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Abstract. In order to effectively model the potential impacts of future climate change, there is a requirement
for climate data inputs which (a) are of high spatial and temporal resolution, (b) explore a range of future
climate change scenarios, (c) are consistent with historical observations in the historical period, and (d) provide
an exploration of climate model uncertainty. This paper presents a suite of climate projections for the United
Kingdom that conform to these requirements: CHESS-SCAPE.

CHESS-SCAPE is a 1 km resolution dataset containing 11 near-surface meteorological variables that can be
used to as input to many different impact models. The variables are available at several time resolutions, from
daily to decadal means, for the years 1980–2080. It was derived from the state-of-the art regional climate projec-
tions in the United Kingdom Climate Projections 2018 (UKCP18) regional climate model (RCM) 12 km ensem-
ble, downscaled to 1 km using a combination of physical and empirical methods to account for local topographic
effects. CHESS-SCAPE has four ensemble members, which were chosen to span the range of temperature and
precipitation change in the UKCP18 ensemble, representing the ensemble climate model uncertainty.

CHESS-SCAPE consists of projections for four emissions scenarios, given by the Representative Concen-
tration Pathways 2.6, 4.5, 6.0 and 8.5, which were derived from the UKCP18 RCM RCP8.5 scenarios using
time shifting and pattern scaling. These correspond to UK annual warming projections of between 0.9–1.9 K for
RCP2.6 up to 2.8–4.3 K for RCP8.5 between 1980–2000 and 2060–2080. Little change in annual precipitation is
projected, but larger changes in seasonal precipitation are seen with some scenarios projecting large increases in
precipitation in the winter (up to 22 %) and large decreases in the summer (up to−39 %). All four RCP scenarios
and ensemble members are also provided with bias correction, using the CHESS-met historical gridded dataset
as a baseline.

With high spatial and temporal resolution, an extensive range of warming scenarios and multiple ensemble
members, CHESS-SCAPE provides a comprehensive data resource for modellers of climate change impacts in
the UK. The CHESS-SCAPE data are available for download from the NERC EDS Centre for Environmental
Data Analysis: https://doi.org/10.5285/8194b416cbee482b89e0dfbe17c5786c (Robinson et al., 2022).
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1 Introduction

Climate projections obtained from climate model output are
widely used to explore possible future scenarios, study cli-
mate change impacts and make policy decisions in a wide
variety of fields (IPCC, 2022). In general, due to the compu-
tational resources required, global climate models (GCMs)
and earth system models (ESMs) are run at relatively coarse
resolutions (tens to hundreds of kilometres). However, in
order to investigate and project climate change impacts re-
gionally, higher spatial and temporal resolutions of climate
data are necessary (Barros et al., 2014). Modelling of future
floods, droughts and water resources requires a high enough
spatial and temporal resolution to resolve local hydrological
processes that are unresolvable in coarser-resolution simula-
tions (Wood et al., 2011; Bierkens et al., 2015; Melsen et al.,
2016). Higher resolutions enable better partitioning of energy
and water in land surface models, which is in turn essential
for modelling carbon budgets and other biogeochemical pro-
cesses (Ciais et al., 2014). Resolutions close to the field scale
are important for agricultural modelling (Karthikeyan et al.,
2020) and food security (Betts et al., 2018). Analysis of bio-
diversity responses requires climate projections at a fine spa-
tial and temporal resolution in order to represent biological
processes and species dynamics accurately and to plan adap-
tation strategies (Nadeau et al., 2017; Dupont-Doaré and Ala-
gador, 2021).

Since the start of numerical weather forecasting, and
throughout the past 7 decades, there has been an ongoing in-
crease in the spatial resolution of the calculations. However,
while this allows present-day forecasts to integrate equations
on a resolution of the order of kilometres, this is still not pos-
sible for climate projections, due to their need to estimate
evolving atmospheric conditions over periods of centuries
rather than days or hours. For this reason, most GCMs and
ESMs have a spatial resolution of many tens or even hun-
dreds of kilometres. Some higher-resolution climate calcula-
tions exist, either from running GCMs or ESMs over shorter
“time slices” or nesting regional climate models (RCMs) in-
side them. The recent sixth IPCC report (IPCC, 2021) points
to multiple examples where increased resolution improves
the representation of weather features. Bock et al. (2020)
find that the newer generation of higher-resolution ESMs
removes many long-standing temperature and rainfall pro-
jections biases. Specific improvements include, for instance,
Priestley et al. (2020), who find a dependence of simulated
storm tracks on resolution, and when this work is extended
illustrate that higher-resolution models better capture the
structure of cyclones away from the tropics (Priestley and
Catto, 2022). Confirmation exists that increased spatial reso-
lution improves the statistical properties of rainfall patterns,
such as for the tropics (Roberts et al., 2020). An overview of
the benefits of higher resolution in simulated climate is pre-
sented in Roberts et al. (2018). There are many regions glob-
ally where convective rainfall is more prevalent than large-

scale frontal rainfall, but explicitly resolving the features of
convective storms (rather than attempting parameterisation
of their mean properties) needs a further step change in reso-
lution to kilometre scale. Prein et al. (2015) make a case for
the benefits of convection-permitting models (CPMs), which
are now available for limited time frames and geographi-
cal extents, but their intense computational requirements cur-
rently preclude transient projections corresponding to evolv-
ing rising atmospheric greenhouse gas concentrations over
periods of decades (Slingo et al., 2022).

When kilometre-scale climate projections are required but
available computational resources preclude running a CPM,
an alternative is to run a coarser-resolution model (GCM,
ESM or RCM) and statistically downscale the climate data
to the required high resolutions (e.g. Navarro-Racines et al.,
2020; Rudd and Kay, 2016). Downscaling methods of vary-
ing complexity can be used. Simple spatial interpolation is of
use to be able to run impact models at these resolutions, but it
does not add any new high-resolution information. More use-
ful are more complex methods which improve the modelling
of sub-grid-scale processes (Barros et al., 2014).

No matter the spatial resolution, most climate models run
at a high temporal resolution (of the order of minutes to
hours); however, storage limitations often preclude storing
outputs at higher than a daily time step. In recent years, mod-
elling efforts have begun to provide sub-daily outputs, in-
cluding CMIP6 3-hourly and 6-hourly outputs (Eyring et al.,
2016) and hourly outputs of the convection-permitting runs
of UKCP18 (Fosser et al., 2019). However, providing this
requires access to significant computational infrastructure to
store and disseminate these data. For CHESS-SCAPE, the
immediate needs of impact modellers were balanced against
the available processing and storage capabilities, with daily
outputs being deemed the most appropriate.

A further requirement for impact modelling is the ability to
explore different scenarios of emissions and climate change
(Ranasinghe et al., 2021; COP21, 2015). A widely used
set of scenarios is the representative concentration pathways
(RCPs; van Vuuren et al., 2011a), which were introduced by
the community at the request of the Intergovernmental Panel
on Climate Change (IPCC) after the Fourth Assessment Re-
port (AR4; IPCC, 2007a), in order to provide input to newer
climate models and explore the impacts of different climate
policies (IPCC, 2007b). The RCPs provide a range of pos-
sible future concentration and emission scenarios of green-
house gases and other pollutants, based on differing future
policy decisions and mitigations (Meinshausen et al., 2011).
They were used to force GCM and ESM contributions to the
fifth phase of the IPCC’s Coupled Model Intercomparison
Project (CMIP5; Taylor et al., 2012), which informed the
Fifth Assessment Report (AR5; IPCC, 2014). There are four
scenarios: RCP2.6, RCP4.5, RCP6.0 and RCP8.5, where the
number refers to the resulting radiative forcing by the end
of the 21st century in watts per square metre. RCP2.6 is a
mitigation scenario, aiming to limit global mean tempera-
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ture increase to less than 2 ◦C (van Vuuren et al., 2011b),
while RCP8.5 is a high-emissions scenario with no climate
change mitigation target (Riahi et al., 2011). RCP4.5 and 6.0
are medium stabilisation scenarios (Thomson et al., 2011;
Masui et al., 2011), with similar total emissions and radia-
tive forcing for the first half of the 21st century but RCP4.5
stabilising sooner.

As part of the same process, efforts were also made by the
IPCC to develop socioeconomic scenarios – shared socioe-
conomic pathways (SSPs) – that are complementary to the
physical concentration scenarios (O’Neill et al., 2014, 2017).
These are based on five alternative narratives of socioeco-
nomic development and their implications for energy, land
use and emissions (Riahi et al., 2017). The SSPs and RCPs
were used together in a scenario matrix to force models
in a consistent way for CMIP5 (van Vuuren et al., 2014).
This was built on to create combined socioeconomic and
physical scenarios for the sixth phase of the IPCC’s Cou-
pled Model Intercomparison Project (CMIP6; Eyring et al.,
2016; O’Neill et al., 2016). In order to facilitate regional im-
pact modelling in the UK, Pedde et al. (2021) have enriched
and downscaled the global SSPs by using stakeholder co-
production to integrate national knowledge to create consis-
tent UK-specific scenarios, the UK-SSPs. These can be used
alongside the CHESS-SCAPE data to consistently model
the combined impacts of climate and socioeconomic change
(e.g. Brown et al., 2022).

The range of possible socioeconomic and emissions sce-
narios is one source of uncertainty in climate projections;
however, even with the same emissions scenarios, differ-
ent climate models produce different projections of climate
variables in the future (Hawkins and Sutton, 2009; Wilby
and Dessai, 2010). This is due to two other sources of un-
certainty: climate model uncertainty, i.e. differences in the
choices of parameter values and the representation or ap-
proximation of processes (Hawkins and Sutton, 2009; Wilby
and Dessai, 2010), and internal climate variability, i.e. natu-
ral fluctuations in the climate system due to its chaotic nature
(Jain et al., 2023). Model intercomparisons such as CMIP,
where models are run with identical forcings, allow direct
comparisons of different climate models to provide an esti-
mate of the model uncertainty, while many contributors also
run several realisations of the same scenario to understand
internal climate variability (Taylor et al., 2012; Eyring et al.,
2016). It is important to understand the uncertainty in the
climate projections as part of the overall uncertainty in cli-
mate change impact modelling (Ashraf Vaghefi et al., 2019;
Schwarzwald and Lenssen, 2022).

