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Antarctic krill (Euphausia superba) and Ice krill (Euphausia crystallorophias ) are k e y species within Southern Ocean marine ecosy stems. Giv en 
their importance in regional f ood w ebs, coupled with the uncertain impacts of climate change, the on-going reco v ery of krill-eating marine 
mammals, and the expanding commercial fishery for Antarctic krill, there is an increasing need to improve current estimates of their circumpolar 
habitat distribution. Here, we provide an estimate of the austral summer circumpolar habitat distribution of both species using an ensemble 
of habitat models and updated environmental co v ariates. Our models were able to resolve the segregated habitats of both species. We find 
that e xtensiv e potential habitat f or Antarctic krill is mainly situated in the open ocean and concentrated in the Atlantic sector of the Southern 
Ocean, while Ice krill habitat was concentrated more e v enly around the continent, largely o v er the continental shelf. Ice krill habitat was mainly 
predicted by surface oxygen concentration and water column temperature, while Antarctic krill was additionally characterized by mixed layer 
depth, distance to the continental shelf edge, and surface salinity. Our results further impro v e understanding about these k e y species, helping 
inform sustainable circumpolar management practices. 
Keywords: Euphausia crystallorophias , Euphausia superba , habitat suitability model, species distribution model, Southern Ocean. 
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Introduction 

Antarctic krill ( Euphausia superba ) and Ice (or crystal) krill 
( Euphausia crystallorophias ) are both key ecological species 
in the Southern Ocean (Murphy et al., 2012 ; Murphy et al.,
2016 ). They are important prey for many marine top preda- 
tors (Meyer et al., 2020 ) and invertebrates (Trathan and Hill,
2016 ), as well as being important grazers of autotrophic and 

heterotrophic plankton (Bar-On et al., 2018 ). Both species 
are essential in energy flow (Ballerini et al., 2014 ) and nutri- 
ent cycling (Ratnarajah and Bowie, 2016 ) through their high 

biomass and daily vertical migration, transporting essential 
nutrients and stimulating primary productivity (Cavan et al.,
2019 ). 

Antarctic krill is more abundant and ecologically impor- 
tant in mid- to lower-latitudes, including around some sub- 
Antarctic islands, especially in the southwest Atlantic (e.g.
Murphy et al., 2016 ). In contrast, Ice krill is more abundant 
and ecologically important in high-latitude coastal zones, in- 
cluding coastal polynyas (Pakhomov, 1997 ), where it is of- 
ten the principal food source for many coastal top predators 
(Thomas and Green, 1988 ; La et al., 2015 ). Both krill species 
have a complex life cycle closely associated with the winter 
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ea ice (Pakhomov, 1997 ; Meyer et al., 2017 ) and a lifespan
p to six years (Siegel, 1987 ). Spawning takes place during
ate spring (Pakhomov, 1997 ) and from spring to late sum-
er (Spiridonov, 1995 ; Siegel, 2005 ) for Ice krill and Antarc-

ic krill, respectively. Thus, krill distribution in the Southern 

cean is a function of time and space. Information on the po-
ential habitats of both species is therefore of importance to
 range of stakeholders. These include ecological modellers 
iming to develop models incorporating the full spatiotempo- 
al life history of krill (Thorpe et al., 2019 ; Green et al., 2021 ),
cologists trying to better understand circumpolar recruitment 
nd connectivity (Meyer et al., 2020 ), and for the on-going
anagement and policy development towards holistic spatial 
anagement approaches (McCormack et al., 2021 ). 
Antarctic krill is the focus of a modern fishery (Hill et al.,

016 ; Trathan et al., 2018 ; Trathan et al., 2021 ; Trathan et
l., 2022a ; Trathan et al., 2022b ) managed by the Commis-
ion for the Conservation of Antarctic Marine Living Re- 
ources (CCAMLR). There is currently no commercial fish- 
ry targeting Ice krill. Within CCAMLR, efforts to develop 

oherent spatial management have been underway for nearly 
wo decades (Brooks et al., 2020 ; Trathan and Grant, 2020 ).
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nowledge about favourable habitats is essential to the devel-
pment of spatial planning solutions that aim to conserve bio-
iversity, minimize risk associated with climate change, and
elp retain species both now and into the future (Eyring et
l., 2021 ). Recent efforts have focused on developing new ap-
roaches to “future proof” krill spatial management for cli-
ate change (Arafeh-Dalmau et al., 2021 ) and climate-smart

onservation planning (Tittensor et al., 2019 ). These types of
pproaches require a baseline of the current spatial distribu-
ion and factors determining the distribution of key ecological
pecies, including Antarctic krill and Ice krill. 

