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Abstract: Monitoring marine mammals is of broad interest to governments and individuals
around the globe. Very high-resolution (VHR) satellites hold the promise of reaching remote and
challenging locations to fill gaps in our knowledge of marine mammal distribution. The time has
come to create an operational platform that leverages the increased resolution of satellite imagery,
proof-of-concept research, advances in cloud computing, and machine learning to monitor the
world’s oceans. The Geospatial Artificial Intelligence for Animals (GAIA) initiative was formed
to address this challenge with collaborative innovation from government agencies, academia,
and the private sector. In this paper, we share lessons learned, challenges faced, and our vision
for how VHR satellite imagery can enhance our understanding of cetacean distribution in
the future.

Keywords: very high-resolution satellite imagery; artificial intelligence; machine learning; remote
sensing; marine mammal; cetacean; annotation; collaborative innovation; open-source; Geospatial
Artificial Intelligence for Animals

1. Introduction

Effective marine mammal conservation management depends on accurate and
timely data on abundance and distribution. Scientists currently employ a variety of
visual (vessel, aircraft) and acoustic (buoys, gliders, fixed moorings) research platforms
to monitor marine mammals. While various approaches have different challenges and
benefits, it is clear that very high-resolution (VHR) satellite imagery holds tremendous
potential to acquire data in difficult-to-reach locations [1–3]. The time has come to
create an operational platform leveraging the increased resolution of satellite imagery,
proof-of-concept research, advances in cloud computing, and advanced machine learn-
ing methods to monitor the world’s oceans. The Geospatial Artificial Intelligence for
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Animals (GAIA) initiative was formed to address this challenge. In this paper, we share
lessons learned, challenges faced, and our vision for how VHR satellite imagery can
be used to enhance our understanding of cetacean distribution in the future. Having
another tool in the toolbox enables greater flexibility in achieving our research and
conservation goals.

1.1. Geospatial Artificial Intelligence for Animals

The initiative Geospatial Artificial Intelligence for Animals brings together an ex-
traordinary coalition of organizations to tackle the challenge of designing a large-scale
operational platform to detect marine mammals from space-orbiting satellites. These
organizations include government agencies (National Oceanic and Atmospheric Ad-
ministration (NOAA), U.S. Naval Research Laboratory (NRL), the Bureau of Ocean
Energy Management (BOEM), the U.S. Geological Survey (USGS), independent re-
search organizations (British Antarctic Survey), academia (University of Edinburgh,
University of Minnesota, and the private sector (Microsoft AI for Good Research Lab,
Maxar Technologies).

To accurately inform Stock Assessment Reports and meet the regulatory require-
ments of the U.S. Marine Mammal Protection Act, the Endangered Species Act, and
the National Environmental Protection Act, government agencies in the United States
require data on the abundance, distribution, density, and habitat use of marine mammals.
As stewards of the sea, the U.S. Navy is committed to protecting the environment while
defending freedom. This commitment has encouraged the U.S. Navy to develop and
leverage existing technologies for marine mammal detection and situational awareness.
The Navy funds three main programs focused on marine species to support compliance
with the Marine Mammal Protection Act and Endangered Species Act—Office of Naval
Research Marine Mammals and Biology Program, the Living Marine Resources Program,
and the Navy Marine Species Monitoring Program. NOAA Fisheries, BOEM, and USGS
are working together to task imagery over known whale aggregations that will be used
to create an annotated dataset of detections. Researchers at the British Antarctic Sur-
vey, University of Edinburgh, and University of Minnesota with extensive expertise in
processing and annotating satellite imagery have been tremendously valuable as we
learn best practices. The Microsoft AI for Good team has created a ‘human-in-the-loop’
software solution to speed up the annotation process. The resulting detections will be
used to train models in an active learning process to develop and refine machine learning
models to detect marine animals and other objects of interest.

The GAIA team is focused on two endangered species with high risk of extinc-
tion: the North Atlantic right whale (Eubalaena glacialis) and the Cook Inlet beluga whale
(Delphinapterus leucas) (Figure 1). The critically endangered North Atlantic right whale
in the Atlantic Ocean has been experiencing a population decline for over 10 years and
has only an estimated 368 individuals remaining (95% probability interval 356 to 378) [4],
while the endangered Cook Inlet beluga population is estimated at 279 individuals (95%
probability interval 250 to 317) and is experiencing a ~2.3% decline in abundance per
year [5]. These two species could benefit from additional monitoring methods and also
present an opportunity to examine how differences in body size, color, behavior, and sur-
rounding environment may influence detectability in VHR satellite imagery. North Atlantic
right whales average 16 m in length, have dark-colored bodies with white callosities on
their head, and inhabit waters under a variety of turbidity conditions. On the other hand,
Cook Inlet belugas are much smaller, up to ~4.5 m, are either gray or white, and inhabit
a very turbid, glacial-fed, tidal estuary in which only a fraction of their body is visible
when surfacing. White adults can be easily confused with large white birds, white caps, or
exposed rocks.
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Figure 1. A comparison of imagery collected during aerial surveys and from VHR satellites for the 
North Atlantic right whale and the Cook Inlet beluga whale. (a) An aerial photograph of a North 
Atlantic right whale taken from a handheld 300 mm fixed lens from a NOAA Twin Otter aircraft. 
Image collected under MMPA Research Permit 17355; (b) A WorldView-3 satellite image of a North 
Atlantic right whale (Catalog ID: 10400100674B2100, Standard 2A product, pansharpened at 0.5 
m/px resolution); (c) An aerial still image of Cook Inlet beluga whales captured from video footage 
collected on a Sony FDR-AX700 video handycam (3840 × 2160 pixel resolution) at 800 ft altitude. 
Video collected under MMPA Research Permit 25563; (d) A WorldView-3 satellite image of Cook 
Inlet beluga whale (Catalog ID: 104001006F3F8E00, Basic 1B product, pansharpened at a 0.37 m/px 
resolution). Satellite images © 2023 Maxar Technologies. 

1.2. Background on Satellite Imagery for Marine Mammal Detection 
Earth-orbiting satellites can capture optical imagery over any region on the planet, 

and both the resolution and revisit rates have increased over the years (Figure 2). Tremen-
dous progress has been made, resulting in the ability to use VHR satellite imagery to gain 
insights into the habitat, distribution, and density of marine mammals (Figure 3, Table 1). 
Monitoring marine mammals from space started with NASA’s Landsat-1 satellite 
launched in 1972, which had a spatial resolution of 100 m and allowed for habitat prefer-
ence surveys [6,7] and distribution mapping [8]. With the subsequent improvement of 
spatial resolution with the Centre National d’Etudes Spatiales SPOT-1 satellite, large ag-
gregations of animals, such as king penguins (Aptenodytes patagonicus), could be detected 
[9]. 

a b 

c d 

Figure 1. A comparison of imagery collected during aerial surveys and from VHR satellites for
the North Atlantic right whale and the Cook Inlet beluga whale. (a) An aerial photograph of a
North Atlantic right whale taken from a handheld 300 mm fixed lens from a NOAA Twin Otter
aircraft. Image collected under MMPA Research Permit 17355; (b) A WorldView-3 satellite image of
a North Atlantic right whale (Catalog ID: 10400100674B2100, Standard 2A product, pansharpened
at 0.5 m/px resolution); (c) An aerial still image of Cook Inlet beluga whales captured from video
footage collected on a Sony FDR-AX700 video handycam (3840 × 2160 pixel resolution) at 800 ft
altitude. Video collected under MMPA Research Permit 25563; (d) A WorldView-3 satellite image
of Cook Inlet beluga whale (Catalog ID: 104001006F3F8E00, Basic 1B product, pansharpened at a
0.37 m/px resolution). Satellite images © 2023 Maxar Technologies.

