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Accurate and robust navigation and localisation systems are critical for Autonomous Underwater Vehicles
(AUVs) in order to perform missions in challenging environments. However, since the Global Positioning
System (GPS) is not available in the underwater domain, the localisation task is commonly fulfilled by
integrating direct linear speed readings provided by a Doppler Velocity Log (DVL) over time. As a consequence,
DVL failures or fallacies and DVL-denied environments may arise as unexpected causes for severe malfunctions
of the whole navigation system. Motivated by these considerations and the outstanding performance of Deep
Neural Networks (DNNs) in supervised regression problems, a Deep Learning (DL) -based approach has been
developed to estimate the vehicle’s body-frame velocity, without canonically employing DVL measurements,
in a Dead-Reckoning (DR) navigation strategy. In particular, this work will describe the whole framework,
starting from the data gathered by the AUVs of the National Oceanography Centre (NOC) during different
field campaigns, through to the data pre-processing and the inference of the predicted velocity. Finally, a
comprehensive offline comparison between different DL-based models is presented to assess the validity of the

proposed approach.

1. Introduction

The interest in Autonomous Underwater Vehicles (AUVs) has sig-
nificantly increased in the last decades. The possibility of replacing
humans with robots in such a dangerous and challenging scenario
has led the field of AUV applications to spread from the military to
the scientific sectors. Additionally, the ever-growing development of
long-range AUVs (Furlong et al., 2012), capable of operating for a
large period of time and flying for thousands of kilometers in a single
deployment, has pushed the research boundaries of AUVs usage in
survey tasks. As a result, regardless of the specific operational area,
the design of high-accuracy navigation and localisation systems has
arisen as a crucial task in the development of AUV technologies. Indeed,
the renowned unavailability of the Global Positioning System (GPS)
signal (likewise the whole range of electromagnetic signals) in the
underwater domain makes the localisation and navigation goals even
more demanding compared to different domains (e.g. air and land).

ES

A range of strategies and approaches have been developed to tackle
the AUVs localisation and navigation tasks (Paull et al., 2014). Re-
cently, research in this field has been oriented to the development of
adaptive localisation systems rather than customised approaches for
specific applications. Acoustic Positioning Systems (APS) (Leonard and
Bahr, 2016), with their non-negligible amount of additional hardware
to be installed, have been gradually replaced by Inertial Navigation
Systems (INS), which rely on the integration of navigation sensor
measurements on board the vehicle itself, without the need for external
infrastructure. Even though underwater navigation systems are primar-
ily based on bayesian approaches (Allotta et al., 2016; Bar-Shalom
et al., 2004), Dead Reckoning (DR) strategies have been proven to be
satisfyingly reliable if the available sensors are sufficiently accurate. In
particular, DR localisation approaches can provide the vehicle position
by integrating, with respect to time, the AUV velocity, which is mostly
estimated by exploiting Acoustic Doppler Current Profilers (ADCPs) or
Doppler Velocity Logs (DVLs).
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However, this specific technique unavoidably leads to position es-
timate errors, due to the sensor integration drift over time, and, as
a consequence, the longer the vehicle mission, the more the posi-
tion estimate will degrade. Additionally, DR methodologies present
the drawback that even a slight fallacy or malfunction in the sensor
readings can lead to a remarkable position estimate error and, as
a result, a deterioration of the AUV navigation performance. Whilst
DVL/ADCP hardware failures are rare, regular operating conditions
may result in erroneous or no velocity estimates. To provide a DVL
(over ground) velocity estimate, the device must be within bottom lock
distance from the seabed. Such range varies depending on many factors
(in addition to pure device performance) such as, for instance, the
environmental structure and the vehicle speed, but it is not uncommon
to reach a maximum range of up to 200 m. Additionally, navigation
in mid water column is thus more complex due to convection of the
water mass (Salavasidis et al., 2021; Medagoda et al., 2016). While
DVL/ADCP can provide a water track velocity estimate (i.e. relative
to the water), there must be sufficient particulate in the water col-
umn to provide an acoustic return, and in some operating areas this
is not the case. In order to address the aforementioned issues, the
standard solution for DVL failure patterns relies on the use of the
robot dynamical model and the inexorable modelling inaccuracies that
do emerge in this nontrivial process. The identification of such a
model may indeed prove itself to be considerably challenging, although
considerable developments have been carried out over the years for
different types of vehicles (Caccia et al., 2000a; Allotta et al., 2018).
Additional results have also been achieved by means of expensive
Computational Fluid Dynamics (CFD) software to obtain hydrodynamic
damping coefficients (Coe, 2013; Phillips et al., 2010). All the men-
tioned research studies follow the “classical” identification paradigm,
that involves techniques to identify parameters of explicitly defined
finite-dimensional model structures; more in detail, the traditional
methodology consists of using a physics-based model combined with
a class of system identification methods to update the parameters
of the model. Alternatively, given the ever-increasing availability of
underwater domain data (Bernardi et al., 2020), Machine Learning
(ML) approaches gained popularity in recent years, where supervised
methods were used to estimate the dynamics of a given system without
explicit models. For instance, Wehbe (2020) exploited data collected
during real AUV experiments to compare several learning methods
against standard physics-based approaches. Furthermore, a framework
to learn and adapt vehicle models online has been proposed. Regression
algorithms, including linear regression, regression trees with different
sizes, regression trees ensembles, Gaussian process regression, and
support vector machines have been used by Bassam et al. (2022)
for estimating ship velocities; in particular, the proposed approach
can provide accurate predictions of ship speed under real operational
conditions with the aim of optimising ship operational parameters.
Moreover, while Gaussian Processes (GP) can be properly exploited for
underwater vehicle identification with a low amount of data (Ramirez
et al., 2022), the interest in Deep Neural Networks (DNNs) significantly
increased in the case of large datasets. In this context, using experi-
mental data from several AUV missions (and/or simulations), a Neural
Network (NN) data-driven model can be trained to learn the vehicle
motion.

