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4D electrical resistivity to monitor unstable 
slopes in mountainous tropical regions: 
an example from Munnar, India

Abstract The number of large landslides in India has risen in the 
recent years, due to an increased occurrence of extreme monsoon 
rainfall events. There is an urgent need to improve our understand-
ing of moisture-induced landslide dynamics, which vary both spa-
tially and temporally. Geophysical methods provide integrated tools 
to monitor subsurface hydrological processes in unstable slopes at 
high spatial resolution. They are complementary to more conven-
tional approaches using networks of point sensors, which can pro-
vide high temporal resolution information but are severely limited 
in terms of spatial resolution. Here, we present and discuss data 
from an electrical resistivity tomography monitoring system—
called PRIME—deployed at the Amrita Landslide Early Warning 
System (Amrita-LEWS) site located in Munnar in the Western 
Ghats (Kerala, India). The system monitors changes in electrical 
resistivity in the subsurface of a landslide-prone slope that directly 
threatens a local community. The monitoring system provides a 
4D resistivity model informing on the moisture dynamics in the 
subsurface of the slope. Results from a 10-month period spanning 
from pre-monsoon to the end of the monsoon season 2019 are pre-
sented and discussed with regard to the spatial variation of soil 
moisture. The temporal changes in resistivity within the slope are 
further investigated through the use of time-series clustering and 
compared to weather and subsurface pore water pressure data. This 
study sheds new light on the hydrological processes occurring in 
the shallow subsurface during the monsoon and potentially leading 
to slope failure. This geophysical approach aims at better under-
standing and forecasting slope failure to reduce the risk for the 
local community, thereby providing a powerful tool to be included 
in local landslide early warning systems.

Keywords Near surface geophysics · Monitoring · Monsoon · 
Electrical resistivity tomography · Time-series clustering

Introduction
Moisture-induced landslides are a major hazard in mountainous 
tropical and subtropical regions. In these regions, seasonal rainfall 
linked with the monsoon, cyclones or tropical storms, is responsible 
for the vast majority of landslide events (Froude and Petley 2018). In 
India, the greatest incidence of moisture-induced landslides occurs 
during the southwest monsoon, spanning June to September. Accord-
ing to the Global Landslide Catalogue (Kirschbaum et al. 2010, 2015), 
the southwest monsoon in India accounts for more than 10% of 

moisture-induced landslides occurring globally every year. Data by 
UNISDR also reveals that more than 4.8 million people were affected 
globally by landslides between 1998 and 2017 (Wallemacq et al. 2018) 
with India being the most affected country, having more than 56,000 
casualties from 4800 landslides between 2004 and 2016 (Froude and 
Petley 2018). Rapid population growth, unplanned construction in 
recognised high-risk areas, combined with an increasing rate of 
extreme climatic events substantially increased the landslide risk in 
India. Hence, developing effective real-time landslide monitoring is 
crucial to improve knowledge of slope failure mechanisms, and to 
build robust landslide early warning systems (LEWS).

Ground-based geophysics has been increasingly used in recent 
years to help mapping and monitoring unstable slopes (Whiteley 
et al. 2019). Geophysical imaging approaches are also increasingly 
recognised as being an important component of local landslide early 
warning systems (LoLEWS) (Whiteley et al. 2021). A principal benefit 
of using geophysical methods is that they provide volumetric infor-
mation on continuous portions of the near surface at the mesoscale, 
which can bridge the gap between localised borehole information or 
single-point measurement from sensors and remote sensing tech-
niques. Geophysics is also minimally to non-invasive, which results in 
much less ground disturbance than traditional, more invasive inves-
tigation techniques such as drilling. The use of electrical resistivity 
tomography (ERT) has proven to be applicable to the characterisa-
tion of landslides (Jongmans and Garambois 2007) due to the abil-
ity of this technique to image subsurface heterogeneity, lithological 
variations or geological discontinuities. Building upon the rise of 
time-lapse ERT experiments, the applicability of ERT monitoring 
to investigate moisture-induced landslide processes has been high-
lighted in several studies, such as for imaging moisture build-ups 
preceding slope instabilities (e.g. Uhlemann et al. 2017) or fissuring 
processes (e.g. Bièvre et al. 2012). Electrical resistivity is closely linked 
to moisture content (Telford et al. 1990), which makes it a valuable 
proxy to monitor moisture-induced landslides. Nevertheless, ERT 
monitoring has mostly been successfully applied to clay-rich, slow-
moving landslides in temperate regions (e.g. Travelletti et al. 2012; 
Lehmann et al. 2013; Perrone et al. 2014; Holmes et al. 2020; Boyd 
et al. 2021) or in Alpine environments (e.g. Supper et al. 2014; Gance 
et al. 2016; Lucas et al. 2017), and, to the best of our knowledge, no 
successful trial including continuous monitoring has been reported 
in tropical mountainous regions. In these regions, which have a high 
landslide susceptibility, such novel monitoring tools could potentially 

1031

Landslides (2023) 20:1031 1044–

© The Author(s) 2023
Published online: 16 February 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10346-023-02029-3&domain=pdf
http://orcid.org/0000-0003-0318-9032


   Landslides 20 · (2023)   

Technical Note

have a much larger impact in mitigating the risks associated with 
landslides, but the weather extremes and dispersive soils present a 
challenging context to deploy ERT monitoring systems.

In this study, we aim to monitor changes in electrical resistivity 
as a proxy for soil moisture in the shallow subsurface of a slope 
prone to landslides in the Western Ghats mountain range (India) by 
investigating the transferability of the method from its application 
in temperate regions to mountainous tropical regions. We present 
the deployment of a recently developed ERT monitoring system 
called PRIME—Proactive Infrastructure Monitoring and Evaluation 
(Holmes et al. 2020)—at the Amrita Landslide Early Warning System 
(Amrita-LEWS) site in Kerala, India. The PRIME system is specifi-
cally designed as a low-cost and low-power monitoring tool provid-
ing near-real-time geophysical imaging, suitable for deployment in 
remote areas. The Amrita-LEWS site (Ramesh and Vasudevan 2012) 
is a seasonally reactivated landslide area in the town of Munnar, 
located in the Western Ghats mountain range, which is one of the 
most significant landslide-prone areas in India after the Himalaya. 
This region accounts for large numbers of landslide-related casual-
ties every year (Petley 2012).