1.2. Background on Satellite Imagery for Marine Mammal Detection

Earth-orbiting satellites can capture optical imagery over any region on the planet, and
both the resolution and revisit rates have increased over the years (Figure 2). Tremendous
progress has been made, resulting in the ability to use VHR satellite imagery to gain insights
into the habitat, distribution, and density of marine mammals (Figure 3, Table 1). Monitor-
ing marine mammals from space started with NASA’s Landsat-1 satellite launched in 1972,
which had a spatial resolution of 100 m and allowed for habitat preference surveys [6,7]
and distribution mapping [8]. With the subsequent improvement of spatial resolution with
the Centre National d’Etudes Spatiales SPOT-1 satellite, large aggregations of animals, such
as king penguins (Aptenodytes patagonicus), could be detected [9].
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Figure 2. Trends in earth observation very high-resolution (VHR) satellites launched since 1972 by 
commercial and government providers (excluding military), showing the number of satellites 
launched per year on the left vertical axis and the mean spatial resolution on the right vertical axis. 
Adapted with permission from [10]. See Supplementary Materials S1 for the underlying data. 

 

 
Figure 3. The timeline of advancements in wildlife research using very high-resolution (VHR) satel-
lite imagery to understand habitat, distribution, and density with particular emphasis on develop-
ments relevant to the detection of marine mammals. 

  

Figure 2. Trends in earth observation very high-resolution (VHR) satellites launched since 1972
by commercial and government providers (excluding military), showing the number of satellites
launched per year on the left vertical axis and the mean spatial resolution on the right vertical axis.
Adapted with permission from [10]. See Supplementary Materials S1 for the underlying data.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 32 
 

 

 
Figure 2. Trends in earth observation very high-resolution (VHR) satellites launched since 1972 by 
commercial and government providers (excluding military), showing the number of satellites 
launched per year on the left vertical axis and the mean spatial resolution on the right vertical axis. 
Adapted with permission from [10]. See Supplementary Materials S1 for the underlying data. 

 

 
Figure 3. The timeline of advancements in wildlife research using very high-resolution (VHR) satel-
lite imagery to understand habitat, distribution, and density with particular emphasis on develop-
ments relevant to the detection of marine mammals. 

  

Figure 3. The timeline of advancements in wildlife research using very high-resolution (VHR) satellite
imagery to understand habitat, distribution, and density with particular emphasis on developments
relevant to the detection of marine mammals.
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Table 1. Summary of publications that have used satellite imagery to detect marine mammals.

Year Authors Satellite Species Details

2002 [11] IKONOS-2 Orca, Humpback Detection

2005 [12] Quickbird Walrus Detect haulouts, abundance

2011 [13] Quickbird-2,WorldView-1 Weddell seals Abundance variation

2012 [14] Eros-B Walrus Detect rookeries,
count individuals

2013 [15] GeoEye-1 Polar bear, pinnipeds, whales Detect individuals and tracks

2014 [16] WorldView-2 Southern
right whale Abundance

2014 [17] GeoEye-1 Elephant seal Abundance

2014 [18] WorldView-2, Quickbird Polar bear Distribution, abundance

2015 [19] WorldView-2, Quickbird Polar bear Distribution, abundance,
automation

2015 [20] WorldView-2 Blue whale Detect individuals

2017 [21] Various via Google Earth Gray seal Abundance variation

2018 [22] WorldView-2, -3 Humpback whale Detect individuals

2018 [23] WorldView-3 Polar bear Abundance, count individuals

2019 [24] WorldView-3 Fin, humpback, Southern
right, gray whales Detection

2019 [25] WorldView-3 Southern
right, humpback whales Detect individuals

2019 [26] WorldView-2 Sei whale Stranding counts

2019 [27] Google Earth various Abundance

2020 [28] WorldView-3 Humpback whale Density

2020 [29] WorldView-2,-3, GeoEye-1,
Quickbird-2

Southern right, humpback,
fin, gray whales Detect individuals

2020 [30] Specific sensors not listed Crabeater seal Abundance variation

2020 [31] WorldView-3 Crabeater, Weddell, leopard,
Ross seals Abundance

2020 [32] WorldView-2, -3 Walrus Spatial and temporal
satellite capability

2021 [33] WorldView-3 Beluga, narwhal whales Density

2021 [34] Sentinel-1, TerraSAR-X,
Landsat Pacific walrus Detect aggregations

2021 [35] WorldView-2 Bottlenose dolphin Detect individuals and mud
ring feeding

2022 [36] IKONOS-2, GeoEye-1,
WorldView-1,-2,-3

Southern
right whale Detect individuals, automation

2022 [37] Worldview-3 North Atlantic
right whale Detect individuals

2022 [38]
Pleiades-1A, Sentinel 2,
Landsat 8, Rapid Eye,

Planet Scope

Southern
right whale

Detect individuals,
aerial comparison

2022 [39] WorldView-2,-3, GeoEye-1,
Quickbird-2

Southern right, humpback,
fin, gray whales

Annotated satellite
image dataset
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The detection of individual animals was not possible until the arrival of VHR satellites
capable of collecting sub-meter resolution imagery. In a groundbreaking study, Abileah [11]
identified orca and humpback whales with the IKONOS-2 satellite with one-meter panchro-
matic resolution. Since then, there has been an explosion of additional research on marine
mammals (polar bears: [18]; walrus: [12,14,34]; Antarctic seals: [13,40,41]) despite the addi-
tional challenges presented by high sea state and surface availability. Fretwell et al. [16]
was able to identify and count Southern right whales in a WorldView-2 satellite image
with 50 cm panchromatic resolution. The authors speculated that the resolution was not
sufficient for differentiating between species. After the 2014 launch of Maxar Technologies’
WorldView-3 satellite with 31 cm panchromatic resolution, species identification of marine
mammals became more feasible. For example, Cubaynes et al. [24] identified four species
of whales (fin, humpback, Southern right, and gray whales) in WorldView-3 imagery, and
speculated that it was possible to determine species based on species-specific features
such as flippers and flukes. For the first time, Charry et al. [33] was successfully able to
discern between two similarly sized species, beluga and narwhal, with overlapping ranges
in WorldView-3 imagery.

Using geospatial software such as ArcGIS, most studies using satellite imagery have
detected animals by manually scanning through imagery. However, this manual detection
process is time consuming and is a limiting factor for generating near-real-time detections.
Replacing these techniques with a semi-automated machine learning approach has the
potential to rapidly accelerate our ability to process large volumes of imagery. Machine
learning models such as convolutional neural networks (CNNs) have been effective at
image processing [42–49]. Several early attempts at using CNNs to detect whales [25,27]
and seals [50] have been made, although these studies all used down-sampled three-band
RGB imagery rather than the full range of spectral bands collected by WorldView-2 and
WorldView-3 sensors. In addition to advances in detection algorithms—methodology
for estimating whale density is needed to derive abundance estimates. The first studies
to look at this found that whale density estimates fell within an order of magnitude of
those derived from traditional ship-board survey estimates [28] and were not significantly
different from aerial survey estimates [38].

In summary, a flurry of recent publications and an increasing number of workshops
have focused on the feasibility of using VHR satellite imagery to identify marine mammals.
For example, at the biennial Society for Marine Mammalogy conference in 2019, there
was a workshop devoted to the topic “Marine Mammal Surveys from Satellite Imagery:
Applications, automation, and challenges”. Increasing interest, combined with the ad-
vancements in VHR satellite resolution, machine learning, and cloud computing provides
the momentum needed for the creation of a rapid management tool for the detection of
marine mammals. Satellite revisit rates are expected to increase with the launches of more
VHR optical satellites in the coming years, which will rapidly accelerate the amount of
imagery that can be collected over an area of interest (AOI). The time has come to transition
from research to operations to gain geospatial insights from VHR satellite imagery for
better understanding of marine animals worldwide. An image processing pipeline can
be developed to programmatically collect and download imagery, run through detection
algorithms, host detections online for validation by subject matter experts, and upload
results to a web-based database platform to inform conservation management.