Inspired by these motivations, the main contribution of this work
focuses on testing several state-of-the-art DL-based strategies to aid
underwater navigation, proposing a solution able to estimate linear
velocities without directly exploiting DVL measurements. The authors
especially wish to point out that the major design guideline behind this
research activity does not rely on replacing the DVL sensor; conversely,
the tested promising framework, based on a cutting-edge technology
(such as NNs), aims at providing estimates of the vehicle speed where
the DVL performance cannot be ensured. Besides, employing an aug-
mented set of devices able to provide navigation information represents
an intrinsic boost in redundancy, preventing failures due, for example,
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to underwater sensor-denied scenarios (such as when the vehicle is far
from the seabed or when environmental disturbances — such as bubbles
— are present).

The results of this study were obtained by employing AUV naviga-
tion data gathered during several missions carried out by the National
Oceanography Centre (NOC) in Loch Ness (UK) in November 2021.
Firstly, the experimental comparison involved the information provided
by Autosub Long Range (ALR) (Roper et al., 2021), a long-range, long-
endurance AUV capable of operating for several months and travelling
thousands of kilometers in a single deployment, and, as a consequence,
requiring a dedicated, accurate and robust on-board localisation sys-
tem. Subsequently, the proposed methodology was tested on Autosub5
(formerly known as Autosub2000 Under Ice, A2kUI) (Phillips et al.,
2020), a recently developed AUV which complements the low-power,
long-range capabilities of ALR with a range of high-power acoustic and
optical payload sensors. During the above-mentioned tests, the vehicles
navigated by means of a standard DVL-based DR strategy and the pro-
posed solution was tested and validated offline. In particular, while this
specific work focuses on post-processed data, a testing framework as
close as possible to the on-board real online Guidance, Navigation and
Control (GNC) subsystems was adopted (Munafo et al., 2019). Finally,
considering the quality of the obtained results, on-line underwater tests
will be carried out in the near future during experimental campaigns.

This paper is organised as follows: firstly, works related to the usage
of NNs for the underwater navigation task are described in Section 2,
whereas Section 3 introduces the adopted notation used to model
AUV motion. Section 4 is dedicated to the illustration of the proposed
methodology by accurately outlining the novelties of the developed
architecture in comparison with the standard DVL-based DR approach.
In particular, this work focuses on using several NNs in order to
estimate AUV linear velocities, without exploiting DVL readings in the
inference stage, resulting in a DL-based DR strategy. Section 5 describes
the NOC AUVs (and the on-board devices) used to collect data during
the Loch Ness trials. Section 6 presents the obtained experimental
results and proposes a quantitative analysis of the achieved outcomes.
Finally, Section 7 summarises the achieved results and briefly describes
future trends as well as applications.

2. Related work

The application of Deep Learning (DL) in the field of marine robotics
is still relatively scarce. For instance, several works have been pro-
posed in the context of Automatic Target Recognition (ATR), where
the key idea is to find and recognise an object of interest in either
visual or acoustic images by using Convolutional Neural Networks
(CNNs) (Palomeras et al., 2022; Zacchini et al., 2020; Valdenegro-Toro,
2017). Additional studies explored the usage of Recurrent Neural Net-
works (RNN) for fault diagnosis of underwater thrusters (Nascimento
and Valdenegro-Toro, 2018). In Dimitrov et al. (2021) a Long Short-
Term Memory Network (LSTM) has been exploited to create a model
of a marine vehicle, with the aim of filling the simulation-to-reality
dynamic gap. Moving to the localisation task, several articles have
addressed neural networks in order to estimate the motion of marine
crafts. Skulstad et al. (2019) accurately presents a DL-based approach
to dead-reckoning navigation of dynamically positioned ships; in par-
ticular, thruster force demands combined with heading measurements
have been used to train a RNN network for aided-navigation tasks. In Li
et al. (2020) a nonlinear autoregressive neural network is presented to
support the localisation system in the case of a DVL malfunction; the
specific model was tested and validated on a ship with a DVL mounted
on the vessel hull. Furthermore, Mu et al. (2019) research was focused
on the employment of a Hybrid Recurrent Neural Network (HRNN)
to estimate AUV positions; to verify the effectiveness of the proposed
navigation algorithm, a series of evaluations have been carried out,
based on the navigation data collected during real experimental cam-
paigns, comparing the proposed DL-based localisation solution with
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Fig. 1. The SNAME notation.

the Kalman Filters (KFs) -based estimators. Similar studies were also
presented in Zhang et al. (2020), Saksvik et al. (2021), Topini et al.
(2020), where the data from several sensors (e.g. Inertial Measurement
Unit, pressure sensor, and DVL) were exploited as inputs of dedicated
RNNs which predict vehicle velocities and positions; the proposed
neural network approaches were compared with the AUV on-board
navigation system during a series of surveys or in simulations.

3. AUV kinematics and dynamics

The following notation is employed in the context of this work. A
generic vector p € R3, expressed in a particular {0°x0y°z%} frame
is indicated with ®p. A generic rotation matrix R € SO(3) is denoted
with two indices R{ , where the notation represents the unit vectors
of the frame i with respect to frame j. Furthermore, the state of an
underwater vehicle — considered as a rigid body - is represented by
using two reference frames, by following the Society of Naval Architects
and Marine Engineers (SNAME) notation. More specifically, a local
Earth-fixed reference frame (assumed as inertial) with axes pointing
North, East, and Down (NED frame) {ONx"N y¥zV}, and a right-handed
body reference frame {0°x®y?z?} whose origin is the centre of mass of
the vehicle (see Fig. 1) with its x-axis pointing in the forward motion
direction, its z-axis pointing down, and its y-axis completing a right-
handed reference frame. The pose of a vehicle is therefore represented
with
n=["nl al]" . m
where V7, is the position of O° with respect to the NED frame, and 7,
is the orientation the body-fixed frame w.r.t. the NED frame, where
roll (¢), pitch (6), and yaw (w) (RPY) angles are used to describe the
orientation. Additionally, the AUV linear and angular velocities along
the axis of the body-fixed reference (surge, sway, and heave motion)
can be denoted with
v="ly= [0
vi=bvi=wow" . 2)

V2=bV2=[pqr]T

The differential kinematic model is illustrated in Eq. (3), and further

information can be found in Antonelli (2018):

n=Jmv

< Ny >= RY (m) O3 < by, > 3)
n 033 TN (1) "y, ’

where RZ’ is the rotation matrix between the body and the NED frame,
and TbN (1,) is the matrix mapping the angular velocity v, onto the
derivatives of the orientation angles.