In the following sections, we explore the strength of the ERT 
monitoring system to image slope subsurface moisture dynamics 
in an area prone to landslides. We present a phased experiment of 
increasingly developed monitoring over a 2-year period from Feb-
ruary 2018 to January 2020, and including a continuous daily ERT 
dataset spanning from March 2019 to January 2020. We describe the 
challenges related to the deployment of such a system in a moun-
tainous monsoonal region. We illustrate the applicability of the 
system in providing 4D imaging of subsurface hydrological pro-
cesses during the monsoon of 2019. The results are discussed in 
terms of their hydrological significance and their implications for 
the understanding of the landslide activity and the development of 
more informed LoLEWS.

Methodology and site description

Site description
The Amrita-LEWS site is located in Munnar, in the Idukki District 
of the State of Kerala, South India (10°05′29.6″N, 77°03′23.3″E) 
(Fig. 1). Munnar is a hill station located in the Western Ghats moun-
tain range at an altitude of ~ 1500 m above sea level. Being of rela-
tively moderate size—with ~ 32,000 inhabitants—Munnar is the 
central tourist spot of the region and attracts increasing numbers 
of tourists in the area, with recent estimations exceeding 1 million a  
year (Rajesh et al. 2019). Geomorphologically, the whole region  
is composed of rugged hills and incised valleys with a structurally 
controlled drainage network. The area of interest forms part of the 
Precambrian metamorphic shield of South India and the bedrock 
at the Amrita-LEWS site mainly consists of pink granite gneiss that 
has been subject to deep weathering. The weathering intensity is 
expected to gradually decrease with depth. The weathered bedrock, 
or saprolite, was reported up to 30 m deep in boreholes logs from 
the Amrita-LEWS site (Ramesh and Vasudevan 2012).

Rainfall is the main driver of slope failure in the Western Ghats, 
but the weathering intensity, inappropriate loading and excava-
tion of slopes, insufficient maintenance of drains, unsuitable land 
use and expanding road network all play an important role in the 
landslide susceptibility (Kuriakose et al. 2009; Yunus et al. 2021). 

Especially, deforestation triggered by the extensive rubber, tea and 
cardamom plantations has been linked to an increasing number of 
landslides compared with forested areas in the Western Ghats in 
general (Kumar and Bhagavanulu 2008) and in the Idukki district 
in particular (Muraleedharan 2010; Sulal and Archana 2019).

Due to its tropical monsoon climate, Kerala reaches annual rain-
fall averages above 2800 mm mostly distributed within the wettest 
6 months of the year. The main monsoon season, called the south-
west (or summer) monsoon, lasts from June to September, with 
a peak usually falling in July, and accounts for nearly 70% of the 
annual rainfall. It is quickly followed by the northeast (or winter) 
monsoon, which peaks in October, is shorter in duration, and has 
a reduced rainfall intensity. In the pre-monsoon season, from Janu-
ary to May, the precipitation gradually increases to reach averages 
higher than 600 mm a month in June and July. Recently, the mon-
soon seasons of 2018, 2019 and 2020 were particularly intense and 
led to an extremely high number of floods and landslides (Sulal and 
Archana 2019; Kanungo et al. 2020; Achu et al. 2021).

The south-facing slope of the Amrita-LEWS site itself experi-
enced a massive landslide in 1926 with an estimated volume of  105 
 m3, leaving a large scarp with a concave curvature in the landscape 
(Ramesh and Vasudevan 2012). A second landslide event occurred 
in 2005, which was described as a complex rotational slide-debris 
flow triggered by a torrential downpour (Ramesh and Vasudevan 
2012). The monitored slope can be divided in two main domains: 
above and below the scarp of the 1926 landslide. The top part 
of the monitoring zone is located in a wooded area, comprising 
medium-height trees and lemongrass. The soil profile consists of a 
thin (< 50 cm) layer of brown forest sandy loam (Fig. 1e) on top of 
the saprolite. In this area, the first horizon of the saprolite consists 
of a mix of boulders and clasts with preserved bedrock structure 
within a soil matrix. The bottom part of the slope is still showing 
the relics of the 1926 landslide event. The vegetation is lighter, with 
only a few small bushes and lemongrass. The nature of the soil is 
also different, as the original uppermost horizons slid during the 
1926 landslide event. The top soil is extremely thin and consists of 
coarse-grained, red, sandy silt, on top of the intensely weathered 
bedrock, which still contains the foliation and the main fabrics of 
the granite gneiss. In the south-facing slope of the hill, the foliation 
of exposed weathered bedrock dips steeply to the north, as shown 
in Fig. 1i. The main identified minerals in the area include quartz, 
feldspar, biotite and hornblende.

Remnant effects of the latest severe monsoon downpours from 
2018 were clearly visible during a field campaign in February 2019, 
as a few very minor landslides occurred in the steepest parts of the 
slope (Fig. 1b). In the area directly below the zone where the ERT 
system is deployed, mass wasting and erosion phenomena occurred 
including gullies and ravines, and clear evidence of collapsed soil 
pipes (Fig. 1h). Soil piping is a subsurface erosion process that can 
occur in the presence of dispersive soils and can interact with mass 
movement processes by serving as water conduits (Bernatek-Jakiel 
and Poesen 2018).

The Amrita-LEWS site has been developed as a landslide obser-
vatory by Amrita Vishwa Vidyapeetham since 2009, as a response 
to the 2005 landslide event. The site was chosen due to its strategic 
location and the strong likelihood of future landslides potentially 
affecting a community living at the toe of the hill (Ramesh and 
Vasudevan 2012). Initially, the observatory consisted of a network 
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of sensors installed in the slope, forming one of the world’s first 
Wireless Sensor Network system for landslide monitoring and early 
warning (Ramesh and Vasudevan 2012). It was later upgraded to 
use the Internet of Things (IoT) technology (Thirugnanam et al. 
2020). Based on the real-time datasets from the IoT network, site-
specific and regional early warnings were issued during the years 
2009, 2011, 2013, 2018 and 2019 (Ramesh et al. 2017; Hemalatha et al. 
2019). One of the Amrita-LEWS Deep Earth Probe (DEP) boreholes 
is located within the ERT monitoring area and is equipped with 

pore water pressure sensors of which those installed at 10 and 12 m 
depths collected data overlapping the ERT monitoring period. The 
Amrita-LEWS site is also equipped with a weather station, which 
provides rainfall data.