Historically, the main region of krill research with the most
bservational data have been the southwest Atlantic sector
f the Southern Ocean (CCAMLR MPA Planning Domain
, Figure 1 ; Atkinson et al., 2008 ; Atkinson et al., 2017 ),
hich is also the focus of the modern Antarctic krill fish-

ry (Nicol and Foster, 2016 ). Observational data on Antarc-
ic krill outside this region remains relatively scarce, while
ata on Ice krill is sparse throughout the Southern Ocean .
onsequently, earlier studies focused on modelling specific as-
ects of present-day and projected krill habitat, mainly focus-
ng on Antarctic krill. These include modelling habitat for en-
anced growth using an empirical growth model (Hill et al.,
013 ; Murphy et al., 2017 ; Veytia et al., 2020 ) and identi-
ying spawning habitat quality by simulating larval recruit-
ent combined with a mechanistic model of spawning qual-

ty (Piñones and Fedorov, 2016 ; Thorpe et al., 2019 ; Green et
l., 2021 ). Both approaches are based on observations in the
outhwest Atlantic sector and then upscaled to explore cir-
umpolar distributions. Further, several studies used ecologi-
al niche theory (Guisan and Thuiller, 2005 ; Elith and Leath-
ick, 2009 ), describing the species’ fundamental niche using

nvironmental factors as an approximation of the realized
iche, to predict the species potential habitat (Cuzin-Roudy
t al., 2014 ; Silk et al., 2016 ; Davis et al., 2017 ). Some projec-
ions suggest that favourable habitats for Antarctic krill might
ontract, resulting in southward habitat shifts and possible de-
lines in abundance and/or biomass. The extent to which a
hift has already occurred and the potential future effects re-
ain a topic of debate and active research (Cox et al., 2018 ;
tkinson et al., 2019 ; Hill et al., 2019 ; Veytia et al., 2020 ). Re-
ent work focusing on Antarctic krill habitat, abundance, and
redator consumption at the West Antarctic Peninsula (WAP;
 arwick-Evans et al., 2022a ; W arwick-Evans et al., 2022b )

nd around the South Sandwich Islands (Baines et al., 2022 )
as led to proposals for revised fisheries management. Such
egionally focused work highlights the need to consider wider
ssues, including the broad geographic scale of krill habitat,
arge-scale movement between areas, population connectivity,
nd the development of a stock hypothesis. 

Here, we use an ensemble of habitat suitability models
HSMs) based on observational data and observed environ-
ental covariates to quantify the circumpolar summer habi-

at of Antarctic krill and Ice krill and better understand the
rivers of the distribution of both species. We focus on the
ustral summer (December–March), the period of most obser-
ational data for both krill species, and the general time period
hen the adult krill population spawns, leading to future re-

ruitment (Pakhomov, 1997 ; Siegel, 2005 ). Our modelling ap-
roach utilizes state-of-the-art statistical approaches as well as
ovel circumpolar environmental data products that charac-
erize both the surface and subsurface conditions to evaluate
he relative importance of different environmental factors and
dentify preferred habitats for each krill species. In a changing
cean, such information is increasingly vital for responsible
anagement. Even though our models do not provide detailed
iochemical or autecological perspectives for either species,
hey provide a description of the most important drivers of
istribution, which may also be important when reviewing
he evidence base supporting climate-smart decision-making
elated to spatial management (Tittensor et al., 2019 ). 

ethods 

nvironmental covariates 

he model domain for this study was the Southern Ocean
outh of 50 

◦S, which encompasses much of the Antarctic Cir-
umpolar Current (ACC), including two of its major fronts,
he Polar Front (PF) and the Southern Antarctic Circumpo-
ar Current Front (SACCF), and the subpolar waters to the
outh of the ACC (Park et al., 2019 ). It also contains at least
arts of all nine CCAMLR MPA Planning Domains ( Figure 1 ).
hese were created by CCAMLR to assist with on-going ma-
ine spatial planning projects and collectively cover the entire
CAMLR Convention Area (Penhale and Koubbi, 2011 ). 
Krill potential habitat was modelled with an initial set of