Regarding the complete dynamic model of a marine vehicle in
absence of marine currents (Fossen, 1994), the equation describing the
forces acting on the centre of mass is:

Mv+CV)v+ D(v,8)v +gn) =1(v,n,, 6 |, “4)

where M indicates the mass matrix, C(v) describes the centrifugal and
Coriolis matrix, D(v, ) are the damping matrix, g(rn) reports the effects
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of gravity and buoyancy, z(v,n,,8) indicates the forces and torques
provided by the rotational speeds n, of m propellers and by the vehicle’s
control planes whose angular positions are stored in 8, n and v are as
defined in Eq. (3).

4. Proposed methodology

Broadly speaking, the suggested architecture is composed of two
hierarchical phases: firstly, in an offline learning stage, the NNs are
trained by employing the data collected from the vehicle during mis-
sions. Subsequently, the prediction values, supplied by the NNs, are
exploited together with the estimated AUV attitude in standard DR
velocity-integration strategies.

4.1. Dead reckoning navigation system

For what concerns AUVs overall navigation system, a parallel struc-
ture decoupling the attitude and position estimates is commonly ex-
ploited (Costanzi et al., 2016; Salavasidis et al., 2019). In particular, the
AUV orientation is usually estimated using Inertial Measurement Units
(IMUs), magnetic compasses, or high-precision Attitude and Heading
Reference Systems (AHRS) exploiting ring laser or fibre optic gyro-
scopes. On the other hand, the standard DR methods usually estimate
the AUV position by integrating the linear velocity measured with
highly-accurate instruments such as DVLs or ADCPs. In particular, a
DR-based position update is shown in Eq. (5):

M (tket) = m (1) + Ry (12 (1)) v o) 46 )

where, following the notations introduced in Section 3, n; (f;,,1) and
n, (7) are respectively the current and previous NED position estima-
tion output of the DR navigation system, v, (#,) contains the body-fixed
frame linear velocities, RY (n, (f;)) represents the rotation matrix
between the NED and the body-fixed frames. It is not uncommon
to replace the third component of n (t,,;) with a depth estimate
computed directly from pressure readings, such as those provided by
a Conductivity, Temperature and Depth (CTD) probe.

It is worth noting that the DR procedure commonly provides suffi-
cient short-term accuracy, while uncompensated sensor errors unavoid-
ably introduce an unbounded error in the positioning error. The DR
error is a combination of multiple error sources in velocity and head-
ing measurements that can be present throughout the whole mission.
While the impossibility of maintaining the bottom lock in DVL-failure
scenarios can be the most relevant source of error, there are further DVL
bias effects which may affect the sensor readings (function of the flying
altitude, seabed properties, or caused by the approximate knowledge of
the speed of sound through water).

The approach followed in this paper is to merge, in an innovative
approach, the well-established DR methodology with state-of-the-art DL
methodologies to estimate the position of an AUV. Indeed, whilst the
DR position propagation model of Eq. (5) remains unchanged, the AUV
body-fixed linear velocities 7, are estimated through the use of NNs in
case of the DVL failure. Therefore, the aforementioned vehicle body-
fixed linear velocities are provided by means of NN model predictions
rather than DVL readings, as illustrated in Fig. 2. It is also important
to mention that another strength of the proposed approach is that the
inputs used to train the DL models come from the data generated
by sensors generally employed on AUVs: this means that no special
or bespoke device is required for this approach to succeed, since the
required inputs would be available on board anyways.
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Fig. 2. Proposed DL-based Dead Reckoning architecture in case of DVL failure.

4.2. Deep-learning for model identification

ML methods, and more specifically the DL implementations of the
ML theory, have received growing interest over the past decade. This
was driven by the unrivalled results obtained through the use of DL
technologies in a large range of problems as, for instance, in computer
vision and speech recognition applications (Goodfellow et al., 2016), as
mentioned in Section 1. As a matter of fact, most of the successful DL
applications implement a type of supervised learning where they aim to
learn a commonly nonlinear mapping between some observed features
X and a corresponding set of targets Y from a dataset of samples
(X, Y). As far as this specific application is concerned, the key idea
is modelling the dynamics of the vehicle, given a dataset provided by
the on-board sensor readings. Considering an AUV dynamical system
described by Eq. (4), the evolution of linear velocity v, can without
loss of generality be expressed in the following form:

v, :F(v,nz,é,nl,) . 6)

While, on the one hand, Eq. (6) properly describes the AUV dy-
namics, on the other hand the employment of this model directly
(i.e. using the linear body-fixed accelerations v, as the target vector)
presents several drawbacks. Firstly, the linear body-fixed accelerations
are not usually obtainable with a satisfactory degree of reliability (if
estimated as the time derivative of DVL velocity measurements, they
would be tied to the sampling period of the specific device; if measured
by accelerometers, they would be affected by considerable noise).
Secondly, the use of acceleration values in a DR-based navigation
system requires an additional numerical integration step together with
the one needed for the estimation of the AUV position, as reported
in Eq. (5), which implies an ever-growing estimation drift. Driven
by these consideration, we chose a different approach with the aim
of modelling AUV dynamics. In particular, the discrete-time version
of Eq. (6) has been considered:

Vit = F (V). ma(1), 8t ), ny(t), At) )

where Ar indicates the time step (4 = 1, — t;). With the model
of Eq. (7), the target of the learning phase is the linear velocity at time
tr+1,> given the inputs at time 7. It is hence important to discuss how
such inputs are obtained. The time step is related to the time period of
the navigation system, which is usually constant and will be omitted
in the following. Furthermore, we assume that the AUV orientation
n,(t,) is directly estimated from a dedicated system as previously
discussed, and that this estimation does not depend on velocities or
positions (Costanzi et al., 2016); we also assume that such a system
is able to estimate the body-fixed angular velocity v,. Similarly, the
propeller rotational speeds n,(#;) and the control planes displacements
8(t;) are assumed to be measured by accurate and independent sensors.
However, DVL readings cannot obviously be used for linear velocity
estimation, since we are assuming that the proposed methodology is
employed in the absence of valid bottom-lock measurements or DVL
failure. If available, a basic approximation could be the employment
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of the water track velocity if the DVL is still operational; nonetheless,
this particular strategy can properly work only if marine currents are
not too strong, and, as a matter of fact, it lacks generalisation. At the
same time, the employment of the estimated value ¥,(z;) as input, at
the previous time step #,, will lead to an unavoidable drift. Driven
by these considerations, we assume that some prior knowledge of the
linear velocity, such as the one produced by a physics-based model
identified with standard procedures (Caccia et al., 2000a; Wehbe,
2020), is available. Note that we do not require such model to be
accurate, but only to provide a first approximation of the linear velocity
of the vehicle. Additionally, the same dataset used for training the NN
can be employed in the identification of the model.