2. Demystifying Satellite Data at Warp Speed

While VHR satellite imagery has the potential to greatly improve the monitoring of
marine mammals, acquiring and using such data is not straightforward. Most readers will
be familiar with RGB imagery captured by standard handheld cameras, which contains
information from the visible light portion of the electromagnetic spectrum (red, green,
blue). Satellite imagery, in contrast, is captured from platforms that orbit the Earth, and
is usually multispectral (i.e., contains spectral bands that span different portions of the
electromagnetic spectrum). The following subsections provide a high-level overview of
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the different components and terminology encountered when working with VHR satellite
imagery to help demystify the process and bring new researchers up to speed quickly.

2.1. Satellite Sensors

We live in an exciting time where commercial and government VHR satellite imagery
are widely available on a global scale. Civilians can purchase sub-meter commercial im-
agery and have requested faster acquisition times, higher revisit rates, and finer resolution,
and the industry has answered the demand. For marine mammal monitoring, a spatial
resolution of ≤0.50 m seems well suited for detecting most species, though resolution closer
to 30 cm may be needed for detecting smaller animals or identifying specific behaviors or
features such as whale flukes [24]. Currently, there are nine commercial VHR satellites col-
lecting VHR satellite imagery with a panchromatic spatial resolution of ≤0.50 m, operated
by Maxar Technologies, Planet, Airbus, and China Siwei (Table 2). More VHR satellites
are scheduled to be launched in the near future, including the six satellites forming the
Legion constellation operated by Maxar Technologies, the Pelican constellation by Planet
Labs, and the Albedo constellation by Albedo Space Corporation.

GAIA has initially focused on Maxar Technologies’ WorldView-3, WorldView-2, and
GeoEye-1 sensors for the detection of marine animals due to their sub-meter resolution,
and access to their imagery via the U.S. government Electro-Optical Commercial Layer
(EOCL) and EnhancedView Follow-On (EVFO) contracts, which also includes tasking.

2.2. Metadata

The standard formats for transferring geospatial imagery are Tag Image File Formats
(TIFFs/GeoTIFFs) or National Transfer Formats (NTFs). Each satellite image also has an
associated XML file containing metadata, some of which can be viewed prior to image
acquisition. The metadata includes information such as sensor type, acquisition date and
time, catalog ID, image product, and ground sampling distance (GSD, or pixel resolution).
Metadata can be viewed in a text editor or extracted from the TIFF or NTF using commer-
cially available products and libraries. The most renowned library for translating geospatial
data is the Geospatial Data Abstraction Library (GDAL). Many geographic information
systems, such as ArcGIS Pro and QGIS, invoke the GDAL library to process imagery. It
is recommended that users of satellite imagery become familiar with the GDAL features
and documentation. GDAL is an open-source library (https://gdal.org/ (accessed on
23 December 2022)) that allows users to view, clip, and transform geospatial data.

2.3. Optical Sensors

There are two common types of optical satellite imaging sensors: whisk broom and
push broom (Figure 4). Whisk broom scanners (across track) use a rotating mirror to scan
a series of lines from one side to the other (much like sweeping a whisk broom side to
side [51,52]. Push broom scanners (along track) use a line of detectors that capture imagery
as the satellite flies forward (much like using a push broom to sweep a floor in a forward
motion). Push broom sensors collect data in one long strip with a start and end time
spanning a few seconds and the resulting images are then mosaicked together. The push
broom technique results in different collection times as you move north or south (up or
down) along a strip [52]. The beginning and end time can be found in the image metadata.

2.4. Nadir

Nadir refers to the downward-facing viewing geometry of an orbiting satellite. A
zero-degree nadir angle means that the satellite was directly overhead when the image was
collected, and yields the highest resolution possible. As the off-nadir angle increases, the
resolution of the image becomes increasingly degraded (Figure 5, Table 3). Images collected
as close to the nadir as possible are higher resolution and therefore better suited for marine
mammal detection.

https://gdal.org/
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Table 2. Sensors collecting ≤ 0.50 m resolution very high-resolution satellite imagery including
company, launch date, panchromatic and multispectral resolution, swath width, and revisit rate.

Sensor Launch Date Panchromatic
Resolution †

Multispectral
Resolution † Swath Width † Revisit Rate

WorldView-1
Maxar Technologies 18 September 2007 0.50 m NA 17.6 km 1.7 days

GeoEye-1 *
Maxar Technologies 6 September 2008 0.41/0.49 m ** 1.64 m 15.2 km <3 days

WorldView-2 *
Maxar Technologies 8 October 2009 0.46 m 1.84 m 16.4 km 1.1 days

Pléiades-1A
Airbus 16 December 2011 0.50 m 2.00 m 20.0 km Daily

Pléiades-1B
Airbus 2 December 2012 0.50 m 2.00 m 20.0 km Daily

WorldView-3 *
Maxar Technologies 13 August 2014 0.31 m 1.24 m 13.1 km <1/day

WorldView-4 §

Maxar Technologies
2016

November 0.30 m 1.24 m 13.1 km <1/day

Pléiades Neo 3
Airbus 28 April 2021 0.30 m 1.20 m 14.0 km 2x/day

Pléiades Neo 4
Airbus 16 August 2021 0.30 m 1.20 m 14.0 km 2x/day

SuperView Neo
China Siwei 29 April 2022 0.30 m 1.20 m 12.0 km Daily

Pleiades Neo 5 & 6 §§

Airbus
20 December 2022 0.30 m 1.20 m 14.0 km 2x/day

WorldView Legion
Maxar Technologies Estimated: 2023 0.29 m 0.48 m 9.0 km 15x/day

Pelican
Planet Estimated: 2023 0.30 m – – 30x/day

Albedo
Albedo Estimated: 2024 0.10 m 0.40 m 7.0 km 15 days

† Values obtained at nadir. * Utilized by Geospatial Artificial Intelligence for Animals (GAIA). ** During the
late summer of 2013, the orbit altitude of the GeoEye-1 satellite sensor was raised to 770 km/478 mi. GeoEye-1
new nadir ground sample distance (GSD) is 0.46 m compared to the previous GSD of 0.41 m. § As of early 2019,
WorldView-4 is in non-recoverable status and no longer collecting new imagery. §§ Both satellites were lost during
a failed launch mission on 20 December 2022.

2.5. Ground Sampling Distance

The ground sampling distance (GSD) is the distance between pixel centers measured
on the ground and is effectively the resolution of the image. The capability of the image
sensor, the altitude the sensor is flown at, and how far off the nadir the image was taken
determine the GSD. In order to discriminate between species, GAIA targets imagery with a
GSD ≤ 0.50 m (Table 3).

2.6. Spectral Bands

VHR satellites contain remote sensing payloads that measure the intensity of solar
radiation reflected from earth’s surface and capture panchromatic and multispectral im-
ages. The multispectral product measures the intensity of solar radiation across sets of
spectral bands (i.e., wavelengths), such that one pixel has multiple light intensity values per
band. This radiation is dispersed into constituent wavelengths, which are then captured
independently by detectors sensitive to a specific range of wavelengths. The panchromatic
combines the intensity of solar radiation across the visible light spectrum (RGB), such that
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one pixel has one total light intensity value. The panchromatic and multispectral contain
different information because solar radiation intensity is captured differently. Since the
panchromatic detector is reporting a total intensity, larger amounts of solar radiation are
collected per pixel. Thus, panchromatic detectors are able to detect greater variations
in brightness within a small portion of earth resulting in a higher spatial resolution as
compared to multispectral images. Figure 6 summarizes information on multispectral
wavebands which vary by VHR satellites. See Supplementary Material S2 for additional
information on multispectral and panchromatic bands by satellite sensor.
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Table 3. The relationship between off-nadir angle and the ground sampling distance (GSD) by
sensor for Maxar Technologies satellites. Grayed-out boxes indicate GSD > 0.50 m resolution and are
therefore unlikely to be of sufficient quality for marine mammal detection. The closer the nadir angle
is to zero, the higher the resolution of the resulting image collection.