Finally, climate models do not necessarily replicate the
historical period exactly. This may be due to internal climate
variability, with natural fluctuations leading to different real-
isations of the climate under the same forcings. It may also
be due to the model uncertainty in the representation of earth
system processes in the historical period. The latter is consid-
ered a “bias” compared to observations, and bias correction is

often applied to remove or reduce these biases (Teutschbein
and Seibert, 2012); however, the internal variability is an in-
herent property of the climate system and ideally should not
be removed (Ayar et al., 2021). However, in practice the two
are hard to distinguish, particularly in a small ensemble, so in
practice bias correction removes the differences introduced
by both.

A variety of bias correction methods of varying complex-
ity exists, from simple methods that adjust the mean (e.g. lin-
ear scaling (Widmann et al., 2003)), to more complex meth-
ods that also adjust the distribution of variables (e.g. quantile
mapping (Leander and Buishand, 2007)). These are carried
out by comparing the climate model output run for a his-
torical period with observations in that period, calculating a
correction based on this and then applying that correction to
the whole of the climate model output. There must therefore
be a sufficient overlap between the climate model output and
observations, and the observations must be of sufficient qual-
ity. Bias correction involves the strong assumption that the
same biases will be preserved in the future, which has led to
some criticism of the use of bias correction (Maraun, 2016;
Ehret et al., 2012). However, for many instances of impact
modelling, raw climate model output is not sufficient if it is
biased.

For process-based and empirical modelling studies, there
are thus several ideal requirements for the input climate data:
transient realisations of climate for the whole period of in-
terest, field- to landscape-scale resolution (a few kilome-
tres), temporal resolution from 1 d to decadal means, a range
of emissions scenarios, consistency with observations in the
historical period, and an exploration of climate model uncer-
tainty. Although it is possible, and sometimes necessary, to
relax some or all of these requirements, this paper describes
the production of a climate dataset that attempts to fulfil all
of these for impact modelling in the United Kingdom (UK):
CHESS-SCAPE (Robinson et al., 2022). This dataset can be
used in combination with the United Kingdom shared socioe-
conomic pathways (UK-SSPs; Pedde et al., 2021).

The CHESS-SCAPE dataset was created by statistically
downscaling a subset of four members of the United King-
dom Climate Projections 2018 (UKCP18) 12 km resolution
RCM output to 1 km, using an updated version of the exist-
ing CHESS methodology (Robinson et al., 2017). As well
as interpolating the data from coarser to finer resolution, the
CHESS methodology employs physical and empirical cor-
rections to represent topography and other spatially varying
effects on meteorology. Thus this dataset makes use of the
increased relatively high-resolution and regional parameteri-
sation of the UKCP18 12 km RCM ensemble, with additional
downscaling that further improves the modelling of climate
change impacts below this resolution. This also makes it con-
sistent with the resolution of many existing historical gridded
UK climate datasets, including CEH-GEAR (Tanguy et al.,
2019), CHESS-met (Robinson et al., 2020a) and HadUK-
Grid (Met Office et al., 2021).
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As well as downscaling the climate model output, this
dataset also applies bias correction using the CHESS-met
historical gridded data as a reference dataset. This ensures
consistency with the historical period. Both bias-corrected
and downscaled-only variables are provided in the final
dataset.

The UKCP18 12 km RCM ensemble was only run for the
RCP8.5 scenario. However, it is also useful to explore fu-
ture scenarios where climate change mitigation policies have
been implemented, particularly in tandem with the range of
SSPs. To this end we have derived three other scenarios cor-
responding to RCP2.6, 4.5 and 6.0 by making use of the cli-
mate change patterns in the RCP8.5 data and global scenarios
given by CMIP5 climate models (Taylor et al., 2012).

CHESS-SCAPE contains 11 near-surface climate vari-
ables at high spatial (1 km) resolution and a variety of tem-
poral resolutions (from daily to decadal means) for the years
1980–2080 over the UK. The dataset contains four ensemble
members and four emissions scenarios, giving a total of 16
realisations of future climate, both with and without bias cor-
rection. CHESS-SCAPE is a comprehensive set of climate
projections suitable for modelling a wide range of climate
change impacts.

In Sect. 2 we describe the input datasets used to create
CHESS-SCAPE. In Sect. 3 we give a brief description of the
methodology, with a full description in Appendices A, B and
C. In Sect. 4 we describe the CHESS-SCAPE dataset and
give a comparison with UKCP18.

2 Input data

2.1 UKCP18 RCM 12 km data

UKCP18 is the state of the art of climate projections for
the UK. The full dataset consists of several “strands” of cli-
mate projections, providing a range of temporal coverage and
spatial resolutions and a variety of methodologies (Murphy
et al., 2018). It includes an ensemble of GCM output, high-
resolution RCM output and probabilistic projections of re-
gional climate change. The climate model used in UKCP18
was run at several resolutions, using as a base a perturbed
parameter ensemble (PPE) of the Hadley Centre model with
the configuration HadGEM3-GC3.05. This is an immediate
precursor of the HadGEM3-GC3.1 (Sexton et al., 2021) con-
figuration, which was used for the Met Office Hadley Cen-
tre’s GCM contributions to CMIP6. UKCP18 ran this PPE
at a global scale (hereafter referred to as the global climate
model PPE, GCM-PPE), then at a regional scale (regional
climate model PPE, RCM-PPE) nested in the global runs
(Murphy et al., 2018) and finally at a regional scale with
high enough resolution (2.2 km) to allow free convection
(convection-permitting model PPE, CPM-PPE) (Fosser et al.,
2019). The global ensemble was extended by including sev-
eral members of the CMIP5 ensemble (Murphy et al., 2018).

The CPM-PPE runs are the highest-resolution and capture
physics and extremes that are not available at lower resolu-
tions, but computational limitations meant they were not run
continuously for the whole projection period of UKCP18.
Instead they were run for several 20-year periods, with 20-
year gaps between (Fosser et al., 2019). While this is useful
for impact modelling in those time periods, when modelling
long-term dynamics and trends, the full time period is re-
quired, particularly when combined with transient socioeco-
nomic scenarios, such as the UK-SSPs (Pedde et al., 2021).

All of the strands of UKCP18 provide output for RCP8.5
scenarios, but due to computational limitations, only a sub-
set of the strands were used to explore alternative scenarios.
The probabilistic strand made use of all four RCPs, plus the
earlier SRES A1B scenario (Nakicenovic and Swart, 2000),
and provides these as probability distributions of change rela-
tive to the baseline (Murphy et al., 2018). However, they are
not spatially coherent, as this strand applies extensive sta-
tistical processing to calculate probability distributions in-
dependently for each grid box (Murphy et al., 2018). They
also do not provide transient output that could be used to run
process-based models. As part of UKCP18, they created “de-
rived projections”, which are 60 km resolution projections
for RCP2.6 globally plus two 50-year scenarios of constant
2 and 4 ◦C warming above pre-industrial levels for the UK
at the same resolution. UKCP18 produced these by applying
time shifting and pattern scaling to the GCM-PPE RCP8.5
output, except for the ensemble members that were derived
from CMIP5, which had RCP2.6 scenarios available (Gohar
et al., 2018). Although these therefore provide a range of sce-
narios, the resolution is coarse compared to that required for
impact modelling.

In order to balance the advantages of higher-resolution
regional modelling against the limited time coverage of
the CPM-PPE runs, we chose to use the 12 km resolution
RCM-PPE (Met Office Hadley Centre, 2019a) as the basis
of CHESS-SCAPE. UKCP18 ran each RCM-PPE ensem-
ble member nested inside the corresponding GCM-PPE en-
semble member at a higher resolution than the GCM-PPE
and with regional parameterisation over Europe for the en-
tire 1981–2080 study period (Murphy et al., 2018). The na-
tive resolution was 0.11◦ (approximately 12 km) on a rotated
pole grid. They then regridded this to 12 km resolution on the
Ordnance Survey Great Britain (OSGB) grid (EPSG, a) over
the UK for publication using an area-weighted method (Met
Office, 2018). The UKCP18 RCM-PPE includes 14 variables
at a daily, monthly, seasonal and annual time step, as well
as time slice means. We use the daily mean variables on
the 12 km OSGB grid as the input for the CHESS-SCAPE
dataset. The full list of variables used is in Table 1, includ-
ing the short name used in the netCDF files and the standard
name under the Climate and Forecast (CF) metadata conven-
tions (Hassell et al., 2017).
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Table 1. Variables in the UKCP18 RCM-PPE 12 km data.

Long name Symbol Units Short name CF standard name

Cloud area fraction CU
f % clt cloud_area_fraction

Relative humiditya RU % hurs relative_humidity
Specific humiditya qU

a 1 huss specific_humidity
Precipitation rate PU mm d−1 pr lwe_precipitation_rate
Sea-level pressure pU

∗ hPa psl air_pressure_at_sea_level
Net surface SW flux SU

n W m−2 rss surface_net_downward_shortwave_flux
Wind speedb uU m s−1 sfcWind wind_speed
Mean air temperaturea T U

a
◦C tas air_temperature

Maximum air temperaturea T U
n

◦C tasmax air_temperature
Minimum air temperaturea T U

x
◦C tasmin air_temperature

a 1.5 m above surface. b 10 m above surface.

2.1.1 Orography

In UKCP18, the RCM-PPE variables were modelled at an el-
evation, zU (m), which the UKCP18 modellers derived from
digital terrain mapping (European Environment Agency,
2021) and then smoothed appropriately for use as the lower
boundary condition of the atmospheric model. After they ran
the model, they then regridded the elevation to the 12 km
grid aligned with OSGB for distribution with the climate
variables (Met Office Hadley Centre, 2019b). Note that this
elevation was not taken into consideration when regridding
the climate variables to the 12 km OSGB grid (Met Office,
2018).