In detail, let #; € R? be a body-fixed linear velocity vector estimated
from a generic physics-based AUV model, the goal of the optimisation
process is to minimise the following loss function

T
2= g T aviman W ®
=1

where ¢ and T are respectively the time step and the length of the
training data, W is the set of weight and bias parameters of the chosen
DL model. The key idea is to investigate whether it is possible to use a
mixed strategy with a Deep Learning-based approach taking as inputs
also the values estimated by a physics-based model, improving the
accuracy and generalisation of the results. In particular, the supervised
learning problem defined by the minimisation of the function in Eq. (8)
can be tackled by employing one of the state-of-the-art NNs which,
at the end of the optimisation process, predicts the body-fixed surge
velocity at the current time step.

In the context of this work, four different NNs have been evaluated
to solve the regression problem in Eq. (8):

» Multi-Layer Perceptron (MLP), which can be seen as a nonlinear
generalisation of a linear model;

« LSTM, as recent studies have outlined their usefulness (Hochreiter
and Schmidhuber, 1997) in performing robust sequence learning,
where a correlation exists between one sample and a few others
preceding it;

» CNNs, as they emerged as a relevant tool for time series prediction
in multiple parallel inputs and multi-step forecasting cases;

+ Convolutional Long Short-Term Memory Recurrent Neural Net-
works (C-LSTM), where CNNs are used as a stacked component
within an LSTM network.

For an in-depth discussion about deep learning and the cited NNs, the
reader may refer to Goodfellow et al. (2016).

5. AUV platforms and dataset acquisition

As already introduced in Section 1, the performance of the proposed
DL-based DR strategy has been evaluated and validated offline by
employing the navigation data gathered during several missions carried
out by the National Oceanography Centre (NOC) in Loch Ness (UK) in
November 2021. Firstly, the data gathered by ALR (Roper et al., 2021,
2017), a long-range and long-endurance AUV capable of operating
continuously for several months and travelling thousands of kilometers,
has been used to validate the approach. Subsequently, the proposed
methodology has been tested on Autosub5 (Phillips et al., 2020), a
newly developed AUV which complements the low-power, long-range
under ice capabilities of ALR with a wide variety of acoustic and optical
Sensors.

5.1. Autosub long range (ALR) AUV
ALR (Roper et al., 2021, 2017) is a long-range, long-endurance

flight-style AUV (see Fig. 3). Long-range autonomy is enabled by en-
suring a low hotel load and a relatively slow cruise speed. Propulsion
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Fig. 3. ALR4 during the trials in Loch Ness (UK), November 2021.

power is provided by a single custom-designed propulsion unit which
drives a rear two-bladed propeller. The vehicle is also manoeuvred
using two stern planes and a rudder controlled using custom actuators,
while the top fin is fixed and contains antennae for GPS, WiFi and
Iridium satellite communication. The NOC currently operates six ALRs,
three with a 1500 m depth rating, and three rated for 6000 m. Given
the restrictions imposed by long-range missions, ALRs are equipped
with navigation sensors with low power consumption: a u-blox M8 GPS
module to obtain GPS fixes when the ALR surfaces, downward-looking
DVL (300 kHz Teledyne RDI Workhorse on the 6000 m rated versions,
and 500 kHz Nortek DVL500 on the 1500 m rated vehicles) to estimate
the 3D AUV velocity in the body-fixed reference frame, a 6-axis PNI
TCM XB compass/attitude module based on magneto-inductive sensors,
and a Sea-Bird SBE 52-MP CTD to measure the operating depth. For
these experiments, ALR4 (a 1500 m depth rated variant) was used.

5.2. Autosub5 AUV

Autosub5 (Phillips et al., 2020; Consensi et al., 2022) is a con-
ventional work class AUV developed for deep ocean and under ice
measurements; the vehicle is equipped with high-power payload sen-
sors used to collect science data such as a Multi-Beam Echo Sounder
(MBES), a SideScan Sonar (SSS), a Sub Bottom Profiler (SBP), colour
cameras and a Conductivity Temperature and Depth (CTD) senors.
The main navigation solution is provided by a Sonardyne SPRINT-
Nav700 INS, which includes a downward-looking Sonardyne Syrinx
DVL. The vehicle has been designed with redundancy in mind: in
the case of failure of the primary navigation system, an independent
MEMS IMU combined with CTD depth measurements will be used to
take the vehicle to safety. Focusing on the vehicle actuators, Autosub5
has been designed with twin rear thrusters, each capable of providing
sufficient thrust to ensure the AUV operates above its minimum cruise
speed along the longitudinal AUV motion, and has four individually
actuated control surfaces in an ‘X’ configuration to ensure redundancy
(see Fig. 4).

5.3. Model-based navigation aided system

For both vehicle types, the navigation system ensures that the robot
can navigate even in the event of a DVL breakdown or malfunction
(or simply in the absence of bottom lock), using a physics-based model
to provide the navigation system the linear velocity needed in Eq. (5)
to estimate the AUV position. In particular, referring to Eq. (4), the
following assumptions have been made to model the AUV motion.

Assumption 1. Most of the AUV dynamics takes place in the positive
longitudinal direction. As a consequence, the body-fixed sway and
heave velocities can be considered equal to zero.

Fig. 4. Autosub5 being deployed in Loch Ness (UK), November 2021.