limatological means of 19 environmental variables, identi-
ed as potentially ecologically relevant to both species and
nfluencing their abundance and spatial distribution ( Table
 ; Flores et al., 2008 ; Atkinson et al., 2009 ; Cuzin-Roudy
t al., 2014 ; Duhamel et al., 2014 ; Silk et al., 2016 ; Best-
ey et al., 2018 ). We chose to use climatological means (in-
egrated over 20–50 years) rather than annual information to
escribe the overall potential habitat rather than inter-annual
ariations, following Pinkerton et al. (2020) . Further, insuffi-
ient information was available for most environmental co-
ariates as well as krill observations to model inter-annual
ifferences. Colinearity (i.e. when two or more variables de-
cribed the same pattern) was assessed using the variance in-
ation factor metric in the “usdm” R package (Naimi et al.,
014 ) and a recommended threshold of 10 (Dormann et al.,
013 ). All variables were standardized (mean centred at 0 and
tandard deviation scaled to 1) before calculating colinearity
Naimi and Araújo, 2016 ). Surface dissolved oxygen concen-
ration (SOX), sea surface temperature (SST), and tempera-
ure at 200 m depth (T200) showed high levels of colinear-
ty (0.90–0.94 r p , Supplementary Figure S1). These covariates
ave been previously shown to be important to determine the
abitat of both species (Brierley and Cox, 2010 ; Cuzin-Roudy
t al., 2014 ; Tremblay and Abele, 2016 ; Murphy et al., 2017 ).
herefore, these three variables were combined to one latent
ariable using the first axis of a principal component analysis
PCA), explaining 95% of the initial variability (Supplemen-
ary Figure S2). The combination of testing for colinearity and
he PCA reduction resulted in 12 environmental covariates as
andidate habitat predictors ( Table 1 , Supplementary Figure
1). Grids for all variables were projected to a South Pole Lam-
ert Azimuthal Equal Area projection (EPSG: 102020, Sup-
lementary Figure S3) using bilinear interpolation at a 10 x
0 km resolution. All analyses were conducted in R 4.2.2 (R
evelopment Core Team, 2022 ). 

rill occurrence data 

et and trawl data containing Antarctic krill and Ice krill in-
ormation were collated from the most currently known expe-
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Figure 1. Map of the study area highlighting referenced locations throughout the text and the CCAMLR Marine Protected Area (MPA) Planning Domains 
(1–9) as stippled black lines. Seas are denoted in purple and island groups in red. Solid lines illustrate the common division of the Southern Ocean into 
the Atlantic, Indian, and Pacific sectors. B ath ymetry (BATH) data displa y ed is IBCSO v2 (Dorschel et al., 2022 ). The Polar Front (PF) and Southern 
Antarctic Circumpolar Current Front (SACCF) are illustrated as stippled and solid black lines, respectively (Park et al., 2019 ). WAP - West Antarctic 
Peninsula. The Planning Domains are Domain 1: Western Peninsula - South Scotia Arc; Domain 2: North Scotia Arc; Domain 3: Weddell Sea; Domain 4: 
B ou v et Maud; Domain 5: Croz et - del Cano; Domain 6: K erguelen Plateau; Domain 7: Eastern Antarctica; Domain 8: Ross Sea; and Domain 9: Amundsen 
- Bellingshausen. 
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ditions within the study area (Fevolden, 1980 ; Makarov et al.,
1985 ; Falk-Petersen et al., 1999 ; Fahrbach et al., 2003 ; Krafft 
et al., 2010 ; Swadling et al., 2010 ; Siegel, 2012 ; Atkinson et 
al., 2017 ; Steen, 2019 ; GBIF, 2020 ; Teschke et al., 2020 and 

references therein; Yang et al., 2021 ). Resulting datasets for 
each species were filtered to include: (1) spatial and tempo- 
ral information (i.e. where and when collected); (2) only data 
on adults (i.e. removing juvenile and larvae data); (3) data 
after 1970 to correspond with the baseline period of habi- 
tat predictors (see Table 1 ); and (4) data collected during the 
austral summer (1 December–31 March). All available abun- 
dance data were transformed into presence-absence data. Ab- 
sence observations were only retained with an upper sampling 
depth of < 50 m and where > 100 m of water column had been 

sampled to avoid false negatives (Atkinson et al., 2009 ). To re- 
duce the spatial bias in sampling efforts, data were gridded at 
the resolution of the environmental covariates following Mor- 
ède et al. (2014) . In cells with both presences and absences,
nly presences were retained. This way, the initial presence- 
bsence datasets for Antarctic krill and Ice krill were reduced
rom 7975 and 1062 to 3222 and 479 observations, respec-
ively ( Figure 2 d, Table 2 ). 

abitat suitability modelling 

SMs were built for both species using boosted regression 

rees with a binomial distribution and logit link (Mormède 
t al., 2014 ) following best practice (Elith et al., 2008 ). Each
odel was run using the biomod2 R package (Thuiller et al.,
009 ). For each boosted regression tree, a maximum num-
er of 3000 trees were computed with an interaction depth
f 5 and shrinkage of 0.01. Each species response dataset
as modelled 10 times with 70% of the data randomly se-