2.2 Ancillary 1 km information

As is described in Sect. 3.2, we interpolated the input vari-
ables and adjusted them for local topographic effects. In or-
der to do this, we required several ancillary datasets at the
target 1 km resolution. Some ancillary variables were avail-
able separately for Great Britain (GB) and Northern Ireland
(NI). Where necessary we combined these both onto the
same OSGB grid. Most variables simply required the grid
box elevation, which was calculated from digital terrain mod-
els (Sect. 2.2.1 and 2.2.2). To downscale precipitation we
made use of a historical observation-based dataset to derive
the relationship between the 1 and 12 km resolution gridded
precipitation (Sect. 2.3). Although this is derived from his-
torical data, we assumed that the relationships are preserved
into the future. For the wind speed we used a modelled mean
wind speed dataset to relate the 1 km wind speeds to the
12 km means (Sect. 2.4). To calculate downwelling short-
wave (SW) radiation required an albedo dataset, which again
was based on historical data and assumed to apply into the
future (Sect. 2.5).

2.2.1 Integrated Hydrological Digital Terrain Model

For GB, we used the elevation from the 50 m resolution Inte-
grated Hydrological Digital Terrain Model (IHDTM; Morris
and Flavin, 1990). We calculated the 1 km elevation by tak-
ing the mean of all 50 m points in each 1 km grid box. We
also calculated the aspect and slope of each 50 m grid box
following the method of Horn (1981). This uses a weighted
mean of the central differences between the adjacent points
to find the north–south and east–west slope for each grid box.
We then computed the aspect and slope of each 1 km grid box
by calculating the mean angle.

2.2.2 Ordnance Survey of Northern Ireland Digital
Terrain Model

For NI, the elevation was taken from the 50 m resolution
Ordnance Survey of Northern Ireland Digital Terrain Model
(OSNI DTM; Ordnance Survey of Northern Ireland, 2019).
This is produced on the Irish grid (EPSG, b), which is not co-
incident with the OSGB grid. We found the 1 km elevation on
the OSGB grid by calculating the mean of the OSNI points
that were contained in each target 1 km grid box. Again, we
calculated the aspect and slope by applying the method of
Horn (1981) to the 50 m resolution data and then calculating
the mean angle of the points in each OSGB 1 km grid box.

2.3 Standardised Annual Average Rainfall (1961–1990)

To downscale the precipitation, we used the Standard-
ised Annual Average Rainfall (1961–1990) dataset (SAAR;
Spackman, 1993). This is a dataset of standardised precipi-
tation at 1 km resolution based on observations and empiri-
cally corrected for the elevation of each grid box. It is de-
rived from the UK Met Office’s station network, which de-
fines rainfall to be “the amount of liquid precipitation plus the
liquid equivalent of any solid precipitation” (Sunter, 2020),
so it is calculated with and applied to total precipitation with-
out different treatments for different precipitation types. It is
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provided for the whole UK, but it is split into separate files
for GB and NI. Over GB, the SAAR is provided on a 1 km
grid that is offset by 500 m from the target CHESS grid, and
the NI SAAR is provided on the Irish grid, so we interpolated
the values to the target 1 km grid. We also require the SAAR
at 12 km resolution, so we calculated the 12 km mean of the
1 km resolution variable.

2.4 UK Energy Technology Support Unit mean wind
speed

We use the UK Energy Technology Support Unit (ETSU)
mean wind speed dataset (Burch and Ravenscroft, 1992;
Newton and Burch, 1985) to downscale the wind speed. This
is a dataset of modelled mean wind speeds, calculated using
Numerical Objective Analysis Boundary Layer modelling
with a 1 km resolution model of the topography of the UK.

2.5 GlobAlbedo

For radiation calculations, we used GlobAlbedo (European
Space Agency, 2011), an albedo dataset derived from Euro-
pean satellite observations (Muller et al., 2012). This pro-
vides monthly estimates of bi-hemispherical reflectances
(BHR, or “white-sky” albedo) and direct hemispherical re-
flectances (DHR, or “black-sky” albedo) for the years 1998–
2011. It is at a resolution of 30 arcsec (approximately 1 km),
which we reprojected to the OSGB grid and used to create a
mean monthly climatology of both BHR and DHR to be used
for all years of the projections. Future changes in albedo due
to land use change and projected reductions in snow cover
are not included in this work.

3 Methodology

This section gives an overview of the methodology; full de-
tails are available in the Appendices. After identifying the
UKCP18 RCM-PPE ensemble members to use (Sect. 3.1),
the first step was to downscale the data from 12 to 1 km
(Sect. 3.2 and Appendix A). Next, bias correction was ap-
plied to each ensemble member individually (Sect. 3.3 and
Appendix B). Finally, alternative warming scenarios were
populated, corresponding to the RCPs, using time shifting
and pattern scaling (Sect. 3.4 and Appendix C).

3.1 Choice of sub-ensemble

The UKCP18 RCM-PPE is a perturbed parameter ensem-
ble containing 12 members. Ensemble member 01 (EM01)
was produced using the default configuration of the model
(a regional version of the HadGEM-GC3.05 configuration).
The other ensemble members used perturbations of parame-
ters relating to the atmosphere, the land surface and aerosol
components (Sexton et al., 2021). In addition, different tra-
jectories of atmospheric CO2 concentration were associated

with each ensemble member. EM01 used concentrations pre-
scribed in RCP8.5 for concentration-driven runs, while the
other ensemble members used CO2 concentrations that were
calculated by selected CMIP5 emissions-driven ensemble
members. The combination of parameter perturbations and
differing CO2 concentrations resulted in a range of warming
scenarios and impacts on UK climate (Murphy et al., 2018).

Due to storage and computational constraints, we deemed
it impractical to downscale the entire UKCP18 RCM-PPE,
so we chose four ensemble members to form the CHESS-
SCAPE ensemble. We retained EM01, as it is the default
model configuration, and chose three others in order to span
the range of futures in the RCM-PPE. We based the choice
on the mean change in UK near-surface air temperature and
precipitation between the baseline period 1980–2000 and the
final 20 years of the future projections, i.e. 2060–2080 (Ta-
ble 4). We calculated the change in the UK mean annual and
seasonal air temperature and precipitation between the two
periods. These are shown in Fig. 1. The smallest amount of
overall warming is shown by EM15 (2.8 K), while the largest
is EM04 (4.3 K). All models show less warming in win-
ter (December–February, DJF), with a range of 1.8–3.6 K,
than in summer (June–August, JJA), with a range of 3.5–
5.1 K. The spring (March–May, MAM) warms by 2.1–3.7 K,
and the autumn (September–November, SON) has the largest
warming, with a range of 3.6–5.2 K. Five of the ensemble
members show an increase in annual precipitation, with the
largest increase being EMs 07 and 04 (5.3 %), while seven
show a decrease, with the largest being EM01 (−6.6 %).
All models show an increase in DJF precipitation (7.6 %
to 29.0 %) and a decrease in JJA precipitation (−39.8 % to
−5.3 %). There is a mixed signal in SON, with some de-
creasing and some increasing (−17.1 % to 5.3 %), as well
as in MAM (−15.0 % to 14.3 %).

To span the range of the ensemble, we chose the following:

EM01 This is the default parameterisation of the climate
model and is in the middle of the range of temperature
increases, although it has one of the smallest increases
in MAM temperature. It has the largest decrease in an-
nual precipitation, as it has the smallest increase in DJF
and the largest decrease in SON precipitation. It has a
very small decrease in MAM precipitation and one of
the smaller decreases in JJA.

EM04 This has the largest increase in annual mean, MAM
and SON temperature and is near to the top of the range
of DJF and JJA temperature increase. It has the second-
largest increase in annual precipitation, as it has one of
the largest increases in DJF precipitation, a very small
increase in MAM and SON precipitation, and the small-
est decrease in JJA.

EM06 This is in the middle of the range of annual and sea-
sonal warming. It has a moderate decrease in annual
precipitation, which is due to a small increase in DJF
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Table 2. Variables in the CHESS-SCAPE 1 km resolution dataset.

Long name Symbol Units Short name CF standard name Bias-
corrected

Daily near-surface air temperature rangea 1C
T

K dtr air_temperature N
Near-surface relative humidity RC % hurs relative_humidity Y
Near-surface specific humidity qC

a 1 huss specific_humidity Y
Precipitation flux PC kg m−2 s−1 pr precipitation_flux Y
Surface air pressure pC

∗ Pa psurf surface_air_pressure N
Surface downwelling longwave radiation LC

d W m−2 rlds surface_downwelling_ Y
longwave_flux_in_air Y

Surface downwelling shortwave radiation LC
n W m−2 rsds surface_downwelling_ Y

shortwave_flux_in_air Y
Wind speedb uC m s−1 sfcWind wind_speed Y
Near-surface air temperaturea T C

a K tas air_temperature Y
Near-surface daily maximum air temperaturea T C

n K tasmax air_temperature Y
Near-surface daily minimum air temperaturea T C

x K tasmin air_temperature Y

a 1.5 m above surface. b 10 m above surface.

Table 3. Variables in the CHESS-met data.

Long name Units Short name CF standard name

Daily air temperature range K dtr air_temperature
Specific humiditya 1 huss specific_humidity
Precipitation flux kg m−2 s−1 precip precipitation_flux
Surface air pressure Pa psurf surface_air_pressure
Surface downwelling longwave radiation W m−2 rlds surface_downwelling_

longwave_flux_in_air
Surface downwelling SW radiation W m−2 rsds surface_downwelling_

shortwave_flux_in_air
Near-surface wind speedb m s−1 sfcWind wind_speed
Near-surface air temperaturea K tas air_temperature

a 1.2 m above surface. b 10 m above surface.

precipitation combined with the largest decrease in JJA
precipitation. It has the second-largest increase in MAM
precipitation and a small decrease in SON.