This assumption can be considered valid considering that both
ALR and Autosub5 AUVs cannot be controlled in these directions of
motion. Both have been designed to perform survey and inspection
tasks and they typically navigate on straight line paths in order to
minimise the hydrodynamic damping. Consequently, the estimated
vehicle body-fixed speed can be approximated in Eq. (5) with Eq. (9):

v =1[2,0,07 9)

where i € R is the estimate of the body surge speed.

Assumption 2. The inertial, gravitational, centripetal, and Coriolis
effects in the AUV model can be neglected.

Although this assumption may seem to be of considerable impact,
it should be noted that for vehicles that cannot perform hovering
like those described above, an attempt is made to maintain limited
instances of acceleration (and deceleration) at the initial dive and
final resurfacing phases. In addition, the use of such strategies allows
for less battery usage with respect to sudden changes in the vehicle
longitudinal speed. In this context, this assumption can be considered
valid, and Eq. (4) significantly simplifies as

D(v)v = Bt(v, n,, 5 10)
by also using the definition of the TAM, as in Eq. (13).

Assumption 3. The main damping contributions are given by the
nonlinear skin friction due to turbulent boundary layers, and by the
viscous damping force due to vortex shedding, while the drag related
to the stern and the control planes can be neglected. In particular, the
non-linearity of the drag terms, adopted by Fossen (1994), Antonelli
(2018), Caccia et al. (2000b) is also employed in the context of this
work.

Since both vehicles under consideration move at low speed, the
coupling between the dissipative effects can be neglected, leading to a
diagonal damping matrix. Additionally, it can be noted that quadratic
drag terms commonly dominate over the linear ones, and the matrix
D(v) in Eq. (4) can be approximated with

D(v) = —diaggeg { -+ X;lvil = Xlva o} . an

where diag,,,(-) is the operator which builds a n-by-n diagonal matrix
from a vector and the scalar v;; is the component of the body-fixed
velocity vector v;; along the ith direction of motion. For the sake of
completeness, the first three terms in Eq. (11) can be approximated as

1
D; (vi;) = Xilvi;l = EpAf,iCD,i vii| > (12)

where p represents the water density, A, ; is the projection of the area
of the hull of the vehicle on a plane perpendicular to the ith axis of the
body-fixed frame, and Cp,; is the drag coefficient, which quantifies the
fluid resistance against the vehicle motion.
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Assumption 4. The longitudinal thrust provided by each propeller can
be modelled with a quasi-steady model. Moreover, each propeller is
properly aligned along the longitudinal motion of the vehicle.

Referring to Eq. (4), a linear relation (Carlton, 2018) holds between
forces and moments acting on the vehicle 7 € R® and the thrust t
generated by propellers and control planes,

7(v,n,) = Bt(v,n,,5) (13)

where B is the Thrust Allocation Matrix (TAM), which depends on the
thrusters and control planes pose with respect to the vehicle’s centre of
gravity. Regarding the dynamics of a thruster (such as those contribut-
ing to the thrust along the direction of forward motion for both ALR
and Autosub5), the longitudinal thrust contribution of each propeller ¢;
is usually obtained from the so-called quasi-steady modelling (Carlton,
2018; Fossen, 1994; Blanke et al., 2000). In detail, each thrust force ¢,
is computed as a function of a gain K, and the rotational speed of the
ith propeller n,,;,

t; = K,(Jo)pD*n,;|n a4

i | 3

where J, is called the advance ratio, p is the water density and D
is the diameter of the propeller. Within the context of this work, we
consider that the K, is constant and is not depending on the axial
flow velocity (i.e. respecting the “bollard” condition). Referring to
the second part of the assumption, the propellers on both ALR and
Autosub5 have been fixed along the surge direction of motion in both
vehicles (and they are the only actuators contributing to the thrust in
that direction). Consequently, the body-fixed force along the surge axis
can be calculated as the sum of each thrust contribution.

Driven by these considerations, and by using Eqgs. (10) and (12), a
physics-based model used to estimate the surge body-fixed speed can
be defined as

m
=k Z npilpil s (15)
J i=1

where m is the number of the thrusters, k, is the propeller model
coefficient which includes the constant terms in Egs. (14). The resulting
estimate of the body-fixed surge velocity &, introduced in Eq. (9), is
employed in the standard DR strategy defined in Eq. (5). Finally, it is
worth noting that in the case the AUV has been provided with only
one propeller, as, for instance, ALR, Eq. (15) simplifies in such a way
that a linear relationship holds between the propeller rotational speed
and the AUV body-fixed surge velocity. Even though the authors are
aware that the proposed physics-based model results over-simplified
compared to the “true” vehicle dynamics, the key idea is to test the
feasibility of our approach (previously described in Section 4) with
a model which requires a basic identification procedure. Indeed, the
model based on Eq. (15) requires only two different datasets: the surge
body-fixed velocity provided from the DVL, and the propeller rotational
speeds, which are usually measured by sensors directly placed on the
propeller shafts by the manufacturer.

Moving to the DL-based strategy, Eq. (8) and its continuous-time
counterpart Eq. (6) can be simplified by considering the characteristics
of the considered vehicles: indeed, we can disregard angular velocity
(the vehicles move and turn slowly), and sway and heave velocities and
roll (they are not actively controlled and by design the vehicles will
likely not move in those directions unless subject to external forces);
at the same time, heading is irrelevant for our problem. For ALRs and
Autosub5, Eq. (6) can be finally simplified as follows:

i=F (1,vy.4,8,n,) , 16)
which leads to the minimisation of the following function:
T
1 . 2
=7 ”u—r(u,vz,q,a,n,,,w)” an
1

I
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where we recall that ¢ € R is the pitch value defined in Eq. (3), @
is the value of the surge body-fixed speed estimated by the propeller
model, and the control planes vector 6 dimension changes depending
on the vehicle (i.e. two for ALR, which is equipped with a rudder and
a stern plane, four for Autosub5 given its independently controlled
control planes, as described in Sections 5.1 and 5.2).