Deployment of the ERT system

At the Amrita-LEWS site in Munnar, the PRIME system has been 
installed in the centre of the monitored slope in a glass-fibre reinforced 

Fig. 1  a Location of Munnar overlaid on the Indian portion of the land-
slide susceptibility map by Stanley and Kirschbaum (2017) (image: 
NASA). b General overview of the Amrita-LEWS site, as of February 
2019, showing the remnants of past landslide events. c Aerial view on 
the ERT monitoring area highlighting the landslide features and the 
electrode array. d Map of the deployed ERT monitoring system at the 

Amrita-LEWS site. Faulty electrodes are marked in light pink (see “ERT 
acquisition and inversion” section). Capital letters in c indicate location 
of photos in (e–k), which show the soil upslope of the backscarp (e), 
the slope above the backscarp (f), the coarse ground and ERT cable (g), 
a collapsed gully (h), a trial pit in the saprolite in the lower part of the 
slope (i), and the PRIME system (j, k)
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polyester enclosure mounted on a concrete base (Fig. 1j, k). It is pow-
ered by 100 W solar panels and 12 V batteries. Results are delivered 
remotely via a 3G modem, minimising the need for on-site access.

The ERT array consists of four parallel lines making a grid of 128 
electrodes with 2 m spacing along the lines and 4 m line separation 
(Fig. 1d). Each line comprises 32 rod electrodes, which are buried 
10 cm below the ground surface, and are connected to the PRIME 
system through multicore cables.

The ERT monitoring system was deployed in two stages:

– A test phase with the two westernmost lines of the array 
deployed in November 2017 together with the PRIME system;

– An operational phase starting after installation of the remaining 
two lines, which were connected to the system in February 2019.

During the test phase, the data quality was not optimal due to 
relatively poor contact resistances, which define how well the elec-
trodes are galvanically coupled with the surrounding soil mate-
rial. This was attributed to the nature of the soil, especially in the 
lower part of the slope, which has a coarse-grained texture that 
does not favour good coupling due to increased drainage and a 
lower clay content. This problem was solved by re-deploying the 
electrodes within a small hole filled with an electrically conductive 

graphite aggregate (as seen in Fig. 1h). Comparing the distribution 
of the contact resistances and reciprocal errors before and after the 
introduction of the conductive aggregate shows the improvement 
of the signal (Fig. 2a, b). Electrode positions were surveyed using 
differential GNSS.

ERT acquisition and inversion

ERT measurements are acquired daily, with a dipole–dipole pro-
tocol including reciprocal measurements. Comparing forward and 
reverse reciprocal measurements is a well-established method for 
estimating the error associated with the measurements (LaBrecque 
et al. 1996). The data quality check implies filtering outliers from 
the data. Readings with either contact resistances higher than 20 
kΩ, reciprocal errors higher than 10%, or measured voltages lower 
than 2 mV are filtered out.

The tropical mountainous environment of the site makes the array 
of electrodes more vulnerable to being damaged during severe weather 
conditions. There is potential for the array to become exposed or dam-
aged due to intense soil erosion or the formation of ravines or soil 
pipes. Wildlife, including pigs and elephants, could also damage the 
cables or disturb the electrodes. Therefore, special attention is paid 
to electrodes becoming faulty during the monitoring period. In most 

Fig. 2  a Reciprocal error distribution and b contact resistance distribution during the test and operational phases. c Number of measure-
ments per time-step after data filtering. d Temporal evolution of the average contact resistance and reciprocal errors
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cases, readings associated with faulty electrodes should be detected 
during the filtering process. The last electrode of the second line (#64) 
was damaged during the monsoon season 2018 by the collapse of the 
soil pipes developing at the toe, after which it was removed from the 
array. Electrode #70 was also damaged later, after the operational phase 
began. In both cases, the electrodes exhibited an abrupt occurrence 
of extremely high contact resistances, clearly indicating that they had 
been completely disconnected. However, if a damaged or displaced 
electrode still has sufficient coupling with the soil, it could potentially 
still take readings, which fall within the designed filter thresholds, but 
would bias the result of the time-lapse inversion by creating jumps 
in the time series and artefacts in the resistivity models. To address 
this issue and to rapidly identify suspicious electrodes, we developed 
a machine learning approach using unsupervised k-means clustering 
(Berkhin 2006) of the transfer resistance time series, i.e. the raw ERT 
data. A series of trends are expected to exist in the transfer resistance 
data, which result in them being classified in well-defined clusters 
showing closely related variations. Readings with unphysical trans-
fer resistance variations were rapidly identified by forming a distinct 
cluster, which could be further scrutinised manually. In our case, this 
approach allowed the identification of two additional faulty electrodes 
(#71 and #72). The close proximity of these electrodes with electrode 
#70, which was already identified as being damaged, makes it likely that 
the cable was disturbed by wildlife. As a consequence, readings from 
these three electrodes were removed from the time-lapse dataset as for 
electrode #64—they are highlighted in light pink in Fig. 1d.

Providing an error model that weights each transfer resistance 
in the inversion is a crucial step for ensuring reliable results. In 
this study, we use a reciprocal error model following a multi-bin 
approach very similar to Mwakanyamale et al. (2012). The recipro-
cal error is defined as

where Rn is the forward resistance measurement and Rr is the 
reverse resistance measurement. As in Slater et al. (2000), the fit-
ted reciprocal error model is expressed as:

Here, we adopted a conservative approach consisting in taking 
an envelope fit of the model, by adding two standard deviation to 
the mean values of the respective bins, as in Lesparre et al. (2017). 
This is because the reciprocal errors are closely linked with the 
contact resistance, and display a bimodal temporal distribution. In 
the monsoon season, the contact resistance decreases sharply due 
to the wetting of the soil, which results in low reciprocal errors. In 
the dry season, the increased contact resistance drives the recipro-
cal errors up. The envelope fit results in a temporal evolution of the 
error model which better fits the resistivity time series by increas-
ing more significantly the value of a when the reciprocal error dis-
tribution at a given time-step is high, because the standard devia-
tion has also more chance to be higher than in periods with lower 
average reciprocal error. For all inversions, the reciprocal errors are 
increased by a constant 3% of the transfer resistance to represent 
the forward modelling errors, which helped the convergence of the 
inversion while ensuring smooth spatial and temporal models, in a 
similar approach as for Boyd et al. (2021).