EM15 This has the smallest increase in annual and DJF tem-
perature and one of the lowest increases in MAM, JJA
and SON temperature. It has very little change in annual
and MAM precipitation, a moderate increase in DJF and
decrease in JJA, and the second-largest increase in SON
precipitation.

This selection was made based on air temperature and pre-
cipitation as key drivers of change in the UK. However, fo-
cussing on these two variables does not necessarily ensure
that the ranges of other variables are fully captured (Mc-
Sweeney et al., 2014), particularly those for which changes
are not driven by global temperature change (Hayashi and
Shiogama, 2022). It is likely that a larger subset would be
required to fully represent the uncertainties in multiple vari-
ables across seasons (Ito et al., 2020; McSweeney and Jones,
2016). Therefore this is a pragmatic selection that balances

the requirements of impact modelling against storage and
processing limitations.

3.2 Downscaling

In order to create the 1 km resolution variables, we down-
scaled the 12 km resolution UKCP18 RCM-PPE variables to
1 km using an updated version of the CHESS downscaling
methodology, which was originally used to downscale me-
teorological variables reported by MORECS (Hough et al.,
1997) from the native resolution (40 km) to 1 km. The
CHESS method uses physical and empirical relationships to
add topographic variation to the interpolation between reso-
lutions. However, there are differences between the variables
available in MORECS and UKCP18, which motivated up-
dates to the downscaling algorithms for this dataset. We have
thus modified the CHESS method to enable processing of
the UKCP18 RCM-PPE data. The code was implemented in
Fortran and makes use of NAG routines (The Numerical Al-
gorithms Group, 2011). The UKCP18 RCM-PPE variables
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Table 4. Climate change in ensemble members between the baseline period (1980–2000) and the end of the climate projections (2060–2080).

Ensemble member
Air temperature (K) Precipitation ( %)

Annual DJF MAM JJA SON Annual DJF MAM JJA SON

01∗ 3.5 2.7 2.2 4.4 4.6 −7 8 −2 −21 −17
04∗ 4.3 3.4 3.7 4.9 5.1 5 21 4 −14 3
05 3.8 3.2 3.2 4.6 4.2 −2 8 1 −18 −4
06∗ 3.6 3.2 2.6 4.9 3.9 −3 11 11 −40 −6
07 3.0 1.9 2.3 4.1 3.5 5 20 14 −27 5
08 3.6 2.5 2.5 5.0 4.6 1 15 9 −32 1
09 4.1 3.2 3.0 5.1 5.0 3 29 10 −33 −5
10 3.5 3.1 2.8 4.4 3.5 −2 13 7 −26 −8
11 4.1 3.6 2.8 5.2 4.7 −2 15 −5 −25 2
12 3.3 3.3 2.5 3.6 3.6 −3 13 −8 −17 −10
13 3.6 2.7 2.1 5.2 4.3 −5 23 −15 −38 −6
15∗ 2.8 1.8 2.2 3.7 3.6 1 14 2 −25 4

∗ Ensemble members used for CHESS-SCAPE

Figure 1. Change in precipitation and air temperature between 1980–2000 and 2060–2080, given by the regional mean of the UKCP18
RCM-PPE 12 km output. The main panel shows the change in the annual mean, and the smaller panels show the change in the seasonal
mean for each season (DJF, MAM, SON, JJA). Highlighted ensemble members 01, 04, 15 and 06 were selected to be the basis of the
CHESS-SCAPE 1 km output dataset.

were adjusted to sea level and then interpolated from 12 to
1 km resolution using a bicubic spline through the 12 km grid
points, calculated using NAG routine e01daf (The Numer-
ical Algorithms Group, 2011). The interpolated 1 km vari-
ables were then adjusted to the 1 km grid box elevation. The
downscaling procedure is shown in Fig. 2. We summarise
the procedure in this section, and the full details are in Ap-
pendix A.

We downscaled the near-surface air temperature (daily
mean, Ta (K); minimum, Tn (K); and maximum, Tx (K))
by interpolating and using a constant physical lapse rate of
0T =−0.006 C m−1 to adjust for elevation (Hough et al.,
1997). We calculated daily temperature range (DTR; 1T

(K)) as the difference between daily maximum and mini-
mum air temperature. We calculated the surface air pressure
p∗ (Pa) by interpolating UKCP18 RCM-PPE 12 km sea-level
air pressure and then adjusting to grid box elevation using the
hypsometric equation, which also involves the downscaled
air temperature (Shuttleworth, 2012). We assumed the rel-
ative humidity was constant with elevation (Hough et al.,
1997), so we simply interpolated it with no adjustments. We
calculated the specific humidity calculated as a function of
downscaled relative humidity, air temperature and air pres-
sure. We calculated the downwelling SW radiation by inter-
polating UKCP18 RCM-PPE 12 km net SW radiation and
then adjusting for the slope and aspect of the 1 km grid box.
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Figure 2. Flow diagram showing the downscaling procedure.

In order to do this we also required the cloud area fraction,
which we interpolated from UKCP18 RCM-PPE 12 to 1 km.
We then converted net to downwelling SW radiation using
GlobAlbedo (European Space Agency, 2011). For physical
consistency, we calculated the downwelling longwave (LW)
radiation from the downscaled air temperature and specific
humidity as well as the downscaled cloud area fraction. We
scaled the precipitation using the ratio of the 1 km resolution
empirical dataset of SAAR (Spackman, 1993) to its mean

value at 12 km resolution. We interpolated the wind speed
and then applied an offset based on the difference between
the 1 km ETSU mean wind speed dataset (Burch and Raven-
scroft, 1992; Newton and Burch, 1985) and its mean value at
12 km resolution.

https://doi.org/10.5194/essd-15-5371-2023 Earth Syst. Sci. Data, 15, 5371–5401, 2023



5380 E. L. Robinson et al.: CHESS-SCAPE: high-resolution future projections of UK climate

Figure 3. Difference in air temperature between the downscaled
CHESS-SCAPE data and the historical CHESS-met data, µT , for
each season and each ensemble member.

3.3 Bias correction

We used the CHESS-met observation-based climate dataset
(Robinson et al., 2020a) as our reference data-led set of mea-
surements, to which we compare the downscaled CHESS-
SCAPE gridded estimates of meteorological conditions. Al-
though CHESS-met is at the target 1 km resolution, we did
not use it as a reference dataset for the downscaling as it was
also produced by downscaling a coarser-resolution dataset
(MORECS (Robinson et al., 2017)) as well as interpolating
station data (precipitation only (Keller et al., 2015)). In or-
der to allow for differences between the input datasets we
applied a modified version of the CHESS methodology to
create CHESS-SCAPE and use CHESS-met as a reference
for the bias correction separately.

There are many options for bias correction of GCM and
RCM outputs (Teutschbein and Seibert, 2012; Watanabe
et al., 2012; Jakob Themeßl et al., 2011), including methods

Figure 4. Ratio of precipitation in the downscaled CHESS-SCAPE
data and the historical CHESS-met data, µP, for each season and
each ensemble member.

which correct the mean or mean and variance such as linear
scaling (Lenderink et al., 2007), methods which correct other
statistical properties such as local intensity scaling (LOCI;
Schmidli et al., 2006), methods that apply adjustments to the
distributions of the data in either parametric or nonparametric
ways (Gudmundsson et al., 2012; Teutschbein and Seibert,
2012), and methods that apply to multiple timescales such as
nested bias correction (Johnson and Sharma, 2012). In gen-
eral, the CHESS-SCAPE data are found to be robust in their
ability to reproduce the average features of the CHESS-met
data, and so our approach to bias correction is parsimonious.
For many of the CHESS-SCAPE variables it was sufficient to
apply simple linear scaling, with an additive correction used
for air temperature and specific humidity and a multiplicative
correction used for precipitation and wind speed (where sub-
tracting a mean offset has the potential to make some of the
values negative and so unphysical). In this case, the statistical
distribution of the CHESS-SCAPE variables were very sim-
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Figure 5. Twenty-year seasonal mean air temperature over GB for the downscaled-only CHESS-SCAPE data (thin coloured lines), the
downscaled and bias-corrected CHESS-SCAPE data (thick coloured lines), and CHESS-met (black). The different RCPs are RCP2.6 (dark
blue dotted), RCP4.5 (light blue dash–dotted), RCP6.0 (yellow dashed) and RCP8.5 (brown). The grey region shows the period of overlap,
1961–2015.

ilar to that of the CHESS-met variables, so we did not find it
necessary to perform higher-order corrections. However, the
distributions of the radiation variables were different enough
that we required a form of parametric distribution mapping
in order to adjust the CHESS-SCAPE distributions to match
those of the CHESS-met radiation variables.

For all variables, we calculated bias correction factors for
each season (DJF, MAM, JJA and SON) and each 1 km grid
box by comparing the seasonal means of the CHESS-met
data with the CHESS-SCAPE ensemble members for the
overlap period 1980–2015. The CHESS-met dataset contains
fewer land points than the CHESS-SCAPE data (notably, NI
is absent in CHESS-met). As the bias correction requires
the CHESS-met data, the resultant bias-corrected CHESS-
SCAPE data also have fewer points, corresponding to the
CHESS-met land points.

For air temperature and specific humidity we calculated
the seasonal offsets µT and µq respectively as the differ-
ence between CHESS-SCAPE and CHESS-met and removed
these offsets from the CHESS-SCAPE data. For precipi-
tation and wind speed we calculated seasonal scaling fac-
tors µP and µu respectively as the ratio of CHESS-SCAPE
to CHESS-met and multiplied the CHESS-SCAPE data by
these factors. For downwelling LW radiation we calculated
the seasonal parameter µL to scale the values relative to an

upper threshold of 400 W m−2, which was chosen as the up-
per limit of the historical range of the LW radiation. For
downwelling SW radiation we required two parameters, µS,1
to scale the CHESS-SCAPE value when it is smaller than its
local seasonal mean and µS,2 to normalise against the local
seasonal maximum when it is larger than the local seasonal
mean. It was not possible to directly bias-correct the daily
minimum and maximum air temperatures as these variables
do not exist in CHESS-met. Therefore we applied the bias
correction derived from the daily mean air temperature, µT .
This means that we were not able to correct for biases in the
daily temperature range.