ected, with the remaining 30% of the data used to eval-
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Figure 2. Habitat suitability estimates for (a) Antarctic krill (E. superba) and (b) Ice krill (E. crystallorophias ). (c) Comparison of estimated habitat based on 
species-specific HSMs using 0.40 and 0.46 as binary cut-off maximizing the area under the receiver operating characteristic curve (AUC) for Antarctic 
krill and Ice krill, respectively. The PF, SACCF, and > 10 d with sea ice co v erage each year (ICE) are illustrated in (a–c) as stippled, solid black, and dotted 
lines, respectively (Park et al., 2019 ). (d) Observational data distribution (presences and absences) for the two species used to model species-specific 
HSM, including CCAMLR MPA Planning Domains 1–9. 
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uate each model’s performance (i.e. cross validation). An 

ensemble model as a weighted average of all ten model runs 
was then calculated, using the model performance metric AUC 

to weigh each individual model run. AUC measures the ability 
of a model to distinguish between classes (Fielding and Bell,
1997 ; Lobo et al., 2008 ). In the case of HSMs, it indicates how 

well the model can discriminate between presence and absence 
observations. For AUC values close to 1, the classification is 
close to perfect; for values equal to 0.5, the model classifica- 
tion is no better than a random draw; and for values below 

0.5, the model performs an inverse classification. That is, it 
predicts presences in areas dominated by absence points. The 
uncertainty of the habitat prediction was estimated using the 
coefficient of variation (CV), defined as the standard deviation 

divided by the mean of probabilities across all model runs. CV 

is a measure of uncertainty, with a high evaluation score de- 
noting areas with high uncertainty. The lower the CV, the bet- 
er the models are in that area. Relative importance of each
redictor variable in each model was estimated using a per-
utation method, which randomly permutes each predictor 

ariable independently, and computes the associated reduc- 
ion in predictive performance (Thuiller et al., 2009 ). Habitat
robability estimates were converted to species-specific binary 
aps by maximizing the AUC and thus determining a proba-
ility cutoff for each species-specific model. These were used 

o quantify species-specific habitat areas and the overlap be- 
ween the two species. 

odel validation 

he HSM for each species was evaluated using cross- 
alidation (as described above) and spatial predictability 
cross the study area. To assess spatial predictability, the re-
ponse data and model predictions were separated into the 
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Table 2. Distribution of Antarctic krill (E. superba) and Ice krill (E. crystallorophias) observational data and ensemble model validation by CCAMLR MPA 

Planning Domains and across the entire model domain. 

Species CCAMLR MPA 

Planning Domains 

Observational data Spatial predictability 
r s with IWC 

catch data Presence Absence CBI AUC 

Antarctic krill 1 997 299 0 .99 0 .82 0 .68 
2 169 251 0 .86 0 .78 0 .39 
3 56 54 0 .34 0 .95 0 .10 
4 182 144 0 .98 0 .82 0 .16 
5 7 43 0 .78 0 .89 0 .62 
6 21 73 0 .83 0 .91 0 .83 
7 449 336 1 .00 0 .84 0 .85 
8 37 56 0 .81 0 .90 0 .76 
9 14 19 0 .30 0 .74 0 .59 

Southern Ocean 1 972 1 250 1 .00 0 .85 0 .58 

Ice krill 1 3 5 0 .67 1 .00 –
2 0 0 – – –
3 42 34 0 .90 0 .96 –
4 17 92 0 .87 1 .00 –
5 0 0 – – –
6 0 0 – – –
7 137 102 0 .76 0 .99 –
8 23 22 0 .66 1 .00 –
9 0 0 – – –

Southern Ocean 232 247 0 .97 0 .99 –

AUC - area under the receiver operating characteristic curve; CBI - continuous Boyce index; r s - Spearman rank correlation; and IWC - International Whaling 
Commission. 
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ine CCAMLR MPA Planning Domains ( Figure 1 ). The en-
emble model prediction was evaluated in each domain with
vailable response data using the AUC and the continuous
oyce index (CBI). Boyce et al. (2002) suggested a perfor-
ance indicator based on the relationship between the num-
er of occurrences and the corresponding binned values of
uitability (Hirzel et al., 2006 ). The relationship is measured
y the Spearman rank correlation coefficient. A CBI value
lose to 1 suggests a close relationship between the number
f occurrences and the predicted suitability, a value equal to
 suggests no relationship, while a negative value suggests an
nverse relationship. In contrast to AUC, CBI is independent
f absence observations and was used here as a complemen-
ary approach to evaluate models both in terms of presence-
bsence (i.e. AUC) as well as presence-only information (i.e.
BI). We calculated CBI by applying the moving window
ethod suggested by Hirzel et al. (2006) and using the ecospat
 package (Broennimann, 2020 ). 
The Antarctic krill HSM was tested against an independent

ataset of historical whaling data assembled by the Interna-
ional Whaling Commission (IWC; Allison, 2020 ). For this
alidation, only catch data of krill-feeding species (blue whales
alaenoptera musculus , fin whales B. physalus , humpback
hales Megaptera novaeangliae , and Antarctic minke whales
. bonaerensis ) caught during the austral summer (December–
arch) 1902–2019 were considered. The resulting individual

atch data were summed on a one-degree longitude-latitude
rid across the model domain due to the low spatial resolu-
ion of pre-1973 data. These gridded data were then compared
o the Antarctic krill HSM using the Spearman rank correla-
ion coefficient across the model domain as well as within each
CAMLR MPA Planning Domain. Additionally, the Antarc-

ic krill HSM was compared with pre-1960 occurrence data
n Antarctic krill (December–March 1926–1951; Atkinson et
l., 2017 ). The ensemble model for each species was tested us-
ng AUC and CBI across the entire model domain as well as
ithin each CCAMLR MPA Planning Domain. 