6. Experimental results

The results reported in this section use the navigation data collected
during several missions performed in Loch Ness (UK) in November
2021. Loch Ness is 36 km long and approximately 2.7 km wide for the
majority of its length, the centre of the Loch is 220 m deep. Experiments
were conducted in the vicinity of Urquhart Bay. The flow through the
Loch is slow, however, wind driven currents of up to 0.1 m/s were
observed during the experiments. Firstly, experimental data from ALR
have been employed to test the proposed methodology; subsequently,
the whole framework has been evaluated with Autosub5 data. Each
mission dataset is composed of several fields, related to the different
sensors values, sampled at 1 Hz frequency by the on-board logger. The
vehicles relied on the sensors described in Sections 5.1 and 5.2 for the
extent of the missions and they performed the required navigation tasks
exploiting DVL bottom lock for the entire duration of the missions.

6.1. Training process and scoring metrics

In this study, we employ four different learning methods, namely
MLP, LSTM, CNN, and C-LSTM. For the implementation of the afore-
mentioned NNs, we used the TensorFlow Deep Learning library (Abadi
et al., 2015) for inference and training phases. Referring to the latter,
we decided to employ the Keras (Chollet et al., 2015) framework, which
provides a hands-on usage of neural networks, by sequentially stacking
different state-of-the-art layers. More specifically, the following models
have been used in the context of this work:

+ MLP: the MultiLayer Perceptron model is created by stacking
a certain number of Fully-Connected (FC) layers, where each
one contains a predefined number of neurons, and a non-linear
activation function;

LSTM: as in the previous case, the model is composed by several
Long Short-Term Memory Network (Hochreiter and Schmidhuber,
1997) layers stacked together;

CNN: the Convolutional Neural Networks are defined as having
one or more 1D convolutional stacked layers (each one provided
with feature maps and a kernel size value) followed by a pooling
layer which reduces the dimensionality of the feature maps;
C-LSTM: the Convolutional Long Short-Term Memory Recurrent
Neural Networks, where CNN and LSTM layers are stacked to-
gether. The key idea of this architecture is merging the monodi-
mensional convolutional layer ability for feature extraction on
input data, combined with LSTMs to support sequence prediction.

It is worth mentioning that a fully connected layer is also added af-
ter the stacked layers in the LSTM, CNN and C-LSTM networks, in order
to ideally provide a “buffer” before making a prediction. Finally, each
DL model architecture has been paired with a regularising-oriented
dropout layer alongside a fully connected layer, which translated the
output of the stacked layers into the monodimensional predicted ve-
locity values, followed by a linear activation function. A graphical
representation of the described models can be observed in Fig. 5 (a—
d), where the standard configurations (only one stacked layer is added
in each model) of MLP, LSTM, CNN and C-LSTM for solving monodi-
mensional regression problems are illustrated. Nevertheless, deeper
architectures can be developed by employing a larger values of stacked
layers.

A cross-validation strategy with a grid search map has been ex-
ploited for each different NN in order to tune the parameters. More
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Fig. 5. The standard NN architectures defined by sequentially stacking different Keras layers (Chollet et al., 2015): in detail, the MLP (a), LSTM (b), CNN (c), C-LSTM (d) are

shown.

specifically, a scheme known as k-fold cross-validation has been used to
evaluate different hyper-parameter settings for each estimator. The key
idea is to split the training data into k subsets, then the model is trained
with k - 1 sets and evaluated with the remaining set. This procedure
is repeated for k times, leaving a different subset for validation every
time, as suggested in Wehbe (2020).

Regarding the time sequence input dimensionality, several tests
were conducted leading to select 10-sample sequences (i.e. temporal
sequences of ten seconds) for the CNN, LSTM, and C-LSTM; conversely,
only the inputs at the previous time step are considered with the MLP,
which is not usually employed for time series regression problems.
Coherently with the standard regression loss metrics, the NNs have
been trained to minimise the Mean Squared Error (MSE) between the
target body-fixed surge velocities and their predicted values. For the
optimiser and the batch size selection, the NNs have been trained by
using the Adam optimiser (Kingma and Ba, 2014) and batch size equal
to 1; additionally, a dedicated learning rate scheduler is implemented
that adjusts the learning rate between epochs as the training progresses.
Even though a number of 1000 epochs had been employed for the
whole training, we introduced the early stopping technique on the
validation loss in order to avoid undesirable overfitting. Moving to
a more detailed overview of the collected dataset, each interested

physical quantity has been further normalised to speed up the learning
procedure as well as lead to faster convergence.

Moving to a quantitative analysis of the obtained results, to quantify
the quality of predictions of a certain model, a scoring method is usually
selected. While several scoring metrics can be used for regression
problems, the authors decided to focus on the Mean Absolute Error
(MAE) and the Mean Absolute Percentage Error (MAPE), defined as
follows: let y be the target value, j its predicted value, and » the number
of samples; then, the following metrics can be defined:

« Mean Absolute Error (MAE):

n

1 R
MAE= -3 |y =5 s

i=1
» Mean Absolute Percentage Error (MAPE):

u| ) (19)

100%
MAPE= —=
n y,v

t=1

In particular, the MAPE has been chosen in order to compare the
results for the two different vehicles, reported in the following.
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Table 1
Best hyper-parameters estimated with the cross-validation
strategy.
Estimator Best Hyper-parameters
MLP FC Layers: 1
FC Units: 16
FC Activation function: Hyperbolic tangent
LSTM LSTM Layers: 1
LSTM Units: 32
FC Layers: 1
FC Units: 8
FC Activation function: Hyperbolic tangent
CNN CNN Layers: 1
CNN Kernel Size: 3
CNN Feature Maps: 16
FC Layers: 1
FC Units: 8
FC Activation function: Hyperbolic tangent
C-LSTM CNN Layers: 1

CNN Kernel Size: 3

CNN Feature Maps: 16

LSTM Layers: 1

LSTM Units: 32

FC Layers: 1

FC Units: 8

FC Activation function: Hyperbolic tangent

lapGait

0.010

Mean Absolute Value error (m/s)

1L-16N 1L-64N 1L-256N  2L-16N 2L-64N  2L-256N  3L-16N 3L-64N  3L-256N

Fig. 6. The MLP cross-validation results for a grid search map of [1,2,3] layers
composed by [16,64,256] neurons. The model with i layers and j neurons has been
labelled as iL-jN in the plot.