Off-Nadir Ground Sampling Distance
Angle GeoEye-1 WorldView-1 WorldView-2 WorldView-3

0 0.41 0.50 0.47 0.31
5 0.41 0.50 0.47 0.31
10 0.42 0.51 0.48 0.32
15 0.44 0.53 0.49 0.33
20 0.46 0.55 0.52 0.34
25 0.49 0.59 0.55 0.37
30 0.53 0.64 0.60 0.40
35 0.59 0.70 0.67 0.44
40 0.67 0.79 0.76 0.50
45 0.78 0.91 0.90 0.58
50 0.96 1.10 1.12 0.70
55 1.26 1.39 1.51 0.91
60 1.93 1.93 2.51 1.34
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Figure 6. The wavelengths of multispectral band edges for each band given in nanometers found
in VHR satellites with image resolution ≤ 0.50 m. * Utilized by Geospatial Artificial Intelligence
for Animals (GAIA). § As of early 2019, WorldView-4 is in non-recoverable status and no longer
collecting new imagery.
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2.7. Image Products

Satellite imagery providers offer a variety of image products which vary by level
of processing. The cost of the imagery is directly proportional to the level of processing
completed. Most marine mammal studies have used Standard 2A imagery which has
already been orthorectified and projected [16,23,24,30]. Knowing the image product is
critical if sharing annotations (rather than the image chips) as the labels might shift location
from one product to the next due to differences in image processing. Although we strongly
recommend sharing the actual image, if license restrictions prevent image sharing, another
solution is sharing the catalog ID and image product to ensure identical TIFFs can be
obtained. The following products are best for spectral detection because these products
contain four to eight bands of spectral information: Maxar Technologies’ WorldView Basic
(1B) imagery, Standard (2A) imagery, and Ortho Natural Color (3D).

GAIA focuses on the Basic 1B product available from Earth Explorer, as that has been
the most consistent and reliable way to ensure that we receive the full native resolution.
The Basic 1B product is described in the DigitalGlobe Core Imagery Product Guide (accessed on
23 December 2022) as the least processed of the Base Product Series intended for advanced
image processing, and is corrected for radiometric distortions, internal sensor geometry,
optical distortions, and sensor distortions. The Basic Image product is not projected and
remains in the satellite frame of reference, not tied to ground location. See Supplementary
Material S3 for additional information on image products.

2.8. Browsing and Downloading Imagery

There are several online web portals where archived satellite imagery can be viewed
(Table 4). Portals such as Discover Maxar (formerly Discover DigitalGlobe) are accessible
to anyone, while others have restricted access (Earth Explorer, Global Enhanced Geoint
Delivery, SecureWatch). Discover Maxar only allows users to query and view available
imagery, while the other platforms also allow downloading. Consistent across most if not
all portals is the inability to view images in their full resolution. The interactive websites
allow users to view images and image footprints as well as filter by metadata such as
satellite sensor, date, image product, resolution, catalog ID, and AOI.

Table 4. Websites for browsing and downloading very high-resolution satellite imagery.

Portal URL Access Download

Discover Maxar https://discover.maxar.com/
(accessed on 23 December 2022) public No

Earth Explorer https://earthexplorer.usgs.gov
(accessed on 23 December 2022)

Public
(Maxar imagery
restricted to U.S.

government)

Yes—manual Bulk
Downloader

Application and
API

Global Enhanced
Geoint Delivery

(G-EGD)

https://www.maxar.com/
products/global-enhanced-

GEOINT-delivery (accessed on
23 December 2022)

U.S. government Yes—via API

SecureWatch
https://www.maxar.com/

products/securewatch (accessed
on 23 December 2022)

Subscription Yes—via API

Available image products are not consistent across platforms. For example, Maxar
Technologies level 3 pansharpened products are available on G-EDG but not elsewhere.
Some platforms also have API connections, which enables programmatic access and down-
loading of imagery. All product types are available in the following data formats, GeoTIFF,
NTF 2.1, and NTF 2.1 NCDRD with ZIP or TAR compression. Both G-EGD and Earth Ex-
plorer offer API connectivity to automatically query and download imagery, although the

https://discover.maxar.com/
https://earthexplorer.usgs.gov
https://www.maxar.com/products/global-enhanced-GEOINT-delivery
https://www.maxar.com/products/global-enhanced-GEOINT-delivery
https://www.maxar.com/products/global-enhanced-GEOINT-delivery
https://www.maxar.com/products/securewatch
https://www.maxar.com/products/securewatch
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G-EGD API only allows programmatic access to recently collected level 3 image products,
typically less than 2 years old and housed in the online catalog, which is lacking the full
number of spectral bands. The G-EGD web interface allows users to individually download
level 1B image strips through an FTP connection, but this is not practical for large quantities
(Figure 7). GAIA primarily uses Earth Explorer for searching and downloading imagery.
This platform offers a Bulk Download web application to download large amounts of
imagery at one time. Due to file size limitations through both the G-EGD API (10 GB) and
the Earth Explorer bulk downloader (2GB), images are broken into smaller overlapping
tiles (Figure 7). The GAIA team has requested access to 1B and 2A products from both
the online and archive catalogs to be made available through the API, which would allow
for much more streamlined data processing, as opposed to the current time-consuming
manual downloads. The National Geospatial-Intelligence Agency’s Source Geomatics
Office recently created the eAPI program, which may fill this requirement.
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images (right).

Once ordered, imagery is delivered or downloaded as an image packet or folder
containing several files including the image in the requested format, the XML metadata
file, and a TIL file, among others. The number of image packets downloaded is dependent
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on several factors due to size limitations imposed by the web portal (either API or web
interface) and the image file type. If the AOI selected crosses the boundary between two
image strips, the downloaded product will be divided into components denoted and P001,
P002, . . . , etc. [53]. Additionally, when the product component exceeds the size limit for
the media selected (e.g., GeoTIFF 1.0 is limited to 4 GB), the image is tiled and given a
number corresponding to the row and column of its position in the overall image. The TIL
file included in each image package can assist with placement of the tiles in the product
coordinates [53].

Before downloading large quantities of VHR satellite imagery, it is important to
consider storage options. While it can be faster to process imagery stored on a local
machine, a single satellite image can be multiple gigabytes and is thus not a practical option
for users interested in processing vast amounts of imagery. Storing images on external hard
drives can also be problematic due to drastic increases in image processing and rendering
times. Cloud storage provides the best of both worlds by allowing high processing speeds
without overburdening local machines. While there are several cloud storage options,
GAIA uses Microsoft Azure cloud computing services to house multiple terabytes of VHR
satellite imagery.

2.9. Tasking Imagery

There is a preconceived notion that a plethora of archived satellite imagery over
open oceans already exists and is available for detecting marine mammals. However,
imagery over open ocean is sparse since satellite sensors are typically programmed to go
dormant to save power unless specifically tasked. Building a library of marine mammal
detections requires tasking future satellite collection at specific times and over particular
areas where the species of interest are known to occur based on current and/or historical
distribution patterns.

