increases
rapidly from 308 at d/D 5 0.08 to 758 at d/D 5 0.12 (Fig. 9b).
This marked increase of ue with d corresponds to strong feed-
back that may in turn lead to the onset of irregular ice crystals
observed in the laboratory (Bailey and Hallett 2004) via
the large gradient of water vapor near the upstream crystal
surface.

Similarly, the positive feedback between d and ue works for
column-like ice crystals via the dependence shown by the top
purple line in Fig. 10b. When d/D , 0.25 (or d/L , 0.0625),
the top purple line represents the stable equilibrium with high
probability of;98.5% and axis zenith angle ue 5 ;808 (or the
horizontal mode); the bottom purple line represents the stable
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equilibrium with low probability of;1.5% and axis zenith an-
gle ue 5 08 (or the vertical mode, which is unimportant due to
its low probability). When d/D . 0.25 (or d/L . 0.0625), the
pattern of column orientation becomes complicated: the third
stable equilibrium (or canting mode of column orientation)
occurs with moderate probability of ;27.5% and axis zenith
angle ue 5 ;388. The onset of the third stable equilibrium
may correspond to the onset of large asymmetric rosette ice
crystals observed (Heymsfield et al. 2002).

c. Application of the equilibrium conditions

The probability distribution function (PDF) of ice crystal
orientation is an important factor in the weather prediction
models and remote sensing retrievals. It can be obtained from
the Lagrangian and Eulerian frameworks in phase space (e.g.,
Fig. 10b). Theoretically, the two frameworks are equivalent
but have different advantages when calculating the PDF.

In the Lagrangian framework, ice crystal orientation is
studied by tracking individual ice crystals or tracking the
movement of a point in phase space (e.g., Fig. 10b). Its time
series provides sufficient information to diagnose alignment
mechanisms. Since ice crystal orientation varies greatly with
many factors (e.g., crystal shape, length, aspect ratio, density,
and asymmetry; air density; turbulence, gravity waves), how
to classify the orientation and then obtain its PDF is still a
challenge.

In contrast, in the Eulerian framework, ice crystal orienta-
tion is studied by analyzing the distribution of equilibriums in
phase space (e.g., lines in Fig. 10b) and the limit cycle in phase
space [the limit cycle corresponds to the spiral falling mode of
ice crystals in physics space but is not discussed in this paper;
see Zeng (2023) for an example on the difference in phase
space between the Lagrangian and Eulerian frameworks]. Its
PDF can be obtained “easily.” Consider, for example, sym-
metric disks with D/L . 1.5 and Re 5 100. Since the disks
have only one stable equilibrium of ue 5 08, we assume that
the disks align horizontally no matter how they are introduced
into the atmosphere, even while they flutter around u 5 08
(Cheng et al. 2015; Nettesheim and Wang 2018).

Turbulence and gravity waves also impact the PDF of crys-
tal orientation, which is illustrated using the columns with
D/L 5 1 and Re 5 100. Consider an ideal atmosphere with
neither turbulence nor gravity waves. Suppose the columns
are released randomly in two (zenith and azimuth angles) di-
mensions into the atmosphere. Their PDF is dominated by
two orientations: horizontal orientation with frequency 20%
and vertical one with frequency 80%, because the columns
have two stable equilibriums (Fig. 6b). If turbulence and/or
gravity waves are introduced into the atmosphere, they alter
the crystal orientation relative to the critical orientation of the
unstable equilibrium ue. As a result, the crystals are always
swinging between the two stable orientations, bringing about
a random distribution of crystal orientation (see footnote 1
for a general discussion).

Clearly, the PDF of crystal orientation varies with crystal
types. Consider, for example, a mixture of small columns with
D/L ; 1 and large symmetric disks in a cloud with weak

turbulence. Thus, the PDF is relatively complicated: the small
columns are oriented randomly, whereas the large disks are
oriented horizontally. Once turbulence in the cloud becomes
strong (e.g., in a convective region), all crystals are orientated
randomly. Suppose we know the equilibriums of all types of
crystals and the percentage of each crystal type in a cloud. We
thus can obtain the PDF of crystal orientation in the cloud by
considering the PDF of each crystal type first and then merg-
ing the PDFs of all the crystal types.

The present paper focuses on the equilibriums of cylin-
ders that mimic plates, columns, and needles for the sake of
simplicity. As a complement, appendix B deals with the
equilibriums of hexagonal columns for a secondary orienta-
tion. With the same procedure, we can get the equilibriums
of less regular crystals (e.g., scalene crystals) and then ana-
lyze their preferred orientations. If some irregular crystals
have no equilibrium, it is inferred that they are oriented
randomly.