(1)e = |
|Rn

− R
r
|
|

(2)e = aR + b

The 3D time-lapse inversion is carried out using the fully paral-
lelised inversion code E4D (Johnson et al. 2010). Surface topography 
derived from a UAV photogrammetric survey calibrated with GNSS 
control points serves as input to generate a 3D mesh for the inver-
sion (see Supplementary Information for more details). The time-
lapse inversion uses a smoothness constraint both in space and time. 
A starting model is computed using a 3D smoothness-constrained 
inversion of the baseline data. An L2 norm is chosen as the changes 
in the weathering intensity in the subsurface are expected to be 
smooth and gradually decreasing with depth. Each time step is then 
inverted using the baseline as a reference. The time-lapse inversion 
uses an L2 temporal smoothness constraint—but a relative weight 
is introduced which removes the constraint for temporal changes 
lower than a 2 Ωm threshold, thereby allowing slightly sharper con-
trasts in resistivity to develop through time and accommodate rapid 
changes induced by intense rainfall events. A target misfit metric 
(χ2) value of 1.0 is assigned to the E4D inversion.

In the time-lapse inversion, the dataset for each time step has 
to contain the same readings as in the baseline. Rejected readings 
within the baseline sequence at the following time steps are still 
included in the inversion but the associated error is set as high as 
the measurement, which gives a very low weight to the rejected 
data. In general, a reduced number of measurements in the baseline 
sequence makes the overall model sensitivity lower. For this reason, 
and because the number of rejected readings is quite high during 
most of the dry season, we selected a baseline after the first rain 
of the pre-monsoon, i.e. 18 April 2019, which resulted in a sharp 
increase in the data quality. Although this baseline serves as the 
initial reference in the time-lapse inversion, it does not prevent 
changes in resistivity being calculated with respect to subsequent 
time steps, if there is a need to highlight specific processes.

The electrical resistivity is not only sensitive to changes in soil 
moisture, but also to changes in soil temperature following climatic 
conditions. However, monthly average temperatures at the site are 
fairly constant throughout the year, with a maximum amplitude 
of 2 °C between the coldest and the warmest months in average, 
which would result in ~ 4% changes in resistivity (Hayley et al. 
2007). Therefore, correcting resistivity models for temperature was 
not considered to be necessary, especially given that the changes in 
resistivity associated with soil mositure variations are expected to 
be an order of magnitude higher. Instead, only changes in resistivity 
higher than 4% are interpreted as being significant. This approach 
clearly simplifies the post-processing step and reduces the risk of 
introducing undesired biases in the models given that the thermal 
parameters of the soil remain unknown in absence of a depth pro-
file of temperature sensors.

Time‑series clustering

Applying simple machine learning algorithms to the temporal data-
set can help to classify the resistivity models in zones exhibiting 
relatively similar resistivity dynamics through time (Delforge et al. 
2021). The main purpose of these approaches is to highlight landslide 
domains or potential zones of interest in an independent manner, 
less influenced by expert-based a priori knowledge. The temporal 
resistivity evolution of each cluster is then visualised as a separate 
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time series that is compared to auxiliary data such as rainfall or soil 
moisture to initiate interpretations on the landslide activity. These 
outputs can also directly feed in to LoLEWS (Whiteley et al. 2021) 
with the definition of warning thresholds.

Here, the Hierarchical Agglomerative Clustering (HAC) approach 
available in the Python library Scikit-learn (Pedregosa et al. 2011) was 
selected for its additional functionality allowing to include a spatial 
constraint in the clustering. Details about the HAC method applied 
in this study are available in the Supplementary Information.

Results
This paper focuses on ERT monitoring results spanning from 
April 2019 to January 2020, which include the pre-monsoon and 
the southwest and northeast monsoon periods in June–August and 
October, respectively. This allows the investigation of the effect of 
the monsoon on the electrical resistivity distribution in the sub-
surface of the slope from its onset in April and until the start of the 
dry season in December.

3D resistivity distribution and material characterisation

The subsurface of the slope is characterised by strong resistivity 
contrasts, which are likely linked with changes in the soil compo-
sition and moisture content, weathering intensity and geological 
structures. The 3D inversion result for the 18 April 2019 baseline is 

shown in Fig. 3. In the upper part of the slope, a superficial layer is 
associated with very high resistivity values (> 10,000 Ωm, marker 
A in Fig. 3b). Such values are explained by the sandy composition 
of the soil, which has a very low moisture content at the end of 
the dry season. This superficial layer has irregular extensions at 
depth, which are attributed to the variable thickness of the soil layer 
and a spatially variable weathering profile. As seen in Fig. 3a, this 
high resistivity zone corresponds to a surface area with a lighter 
vegetation cover, which might indicate a slight variation in the soil 
composition, possibly due to the weathering of a cluster of quartz 
veins intersecting the granite gneiss bedrock. These could result 
in the soil to be locally sandier, thereby having increased electrical 
resistivities when dry.

The lower part of the slope (marker B in Fig. 3b), south from the 
scarp of the 1926 landslide, displays low resistivity values (1000–2500 
Ωm). The material in this area is impacted by the previous large 
slide and is characterised by a very shallow to exposed weathered 
bedrock (saprolite), which is marked by lower resistivity values fall-
ing in the expected range of resistivity values for a weathered gneiss, 
as measured in analogue contexts (Jomard et al. 2007). At depth,  
the average resistivity decreases below 1000 Ωm (marker C in Fig. 3b),  
potentially highlighting the saturated bedrock. The water table was 
recorded at depths of ~ 16 m and ~ 10 m in the higher part and the 
lower part of the slope, respectively (Ramesh and Vasudevan 2012). 
Porewater pressure data from the DEP borehole located in the lower 

Fig. 3  3D resistivity distribution in the subsurface of the slope as 
measured on the 18th April 2019. The point cloud from the UAV pho-
toscan used as input to generate the surface topography of the ERT 
mesh is shown in a Black dots in (b) and (c) represent the location of 

the electrodes used in the inversion. Letters in b highlight key zones 
of interests. d 3D ground model of the Munnar site derived from the 
resistivity data and previous studies (Ramesh and Vasudevan 2012)
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part of the slope corroborate this information and indicate that the 
water table is between 10 and 12 m deep.