GAIA began tasking VHR satellite imagery over seasonal hotpots for North Atlantic
right whale and Cook Inlet beluga whales in early 2020 through the USGS CRSSP Imagery
Derived Requirements (CIDR) system (https://cidr.cr.usgs.gov/ (accessed on 23 Decem-
ber 2022)). This system acquires imagery under the Electro-Optical Commercial Layer
(EOCL) contract (formerly the EnhancedView Follow-On contract) for the U.S. Govern-
ment by the National Reconnaissance Office, and is limited to federal employees. While
tasking has been successful, the learning curve to task image collection through this
platform has been significant. Tasking requests are limited to ≤ 700 sq. nautical miles
(2400 sq. km), and requesting imagery collection more frequently than 1 out of every
3 days is unlikely to be successful. GAIA focuses on Maxar Technologies WorldView-2 and
WorldView-3, and Geo-Eye level 1B imagery that is radiometrically corrected, and both
Multispectral + Panchromatic output in the format of an unprocessed GeoTIFF.

3. Image Processing

The number of steps needed to process an image depends on how much prepro-
cessing has already been performed, which is dependent on the product type. Common
preprocessing steps include orthorectifying, projecting, and pansharpening.

3.1. Orthorectification

Satellite imagery cannot be properly used for land mapping until it has been processed
so that pixels accurately reflect coordinates on the ground. Orthorectification is the process
of removing sensor motion, optical distortions, and terrain-related geometric distortions
from raw imagery [54,55]. For example, if an image is collected at 25◦ off the nadir, it
must be corrected for relief displacement caused by the terrain. This correction results
in an orthorectified view (looking straight down). Imagery of topographically diverse
areas experience more distortion as opposed to areas such as the ocean, which have little
variation. A digital elevation model (DEM) is used during orthorectification to remove
image distortion. While some DEMs are considered standard, a variety of DEMs can be

https://cidr.cr.usgs.gov/
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used when higher mapping accuracy is required. GAIA is working with level 1B products
which have not been orthorectified as this process offers little benefit over open ocean
where little to no topographic relief is present.

3.2. Projecting

Projecting is the mathematical process of transforming a coordinate system from a
sphere to a flat surface. Most commercial satellite imagery products (i.e., Standard 2A, Level
3 products) are spatially referenced using the World Geodetic System (WGS84) datum with
a Universal Transverse Mercator (UTM) coordinate reference system. The UTM projection
divides the Earth into 60, 6◦-degree longitude segments, or zones, and is the standard
projection used for satellite imagery. Basic 1B products, however, must be projected
before annotating. The appropriate UTM zone for the area of interest must be specified
during the projection process (see https://www.dmap.co.uk/utmworld.htm (accessed
on 23 December 2022)). The user must also specify the algorithm used to resample the
data. The most common resampling techniques are nearest neighbor, bilinear interpolation,
and cubic convolution. Although nearest neighbor is the fastest of the three methods,
it is primarily used for categorical data and is not suited for continuous data; therefore,
due to its poor interpolation, this method should not be used to resample VHR satellite
data [56,57]. The bilinear method uses a weighted distance average of the surrounding
cells, while the cubic option fits a smooth curve through the surrounding points. Both the
bilinear and cubic methods are appropriate for continuous data. Despite the cubic method
producing a smoother surface, processing time is exceedingly higher than the bilinear
method. Given this tradeoff, GAIA uses the bilinear interpolation method.

3.3. Pansharpening

Pansharpening is the process of combining pixels from the high spatial resolution of a
panchromatic image with those containing RGB color information from the multispectral
image to create a higher resolution color image (Figure 8). While marine mammals can be
seen in the panchromatic image alone, combining the color information improves object
discrimination and species identification. Pansharpened images acquired directly from
imagery providers typically use proprietary algorithms. Commonly used pansharpening
algorithms include but are not limited to the following: Intensity-Hue-Saturation (IHS),
high pass filtering, Brovey, Gram-Schmidt, the University of New Brunswick algorithm,
wavelet-based principal component analysis, simple mean, and Esri specific algorithms.
Depending on the algorithm used, pansharpened images can have notable differences
in appearance and spectral values [58,59]. GAIA uses the Brovey method because it is
computationally fast, open source, and provides an appropriate rendering to visually
detect whales.

3.4. Top of Atmosphere Correction

Atmospheric correction removes the effects of absorption and scattering from the
atmosphere. Electromagnetic radiation passes through the atmosphere from the sun to
the Earth and is then reflected back up from the surface and nearby clouds. Absorption of
this radiation reduces its intensity, resulting in a haziness effect. Scattering also redirects
the electromagnetic energy in the atmosphere, causing the values of neighboring pixels to
be shared [60]. This is known as the ‘adjacency effect’ and reduces contrast by decreasing
the top of the atmosphere radiance over bright pixels and increasing the brightness of the
dark pixels. Atmospheric correction is especially important when using spectral data, as it
removes the effects of absorption and scattering and improves the image quality.

https://www.dmap.co.uk/utmworld.htm
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RGB imagery, and the resulting pansharpened product (Brovey pansharpening) of two right whales 
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Figure 8. Example of very high-resolution panchromatic imagery, lower-resolution multispectral
RGB imagery, and the resulting pansharpened product (Brovey pansharpening) of two right whales
in Cape Cod Bay, Massachusetts (Top row, Catalog ID: 10400100674B2100, WorldView-3, Standard 2A
product) and three beluga whales in Cook inlet, Alaska (bottom row, Catalog ID: 104001006F3F8E00,
WorldView-3, Basic 1B product). Satellite images © 2023 Maxar Technologies.

4. Data Annotation

Data annotation is the process of labeling objects of interest (i.e., “right whale”, “beluga
whale”, “ship”, “wave”) in order to train machine learning models to predict additional data
of interest. Building a dataset of target features requires annotating large amounts of VHR
satellite imagery. This can be performed using a variety of methods that involve human
annotators to varying degrees. The most demanding method involves recruiting expert
annotators to methodically inspect entire scenes of imagery manually. By using statistical
methods and/or machine learning to identify interesting features, the “human-in-the-loop”
approach aims to reduce the amount of satellite imagery that needs to be manually searched.
This approach results in image chips containing objects of interest that are then served to
annotators to label appropriately. An extension of this “human-in-the-loop” approach is
called active learning, where the results of the human validation step are used to update
the underlying machine learning models and improve performance over time. Advanced
machine learning methods such as convolutional neural networks require large amounts
of labeled data (both positive instances of marine mammals in existing satellite imagery
and negative examples of image features in the water that might be mistaken for marine
mammals). Such large datasets do not currently exist; however, the creation of these data is
one of the main objectives of GAIA. Below, we expand on the three methods that GAIA
is pursuing to create large-labeled datasets of marine mammals: (1) manual annotation
of the full image in ArcGIS Pro, (2) crowdsourcing annotations from Maxar Technologies’
GeoHIVE platform, and (3) annotating image chips with a human-in-the-loop approach.
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4.1. Manual Annotations

Until reliable automated detection systems are built, manually annotating satellite
images for the presence of marine mammals is the most accurate method, although time-
consuming. Even once more automated methods are developed, these systems will still
need to be trained, tested, and validated with manually labeled datasets. A variety of
software including ArcGIS desktop, ArcGIS Pro, QGIS, and Google Earth Pro can be used
for manually annotating VHR satellite imagery [24,35,38]. Manual annotation requires
several steps: (1) scanning the imagery, (2) labeling the point features of interest, and
(3) transforming the point labels into bounding box annotations. We recommend scanning
the whole image systematically using a grid overlay relevant to the proper zoom scale [39].
Metadata containing information on the image (sensor, product, catalog ID), the feature of
interest (species, certainty), annotator, and geographical information (latitude, longitude)
should be associated with each annotation [39].

Before diving into manual annotation, GAIA spent considerable time investigating
software options to annotate imagery. While there are many software solutions that hold
promise (i.e., Video and Image Analytics for Multiple Environments (VIAME), Vigilant,
Picterra, Visual Geometry Group (VGG), Computer Vision Annotation Tool (CVAT), and
LabelImg), several shortcomings prevented their use. Such challenges included GPU
requirements, lack of support for bounding box annotations, and inability to (1) work
with GeoTIFF and/or NTIF file formats, (2) export annotations in desired format (COCO,
JSON), (3) validate annotations generated by machine learning models, (4) feed multiple
images into model training, and/or (5) extract geographic positions. Therefore, Dr. Hannah
Cubaynes took the lead on developing a set of standardized annotation protocols to be
used with ArcMap and ArcGIS Pro [61].