Maps of the temperature offset, µT , and precipitation scal-
ing, µP, for each season and ensemble member are shown in
Figs. 3 and 4. Maps of the other bias correction parameters
can be seen in the Supplement. Time series of the 20-year
seasonal mean values are shown in Figs. 5 and 6. In gen-
eral, EM15 is warmer than the CHESS-met historical data
by around 1 K (except MAM where it is 0.3 K cooler), while
the other EMs are overall cooler by up to 1.5 K. In all ensem-
ble members, there is an area in the south-east, which corre-
sponds to the Greater London conurbation, which is warmer
in the downscaled CHESS-SCAPE than in CHESS-met, even
when CHESS-SCAPE is overall cooler. This is partly due to
known urban calibration issues in the UKCP18 RCM-PPE
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Figure 6. Twenty-year seasonal mean precipitation over GB for the downscaled-only CHESS-SCAPE data (thin coloured lines), the down-
scaled and bias-corrected CHESS-SCAPE data (thick coloured lines), and CHESS-met (black). The different RCPs are RCP2.6 (dark blue
dotted), RCP4.5 (light blue dash–dotted), RCP6.0 (yellow dashed) and RCP8.5 (brown). The grey region shows the period of overlap,
1961–2015.

configuration, which are likely to be resolved in the CPM-
PPE configuration (Fosser et al., 2019). All ensemble mem-
bers are wetter in CHESS-SCAPE than in CHESS-met over
much of England and low-lying regions in DJF and MAM
but are too dry in the Highlands of Scotland at the same time.
This leads to an overall wet bias in DJF and MAM, leading
to a correction of −26 % to −14 % in DJF and −25 %–18 %
in MAM. All ensemble members except EM06 also have a
small overall wet bias in JJA, which is due to a wet bias
in the north-west of Scotland. All ensemble members have
very little bias in the precipitation in SON. For EM01, 14
and 06, the specific humidity required little bias correction
in DJF and SON and was too low in MAM and JJA and so
was increased by 5 %–9 % in those seasons. EM15 had too
high a specific humidity in DJF, JJA and SON, so the bias
correction reduced it by −6 % to −5 % and required little
bias correction in MAM. The downwelling LW radiation is
slightly higher than CHESS-met in all four ensemble mem-
bers, so the bias correction reduced it by between −13 and
−2.5 W m−2, which is a decrease of only a few percent. The
downwelling SW radiation was very similar to CHESS-met
in DJF for EM01, EM04 and EM15 but was too low in DJF in
EM06, which required a correction of 9 %. The bias correc-
tion increased downwelling SW radiation in MAM in EM01,
04 and 06 by between 6 %–11 % and decreased it in JJA by

3 %–12 % for all ensemble members. There was a small de-
crease in SON for EM01, 04 and 06 and a larger decrease
of around 10 % in EM15. The wind speed was too high in
EM01, 04 and 15 in all seasons, and so was reduced by be-
tween 3 %–10 %, and too low in EM06, and so was increased
by up to 6 %.

3.3.1 Other variables

In order to ensure that the variables are physically con-
sistent, we calculated the relative humidity from the bias-
corrected specific humidity, bias-corrected air temperature
and the downscaled-only surface air pressure, using the in-
verse of Eqs. (A9) and (A8) (in Appendix B). The combina-
tion of bias correction of air temperature and specific humid-
ity resulted in very small changes to the relative humidity of
each ensemble member. The largest decrease was −4 % in
EM04 in DJF; the largest increase was 4 % in EM06 in JJA.
Other seasons were only changed by around 1 %.

As the CHESS-met dataset only includes a low-resolution
reanalysis mean monthly climatology of surface air pressure
and a low spatial- and temporal-resolution daily tempera-
ture range variable, it was not possible to use either to bias-
correct the surface air pressure or daily temperature range of
CHESS-SCAPE.
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Table 5. CMIP5 models selected as proxies for intermediate RCPs.

UKCP18 CMIP5 KGE

ensemble member Institution Model Ensemble member

01 Met Office Hadley Centre (MOHC) HadGEM2-ES r4i1p1 0.87
04 MOHC HadGEM2-ES r2i1p1 0.78
06 MOHC HadGEM2-ES r1i1p1 0.85
15 Institut Pierre-Simon Laplace (IPSL) IPSL-CM5A-MR r1i1p1 0.93

Figure 7. Gradient of linear fit of seasonal mean air temperature
to global annual mean air temperature for each 1 km pixel for each
downscaled-only ensemble member.

3.4 Alternative climate scenarios

Under the assumption of linearity in the climate system,
changes to local climate variables are proportional to the
change in global mean air temperature, no matter the trajec-
tory taken (Mitchell, 2003). Although there are some pro-
cesses that can cause changes to variables that are non-
linear with temperature at a global scale (Mitchell et al.,
2016), the linearity assumption has been well tested at a lo-

Figure 8. Gradient of linear fit of seasonal mean precipitation to
global annual mean air temperature for each 1 km pixel for each
downscaled-only ensemble member.

cal and regional scale (e.g. Zelazowski et al., 2018). Using
this assumption, new climate change scenarios can be de-
rived from existing GCM or RCM outputs, using techniques
such as time shifting (directly substituting years with the re-
quired global temperature change, e.g. Herger et al., 2015;
Schleussner et al., 2016) or pattern scaling (using derived re-
lationships between global temperature change and local cli-
mate variables, e.g. Huntingford and Cox, 2000; James et al.,
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2017). Similar methods were used to create the derived sce-
narios in UKCP18 (Gohar et al., 2018).

For this study, we made use of the downscaled RCP8.5
scenario to derive scenarios corresponding to the other three
RCPs (2.6, 4.5 and 6.0), using a combination of time shifting
and pattern scaling. The procedure was as follows:

1. we defined a target global mean air temperature trajec-
tory;

2. we time-shifted the data by finding the year of the
CMIP5 RCP8.5 scenario for which the global mean air
temperature is within a threshold difference of the target
CMIP5 trajectory;

3. we applied pattern scaling to the resulting time-shifted
trajectory based on the difference between the global
mean air temperature of the time-shifted RCP8.5 and
target CMIP5 trajectories for each year.

This was applied to all years starting in December 2010, with
the historical period 1980–2010 being identical for all sce-
narios.

3.4.1 Time shifting

In order to define target global warming trajectories, we re-
quired GCM output for the three alternative RCPs. Since
many entries to CMIP5 provided model output for these sce-
narios, we selected one proxy CMIP5 model for each of the
CHESS-SCAPE ensemble members. We selected the CMIP5
models by comparing the annual global mean air temperature
anomalies of the UKCP18 GCM-PPE RCP8.5 ensemble with
the subset of the CMIP5 database for which all RCPs were
available. We defined the closest match to be the model with
the highest Kling–Gupta efficiency (KGE) for global annual
mean air temperature. If more than one ensemble member
was best represented by the same CMIP5 model, then we
chose the next nearest CMIP5 match instead. The KGE val-
ues were between 0.78 and 0.93 (Table 5). Three of the four
UKCP18 ensemble members used were found to match best
with ensemble members of the Met Office Hadley Centre
HadGEM2-ES model (Collins et al., 2011). This is unsurpris-
ing as the HadGEM2-ES and HadGEM3-GC3.05 are closely
related configurations of the same climate model.

In order to define the new time-shifted scenarios, for each
year of each CMIP5 target scenario, we randomly selected
a year of the RCP8.5 scenario which had a global annual
mean temperature anomaly within a threshold of 0.5 K dif-
ference from the target warming, ensuring that there were no
repeats within any 20-year period. After these initial time-
shifted scenarios were found, we applied pattern scaling to
bring the derived scenarios closer to the target.

3.4.2 Pattern scaling

We found the pattern of change in meteorological variables
by calculating the linear regression of the seasonal mean
anomaly (or relative anomaly) of each variable to the global
annual mean air temperature given by the corresponding en-
semble member of the UKCP18 GCM-PPE (Huntingford
and Cox, 2000). We then adjusted the time-shifted scenar-
ios by multiplying these seasonal patterns by the difference
between the global mean air temperature of the time-shifted
and target CMIP5 scenarios and then using this to scale the
daily time series for each season. We carried out this pro-
cedure for both the bias-corrected and the downscaled-only
variables.

The seasonal patterns of air temperature and precipitation
can be seen in Figs. 7 and 8, and the other variables are in
the Supplement. The UK air temperature change is overall
higher than the global annual mean air temperature change in
JJA and SON and less in DJF and MAM. Overall UK precip-
itation decreases with increasing air temperature in JJA and
increases in DJF. However there are some regions of Scot-
land and eastern England, where JJA increases with air tem-
perature in EM01 and EM04, and in Scotland and NI, where
DJF precipitation decreases with air temperature in EM01
and EM06. This is related to differences in the change in
global circulation patterns across the ensemble, in particu-
lar the North Atlantic Oscillation (NAO Murphy et al., 2018),
that have a strong impact on UK rainfall (Kendon et al., 2021;
Trigo et al., 2002). The picture is mixed in MAM and SON,
with each ensemble member showing a different pattern of
increasing and decreasing precipitation.

3.4.3 Derived variables

To ensure that the variables are physically consistent, we did
not apply time shifting and pattern scaling to relative humid-
ity. Instead we calculated the relative humidity from the spe-
cific humidity, air temperature and surface air pressure.