The crest of the backscarp also appears to be highly resistive, 
which is likely due to the increased presence of cracks in this zone, 
which improves drainage and results in drier material. The bound-
ary between the weathered bedrock (in zone B) and less resistive 
areas near zone C may be an area in which future slip surfaces 
develop (see Fig. 3).

Resistivity dynamics during the onset of the monsoon

The ERT monitoring system allows investigating the temporal resis-
tivity variations across the 3D model presented in Fig. 3. As men-
tioned in the “ERT acquisition and inversion” section, the baseline 

used in the time-lapse inversion follows the first moderate rain 
event at the end of the dry season, which occurred on the 18th April 
2019, and resulted in a sharp increase of the measured data quality.

First, we investigate the changes in resistivity from the baseline in 
April and throughout the onset until the peak of the southwest mon-
soon in August. During this period, the cumulative precipitation 
rises steadily from April to early July, after which two main periods 
of intense rainfall occurred. These two periods recorded cumulative 
precipitation of 322 mm in 6 days with a peak on 19 July and 930 mm 
in 10 days, with a peak of 330 mm/day on 8 August (Fig. 4a).

Figure 4 displays the decreases in resistivity (i.e. the negative 
changes in resistivity (%)), in an effort to highlight the processes 
linked with subsurface re-wetting and moisture build ups. A super-
ficial area in the upper part of the slope is the first to show a slight 

Fig. 4  a Effective rainfall data (i.e. rainfall minus evapotranspiration 
estimates from the Merra-2 satellite products (Gelaro et al. 2017)). 
Note that precipitation was measured at 330 mm on 8 August. b 

Time-lapse resistivity results showing the baseline resistivity distribu-
tion (18 April 2019) and decreases in resistivity at regular (10 days) 
intervals (dashed lines in (a) indicate the dates shown)
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decrease in resistivity at the end of April. This area corresponds 
to the poorly vegetated area exhibiting extremely high resistivity 
values. This zone of decreased resistivity extends laterally in May 
and reaches depths of 3–4 m with decreases in resistivity of up  
to −30%. At this time, the lower part of the slope, below the back-
scarp, does not show any significant decrease in resistivity. It is only 
from the beginning of June, when deeper areas (6–8 m depth) are 
affected by decreases in resistivity, that the resistivity in superficial 
areas downslope also starts to reduce, albeit less strongly (>− 20%) 
than upslope where decreases of −50% are imaged. Following 
this and throughout the rest of June and July, the whole slope 
becomes progressively affected by this continued drop in resistiv-
ity down to depths of 10 m. However, the amplitude of the drop 

remains higher in the upper part of the slope, with decreases of  
−90%, whereas downslope of the backscarp, the resistivity does 
not go below − 40%.

Resistivity dynamics following the peak of the monsoon

To be able to image more subtle changes in resistivity during the 
peak of the southwest monsoon and later, it is more appropriate to 
use a baseline that is more representative of the resistivity distribu-
tion in wetter conditions than in April. Figure 5 displays the changes 
in resistivity (both negative and positive) as calculated from 15 July, 
i.e. just before the first peak of the southwest monsoon, and up 
until the beginning of the dry season in December. During this 

Fig. 5  a Effective rainfall data (i.e. rainfall minus evapotranspiration esti-
mates from the Merra-2 satellite products (Gelaro et al. 2017)). Note that 
precipitation was measured at 330 mm on 8 August. b Time-lapse resis-
tivity results showing the baseline resistivity distribution (15 July 2019) 

just before the main rainfall periods in the southwest monsoon 2019, 
and changes in resistivity calculated with respect to the 15 July baseline. 
Dashed lines in (a) correspond to the time-steps for which the changes 
in resistivity are shown in (b)
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time, three main periods of intense precipitation happened: the two 
previously mentioned in July and August, as well as another period 
at the beginning of September, with 363 mm recorded in 7 days. 
Interestingly, the northeast monsoon was not particularly wet in 
2019, with only 16 days of moderate precipitation (10–35 mm/day) 
recorded in October. These were followed by a long-lasting drought 
starting in November.

The time-lapse resistivity images presented in Fig. 5b show that 
the three periods of intense rainfall result in strong decreases in 
resistivity. As previously observed, the peak of the second episode 
in August leads to the strongest decrease, which affects zones below 
the backscarp as much as the upper part of the slope. Between each 
of these episodes, the resistivity goes up across the slope with more 
pronounced increases in the upper part of the slope. The resistivity 
decreases one last time in October, as a consequence of the contin-
ued moderate rainfall events. Then, a general increase in resistivity 
can be observed, starting from the superficial layer upslope, as well 
as downslope in the south-eastern corner. These areas extend verti-
cally and laterally in November and December. At the same time, 
the deep part of the resistivity model, which was interpreted as the 
saturated zone, displays resistivity values lower than in the baseline.

Discussion

Resistivity dynamics linked to hydrological processes
This long-term ERT monitoring experiment is, to the best of our 
knowledge, the first of its kind to be completed in a mountainous 
tropical region to image the effect of the monsoon in the subsurface 

of a slope prone to landslides. Falae et al. (2021) recently showed 
the potential of time-lapse ERT in a similar context, at the Pahki 
landslide in the Himalayas, by comparing results from two 2D ERT 
surveys performed before and after the monsoon. With their study, 
they could identify changes in resistivity linked to spatially vari-
able water seepage, which helped characterise further the struc-
ture of the surveyed landslide. The changes in resistivity measured 
during our experiment at the Amrita-LEWS site have very large 
amplitudes, which is also undoubtedly linked to the hydrology of 
the slope. Indeed, only the intense wetting and drying processes 
occurring in the subsurface of the slope could generate changes in 
resistivity of such magnitude.