4.2. Crowdsourcing Annotations

Crowdsourcing is a way to harness the energy of a large pool of talent through an
online platform to accomplish a challenging goal. This innovative approach has become
quite popular in recent years with many different varieties including hackathons, citizen sci-
ence, and data science competitions. There are several companies that offer crowdsourced
image annotation to create AI-ready data sets (i.e., Zooniverse, Amazon Mechanical Turk,
Toloka, ScaleHub, Neevo, Appen) although most do not specialize in the use of satellite
imagery and require the customer to supply the images as low resolution RGB files. The
Maxar Technologies’ Geospatial Human Imagery Verification Effort (GeoHIVE) is one
exception where this crowdsourcing image annotation service pulls the original MAXAR
satellite images and does the transformation to RGB in-house. GAIA contracted GeoHIVE
to run crowdsourced imagery Discovery and Validation campaigns to detect four whale
species (right, humpback, beluga, and bowhead). During the Discovery campaign, Maxar
Technologies hosted image chips online for a group of annotators to indicate which images
contained whales. The Discovery campaign resulted in a large number of false detections
(primarily whitecaps) which were resolved during the Validation campaign. Suggestions
for improving future campaigns include providing additional training material to annota-
tors and reducing false positives by first running an initial campaign to identify whether or
not there are any objects in the imagery before running annotation campaigns. However,
whales are challenging to discriminate and may not be suitable for approaches that down-
sample the imagery and serve it up online as RGB files. Our subject matter experts found it
difficult to confirm species with this degraded imagery during the Validation campaign.
For such small objects, being able to view the native resolution imagery is critical.

4.3. Human-In-The-Loop Approach

Until automated detection algorithms are developed, a hybrid, human-in-the-loop
approach can be taken to improve the efficiency of the manual annotation process. In
this approach, a few manual detections are used to train a rudimentary machine learning
model to identify image chips (or patch) that might contain whales (e.g., by filtering out all



J. Mar. Sci. Eng. 2023, 11, 595 17 of 30

areas that contain only open water). These image chips are served to manual annotators,
and the resulting annotations can then be used to improve the algorithms in a repeat-
ing cycle. This process is known as active learning in the machine learning community.
Here, the role of the model is to reduce the search space from large VHR imagery scenes
100 s of square kilometers in size to 100 s of small chips of imagery cropped from the larger
scene. For annotators, indicating whether a given chip of imagery contains a whale or not
only takes a few seconds, while manually scanning 100 square kilometers of imagery takes
approximately 3 hours and 20 minutes [24]. Assuming that image chips can be labeled
at a rate of 1 chip per 10 seconds, as long as the human-in-the-loop approach produces
fewer than 1200 chips per 100 km2 and identifies most whales, it will be more efficient than
manual annotation.

One challenge to implementing a human-in-the-loop approach is facilitating the
communication between the model training process and the human annotators. Ideally,
human annotators are served high-resolution image chips sequentially in a web-based (or
equally accessible) interface, while the annotations they submit are used asynchronously by
a backend server to update model parameters and prioritize future chips to be annotated.
GAIA is developing an open-source software platform for facilitating this process (Figure 9).
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where the current point is in a larger spatial context-e.g., the point shown in the screenshot is off the
east coast of Cape Cod Bay; (b) shows the current image chip to be labeled-these chips are extracted
from larger satellite images in an unsupervised manner; (c) radio buttons let users select classification
confidence and whale species type (if necessary), a comment box allows users to annotate anything
additional of interest about each sample, and sliders allow users to adjust the image chip to be labeled
(zooming in and out and adjusting brightness/contrast); (d) a list of buttons allows users to quickly
label each chip-each time a button is clicked the interface will immediately show the next image chip
to be labeled.

Another challenge is ensuring that the model maintains high recall after every update.
In other words, the model should prioritize not eliminating image chips that potentially
contain whales from the human annotator’s consideration. Depending on the type of
backend model used, different methods can be used to enforce this property. For example,
with logistic regression models, higher weight can be given to the positive class with a
penalized loss function.
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5. Annotation Database

As we seek to collaborate with other algorithm development efforts to detect marine
mammals from VHR satellite imagery, a shared annotation database would benefit the
community. While image licensing restrictions make it impossible to share a repository
of TIFF files some licensing arrangements allow sharing of PNG images and associated
metadata. Using this strategy, Cubaynes and Fretwell [39] published 633 annotations of four
different species: Southern right whale (Eubalaena australis), humpback whale (Megaptera
novaeangliae), fin whale (Balaenoptera physalus), and gray whale (Eschrichtius robustus) from
VHR satellites (i.e., WorldView-3, WorldView-2, GeoEye-1 and Quickbird-2). GAIA intends
to build on this foundation and contribute our whale annotations publicly as well.

6. Automating Detections

Pattern recognition and computer-assisted counting techniques are common in the
medical field but have only recently been used to count wildlife. Neural networks, in partic-
ular convolutional neural networks (or CNNs), have recently become the model of choice
for image processing [44,45,47,48] and even individual animal identification [62–69]. These
advancements are due to the development of neural-network-based models and graphical
processing units (e.g., [70–72]). Recent improvements in image resolution and spectral
bands in VHR satellite imagery have made marine mammal detection and classification
through machine learning algorithms more feasible [25,27,51].

Many of the automated methods used in Maritime Domain Awareness (MDA) systems
to detect vessels in satellite imagery are spectral signature based [73]. MDA is the effective
understanding of anything associated with the global maritime domain that could impact
the security, safety, economy, or environment of the United States. The Naval Research
Laboratory’s MDA system, Proteus, uses Spectral Angle Mapping (SAM) to assess vessel
spectral signature profiles in commercial satellite imagery. SAM compares an input target
spectrum with the spectrum of each pixel within an image. If the pixel spectrum is
close to the target spectrum, the output is a high pixel value. GAIA used the whale
annotation dataset from Cubaynes and Fretwell [39] to test whether marine mammal
pixels are spectrally distinguishable from background pixels using SAM in a WorldView-2
image taken over Southern right whales in Peninsulas Valdes, Argentina (Catalog ID:
103001001C8C0300, see Supplementary Material S4).

GAIA has experimented with several unsupervised learning techniques to detect
anomalous points in the water for a given satellite image. For instance, given a large satellite
imagery scene, we can train a generative model of the water based on randomly sampled
points throughout the water, then use such models to evaluate the log-likelihood of each
pixel in the scene. Here, anomalous pixels (i.e., those that represent whales, boats, rocks,
planes, etc.) will have very low likelihood compared to normal water pixels. Different types
of generative models can be used, ranging in complexity from Gaussian mixture models to
generative adversarial networks. Another approach we have tried involves standardizing
the spectral values of each pixel in a satellite imagery scene using the statistics taken from
a window around that pixel. Pixels with large (in magnitude) standardized values are
anomalous by definition, and groups of such pixels that are larger than an area threshold
represent an object in the water that should be examined more closely. This approach can
be implemented efficiently on GPUs to identify all “interesting” objects in scenes of VHR
imagery in minutes. After all “interesting” objects in a scene have been identified, we can
classify each using supervised models, human annotators, or a mixture of both.

7. Operational System

Once machine learning algorithm(s) of sufficient accuracy have been developed, GAIA
aims to build an operational system that detects marine mammals and shares this informa-
tion with stakeholders. This system will automatically download and process incoming
imagery and run machine learning algorithms. Annotated images and associated data
would be stored in a database that is vetted by domain experts and then distributed to
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multiple display outlets, several of which are discussed below. Ultimately, GAIA envisions
expanding this system to include other species and regions at a tremendous benefit to
marine mammal science and conservation efforts.