esults 

he ensemble HSMs predicted circumpolar habitat suitabil-
ty and associated uncertainty for both krill species ( Figure
 and Supplementary Figure S4). Antarctic krill habitat (esti-
ated from HSM using a 0.40 binary cutoff maximizing the
UC) was concentrated in the Atlantic sector of the Southern
cean (51% of predicted habitat, Figure 3 and Supplemen-

ary Figure S5), including the Weddell Sea, Lazarev Sea, west-
rn Antarctic Peninsula (WAP), and South Orkney Islands,
nd as far north as South Georgia, the South Sandwich Islands,
nd Bouvet Island ( Figure 2 ). Suitable habitat is also predicted
n the Indian sector (12%, Cosmonauts Sea and Prydz Bay,
nd to a lesser extent, Mawson Sea and D’Urville Sea), as well
s the Pacific sector (36%, off the continental shelf in the Ross
ea as far north as the Balleny Islands, as well as in the Amund-
en Sea and Bellingshausen Sea). Contrastingly, Ice krill habi-
at (estimated from HSM using a 0.46 binary cut-off maximiz-
ng the AUC) was more evenly predicted around the Antarctic
ontinent (28–42% in each sector; Figure 3 and Supplemen-
ary Figure S5), with a more southern distribution compared
o Antarctic krill habitat. Ice krill habitat was mainly pre-
icted on the continental shelf and concentrated in the Ross
ea, Amundsen Sea, Weddell Sea, and Prydz Bay ( Figures 2
nd 3 ). Estimated habitat in the southern Weddell Sea was
ore uncertain, visible as higher estimated standard devia-

ions across models runs (Supplementary Figure S4). A total
rea of 9.22 × 10 

6 km 

2 was estimated to be suitable habi-
at for both species within the model domain. Antarctic krill
abitat area is predicted to be 8.14 × 10 

6 km 

2 (88% of to-
al krill habitat), while Ice krill habitat area was predicted to
e 2.01 × 10 

6 km 

2 (22% of total krill habitat). Species over-
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Figure 3. (a) Proportion of habitat estimated for Antarctic krill (E. superba) and Ice krill (E. crystallorophias ) throughout the Southern Ocean, and (b) 
accumulated by ocean sector. Shadings in panel (a) illustrate variation of all 10 model runs for each species. 
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lap was estimated to be 0.93 × 10 

6 km 

2 (10% of total krill 
habitat). Antarctic krill habitat was predominantly predicted 

in the open ocean (86% of its habitat) and, to a lesser ex- 
tent, over the continental shelf. Contrastingly, Ice krill habi- 
tat occurred mainly over the continental shelf (72% of its 
habitat). 

Environmental covariates most influential in predicting 
Antarctic krill habitat were mixed layer depth (MLD), dis- 
tance to the continental shelf edge (DIS), the integrated mea- 
sure of surface dissolved oxygen concentration, sea surface 
temperature, and temperature at depth (covariates combined 

using PCA), as well as sea surface salinity (SSS; Figure 4 and 

Supplementary Figure S6). Ice krill habitat was mainly pre- 
dicted by the integrated variable of surface dissolved oxygen,
surface temperature, and temperature at depth (PCA), and to 

a small degree by average bloom intensity (BM) and distance 
to the continental shelf edge (DIS). 

Cross-validation of each set of 10 HSM models for both 

species demonstrated good model fit with AUC values (mea- 
sure of presence-absence fit) of 0.74 to 0.95 and 0.96 to 1.00 

for Antarctic krill and Ice krill, respectively. The ensemble 
HSMs for either species also showed high performance mea- 
sures throughout the model domain apart from some geo- 
graphic areas with few observational data ( Table 2 ). This was 
apparent in both AUC and CBI (measure of presence-only fit) 
values. Predicted Antarctic krill habitat was in general agree- 
ment with the independent IWC whale catch dataset ( Table 
2 , Supplementary Figure S7) and early observational data col- 
lected between 1926 and 1951 (CBI = 0.82, AUC = 0.67,
Supplementary Table S1). 
a