In order to investigate the hydrodynamics of the slope through-
out the monsoon, our approach relies on applying time-series clus-
tering (see “Time-series clustering” section) to the 4D resistivity 
model in order to retrieve clusters representing distinct hydrofa-
cies (i.e. features with distinct hydrological patterns), the resistivity 
dynamics of which can be analysed further. Figure 6 shows the 
outputs of the HAC approach with spatial constraints performed 
on the time series between April 2019 and January 2020. A total 
of five clusters were selected, after comparing clustering outputs 
configured to retrieve 2 to 10 clusters. This number was considered 
optimal, being the best compromise in order for this simplified 
model not to be overly complex nor too simple, while appropri-
ately representing the subsurface of the slope. As shown in Fig. 6b, 
these five clusters exhibit average resistivity distributions that are 
well defined. The multimodal nature of the clusters can be partially 
explained by the spatial constraint imposed on the clustering, but 

Fig. 6  a, b Results of the clustering using the HAC approach with 5 clusters displayed on the 3D mesh representing distinct features of the 
landslide. c Average resistivity distribution per cell for each cluster
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also by the fact that these clusters contain sub-clusters due to the 
nested structure of the HAC method.

Cluster 1 aggregates mesh cells at the surface, above the back-
scarp, overlaying cluster 2, which also includes some portions at 
the surface both at the top of the northern end of the array and 
on the crest. Clusters 1 and 2 have an average resistivity between 
2500 and 15,000 Ωm. Cluster 3 defines the area downslope of the 
backscarp with values between 1000 and 2500 Ωm, while cluster 
4 contains cells at intermediate depth below the first three clus-
ters, with a peak around 2000 Ωm. Finally, cluster 5 is the deepest 
cluster defining the most conductive zone with an average value 
of ~ 1000 Ωm. The first notable point of the clustering output lies 
in its good agreement with the material characterisation presented 
in the “3D resistivity distribution and material characterisation” 
section, despite some minor discrepancies. For instance, the bottom 
boundary of cluster 2 does not follow the boundary between the 
very high resistivity zone (A in Fig. 3) and a layer of intermediate 
resistivity (on top of C in Fig. 3). This confirms that the similarities 
in the resistivity dynamics of different cells do not only rely on 
their average resistivity. Instead, the temporal process leading to 
changes in resistivity overprints the average resistivity signature, 
thanks to the z-standardisation (see Eq. 3 in the Supplementary 
Information) imposed on the resistivity time series before comput-
ing the clustering.

It is possible to translate changes in resistivity to changes in 
moisture content or suction through the use of petrophysical rela-
tionships, as was performed on slow-moving landslides in recent 
studies (Uhlemann et al. 2017; Holmes et al. 2022). These relation-
ships need to be calibrated via laboratory tests on soil samples 
and are most effective for simple geological contexts, where slope 
material properties are expected to be fairly homogeneous or clear 
boundaries exist between different units. In this study, we could not 
collect a sufficient amount of soil and rock samples to adequately 
characterise the material properties of the slope and hence develop 

reliable petrophysical relationships. The geological context of the 
site, in which there is gradual weathering intensity with depth, also 
makes it complex to select appropriate petrophysical parameters. 
For these reasons, here we only focus on the changes in resistivity 
as a proxy to infer changes in slope stability parameters (i.e. soil 
moisture, suction and therefore shear strength).

The temporal evolution of the average resistivity of each cluster 
is displayed in Fig. 7, and is compared to the effective rainfall and 
the changes in pore water pressure as measured in the DEP bore-
hole in the lower part of the slope at 10 and 12 m depth. The resis-
tivity dynamics of clusters 1 to 4 can be summarised in three main 
phases: (i) general decrease during the pre-monsoon, (ii) sustained 
low resistivity conditions from the end of June to the end of Octo-
ber and (iii) gradual increase in resistivity as the dry season starts. 
Cluster 5 shows a clear offset with an initial increase in resistivity 
at the onset of the monsoon while the general decrease occurs in 
July up until the dry season. For clusters 1 to 4, the magnitude of 
the decreases in resistivity may seem counterintuitive, with large 
decreases at the onset of the monsoon and small drops at its peak 
when soil moisture is expected to be much higher. This is due to 
the inverse power relationship between bulk electrical resistivity 
and saturation (Archie 1942; Waxman and Smits 1968; Rhoades et al. 
1976), which means that continuous rises in saturation are expected 
to result in progressively smaller resistivity decreases.

Analysing the dynamics reveals more details of the hydrological 
processes. Cluster 1 is the first zone to show a reduction in resistiv-
ity directly after the baseline in April, closely followed by cluster 
2. This can be explained by cluster 1 likely being the sandiest and 
hence driest part of the slope at the end of the dry season, as evi-
denced by its extremely high resistivity values, while it is poorly 
vegetated compared to the surrounding areas (as seen in Fig. 3a), 
which means that the evapotranspiration is locally reduced and soil 
moisture builds up more rapidly than in more vegetated areas. It 
is only at the end of May that cluster 3 shows signs of a significant 

Fig. 7  a Effective rainfall data (i.e. rainfall minus evapotranspiration 
estimates from the Merra-2 satellite products (Gelaro et al. 2017)). Note 
that precipitation was measured at 330 mm on 8 August. b Changes 
in pore water pressure measured in the DEP borehole. c Changes in 
resistivity with respect to the 18 April 2019 baseline for each cluster. 

Standard deviations of each cluster are showed as a transparent filling 
surrounding each curve. d Absolute Pearson correlation coefficient 
calculated between the cumulative precipitation preceding a time-
step t calculated on a number of lag days and the average change in 
resistivity of each cluster measured over the same period
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decrease in resistivity (i.e. <  − 10%), which means that surface or 
subsurface runoff processes seem to dominate in the lower part 
of the slope at the onset of the monsoon. This can be partially 
explained by the steepest slope angle in this area. The soil pipes 
discovered at the toe of the slope, just south of the monitoring area, 
may also enhance drainage, thereby delaying moisture build up.