For the variables without bias correction, we calculated
the gradient of daily minimum and maximum air temperature
with respect to global mean air temperature and applied the
pattern scaling directly. For the bias-corrected variables we
instead applied the pattern scaling that was calculated from
the bias-corrected daily mean air temperature.

4 Dataset description

The full CHESS-SCAPE dataset comprises four ensemble
members: 01, 04, 06 and 15. Each ensemble member has four
scenarios: RCP2.6, RCP4.5, RCP6.0 and RCP8.5. And each
scenario is provided as a downscaled-only and a downscaled-
bias-corrected version. The downscaled-only scenarios con-
tain 11 variables (see Table 2). The bias-corrected scenarios
do not contain daily temperature range (as it is identical to the
downscaled-only version) or surface air pressure (as insuffi-
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Figure 9. Seasonal mean bias-corrected air temperature 1980–
2000.

cient data were available for bias correction). The non-bias-
corrected daily temperature range and surface air pressure
may be used instead alongside the bias-corrected versions of
the other variables.

The data are published as CF-compliant netCDF files. The
spatial grid is defined on the OSGB grid (EPSG, a). The spa-
tial extent is from (0, 0) to (656 000, 1 057 000) in OSGB
eastings and northings. The data are provided at a daily
time step. The dataset also includes several time averages:
monthly, seasonal and annual means as well as time slices,
which are 20-year mean monthly climatologies at 10-year in-
tervals.

Maps of air temperature and precipitation for the first time
slice (1980–2000) of the bias-corrected variables are shown
in Figs. 9 and 10. The other variables and the downscaled-
only variables are shown in the Supplement. These are con-
sistent with the historical CHESS-met dataset (Robinson
et al., 2020a) and show a gradient from cooler, wetter con-
ditions in the north-west to warmer, drier conditions in the
south-east. While the bias correction corrects differences be-
tween the climate model and the historical baseline, the cli-

Figure 10. Seasonal mean bias-corrected precipitation 1980–2000.

mate model still replicates this gradient well, and it can be
seen in the downscaled-only variables as well. Maps of the
air temperature and precipitation anomaly in 2060–2080,
compared to the 1980–2000 baseline, are shown in Figs. 11
and 12. The UK mean annual and seasonal air temperature
anomalies in 2060–2080 are given in Table 6, and the mean
precipitation anomalies are in Table 7. The CHESS-SCAPE
RCP8.5 scenarios preserve the change in air temperature
seen in UKCP18 RCM-PPE, with an increase in annual mean
air temperature between 2.8–4.3 K between 1980–2000 and
2060–2080. The other warming scenarios have lower air
temperature increases, with RCP2.6 the lowest at 1.0–1.9 K
and RCP6.0 the highest at 1.5–3.4 K. Although RCP4.5 and
RCP6.0 have similar warming at the end of the projections,
as they are following differing trajectories where RCP4.5 has
a peak in emissions at 2040 followed by a decline to 2100,
whereas RCP6.0 emissions rise slightly more slowly but con-
tinue rising to 2100. Since UKCP18 and therefore CHESS-
SCAPE end in 2080, the two scenarios remain quite similar
in the final time slice (2060–2080). The temperature change
is the same in the downscaled-only and the downscaled and
bias-corrected data.
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Figure 11. Seasonal air temperature anomalies 2060–2080 with
respect to the baseline period 1980–2000 for downscaled-only
RCP8.5.

Again, the CHESS-SCAPE RCP8.5 scenarios preserve
the precipitation change from UKCP18, with small annual
changes (between −6 %–6 %), moderate to large increases
in DJF precipitation (9 %–22 %) and large decreases in JJA
precipitation (−39 % to −14 %). The precipitation changes
in the alternative RCPs are quite variable. The decrease in
JJA precipitation is broadly proportional to the global air
temperature change, with the largest decreases apart from
RCP8.5 seen in RCP6.0 (−26 % to −5 %), except EM01,
which has the largest decrease in JJA precipitation in RCP4.5
(−11 %). However, DJF precipitation changes are more vari-
able and not proportional to the warming scenario. The
largest decrease (−9 %) and largest increase (15 %) are both
in RCP2.6. However, this represents the high inter-annual
variability in UK precipitation, particularly in DJF (Kendon
et al., 2021). After bias correction, the percentage change in
precipitation is slightly altered, but the difference is small
and the same patterns of change are preserved. The spatial
pattern of precipitation change is complex, with some sce-
narios showing a different sign of change between north and

Figure 12. Seasonal precipitation anomalies 2060–2080 with
respect to the baseline period 1980–2000 for downscaled-only
RCP8.5.

south in particular. For all RCPs for EM01, there is an in-
crease in DJF precipitation over much of England, but a de-
crease is seen in the north of Scotland. A similar situation is
true for EM06 for all but RCP2.6.

Overall the specific humidity increases by the end of the
projections, with the smallest relative increases in RCP2.6
and the largest in RCP8.5. The increases tend to be slightly
larger in the south and east than the north and west. However,
because the temperature also increases, the relative humidity
actually decreases in MAM, JJA and SON, with the largest
decreases of 7 % in JJA. The DJF relative humidity shows
very little change. The decrease in relative humidity is larger
in the south and east than in the north and west. Very lit-
tle change is seen in the surface air pressure in any of the
scenarios. The change in wind speed is mixed for DJF and
MAM, with some ensemble members showing an increase
and some a decrease, ranging between −3 and 3 m s−1, and
little correlation with RCP. For JJA and SON there is a con-
sistent decrease across the ensemble, for RCP6.0 and 8.5,
but the decrease is still small at −0.4–0.1 m s−1. The other
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Table 6. The 2060–2080 air temperature anomaly with respect to the baseline period 1980–2000 for each CHESS-SCAPE ensemble member
and scenario for the downscaled-only data (mean over the whole UK) and the downscaled and bias-corrected data (mean over GB only).

Bias-corrected

Ensemble member RCP
Air temperature anomaly (K) Air temperature anomaly (K)

Annual DJF MAM JJA SON Annual DJF MAM JJA SON

01 2.6 1.8 1.4 1.6 2.2 2.2 1.9 1.4 1.6 2.2 2.2
01 4.5 2.3 1.7 1.9 2.7 3.1 2.3 1.8 1.9 2.7 3.1
01 6.0 2.4 1.8 2.0 2.7 3.2 2.5 1.8 2.0 2.7 3.2
01 8.5 3.4 2.7 2.2 4.3 4.6 3.5 2.7 2.2 4.3 4.6

04 2.6 1.9 1.2 1.7 2.4 2.1 1.9 1.3 1.7 2.4 2.2
04 4.5 3.1 2.4 2.6 3.4 3.9 3.1 2.4 2.6 3.4 3.9
04 6.0 3.4 2.7 2.8 3.7 4.3 3.4 2.7 2.9 3.7 4.3
04 8.5 4.3 3.4 3.7 4.8 5.2 4.3 3.4 3.7 4.9 5.2

06 2.6 1.9 2.1 1.3 2.3 1.9 1.9 2.1 1.3 2.3 1.9
06 4.5 2.5 2.7 1.7 3.1 2.6 2.5 2.7 1.8 3.1 2.6
06 6.0 2.5 2.3 1.6 3.2 2.8 2.5 2.3 1.7 3.2 2.8
06 8.5 3.6 3.2 2.6 4.8 3.9 3.7 3.2 2.7 4.9 3.9

15 2.6 0.9 0.8 0.8 1.3 0.8 1.0 0.8 0.9 1.3 0.8
15 4.5 1.4 0.6 1.1 2.0 1.9 1.4 0.6 1.1 2.0 1.9
15 6.0 1.5 0.9 1.3 1.8 2.0 1.5 0.9 1.3 1.8 2.0
15 8.5 2.8 1.8 2.2 3.6 3.6 2.8 1.9 2.2 3.6 3.6

Table 7. Relative 2060–2080 precipitation anomaly with respect to the baseline period 1980–2000 for each CHESS-SCAPE ensemble
member and scenario for the downscaled-only data (mean over the whole UK) and the downscaled and bias-corrected data (mean over GB
only).

Bias-corrected

Ensemble member RCP
Precipitation anomaly (%) Precipitation anomaly (%)

Annual DJF MAM JJA SON Annual DJF MAM JJA SON

01 2.6 −4 −3 1 −4 −10 −5 −3 1 −5 −10
01 4.5 −3 3 −3 −11 −3 −3 3 −3 −11 −3
01 6.0 −5 −2 −12 −5 −3 −5 −2 −11 −4 −3
01 8.5 −6 8 −2 −21 −16 −7 8 −1 −22 −16

04 2.6 1 −9 4 −2 12 1 −9 4 −3 12
04 4.5 1 5 2 −6 0 1 5 2 −7 0
04 6.0 3 11 −2 −5 6 4 12 −2 −6 7
04 8.5 6 22 4 −14 4 7 23 6 −15 4

06 2.6 3 14 12 −17 −4 2 16 12 −18 −4
06 4.5 5 12 13 −16 5 4 13 13 −18 5
06 6.0 1 8 14 −26 0 −1 9 14 −29 0
06 8.5 −2 11 12 −39 −5 −4 13 13 −42 −5

15 2.6 4 12 3 −12 8 3 11 3 −13 7
15 4.5 1 9 2 −21 10 1 8 2 −22 11
15 6.0 1 10 3 −24 8 0 10 4 −26 8
15 8.5 1 14 3 −25 5 0 14 2 −26 5
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Figure 13. The 90th percentile values of daily mean air temperature, T C
a,90 for the period 1980–2000. The top row shows the CHESS-

SCAPE values T C
a,90 for each ensemble member plotted against the CHESS-met values Tm

a,90 for each corresponding 1 km grid box for the
downscaled-only data (dark blue) and the bias-corrected data (light blue). The bottom row shows violin plots of the Ta,90 values for CHESS-
met (black), CHESS-SCAPE downscaled-only (dark blue) and CHESS-SCAPE bias-corrected (light blue). The thick horizontal lines show
the median value and the extremes; the thin horizontal lines show the mean.