iscussion 

ircumpolar habitat distribution 

e developed circumpolar summer habitat models for two 

ey species of the Southern Ocean: Antarctic krill and Ice
rill. Our estimates utilize observational data from across the 
outhern Ocean and are based on improved reanalyses of ob-
ervational data and estimates of environmental covariates,
he latter benefiting from recent data assimilation from re- 
earch cruises, remote sensing, and the use of technology at-
ached to marine mammals (Pellichero et al., 2017 ; Boyer
t al., 2018 ; Dorschel et al., 2022 ). The resulting differen-
ial circumpolar distributions of the two species are in gen-
ral agreement with previous, mainly regional, biogeographi- 
al studies (Mackintosh, 1973 ; Atkinson et al., 2009 ; Hill et
l., 2013 ; Cuzin-Roudy et al., 2014 ; Piñones and Fedorov,
016 ; Silk et al., 2016 ; Davis et al., 2017 ; Murphy et al.,
017 ; Thorpe et al., 2019 ; Veytia et al., 2020 ; Green et al.,
021 ; Yang et al., 2021 ; Baines et al., 2022 ; Warwick-Evans et
l., 2022b ). Agreement with previous studies, mainly focusing 
n Antarctic krill and using diverse approaches (e.g. growth 

odel, spawning quality model, regional HSM), suggests that 
he overall habitat of both species is in part driven by large-
cale environmental features such as frontal zones, the conti- 
ental shelf break, and the winter sea ice extent, which delimit
ioregions (Raymond, 2014 ; Park et al., 2019 ). The associa-
ion between frontal zones and predicted species habitat has 
lso been shown for other species groups, including marine 
ammals and seabirds (Hindell et al., 2020 ), mesopelagic fish

Freer et al., 2019 ), mesozooplankton (Pinkerton et al., 2020 ),
nd echinoid fauna (Fabri-Ruiz et al., 2020 ). 
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Figure 4. Marginal response plot of the six most influential variables (see Supplementary Figure S4, keeping all other variables at their median) for both 
species’ ensemble models: (a) MLD; (b) latent variable of SST, temperature at 200 m, and sea surf ace dissolv ed o xy gen concentration (PCA); (c) distance 
to the continental shelf edge (DIS); (d) SSS; (e) a v erage bloom intensity (BM); (f) frequency of marginal sea ice zone (MIZ). Shaded areas illustrate the 
variability of the response across the 10 model runs. Rug plots at the top and bottom of each plot denote the observational data distribution for Antarctic 
krill (E. superba) and Ice krill (E. crystallorophias ), respectively. 
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For Antarctic krill, we found that most habitat was pre- 
dicted in the Atlantic Sector (Cuzin-Roudy et al., 2014 ), par- 
ticularly in the southwest Atlantic sector (CCAMLR MPA 

Planning Domains 1 and 3) (Hill et al., 2013 ; Silk et al., 2016 ; 
Baines et al., 2022 ). Our results also suggest extensive poten- 
tial habitat in the Lazarev Sea (CCAMLR Planning Domain 

4), supporting previous work (Krafft et al., 2010 ). Further,
we identified large areas of suitable habitat in the Indian and 

Pacific Sectors, especially in the Ross Sea (Davis et al., 2017 ) 
and the little-surveyed Amundsen and Bellingshausen Seas, in- 
cluding around Peter I Island (Atkinson et al., 2008 ). In con- 
trast, we did not determine habitats within the deeper parts of 
the Southern Ocean in the northern Cosmonaut and Amund- 
sen Seas, as previously described by Cuzin-Roudy et al. (2014) .
Overall, our model supports previous work predicting an ex- 
tensive unequal circumpolar distribution of Antarctic krill,
mainly off the continental shelf during summer (Mackintosh,
1973 ; Atkinson et al., 2009 ; Cuzin-Roudy et al., 2014 ). The 
general hypothesis is that this oceanic summer distribution is 
the result of advection of krill with surface currents and sea 
ice (Hofmann and Murphy, 2004 ; Atkinson et al., 2008 , and 

references therein). But it is also hypothesized to result from 

the seasonal migration of adults from coastal to oceanic wa- 
ters to spawn during spring and summer, although there is 
considerable discussion about the validity of this hypothesis 
(Siegel, 1988 ; Trathan et al., 2003 ; Meyer, 2012 ; Reiss et al.,
2017 and references therein). To what extent advection and 

migration determine krill distribution is a topic of ongoing 
research, although it is logistically difficult to assess if krill is 
drifting passively or moving actively over longer periods of 
time. 