The wetting front reaches cluster 4, i.e. depths of ~ 5 m, in mid-
June as the cumulative rainfall linearly increases, reaching a total 
of 390 mm from the April baseline. At the same time, the average 
resistivities of clusters 1 and 2 have changed by − 60% and − 40%, 
respectively, while that of cluster 5 still increases slightly. This can 
only be explained by the fact that the groundwater system is not 
yet affected by the general wetting of the superficial layers, as cor-
roborated by the lack of variation in pore water pressure meas-
ured at depth in the DEP borehole. Then, during the first period of 
intense precipitation in July with a week-long rainfall event, another 
reduction in resistivity can be observed for clusters 1–4, directly 
following the peak of the event on 19 July. It is only at the end of this 
event, 5 days after the peak, that the first signs of resistivity decrease 
are recorded in the deeper zone defined by cluster 5. This decrease 
happens concurrently with the first increase in pore water pressure 
recorded at 12 m depth, which means that only then the rainwater 
infiltrates deep enough to actually interact with the groundwater 
system. Following this period, the superficial layers show a steady 
increase in resistivity up until the second, more intense period of 
precipitation in August. This increase is linked to superficial drying 
processes, likely due to the combined effects of evapotranspiration 
and gravity driving water infiltration to deeper layers (i.e. cluster 5).

The second rainfall event lasted 10 days and was the most intense 
recorded in 2019 at the Amrita-LEWS site (see “Results” section) 
and across the state of Kerala, and resulted in numerous land-
slides, including in the Idukki district where Munnar was report-
edly flooded on the 8 August (Raghunath 2019). Clusters 1 to 3 reach 
their recorded resistivity minima over the course of the monitoring 
period on the 9 August, directly following the 8 August rainfall peak 
of 330 mm. There is a one-day lag because the data presented here are 
acquired daily between 4:00 and 6:00 am local time, thus most of the 
rainfall occurred after the ERT measurement on the 8 August. While 
clusters 1 to 3 experience a steady increase in resistivity at the end of 
the August rainfall event similar to the previous event in July, clusters 
3 and 4 stay relatively stable, which indicates that the moisture in 
the superficial layer downslope of the backscarp and at intermedi-
ate depth remains at a high level, probably close to saturation. The 
resistivity then reaches another local minimum directly following 
the third intense rainfall in September. It stays relatively stable after 
and up until the end of October, when the precipitation stops and a 
long drought starts, increasing the resistivity of clusters 1 to 4 as these 
zones progressively dry. Cluster 5 plateaus until the end of Decem-
ber, followed by another small resistivity decrease. The cause of this 
late decrease could not be investigated further as unfortunately, the 
pore water pressure sensors installed in the DEP borehole did not 
provide any data in December 2019 and January 2020. Yet, a potential 
explanation for this late decrease is linked to a small increase in the 
water level at depth, potentially following a very slow recharge of 
the aquifer at the end of the monsoon. Another explanation points 
to a change in the pore water conductivity, either a seasonal effect or 
related to the management of the plantation upslope.

Implications for the landslide activity

The resistivity dynamics imaged within the subsurface of the slope 
provide crucial insights on the potential for the slope to fail. Fig-
ure 7d summarises the links between the cumulative precipitation, 
as aggregated over an increasing number of days, and changes in 
resistivity computed over moving windows of increasing lengths. 
For each lag day n, the Pearson correlation coefficient ρ is com-
puted between the cumulative precipitation over n days preceding 
a resistivity time-step t and changes in resistivity calculated as the 
difference between day t and day (t-n). As moisture and resistivity 
are negatively correlated, Fig. 7d displays the absolute correlation 
coefficient, which helps highlighting that each cluster presents a 
degree of correlation with the cumulative precipitation. Clusters 
1 and 2 have the strongest correlation at 1 day, which means that 
a rainfall on day t-1 has the highest impact on the resistivity on 
day t. For these clusters,  ρ stays stable up until 5 days preceding  
the resistivity measurement. Conversely, the peak in correlation 
for clusters 3 and 4 occurs at 5 and 4 days respectively, which high-
lights that these zones respond differently to rainfall. This is not 
surprising in the case of cluster 4, which is located at intermediate 
depths, and therefore, a delay in moisture increase is expected as 
compared to the surface layer. It is however interesting to examine 
cluster 3, which comprises cells at the surface of the slope and would 
be expected to react to rainfall in a similar fashion as clusters 1 
and 2. This observation for clusters 3 and 4 is important because 
it means that loss of suction induced by elevated pore pressure 
can be delayed after an intense rainfall event. In other words, slope 
failure could not necessarily occur at the peak of the rainfall event, 
but rather a few days later under continued precipitation. The deep 
zone of cluster 5 has a local minimum ρ at 4 days, but a peak cor-
relation at greater than 45 days. This highlights some levels of inter-
action between surface water and the groundwater system during 
intense rainfall periods, but in general, the groundwater system, 
being deeper, is less affected by direct rainwater infiltration.

Most superficial areas of the resistivity model reach their mini-
mum resistivity values of the whole monitoring period following 
the most intense rain event in August, which indicate that the soil 
moisture reaches a peak, causing the shear strength to be at a lowest 
level. A shallow landslide, therefore, becomes more likely to hap-
pen. Interestingly, the dynamics of cluster 3 differs from the other 
superficial clusters 1 and 2, and particularly at the end of the mon-
soon season (as seen on Figure S1, in the Supplementary Informa-
tion). While clusters 1, 2 and 4 reach their strongest correlation on 9 
August following the peak of the monsoon, it is only after the third 
intense precipitation period in September, that cluster 3 reaches its 
minimum resistivity, and thereby its maximum moisture content. 
This is critical as it means that in this region of the slope (i.e. the 
backscarp region), moisture levels reach a peak with a significant 
delay and at a less intense rainfall event (363 mm in 7 days) than the 
peak event of the monsoon in August (930 mm in 10 days). This has 
two main explanations: (i) drainage becomes less efficient, or (ii) 
the pore space has changed to a larger volume, potentially following 
minor mass wasting processes triggered by the previous rainfall, 
which emptied some pore spaces previously filled with grains from 
the rock matrix. Lacerda (2007) identified that saprolitic slopes 
can fail during a rain period of lower intensity than previous ones 
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and relates this to a fatigue behaviour of the soils, which undergo 
repeated pore pressure cycles inducing accumulated shear strains 
while weakening the intergranular bonds.