Also, the PDF of crystal orientation would vary from cloud
to cloud because crystal shape and symmetry interact with
crystal orientation (e.g., crystals aggregate). One example is
the positive feedback between column asymmetry and orien-
tation that can bring about the canting and vertical orienta-
tions of columns and even irregular crystals (see section 5b).
Hence, it cannot be assumed that ice crystals are horizontally
orientated in all clouds (Ryzhkov et al. 2011).

6. Conclusions

Equilibriums of ice crystal orientation, described by the cyl-
inder axis zenith angle ue, are analyzed by modeling the air-
flow around ice crystals. They are classified into two kinds:
stable and unstable. In quiet air an ice crystal rotates away
from its unstable equilibrium, and its orientation then ap-
proaches to ue of a stable equilibrium potentially oscillating
around its value (Hashino et al. 2014, 2016; Cheng et al.
2015). If ice crystals are released randomly into quiet air, they
eventually assume orientations of their stable equilibriums. In
contrast, in clouds turbulent eddies and gravity waves alter
the slope of streamlines of environmental flow around ice
crystals that in turn changes ue (or orientation target). As a re-
sult, an ice crystal always pursues its varying orientation target
but cannot arrive at a steady-state orientation, which is consis-
tent with the observed fluttering of ice crystals around the
horizontal plane (e.g., Kajikawa 1976; Noel and Sassen 2005;
Goerke et al. 2017).

The numerical simulations reveal the multiple equilibriums
of ice crystal orientation. The presence of the equilibriums
helps to understand the ice crystal orientations observed in
the field as follows.

• When D/L ,, 1 or D/L .. 1, an ice crystal possesses two
equilibriums, one of which is stable and the other is unsta-
ble (ue 5 08 or 908). The stable equilibrium corresponds to
the horizontal orientation of ice crystals in quiet air, which
is consistent with the laboratory observations of Jayaweera
and Mason (1965) and Westbrook (2011).
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• When D/L is close to one, an ice crystal possesses three
equilibriums, two of which are stable. In clouds gravity
waves and/or turbulent eddies alter the slope of streamlines
of the environmental air flow around ice crystals. As a re-
sult, a small ice crystal can swing its orientation frequently
across its unstable equilibrium, alternating its orientation
target between the two stable equilibriums and thus bring-
ing about random orientations of ice crystals, which is
consistent with the low frequency of HOICs observed in
optically thin ice cloud layers (Noel and Chepfer 2010;
Zhou et al. 2012; Kikuchi et al. 2021).

• When a large ice crystal is asymmetric in mass density, ue of
stable equilibrium falls between 08 and 908. The asymmetry-
induced change of ue is directly proportional to the distance
d between the geometrical center and the center of mass.
The positive relationship between ue and d can be used to
explain the common asymmetric ice crystals observed in
the atmosphere (Heymsfield et al. 2002; Heymsfield and
Miloshevich 2003; Stoelinga et al. 2007).

The present paper focuses only on the flow dynamic factors
of orientation of prismatic ice crystals. It must be noted that
other factors are present, such as ice crystal habit (Magono
and Lee 1966; Bailey and Hallett 2004) and the radiative ef-
fect on microphysics (Zeng et al. 2022), that are responsible
for other characteristics of observed ice crystal orientation.
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APPENDIX A

Structure of the Numerical Model

The numerical model was developed based on Zeng
(2001). It was embodied in the Cartesian coordinate system
(x, y, z). Since v 5 (u, y , w) and q 5 (qx, qy, qz) in the co-
ordinate system, Eqs. (1) and (2) are rewritten as

­tu 2 (­tu)(z) 2 (­tu)(y) 1­xk 52r21­xp 1 n(­2xxu 1­2yyu 1­2zzu),
(A1)

­ty 2 (­ty)(z) 2 (­ty)(x) 1­yk 52r21­yp 1 n(­2xxy 1 ­2yyy 1 ­2zzy),
(A2)

­tw 2 (­tw)(y) 2 (­tw)(x) 1­zk 52r21­zp 1 n (­2xxw 1­2yyw 1­2zzw),
(A3)

­tr 5
1
2
[(­tr)(x) 1 (­tr)(y) 1 (­tr)(z)], (A4)

where three sets of symbols with superscript x, y, and z are
defined as

(­ty)(x) 2 rwqx 5 0
(­tw)(x) 1 ryqx 5 0
(­tr)(x) 1­yry 1 ­zrw 5 0

}
, (A5)

(­tw)(y) 2 ruqy 5 0

(­tu)(y) 1 rwqy 5 0

(­tr)(y) 1­zrw 1­xru 5 0

}
, (A6)

(­tu)(z) 2 ryqz 5 0

(­ty)(z) 1 ruqz 5 0

(­tr)(z) 1­xru 1­yry 5 0

}
: (A7)

Obviously, Eqs. (A5)–(A7) describe “two-dimensional flow”
on the three planes y–z, z–x, and x–y, respectively, where
their superscripts (i.e., x, y, and z) indicate the normal axes of
the three planes, respectively. Please note (A5)–(A7) are still
three-dimensional even though they look two-dimensional.