The preferential habitat for Antarctic krill was character- 
ized by reduced salinity, oxygenated waters, and lower temper- 
atures above and below an intermediate MLD, congruent with 

previous circumpolar (Cuzin-Roudy et al., 2014 ) and regional 
modelling studies (Silk et al., 2016 ; Davis et al., 2017 ; Perry 
et al., 2019 ; De Felice et al., 2022 ). These environmental vari- 
ables indicate productive regions for diatoms, which are essen- 
tial food for the lipid metabolism of Antarctic krill (Mayzaud 

et al., 1998 ) and for maintaining high summer fecundity (Ross 
and Quetin, 2000 ). The geographic distribution also encom- 
passes the MIZ of receding sea ice in spring. This covariate 
had only marginal importance in our HSM, likely as a con- 
sequence of our use of observational data in the seas around 

South Georgia, an area with low sea ice coverage year-round.
This suggests that Antarctic krill distribution is driven by the 
pelagic ecosystem but that the species might utilize the sea ice- 
associated ecosystems in some areas during the late spring and 

early summer. Sea ice algae and phytoplankton blooms asso- 
ciated with sea ice retreat, for example, are important food 

sources for adult krill coming out of their winter metabolic 
depression (Meyer, 2012 ). 

In contrast to the heterogenous circumpolar Antarctic krill 
habitat, the estimated Ice krill summer habitat was more 
evenly distributed around the Antarctic continent. It com- 
prises regions previously described as Ice krill habitat around 

Prydz Bay, the Ross Sea, and East Antarctica (Thomas and 

Green, 1988 ; Swadling et al., 2010 ; Davis et al., 2017 ; De Fe- 
lice et al., 2022 ), as well as areas with little or no observa- 
tional data such as the Amundsen Sea. Habitat was predom- 
inantly predicted in the cold, oxygenated waters on the con- 
tinental shelf, in agreement with earlier studies (Cuzin-Roudy 
et al., 2014 ; Davis et al., 2017 ; De Felice et al., 2022 ), and in- 
icative of rich neritic sites where Ice krill has been shown to
ominate the mesozooplankton (Swadling et al., 2010 ). Inter- 
stingly, the HSM did not directly select sea ice covariates as
mportant, even though Ice krill is strongly associated with sea
ce year-round. However, our estimated Ice krill summer habi- 
at does encompass areas shown to be important in Ice krill life
istory such as coastal polynyas (Pakhomov and Perissinotto,
996 ). 
Strikingly, even though both species-specific HSMs were fit- 

ed independently, the final models demonstrate a clear hor- 
zontal segregation of the two species in accordance with 

heir respective positions as key links in energy flow in sub-
ntarctic and Antarctic marine food webs (Murphy et al.,
016 ). Even in areas of overlap, the two species might seg-
egate vertically within the water column to minimize poten- 
ial grazing competition, as shown along the WAP (Daly and
immerman, 2004 ). 
Our models for both species did not show remotely sensed

hlorophyll a (average bloom intensity, BM, and bloom du- 
ation, BD) to be an important environmental covariate to 

redict the potential habitat of Antarctic krill, in contrast 
o previous work (Atkinson et al., 2006 ), although Ice krill
as predicted to a small extent by BM. Remotely sensed ob-

ervations of chlorophyll a in the Southern Ocean are lim-
ted to areas without sea ice cover and sufficient cloud-free
ays (Sathyendranath et al., 2019 ). This drastically limits data
overage (Supplementary Figure S8), and might miss blooms 
hat can be irregular and short-term (Jena and Pillai, 2020 ).
n addition, remote sensing only captures surface waters and 

ot sub-surface blooms, which are common in the Southern 

cean (Baldry et al., 2020 ) and are likely to be an important
ood source for krill. This is potentially indicated by the rel-
tive importance of MLD in our models as a proxy for these
ub-surface blooms, as recently shown in the eastern Weddell 
ea (Moreau et al., 2023 ). 

odel validation 

he Antarctic krill HSM showed good predictive ability, as
pparent in high cross-validation scores and validation with 

wo independent datasets. The historical whale catch data (Al- 
ison, 2020 ) mostly correlated with the estimated Antarctic 
rill habitat. The exceptions were the western Ross Sea and
mundsen Sea, south of the Balleny Islands, and the Weddell
ea. Reasons for these discrepancies are likely due to late sea
ce retreat (Supplementary Figure S7d) and a concomitantly 
ate or no whaling season in these areas, potentially underes-
imating the actual distribution of krill-feeding whales. Fur- 
her, the historical data indicated high numbers of catches of
rill-feeding whales in the north-eastern Lazarev Sea, an area 
ot identified by our HSM. Observational data in general,
nd of krill in particular, are scarce in this region. We spec-
late that this area may not constitute quality krill habitat,
ut rather that krill is being advected into the area by major
cean currents from habitats further west and preyed upon by
rill-feeding whales. Testing Antarctic krill predictions against 
istorical occurrence data as well as the approximate distri- 
ution of its predators (i.e. krill-feeding whales), as depicted 