In this area, it seems that the soil piping features at the bottom 
of the slope have also helped to maintain the saturation to a com-
parably low level in the first months of the monsoon, by enhancing 
subsurface run-off and drainage, thereby naturally mitigating the 
decrease of shear strength. However, repetition of intense rainfall 
periods may have affected these natural conduits, after further col-
lapses of soil pipes or sediment inputs from areas upslope blocking 
the conduits. As a consequence, the zone may become less drained 
and pore water pressure may increase more significantly than for 
previous rainfall events. This, combined with an increase of shear 
stress in deeper layers as the water table rises, may provide condi-
tions for slope failure to occur.

Two main characteristics can also explain the different behav-
iour observed between the shallow areas defined by clusters 1 and 
2 on one side and cluster 3 on the other side: slope angle and mate-
rial type. The increased slope angle in the backscarp region results 
in greater surface run-off than for the area at the top of the slope, 
potentially resulting in a delayed infiltration. The material in the 
backscarp region is also likely to have a lower permeability than the 
shallow layers in the region above the scarp due to it being relatively 
recently exposed and sitting within a different part of the bedrock 
weathering profile.

Implication of the ERT monitoring for LoLEWS

The importance of looking at subsurface conditions rather than 
relying on rainfall data only is being increasingly considered to 
develop more-informed LoLEWS (Bogaard and Greco 2018; Segoni 
et al. 2018; Whiteley et al. 2021), which may greatly help in mitigating 
the landslide hazard in India and globally. For instance, Abraham 
et al. (2021) investigated the combined use of rainfall and antecedent 
soil moisture to set up a LEWS in the Idukki district, in which Mun-
nar is located. Marino et al. (2020) have also shown how analysing 
soil moisture variations can improve the efficiency of LoLEWS by 
reducing the number of false alarms.

Geophysical measurements provide subsurface data at great 
spatial and temporal resolution, which can directly feed in to land-
slide modelling and forecasting approaches. They are therefore 
perfectly suited to improve LoLEWS (Whiteley et al. 2021). This 
study validates the applicability of ERT to monitor unstable slopes 
in a mountainous tropical environment subject to monsoon and 
demonstrates the added value of the technique for LoLEWS, as it 
provides an enhanced spatial resolution to conventional monitor-
ing at point locations within the slope. The electrical properties 
only provide a proxy of slope stability parameters, and seeking to 
translate the change in resistivity in terms of soil moisture is a 
complex problem given the inhomogeneous ground properties. 
Nonetheless, the clustering approach presented in this study dem-
onstrates that the slope hosts non-uniform hydrological processes 
throughout the monsoon season. This highlights the importance of 
taking into account the geometry and material distribution within 
the slope, as well as including ground condition data rather than 
rainfall data only, when developing early warning systems at the 
local scale based on the definition of thresholds. 4D time-lapse ERT 

is able to provide both the spatial variability and ground condition 
information, using resistivity as a proxy for soil moisture.

In a LoLEWS context, this monitoring experiment could con-
stitute a baseline in which no significant movement was observed 
despite severe precipitation. One can hypothesise that the observed 
hydrodynamics were not of a level to induce failure. However, as 
monitoring continues it will be important to determine whether the 
magnitude of changes exceeds the baseline, which might indicate 
that the slope is moving into an unknown regime where failure 
might occur. From this, we could start developing an understand-
ing of the range of subsurface conditions over which we expect the 
slope to be stable. And eventually, rainfall/soil moisture conditions 
might be linked to actual failure allowing failure thresholds to be 
defined. Developing a hydro-geomechanical model based on the 
structure of the landslide revealed by the geophysics will also help 
calibrating and testing scenarios to build up threshold conditions.

Conclusions
PRIME, an autonomous geophysical system designed for remote 
monitoring, was deployed at the Amrita-LEWS site in Munnar 
(Kerala, India), in order to investigate the applicability of ERT to 
monitor unstable slopes in mountainous tropical regions. The geo-
physical system collected data on a daily basis during a 10-month 
period including the monsoon season of 2019. First, the subsurface 
was characterised using a 3D resistivity model, which shows clear 
contrasts in resistivity between (i) the soil and highly weathered 
bedrock (or saprolite), (ii) less weathered portions of the bedrock, 
including outcropping areas below the scarp of a previous landslide 
event, and (iii) the saturated bedrock at depth. Then, changes in 
resistivity induced by moisture building up in the subsurface of the 
slope could be successfully imaged, thereby providing a 4D resistiv-
ity model of the monitored slope to aid understanding water infil-
tration processes induced by the monsoon. The use of time-series 
clustering on the electrical resistivity model allowed the retrieval of 
clusters showing similar resistivity dynamics over time. Five clus-
ters were selected as adequately describing the temporal evolution 
of subsurface resistivity, and were used to analyse the hydrological 
response of the slope during the monsoon in more detail and to 
inform on the evolution of parameters driving the slope stability.

The near-real-time aspect of the ERT monitoring combined with 
its high spatial and temporal resolution makes it ideally suited for 
integration with LoLEWS. Volumetric monitoring of the subsurface 
combined with the definition of thresholds using resistivity as a 
proxy for slope stability parameters, such as soil moisture, suction 
and shear strength, clearly has the potential to improve the robust-
ness of LEWS through tracking subsurface moisture dynamics from 
the ground surface to depth, while adequately accounting for spa-
tial heterogeneity. This study demonstrates that the use of ERT as 
a monitoring method can be successful in mountainous tropical 
regions, which paves the way for it to be applied more broadly on 
targeted sites in India and beyond, thereby contributing to land-
slide hazard mitigation in the regions where it is most needed. Case 
studies from other, potentially even more challenging sites such as 
in the Himalayas, could help in developing more resilient moni-
toring strategies and validate the technique further as a means to 
monitor slope stability during the monsoon. Areas of research also 
include ways to define robust thresholds on outputs of time-lapse 

1042



 Landslides 20 · (2023) 

clustering and effectively integrate these in LoLEWS, which will 
require actual slope failure to be monitored.
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