6.2. Case study 1: Autosub long range

Experimental data from Autosub Long Range was used for the
initial validation of the proposed approach. A specific TRaining Mission
(TRM), whose data was then used in the training process of the NNs,
was planned using NOC'’s Oceanids C2 command and control infrastruc-
ture (Harris et al., 2020). Referring to Fig. 7, the TRM is composed of
reciprocal tracks between two different waypoints (approximately 530
meters distance) with the AUV flying at a constant altitude of 40 meters
from the lochbed. Different body-fixed surge demands were set in order
to provide a dataset as heterogeneous as possible (see Fig. 8), and to
avoid overfitting a specific use case with a constant longitudinal speed.
Additionally, the data in Figs. 8 and 9 were also used for the estimation
of the Propeller Model (PM) as defined in Eq. (15).

The results of the cross-validation strategy described in Section 6.1,
are reported in Table 1, in which the parameters of each different NN
can be observed.

It can be observed from Table 1 that the best models are quite
simple, and neural networks with too deep architectures were not
necessary. While not too complex NNs have the significant advantage
of being deployed into the vehicle without real time constraint is-
sues, a careful reader may wonder whether better performances could
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Fig. 9. The measured propeller speed for the ALR TRM.

bee achieved with deeper network architectures. Motivated by these
considerations, the authors report the comparison among several NN
parameters obtained from the cross validation strategy. For the sake
of brevity, only the results of the MLP cross-validation approach have
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Fig. 10. The trajectory (a) and the depth (b) of the ALR TEMI.

been reported in the manuscript. Nonetheless, the same methodology
has been applied to the other NNs employed in the context of this
work and equivalent patterns do arise. Referring to the specific MLP
cross-validation, we increased both the number of the stacked layers
and the values of units for each layer, and every network is trained
several times with random weight initialisation. It is worth noting
that also different activation functions and dropout values have been
tested, but omitted in Fig. 6 since they do not significantly contribute
to the performance of networks with deeper architectures. Thus, the
validation mean absolute error and standard deviation of each neural
network are calculated, and can be observed in Fig. 6, where each MLP
model with i layers composed by j neurons has been labelled as iL-jN
in the plot.

From a quantitative point of view, it can be observed that no
practical improvements are obtained with a “bigger” architecture. In
particular, while the first seven models are quite comparable in Fig. 6,
the last two present a relevant increase in the standard deviation. In
this context, the standard deviation of a model can be considered a
robustness index of the used estimator: a low variance indicates that
the estimator is able to achieve robust performance when trained and
evaluated in different splits of the data. Conversely, it is worth noting
that deeper architectures might lead to slightly overfitted models,
whenever complex layouts are not needed to learn the target values.
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Fig. 11. The trajectory (a) and the depth (b) of the ALR TEM2.

Moving to the test dataset, four different TEst Missions (TEMs) were
used to test the neural networks on unseen data. For the sake of brevity,
the reader can observe two of the TEMs paths in Figs. 10-11 (a),
as estimated by the on-board ALR localisation algorithms. When the
vehicle is on the surface, the position is estimated by employing GPS
measurements; while ALR is underwater, its position is estimated by
using a DR approach as described in previous sections. It is essential
to remark that each test mission was not included in the training and
validation dataset and, thus, can be adopted as an adequate unknown
scenario for the test phase. Additionally, we did not specifically plan
the TEMs for the identification procedure, but instead used missions
whose characteristics reflect what the vehicle can realistically be asked
to do during survey tasks. In detail, each TEM is composed of different
tracks between pairs of waypoints with a constant longitudinal cruise
speed.

In order to provide a performance analysis, the proposed strategy
was compared with the canonical DVL-based DR technique, which,
essentially, is used as a ground-truth baseline to validate the novel
solution. As a consequence, the target values in Egs. (18) and (19) are
the DVL-measured velocity estimates. As far as quantitative results are
concerned, Table 2 shows the obtained results (with the scoring metrics
defined in Section 6.1) for the different NNs. Additionally, the results
obtained with the physics-based model described in Section 5.3 are also
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Fig. 12. The results obtained during an ALR TEM. In particular, the predicted body-fixed surge velocities estimated with the Propeller Model (a), MLP (b), LSTM (c), CNN (d),

C-LSTM (e) are shown.

reported. Within this context, the PM, defined in Eq. (15), seems to
work relatively well for ALR TEMs; this is expected from a vehicle with
only one thruster executing missions without any suddenly changing
surge speeds. For the sake of brevity, only the results of one of the ALR
TEMs are reported in Fig. 12.

In detail, observing Figs. 12 (a—e), it can be noted that, as expected,
the proposed approach outperforms the basic PM for every selected NN.
From a qualitative point of view, DL-based strategies show a relevant
improvement in terms of the smoothness of the predictions as well as
the accuracy in the accelerated phases of the mission. In particular,
LSTM, CNN, C-LSTM present smoother predicted values compared to
MLP, as expected with time-series regression problems.

10

Referring to the results obtained in Table 2 with the metrics defined
in Section 6.1, it can be observed that the MAEs remains relatively low
in absolute terms. Furthermore, it can be seen, in percentage terms,
how the joint use of the PM and a NN leads to a relevant decrease of
the MAPEs.

6.3. Case study 2: Autosub5

Motivated by the results obtained with ALR, the whole framework
was extended and validated with the data collected by Autosub5 in the
same trials in Loch Ness. A TRM was planned with several surge speed
steps, in order to properly model the longitudinal motion at different
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Table 2
Scoring metric results for ALR test missions.
MAE (m/s) MAPE (%)
MLP 0.020 2.440
LSTM 0.017 2.150
CNN 0.016 1.852
C-LSTM 0.017 2.150
PM 0.028 3.320
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Fig. 13. The trajectory (a) and the depth (b) of the Autosub5 TEM1.

set points. Moreover, as for ALR, four TEMs were used to evaluate the
performance of the proposed approach. Differently to the ALR TEMs,
we decided to also use two standard lawnmower path missions, in
order to test the effectiveness of the developed framework in slightly
different types of missions. Coherently with the previous Section, two
TEM paths are reported in Figs. 13 and 14, and the estimated surge
body-fixed velocities are illustrated in Fig. 15 (a—e). Similar to the ALR
case, the joint usage of a physics-based model and NNs outperform the
PM estimates. More specifically, referring to 15(a), it is worth noting
that the PM is not working particularly well in the second part of
the TEM. Conversely, DL-based approaches can mitigate the PM error,
resulting in more accurate surge velocity predictions (see Fig. 15 (b—e)).