y whaling information during the last century, provides a
aluable test of whether the model provides adequate predic- 
ions, especially in areas with little observational data. Un- 
ortunately, data to test the predictive abilities of the Ice krill
SM with similar methods are lacking. Hence, our evaluation 
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ould only be based on cross-validation results, that showed
imilar high scores as seen for Antarctic krill. Poor correla-
ions in MPA planning domain-specific comparisons were re-
ated to small sample sizes in some planning domains. We
ave potentially underestimated habitats that with improving
ethods and data can be investigated. For instance, few ob-

ervational data exist of the under-ice habitats for either krill
pecies (Brierley et al., 2002 ; Meyer et al., 2017 ), or the deep
asins where large concentrations of Antarctic krill have been
ound (Clarke and Tyler, 2008 ; Schmidt et al., 2011 ). 

patial management implications 

s both Antarctic krill and Ice krill are key species in the
ntarctic ecosystem (Murphy et al., 2012 ; Murphy et al.,
016 ), they are important considerations for on-going and
roposed spatial management efforts. Our results provide fur-
her information and a modelling baseline to assist in these ef-
orts. While Antarctic krill is one of the most studied pelagic
pecies, major gaps in knowledge exist to support krill man-
gement decisions (Meyer et al., 2020 ). A major obstacle is
he continuing paucity of observational data outside the cur-
ent preferred krill fishery areas. This is even more true in the
ase of the less studied and, so far, not commercially exploited
ce krill. Our approach, by identifying potential circumpolar
abitats, can assist in extending important knowledge about
heir spatial ecology. The type of approach we used can also
ssist in priorities for krill research to support the ecosystem-
ased management of the krill fishery. For instance, as a ba-
is for future-proof management of the krill fishery by seeing
ow changing environmental covariates impact the potential
abitat distribution, and as input to improve mechanistic un-
erstanding between krill biology and behaviour and the key
arge-scale habitat determinants we have identified. 

CCAMLR has an explicit objective to conserve marine liv-
ng resources and employs a science-based precautionary and
cosystem-based management approach (Jantke et al., 2018 ).
n an effort to meet global MPA targets (e.g. Roberts et al.,
020 ) and in recognition of the value of MPAs as a biodiver-
ity conservation and fisheries management tool (e.g. Gaines
t al., 2010 ), CCAMLR committed to designating a network
f MPAs in the Southern Ocean (CCAMLR, 2009 ). To sup-
ort these efforts, direct sampling of key ecological compo-
ents, such as Antarctic and Ice krill, is sometimes impracti-
al. Species distribution and related modelling methods can
e used to help infer broad-scale biodiversity patterns to as-
ist MPA planning. The circumpolar HSMs we have presented
an complement regional analyses (e.g. Hill et al., 2013 ; Silk
t al., 2016 ) to support MPA planning and provide important
nformation for the optimization of MPA planning solutions
Griffith et al., 2021 ). 

uture research directions 

ur models incorporated available observational data on krill
nd broad environmental conditions delimiting their environ-
ental niche as well as general prey availability (Pinkerton et

l., 2020 ) to identify important aspects of Antarctic and Ice
rill spatial ecology. Several other more complex ecological
spects influence the distribution of these krill species, such as
iel vertical migration (Siegel and Watkins, 2016 ), inter- and
ntraspecific interactions, including swarming response to pre-
ation (Tarling and Fielding, 2016 ), density dependence, on-
ogenetic migrations (Siegel, 1988 ), population connectivity,
nd recruitment. Combining these aspects with our circum-
olar HSMs will be an important avenue to pursue to further
ur understanding of the drivers of krill populations and the
ffect of a changing environment on these. A next step is to
ove from potential habitat to estimated abundances crucial

or effective management. Our models provide estimated cir-
umpolar summer habitat of both species, highlighting exten-
ive potential habitat also in poorly surveyed regions of the
outhern Ocean where either species might occur. These re-
ults provide a valuable baseline to address important chal-
enges for these key species (Morley et al., 2020 ), including
hanges in their spatial distribution, population connectivity,
nd influence on ecological functioning both present and fu-
ure (Murphy et al., 2016 ). Combining identified krill habi-
at distribution with drifter experiments will identify regional
nd circumpolar population connectivity (Thorpe et al., 2019 ;
eyer et al., 2020 ), information necessary to assess popula-

ion resilience, fishery risk, help develop a stock hypothesis
Atkinson et al., 2008 ), and for supporting an ecologically
onnected network of circumpolar MPAs (Boothroyd et al.,
023 ). The estimated habitat distributions from this study can
rovide scientific reference areas to incorporate in future or
xisting research and monitoring plans for both the CCAMLR
rill fishery and CCAMLR MPAs. 
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