7.1. Proteus

Detections of marine mammals in VHR satellite imagery could be layered into exist-
ing MDA systems for vessel situational awareness while supporting the Naval Research
Laboratory’s commitment to leverage satellite imagery for marine mammal ship-strike
and fishing gear entanglement risk assessment. The Proteus web application allows an
operator to analyze current and historical vessel tracks and create a suite of rules and alerts
that automatically monitor an AOI for illicit maritime activities (Figure 10). Having whale
positions overlaid onto this display could allow for more targeted vessel enforcement
around recent whale sightings.
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Figure 10. The Maritime Domain Awareness (MDA) platform, Proteus, demonstrating the last
24 hours of vessel activity at the mouth of Chesapeake Bay on 30 June 2022.

7.2. WhaleMap

WhaleMap is a website application designed to collate and display the latest whale po-
sitions (both visual sightings and acoustic detections) as well as survey effort
(Figure 11, [74]). This research and management tool was designed with a focus on the
North Atlantic right whale, although other species detections can be contributed. This is
another example of a platform that could potentially be used to share whale sightings from
VHR imagery.
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Figure 11. The WhaleMap web application designed to collate and display the latest whale positions
(both visual sightings and acoustic detections) as well as survey effort (www.whalemap.org (accessed
on 23 December 2022)).
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7.3. WhaleAlert

Whale Alert is a citizen science app used to report and display whale sightings in
an effort to reduce the risk of vessel strikes (Figure 12, [75]). The app displays verified
visual sightings (from shore, vessels, and aircraft) and acoustic detections (from buoys
and gliders). In the future, sightings of whales from VHR satellite imagery could also be
displayed here for mariner awareness. Sightings submitted to Whale Alert help establish
management zones including speed restrictions, warnings, and other measures.
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Figure 12. The Whale Alert citizen science app used to report and display whale sightings in an effort
to reduce the risk of vessel strikes (https://www.whalealert.org/ (accessed on 23 December 2022)).

7.4. Obis Seamap

The Ocean Biodiversity Information System Spatial Ecological Analysis of Megaverte-
brate Populations (OBIS-SEAMAP) web application coalesces marine mammal, sea turtle,
seabird, ray, and shark sightings from contributors around the world (Figure 13, [76]). It
also establishes an automated data import from collaborators including seaturtle.org that
serves sea turtle telemetry data. The interactive database can be queried by species, date,
and geographic locations. Other services that OBIS-SEAMAP provides include habitat-
based density models for marine mammals, photo identification workflows, and a mapping
tool for sea turtle nesting sites. Sightings from VHR imagery could be added to visual and
acoustic detections already present in OBIS-SEAMAP.

https://www.whalealert.org/
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brate Populations (OBIS-SEAMAP) web application, which coalesces marine mammal, sea turtle,
seabird, ray, and shark sightings from contributors around the world (https://seamap.env.duke.edu/
(accessed on 23 December 2022)).

8. Challenges

According to Neil deGrasse Tyson, “When you stop making mistakes, you are no
longer on the frontier”; our experience in learning how to work with VHR satellite imagery
has made it clear that this work is still very much on the cutting edge. We hope that by
sharing the knowledge gained over the past several years we can ease this learning curve
for others wishing to explore this field, and we also want to set realistic expectations for the
limitations and challenges that will be encountered as we transition to operations, despite
the uncertainty surrounding many of these issues.

8.1. Cost of VHR Satellite Imagery

Access to imagery is a barrier for most researchers wishing to explore the potential
of using VHR satellite imagery to monitor wildlife. The cost of VHR satellite imagery
is prohibitively high and data sharing is limited by strict licensing agreements. This
is especially difficult for researchers in less resourced countries [77–81]. Long-lasting
solutions, such as partnerships and data sharing between satellite providers, researchers,
NGOs and governments, is essential to ultimately achieve conservation goals. Cubaynes
and Fretwell’s [39] open source database is an important first step to achieving a global
dataset, a direction GAIA aims to follow.

8.2. Lack of Archival Imagery

Satellite sensors do not continuously collect imagery as they orbit around the Earth,
but rather use the time between collection requests to perform sensor maintenance and
conserve power. Therefore, archival imagery is only available where customers have tasked
image collection, and this tends to be over areas of interest to the military or commercial
development—rarely does this coincide with marine mammal aggregations. Therefore,

https://seamap.env.duke.edu/


J. Mar. Sci. Eng. 2023, 11, 595 22 of 30

in most cases, a researcher interested in looking through satellite imagery for historical
insights will find the available imagery lacking.

8.3. Tasking Limitations

Due to the unavailability of archival imagery over open water, researchers must task
the collection of new imagery. Tasking imagery has several drawbacks including limited
geographic and temporal coverage, weather conditions, and competing priorities that can
make image acquisition uncertain and/or unsuccessful. For example, with the Electro-
Optical Commercial Layer license, GAIA is limited to collection areas ≤2400 km2 for each
tasking, with a collection frequency every three days for a maximum of 21 days. Addi-
tionally, tasking under this contract is classified as ‘low priority’ which can be particularly
challenging when trying to collect imagery near an area such as a major city that may be of
interest to military or commercial clients with higher priority. While the AOI is specified
during the tasking process, there is no ability to determine the specific timing of the collec-
tion with the 21-day period; therefore, making comparative studies to understand marine
mammal detection across platforms such as aerial and ship board surveys is difficult if
not impossible.

8.4. Downloading Imagery

Currently GAIA downloads Basic 1B imagery via manual download from Earth
Explorer, a process that is very time consuming and hampers the development of automated
systems. The development of APIs to automatically query and download imagery is
essential for enabling real-time monitoring applications. With programmatic access to VHR
satellite imagery, automated tasks could be created to: (1) search for new imagery over
known whale hotspots, (2) download and process images, (3) run detection algorithms,
and (4) serve image chips to expert annotators for validation.

8.5. Environmental Conditions

The impact of cloud cover on the availability of VHR satellite imagery may represent
a significant challenge in some parts of the world. Some machine learning experts have
indicated that this issue can be resolved for thin cloud cover, but thick cover will continue
to present a challenge. Algorithms that remove thin cloud layers may not be appropriate
for all species, particular white animals such as belugas.

Wind conditions also present a significant challenge to detecting marine mammals
in satellite imagery. High winds produce waves on the surface of the ocean, which can
create a large amount of visual clutter that obfuscates the presence of whales, especially
small light-colored animals such as beluga whales that are easily confused with whitecaps.
Thus far, VHR satellite detection of whales in the ocean have all been under ideal weather
conditions, and it remains to be seen how well whales can be detected in higher winds.
This will likely vary by species with smaller animals such as dolphins and seals being
obscured more easily than large whales.

8.6. Difficulty of Manual Annotation

Once the challenges of acquiring high-quality imagery have been overcome, the next
obstacle is finding the object of interest. In the case of marine mammals, this is especially
difficult given their small size, limited time spent at the surface, and sparsity. Most of the
image will contain water and waves, and finding the animals is akin to looking for a needle
in a haystack. Until automated tools are developed, this requires a large pool of scientists
with the expertise to identify different species from an aerial viewpoint to go through large
volumes of imagery. This process is tedious, time consuming, and therefore expensive.
Cubaynes et al. [24] estimated a time of 3 hours and 20 minutes to scan 100 km2 of imagery.
Observer bias and fatigue can also play a role, analogous to the challenges faced by aerial
and shipboard surveys.
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8.7. Licensing Restrictions

Given the challenges discussed above with collecting imagery of whale aggregations
and then finding whales in the imagery, it is critical to the development of machine learning
models that the research community is able to pool this information into a shared annotation
database. We encourage satellite imagery providers to consider licensing agreements that
facilitate sharing AI-ready datasets to accelerate the development of machine learning and
launch us into a future where this imagery lives up to its full potential. In the meantime, we
encourage the research community to share what we can including annotation metadata
((Catalog ID and image product)) following the example set by Cubaynes and Fretwell [39].