Figure 14. Difference between the 1980–2000 and 2060–2080
90th percentile values of downscaled-only daily maximum air tem-
perature plotted against the difference between the 1980–2000
and 2060–2080 90th percentile values of downscaled-only daily
mean air temperature for RCP2.6 (dark blue), RCP4.5 (light blue),
RCP6.0 (yellow) and RCP8.5 (brown) for each ensemble member
01 (square), 04 (diamond), 06 (upward triangle) and 15 (downward
triangle). Symbols indicate the mean; error bars show the range over
the available pixels. The dashed grey line shows the 1 : 1 correspon-
dence.

RCPs show some increase and decrease. Although there is
spatial variation in the magnitude of the change, the sign
of the change tends to be consistent across the country. The
downwelling SW is projected to increase in all seasons, with

the largest increase in JJA and with larger increases associ-
ated with more extreme scenarios. This is due to a projected
decrease in cloud cover, particularly in JJA. The increase in
DJF tends to be higher in Scotland, while in MAM and JJA
it is higher in England. The downwelling LW radiation also
increases through the projections, with a larger increase as-
sociated with scenarios with larger amounts of warming, but
overall the change is relatively small, with increases of 2–
10 W m−2 in RCP2.6 and 7–21 W m−2 in RCP8.5. Although
increasing temperature will drive an increase in downwelling
LW, it is likely to be mitigated by the projected decrease in
cloud cover. The increase in downwelling LW tends to be
larger in the north than the south.

4.1 Extremes

In order to evaluate the representation of temperature ex-
tremes in the CHESS-SCAPE dataset, we calculated the
90th percentile of daily mean air temperature, T C

a,90 (◦C),
for the first 20 years of the dataset (1980–2000). We com-
pared the 1980–2000 values to the 90th percentile of daily
mean air temperature from the CHESS-met dataset for 1981–
2000, T m

a,90 (◦C). The upper panels of Fig. 13 show the
90th percentiles of daily mean air temperature for each pixel
of CHESS-SCAPE plotted against the corresponding pixel
of CHESS-met for both the downscaled-only and the bias-
corrected ensemble members. Before bias correction there
is a good correspondence between the CHESS-SCAPE and
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Figure 15. Percentage of days between 2060–2080 for which the
daily maximum air temperature exceeds the 90th percentile of daily
maximum air temperature for the baseline period 1980-2000 in the
downscaled-only data, for each ensemble member and each RCP.

CHESS-met 90th percentiles, with gradients of between
0.92–1.02, a mean bias error (MBE) of between −0.99–
0.85 ◦C, and r2 values of 0.98 for all ensemble members.
After bias correction the r2 is increased to between 0.99–
1.00 and the MBE is improved to between−0.51 to−0.10 ◦C
for three ensemble members, although for EM01 the MBE is
slightly increased to 0.26 ◦C. The gradient of the fit is slightly
lower for all ensemble members at 0.91–0.95 as the lower-
value 90th percentiles tend to be slightly higher than CHESS-
met. The lower panels of Fig. 13 show violin plots of the dis-
tributions of the 90th percentiles of daily mean air tempera-
ture for CHESS-met and CHESS-SCAPE and of daily max-
imum air temperature for CHESS-SCAPE. This shows that
although the bias correction is only applied as a mean bias
change, it also adjusts the distribution of the 90th percentiles
of daily mean air temperature to better match CHESS-met
and shows that it has a similar effect on the 90th percentiles
of daily maximum air temperature.

We then calculated the 90th percentile of daily mean air
temperature for 2060–2080 and the 90th percentile of daily
maximum air temperature T C

x,90 (◦C) for 1980–2000 and
2060–2080 to investigate the change over the projections.
The projections show that the 90th percentiles of daily max-
imum air temperature will increase by 0.6–3.5 K for RCP2.6
and 2.2–7.6 K for RCP8.5 (Fig. 14). For each ensemble mem-
ber and RCP, the increase in daily maximum air temperature
is larger than the increase in the corresponding daily mean air
temperature. This difference is larger for the more extreme
warming scenarios, with on average an increase of 1.14 K
in daily maximum air temperature for every 1 K increase
in daily mean air temperature. This is consistent with other
studies indicating an expected increase in the variability in
extreme temperatures in the UKCP18 RCM-PPE (Kennedy-
Asser et al., 2021). In the final 20 years of the projections,
the temperature increases mean that in RCP2.6 13 %–30 % of
days exceed the 1980–2000 90th percentile, while in RCP8.5
24 %–46 % of days exceed the 1980–2000 90th percentile.
The number of days exceeding this threshold tends to be
larger in the south than the north (Fig. 15), and the increase
is particularly large in EM04 where the majority of the coun-
try has more than 35 % of days exceeding the 1980–2000
90th percentile. In 2060–2080 after bias correction between
6 and 15 years have at least 1 d with daily maximum air tem-
perature exceeding 40 ◦C somewhere, a threshold which has
thus far only been exceeded in 1 year since records began
(Kendon et al., 2023).

We also calculated 10-year return levels of annual maxi-
mum precipitation, Px,10y (mm d−1). In order to obtain ro-
bust statistics, we used 30-year periods, so calculated the
10-year return levels for the first 30 years (1980–2010) and
the final 30 years (2050–2080). Figure 16 shows maps of
the 10-year return levels for 1980–2010 for the downscaled-
only and the bias-corrected ensemble members (note that
this is identical for all RCPs as the scenarios only dif-
fer from December 2010 onwards). These range from 28–
223 kg m−2 d−1 for the downscaled-only data and are re-
duced to 23–204 kg m−2 d−1 after bias correction. The spa-
tial distribution follows the rainfall patterns in Fig. 6 with a
strong north-west to south-east gradient. Before bias correc-
tion the r2 of a linear fit of the CHESS-SCAPE to CHESS-
met is 10-year return levels 0.34–0.54, while after bias cor-
rection it rises to 0.58–0.74. Before bias correction, CHESS-
SCAPE tends to underestimate the return levels in the High-
lands of Scotland, but there are large areas where the re-
turn levels are overestimated, especially coastal areas, due
to the overall wet bias in UKCP18 RCM-PPE (maps of
the difference in 10-year return levels between CHESS-
SCAPE and CHESS-met are show in the Supplement). Af-
ter bias correction, although the largest differences are re-
duced, CHESS-SCAPE still overestimates the 10-year re-
turn levels in some areas, particularly the south-west. But
the bias-corrected CHESS-SCAPE underestimates the return
levels across more of the country, reflecting the fact that it
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Figure 16. Ten-year return levels of annual maximum precipitation
for the period 1980–2010 for each bias-corrected ensemble member
and RCP.

is difficult for CHESS-SCAPE to represent the most extreme
rainfall because of the lack of explicit convection in the input
UKCP18 RCM-PPE runs. However the bias correction does
afford an improvement over the downscaled-only ensemble
members.

The change in 10-year return levels of annual maximum
precipitation between 1980–2010 and 2050–2080 for the
downscaled-only data are shown in Fig. 17. By the end of
the century, the return levels almost double in some places,
indicating increasing precipitation intensity. However, over-
all the picture is mixed, with the 10-year return level falling
in 27 %–35 % of the land area for downscaled-only RCP2.6,
15 %–39 % for RCP4.5, 7 %–38 % for RCP6.0 and 3 %–29 %
for RCP8.5. For example, EM15 shows a band of decreasing
10-year return levels across England in all scenarios, which
correspond to areas where the 10-year return levels are over-
estimated compared to CHESS-met in the historical period.
This reflects the variability introduced by the response of cir-
culation patterns to global temperature increases (Zappa and
Shepherd, 2017).

4.2 Comparison with other UKCP18 projections

Comparison withe the other UKCP18 projections showed
that CHESS-SCAPE preserved and mirrored the spatial and
temporal patterns of these datasets. Figures 18 and 19 show
the 20-year mean seasonal anomalies of the CHESS-SCAPE
downscaled-only variables, averaged over the UK for each
ensemble member, RCP and season. For each RCP and sea-
son we plot the 5th, 50th and 95th percentiles of the UKCP18
probabilistic projections (Met Office Hadley Centre, 2018b).
For RCP8.5 we also plot the 20-year seasonal means of the
three UKCP18 CPM-PPE time slices: 1980–2000, 2020–

Figure 17. Percentage change in 10-year return levels of annual
maximum precipitation between 1980–2010 and 2050–2080 for
each downscaled-only ensemble member and RCP.

2040 and 2060–2080 (Met Office Hadley Centre, 2018a).
The same plots for the other variables are in the Supplement.

The climate in the dataset is determined by the underlying
UKCP18 RCM-PPE projections, so the UK mean climate
change is preserved after downscaling and bias-correcting.
However, it is useful to compare it to other strands of
UKCP18: the UKCP18 CPM-PPE projections, which are of
a similar spatial resolution, and the UKCP18 probabilistic
projections, which are lower resolution but provide projec-
tions for all four RCPs. For RCP8.5 the CHESS-SCAPE air
temperatures are consistent with UKCP18 CPM-PPE, given
that these are largely determined by the GCM in which the
CPM and the RCM-PPE are nested. Both CHESS-SCAPE
and UKCP18 CPM-PPE are consistent with the upper half of
the range of the UKCP18 probabilistic estimates, although
EM04 lies just above the 95th percentile for MAM and
SON, and EM15 is below the median for DJF. The changes
to precipitation in CHESS-SCAPE tend to be somewhat
smaller than in the UKCP18 CPM-PPE projections. This is
likely to be due to the better resolution of rainfall with the
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Figure 18. Twenty-year seasonal mean air temperature anomalies for each ensemble member and RCP. The coloured lines show CHESS-
SCAPE bias-corrected ensemble members 01 (dark blue), 04 (light blue), 06 (yellow) and 15 (brown). The grey lines show the median of
the UKCP18 probabilistic projections, while the light grey regions show the 5 %–95 % interval. The dots show the mean of the UKCP18
CPM-PPE projections at 1980–2000, 2020–2040 and 2060–2080.