The scoring metric results for Autosub5 are reported in Table 3.
Looking at the PM, it can be observed that the MAE is significantly
higher than the ALR one. This result can be explained by taking
into account that Autosub5 is equipped with two thrusters and, as a

11
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Fig. 14. The trajectory (a) and the depth (b) of the Autosub5 TEM2.

Table 3
Scoring metric results for Autosub5 test missions.
MAE (m/s) MAPE (%)

MLP 0.031 2.450
LSTM 0.030 2.348
CNN 0.027 2.078
C-LSTM 0.032 2.518
PM 0.058 4.468

consequence, a PM such as the one adopted in this work is likely to be
less accurate in describing the AUV longitudinal dynamics. Conversely,
the combination of the PM model as an input to a NN allows to lower
the error by almost 50%. Therefore, confirming the results obtained
with ALR, it seems that NNs could provide a relevant tool to estimate
the unmodelled dynamics of a physics-based model.

6.4. Hardware setup and memory management

Regarding the hardware setup, the training stage was performed on
a laptop fitted with 16 GB RAM, an Intel Core i7-8750H processor,
and an Nvidia GeForce GTX 2060 card. As already mentioned in Sec-
tion 1, this specific work focuses on post-processed data; nonetheless,
the testing framework adopted a structure as close as possible to the



E. Topini et al.

16

—— DVL readings

—— PM predicted values
154

1.4

134

(m/s)

1.2 4

114

1.0 4

0.9 T T
0 500

T T T T
1500 2000 2500 3000

Time (s)

(2)

T
1000

1.6
—— DVL readings

—— LSTM predicted values
1.5

1.4+

131

(my/s)

1.2+

114

1.0 1

0.9 T T
0 500

1500 2000 2500 3000

Time (s)

1000

©

1.6

—— DVL readings

s C-LSTM predicted values

1.4+

13

(m/s)
<
|
{

1.2 1

11+

1.0 1

0.9 T T
0 500

T T T T
1500 2000 2500 3000

Time (s)

(e)

T
1000

Ocean Engineering 274 (2023) 114034

1.6

—— DVL readings

—— MLP predicted values
151

1.4 4

134

(m/s)

121

11+

1.0 1

0.9 T

T T T T
1500 2000 2500 3000

Time (s)

(b)

1000

1.6
—— DVL readings

—— CNN predicted values
1.5 1

144

1.3 4

(m/s)

1.2 4

1.0

0.9 T

1500 2000 2500 3000

Time (s)

1000

(d)

Fig. 15. The results obtained during an Autosub5 TEM. In particular, the predicted body-fixed surge velocities estimated with the Propeller Model (a), MLP (b), LSTM (c), CNN

(d), C-LSTM (e) are shown.

components of the real on-board software architecture. In particular,
after using the TensorFlow Deep Learning library (Abadi et al., 2015)
for the training process and to develop the NN model, the latter was
then imported into a suitably developed Robot Operating System (ROS)
node to be integrated with NOC’s On-board Control System (Munafo
et al., 2019) for the inference stage in order to test the feasibility of the
proposed approach for online predictions. Being aware that AUV on-
board computers are not usually equipped with a GPU, no GPU-based
library was used for the offline validation of our approach.

Table 4 shows that the averages of RAM and CPU load over all
the missions run with the developed inference methodology are nearly
insignificant, suggesting that solving DL-based regression problems

12

Table 4
CPU and RAM loads for the inference process.

CPU LOAD (%) RAM LOAD (%)

MLP 0.50 0.20
LSTM 0.85 0.30
CNN 0.85 0.30
C-LSTM 0.85 0.30

directly on-board the vehicle might be feasible. Nevertheless, the au-
thors are aware that several long-range AUVs (Furlong et al., 2012)
are equipped with less powerful computers with respect to the one
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employed in this offline validation, in order to maintain low or very low
energy consumption. Consequently, the numbers obtained in Table 4
might increase if the inference algorithm runs on an AUV computer
— although the required computational effort should remain limited.
This will be confirmed when the proposed architecture will be tested
directly on NOC’s AUVs. It is also worth mentioning that no on-board
training is involved in our procedure; if training was to be carried out
online, a GPU-based board (e.g.the Nvidia GeForce Jetson card) would
be strongly recommended.

7. Conclusions and future developments

This paper presents an extended comparison on the use of different
NNs to estimate an AUV surge velocity without direct DVL measure-
ments, to be used in a DR-based navigation solution. The proposed
approach has been tested and validated using data gathered by NOC
ALR and Autosub5 AUVs during in-water trials undertaken in Loch
Ness (UK) in November 2021. In particular, the performance of the
resulting navigation solution has been evaluated offline using sensors
and actuators data collected during a series of in-water missions. NNs
trained on the collected data together with a physics-based model
obtained by means of a standard identification process are used to
improve the accuracy provided by the latter and identify unmodelled
dynamics of the vehicle; DVL data logged during the same missions
are used as ground truth to provide a quantitative comparison. The
results show that the proposed solution largely improves the estimate of
body-fixed velocities compared to using a physics-based model alone,
for both ALR and Autosub5; furthermore, the estimated CPU load
and RAM usage makes this strategy suitable for direct use on board
a vehicle without the need for a dedicated processing unit. Finally,
the developed strategy has shown the possibility of providing AUVs
with fault-tolerant navigation systems, which may rely on a redundant
combination of both standard physics-based and DL-based models to
increase the accuracy of the available navigation solution.

Future steps will involve online testing of the proposed DL-based
DR navigation strategy during field experimental campaigns, with the
additional purpose of increasing the size and dimension of the training
dataset, providing the trained networks with improved generalisation
capabilities. Finally, it is worth mentioning that Deep Learning is an
open field of research, and NNs with enhanced performances might be
proposed in the next few years; as a consequence, additional tests might
be performed to check the feasibility of the proposed approach with
cutting-edge DL-based models.
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