On the staggered grid in Fig. A1, the two-dimensional nu-
merical scheme of Arakawa and Lamb (1981) is extended to
(A5)–(A7), yielding a three-dimensional model (or the present
one). The three-dimensional model converses not only kinetic
energy v ? v/2 but also enstrophy q ? q/2 when n 5 0 (for inviscid
flow), which is unique as far as the authors are aware.

Since the model conserves both energy and enstrophy, it re-
strains the spurious energy cascade [see Zeng et al. (2020) for
the discussion of enstrophy conservation and energy cascade].
As a result, the model possesses low computational noise and
thus needs no artificial smoothing technique to maintain its

FIG. A1. Staggering of the variables (i.e., u, y , w, qx, qy, qz, and r)
in one cell of the numerical model. Pressure p and kinetic energy k
are located at the same place as density r.
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computational stability. In addition, the model is accurate,
which is shown by comparing the modeled and observed wake
vortexes past solid cylinders and spheres (Zeng 2001; also see
section 2).

The model is also tested by comparing the computed equi-
librium of crystal rotation with the hexagonal column orienta-
tion observed. In section 3, the computed equilibrium for the
primary orientation of cylinders is consistent with the horizon-
tal alignment of crystals observed by Jayaweera and Mason
(1965) and Westbrook (2011). In appendix B, the equilibrium
for the secondary orientation of hexagonal columns is also
consistent with the laboratory observations of hexagonal col-
umn orientation (Westbrook 2011).

APPENDIX B

Secondary Orientation of Hexagonal Columns

Section 3c shows the primary orientation of symmetric cir-
cular columns, in which their central axis aligns horizontally.
As a complement, this appendix shows the secondary orienta-
tion of hexagonal columns by analyzing their other equilibriums.
Figure B1 displays the model setup where the central axis of
hexagonal columns is aligned along the y axis. All the simula-
tions of hexagonal columns take the same gridding as the simu-
lations in section 4b, using 1024 3 512 3 1024 grid points.

The first simulation is for a hexagonal column with
L/D 5 4, u 5 108, and Re 5 100. The column arrives at its
steady status in dimensionless time ;30 and the steady sta-
tus is described with the variables averaged between time

36.1 and 36.8. The torque acting on the column at the
steady status Ty 5 20.17 is obtained, indicating the column
rotates toward u 5 08. The magnitude of Ty (i.e., 0.17), in
comparison to that in Fig. 5, is quite small, which is reasonable
because the two wake vortexes around the y axis are small
and have weak asymmetry (see the streamlines around the col-
umn at time 36.8 in Fig. B2). Since the magnitude of Ty is
small, the sign of Ty may be inverted by other physical pro-
cesses, such as turbulence and gravity waves.

To find the equilibriums of the column, four additional sim-
ulations are carried out that use the same setup as the first
one except for u 5 08, 158, 208, and 308. Their modeled torque
Ty is displayed against u in Fig. B3 via the dashed line, show-
ing the hexagonal column has a stable equilibrium at u 5 08.
On the other hand, the modeled Ty Þ 0 at u 5 308 differs
from the expectation of Ty 5 0 for column symmetry,
which is attributed to the orientation of cubic grid cells
that breaks the column symmetry with respect to u 5 308
(Hashino et al. 2016). To represent the column symmetry
at u 5 308 properly, the coordinate system, (x′, y′, z′), is
rotated around the y axis for 308 so that the x′ axis is par-
allel to one side face of the hexagonal column. A new sim-
ulation is then carried out for u 5 308, achieving Ty 5 0.
With the new model setup, four other simulations are car-
ried out too with u 5 158, 208, 408, and 458, and their mod-
eled Ty is displayed in Fig. B3.

FIG. B1. As in Fig. 4, but for a hexagonal column with central axis
aligned along the y axis.

FIG. B2. Vertical cross section of streamlines around a hexagonal
column at y5 0 and t5 36.8 with Re5 100, L/D5 4, and u 5 108.
The horizontal and vertical axes are normalized by column diame-
ter D. The small wake vortexes around the y axis in this figure are
different from the large ones around the x axis (or the direction
perpendicular to the central axis), since the former and latter wake
vortexes are associated with the secondary and primary orienta-
tions, respectively.
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By synthesizing all the simulations with the two model
setups based on column symmetry, a solid line in Fig. B3 is
obtained to represent Ty versus u. The solid line shows that
the hexagonal column has stable equilibrium at u 5 08 and
608 and unstable equilibrium at u 5 308 and 908. This result
is consistent with the laboratory observations of Westbrook
(2011) that for regular prisms two prism facets align verti-
cally instead of horizontally.
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