8.8. Annotation Alignment

Spatial offsets between imagery and annotations can occur if an image was processed
differently than the one originally used to create the annotations. These offsets are typically
due to differences in image processing (orthorectification, projection, pansharpening, etc.).
To prevent annotation misalignment, it is best to share the image used to create the annota-
tions. However, since license restrictions often prevent image sharing, collaborators can
share geographically referenced annotations along with image metadata (Catalog ID and
image product) so that an identical image can be obtained independently. However, GAIA
discovered a spatial shift between annotations provided by collaborators and the image
obtained through Maxar Technologies’ G-EDG interface despite having the same Catalog ID
and being the same product (Standard 2A) (Figure 14). The annotated whales were shifted
10 to 30 meters because the image used to create the annotations was a mosaic (an image
made of several images merged together), whereas GAIA received the individual tiles that
were used to create the mosaic. This difference resulted in a five-second difference in the
acquisition times of the two images, and thus spatial offset. Without access to the exact
same product that was used for annotation, researchers are unable to leverage annotations
by previous researchers and reproduce their results. This finding revealed the importance
of understanding the various commercial image products and image processing steps.
Ideally, an operational whale detection system should be able to handle all satellite imagery
product types available.
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8.9. Animal Behavior

In addition to the challenges already discussed, whales are dynamic and their position
in time and space is quite variable. For example, consider an AI-ready dataset of vehicles
from satellite imagery. While the size and shape may vary, they will generally always be in
the same orientation with wheels on the ground. Marine animals, however, can look quite
different depending on what behavioral state they are in (traveling, feeding, socializing,
breaching, etc.), and these differences in position can make the object classification task
more complex. Whales can easily be confused with whitecaps, birds, and rocks, particularly
in images of poor quality due to adverse weather conditions and/or lower resolution.

8.10. Availability and Perception Biases

Further research will be required to evaluate the availability and perception bias
of counting various species of marine mammals by satellite (as opposed to vessel or
aerial surveys) before the techniques described here can be used to assess populations in
abundance and distribution estimates such as Bamford et al. [28].

8.11. IT Infrastructure

Downloading and handling large volumes of satellite imagery is time consuming and
requires cloud storage and processing infrastructure. This adds additional complexity and
cost to the development of an operational system. GAIA is being supported by a grant
from Microsoft AI for Good for cloud compute resources in Azure.

8.12. Platform Limitations

All of the different tools utilized in conservation research have different strengths and
limitations. Some research goals are not applicable to this methodology such as individual
photo identification, detecting entanglements, health assessments, and biopsy sampling.
Researchers will determine which tool best suits the study goals by considering a variety of
factors such as cost, data collection needs, distance from shore, availability of assets and
personnel, weather conditions, and timeliness of the data needed. We do not envision that
VHR satellite imagery will replace other tools such as vessels, aircraft, and acoustics, but
rather augment them.

9. Conclusions

The recent advancements in VHR satellite imagery, cloud computing, and artificial
intelligence have tremendous potential for the development of an operational system to
detect marine mammals around the world. The Geospatial Artificial Intelligence for Ani-
mals (GAIA) initiative was formed to address this challenge with collaborative innovation
pulling from government agencies, independent researchers, academia, and the private
sector. We have acquired large volumes of Maxar Technologies imagery over known sea-
sonal aggregations of North Atlantic right whales and Cook Inlet beluga whales from
WorldView-3, WorldView-2, and GeoEye-1 satellites. This publication summarizes much
of what we have learned over the past few years, and we share this knowledge in hopes
that it will speed up the onboarding process for those new to handling satellite imagery.
We seek to develop and share a large, standardized dataset of high-quality annotations to
facilitate automated detection, and to share our knowledge and software tools along the
way. Once the machine learning algorithms have matured, significant investments will
be needed to transition from research to operations. The potential benefits of a platform
that is not limited by distance from shore is very exciting. These efforts should lay the
groundwork for future generations of scientists to have another tool in the toolbox as we
seek to understand and protect marine mammals around the world.
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Glossary

Area of Interest (AOI) The area on the Earth that you want to view.

Catalog ID unique identifier for satellite images

Convolutional Neural Network (CNN)
A type of network architecture for deep learning
algorithms specifically used for image recognition.

Geospatial Data Abstraction An open-source library for
Library (GDAL) translating and transforming geospatial data.

Geographic Coordinate System
A network of imaginary lines (latitude and longitude)
on used to define locations on the surface of the earth.

GeoTIFF Format
Georeferenced tagged image file format. A GeoTIFF
file is a TIFF file that is embedded with geographic
data tags.
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Ground Sample Distance (GSD)
The distance between pixel centers measured on the
ground, also referred to as the spatial resolution of
the image.

Image Strip Interchangeable with Catalog ID

Marine Domain Awareness (MDA)

The effective understanding of anything associated
with the global maritime domain that could impact
the security, safety, economy, or environment of the
United States.

Multispectral (MS)

Imagery with data recorded in multiple discrete
spectral bands. Imagery collected in four or eight
ranges of wavelengths in the
electromagnetic spectrum.

Nadir
The point on the ground vertically beneath
the sensor.

NITF Format
National Imagery Transmission Format. A United
States Department of Defense standard for
transmitting and storing digital imagery.

Off-nadir Angle

The angle between nadir and the point on the
ground that the sensor is pointing. Off-nadir angle
can be measured in the along-track (forward)
direction or across-track (sideways) direction.

Orthorectification

The process of removing image distortions
introduced by the collection geometry and variable
terrain, and re-sampling the imagery to a specified
map projection. It is also referred to as ortho-
correction or terrain correction.

Panchromatic (PAN)

A wide spectral band which is composed of
reflected light in the visible spectrum (blue, green,
red and NIR). It is displayed as a black and
white image.

Pansharpen
Processed used to colorize imagery by fusing
multispectral and panchromatic bands.

Projection
The transformation of latitude and longitude
coordinates to plane coordinates.

Push Broom

Push broom scanners (or along track scanners) use
a line of detectors that capture imagery as the
satellite flies forward (much like using a
push broom)

Radiometric Correction

The correction of variations in data that are not
caused by the object or scene being scanned, such as
non-responsive detectors, scanner inconsistencies,
and atmospheric interference.

Remote Sensing

The measurement or acquisition of data about an
object by an instrument not in contact with the
object. Satellite imagery, aerial photography, and
radar are all types of remote sensing.

Resolution
The resampled image pixel size derived from the
ground sampling distance, or GSD.

RGB
The visible light portion of the electromagnetic
spectrum (red, green, and blue).
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Sensor Azimuth The azimuth of the sensor measured from the target.

Sensor Correction
The correction of variations in data that are caused
by variations in sensor geometry, attitude,
and ephemeris.

Spectral Angle Map (SAM)
An automated method for matching pixels to a
reference spectra.

Spectral Bands
Parts of the electromagnetic spectrum of
specific wavelengths.

Spectral Signature
Pattern of wavelengths reflected or emitted by
an object.

Stereo
The collection of two or more images of the same
Area of Interest (AOI) from different viewing angles.

Swath Width The width of an image.

Universal Transverse Mercator
A projection which divides the earth into 60,
6◦-degree longitude segments, or zones.

Very High-resolution (VHR) Very high-resolution satellite imagery.

Whisk Broom

Whisk broom scanners (or spotlight or across track
scanners) use a mirror to reflect light onto a detector
and this mirror moves back and forth (much like
sweeping side to side with a whisk broom).
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