CPM. In particular the free convection will better resolve JJA
storms. Although the CHESS-SCAPE precipitation changes
are smaller, they are consistent in sign with UKCP18 CPM-
PPE and are consistent with the UKCP18 probabilistic pro-
jections for all RCPs, including RCP8.5.

The increase in specific humidity and decrease with rel-
ative humidity is consistent with the UKCP18 CPM-PPE
and probabilistic projections. The very small change in sur-
face air pressure in any of the scenarios is consistent with
the UKCP18 CPM-PPE time slices and the UKCP18 prob-
abilistic scenarios, the latter of which have a range which
includes 0. The changes in wind speed are consistent with
the UKCP18 CPM-PPE results, but there is no probabilistic
projection for wind speed. The change in the downwelling
SW radiation is high compared to the UKCP18 probabilis-
tic projections, which is because the net SW in the UKCP18
RCM-PPE projections is also high. Downwelling SW is not
available for the UKCP18 CPM-PPE or projections, but a
comparison of net SW shows that the CPM-PPE projections
are at the top of the range of or higher than the probabilis-
tic projections. Both the probabilistic and CPM-PPE projec-
tions show a projected decrease in cloud cover, particularly
in RCP8.5, leading to these changes in downwelling SW ra-
diation, but the climate model (RCM-PPE and CPM-PPE)

has a stronger response in SW radiation than the probabilis-
tic projections. There is no downwelling LW in the UKCP18
CPM-PPE or probabilistic projections, but they show little
change in the net LW. Although the CPM-PPE projections
do show a decrease in JJA net LW, it is small and of a simi-
lar magnitude to the CHESS-SCAPE projected downwelling
LW change.

The CHESS-SCAPE dataset is consistent with the projec-
tions provided by these strands of UKCP18, with the en-
hancements of high spatial resolution, alternative warming
scenarios and bias correction.

5 Data availability

The CHESS-SCAPE data are available for download from
the NERC EDS Centre for Environmental Data Analysis:
https://doi.org/10.5285/8194b416cbee482b89e0dfbe17c5786c
(Robinson et al., 2022). The data are provided under the
terms of the Open Government Licence v3.0 (Open
Government Licence, 2022).
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Figure 19. Twenty-year seasonal mean precipitation anomalies for each ensemble member and RCP. The coloured lines show CHESS-
SCAPE bias-corrected ensemble members 01 (dark blue), 04 (light blue), 06 (yellow) and 15 (brown). The grey lines show the median of
the UKCP18 probabilistic projections, while the light grey regions show the 5 %–95 % interval. The dots show the mean of the UKCP18
CPM-PPE projections at 1980–2000, 2020–2040 and 2060–2080.

6 Conclusions

Using a combination of RCM output and physical and em-
pirical downscaling, we have produced a comprehensive set
of high-resolution climate projections for the UK. CHESS-
SCAPE is derived from one strand of UKCP18 and is con-
sistent with the climate projections in the other strands. The
CHESS-SCAPE climate change trajectories are consistent
with the moderate to high end of the UKCP18 probabilistic
projections for all RCPs. This reflects the underlying nested
GCM and RCM, which have relatively high equilibrium cli-
mate sensitivity. The climate change trajectory for RCP8.5
is consistent with the UKCP18 CPM projections, although
CHESS-SCAPE has somewhat less extreme changes in pre-
cipitation. The bias-corrected CHESS-SCAPE is consistent
with the CHESS-met observations in the historical period.

CHESS-SCAPE enables modelling of the land surface
and climate-change impacts at an appropriate resolution and
enables exploration of multiple warming scenarios and of
model uncertainty through the four-member ensemble. The
bias correction allows for modelling that is consistent with
the historical period to be take through to the future seam-
lessly, alongside provision of the downscaled-only data that
are consistent with the raw climate model output. The high
spatial and temporal resolution and the addition of alterna-

tive warming scenarios and bias correction make CHESS-
SCAPE a comprehensive climate change dataset, which can
be used for a wide variety of impact modelling for the future.

Appendix A: Downscaling methods

In this section, the 12 km RCM-PPE data are denoted by the
superscript “U”, while the downscaled 1 km CHESS-SCAPE
data are denoted by the superscript “C”.

A1 Air temperature: mean, minimum, maximum and
range

We first reduced the daily mean air temperature (T U
a , ◦C)

to mean sea level, using a constant lapse rate of 0T =
−0.006 C m−1 and the lapse rate equation for converting
temperature at elevation z1 to elevation z2:

T U
a (z2)= T U

a (z1)+ (z2− z1)0T . (A1)

To convert to sea level, z1 is the RCM grid box elevation and
z2 is 0. We then interpolated the sea-level air temperature to
1 km, before adjusting it to the elevation of the 1 km grid by
applying Eq. (A1) to the downscaled sea-level air tempera-
ture, with z1 = 0 and z2 equal to the 1 km grid box elevation.
Finally, we converted it to the required units to give T C

a (K).
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We applied the same routine to daily minimum air temper-
ature (T C

n , K) and daily maximum air temperature (T C
x , K).

Finally, we found the daily temperature range (DTR;1C
T , K)

as the following difference:

1C
T = T

C
x − T

C
n . (A2)

However, because the interpolation was unconstrained, it
sometimes resulted in the interpolated minimum air temper-
ature being larger than the interpolated maximum or the in-
terpolated mean being outside of the range given by the in-
terpolated minimum and maximum. Thus, we included an
adjustment to check that all three temperatures were consis-
tent.

– If the minimum was larger than the maximum, they
were adjusted so that

T C
n = T

C
a −

1C
min
2
, (A3)

T C
x = T

C
a +

1C
min
2
, (A4)

where 1min = 0.05 K is the minimum allowed DTR.
This limit was set based on inspection of the UKCP18
RCM-PPE 12 km data.

– If the mean was outside of the range given by the mini-
mum and maximum, the calculated DTR, 1T , was pre-
served, but the minimum and maximum were adjusted
so that the mean lies between them:

T C
n = T

C
a −

1C
T

2
, (A5)

T C
x = T

C
a +

1C
T

2
. (A6)

A2 Air pressure

Daily mean surface air pressure at 1 km resolution, pC
∗ (Pa),

is obtained from the UKCP18 RCM-PPE sea-level air pres-
sure, pU

sl (hPa). The sea-level air pressure was interpolated
to 1 km using a bicubic spline and then multiplied by 100
to convert to pascal. This was then adjusted to the CHESS-
SCAPE elevation using the integral of the hypsometric equa-
tion, such that

p∗(z2)= p∗(z1)
(
Ta(z1)
Ta(z2)

) gMa
Ra0T

, (A7)

where g = 9.81 m s−2 is acceleration due to gravity, Ma =

0.0289644 kg mol−1 is the average molecular mass of air and
Ra = 8.31432 N m mol−1 K−1 is the ideal gas constant for air
(Shuttleworth, 2012). In this case, z1 was 0 and z2 was the
1 km grid box elevation.

A3 Relative humidity

This was assumed to be constant with elevation, so we inter-
polated the UKCP18 RCM-PPE relative humidity, RU (%),
to 1 km resolution, RC (%), with no sub-grid corrections ap-
plied.

A4 Specific humidity

We calculated the daily mean specific humidity, qC
a (kg kg−1)

by converting the CHESS-SCAPE 1 km relative humidity,
RC, to specific humidity, using

qC
a =

εeC
a

pC
∗

100 − (1− ε)eC
a

, (A8)

where ε = 0.622 is the mass ratio of water to dry air (Gill,
1982) and where eC

a (Pa) is the vapour pressure at 1 km reso-
lution, given by

eC
a =

RC

100
eC

s p
C
∗

pC
∗ + e

C
s

(
RC

100 − 1
) , (A9)

and eC
s (Pa) is the vapour pressure at saturation, which we

calculated using the Richards (1971) empirical fit to air tem-
perature:

eC
s = psp exp

(
4∑
i=1

ai

(
1−

Tsp

T C
a

)i)
, (A10)

where psp = 101325 Pa is steam point pressure,
Tsp = 373.15 K is steam point temperature and
a = (13.3185,−1.9760,−0.6445,−0.1299) is a vector
of empirical coefficients (Richards, 1971).

A5 Downwelling shortwave radiation

We calculated the downwelling SW radiation, SC
d (W m−2),

from the UKCP18 RCM-PPE net SW radiation, SU
n (W m−2).

First we interpolated the net SW from 12 to 1 km using a
bicubic spline. We then adjusted this for the mean inclination
and aspect of the 1 km grid box, which we calculated at 50 m
resolution from the IHDTM and OSNI DTM using the meth-
ods of Horn (1981) and then aggregated to 1 km. We assumed
that the diffuse fraction of the radiation is unaffected by incli-
nation and aspect, and we scaled the direct beam radiation by
finding the ratio of the top of the atmosphere radiation cal-
culated for a horizontal and an inclined plane (Allen et al.,
2006). We assumed that the diffuse fraction of the net SW
radiation, fdiff, is equal to cloud area fraction (Muneer and
Munawwar, 2006). We therefore interpolated the UKCP18
RCM-PPE cloud area fraction (CU

f , %) to 1 km (CC
f , %) us-

ing a bicubic spline and used this as the 1 km diffuse fraction
of SW radiation.
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We obtained the 1 km downwelling SW from 1 km net SW
(SC

n , W m−2), using

SC
d =

SC
n

1−α
, (A11)

where α is the albedo of the surface. We calculated mean
monthly values of albedo for each 1 km grid box using
monthly climatological values of white-sky albedo (αw) and
black-sky albedo (αb) from GlobAlbedo, combined using the
1 km cloud area fraction such that

α =
(

1−CC
f

)
αb+C

C
f αw. (A12)

A6 Downwelling longwave radiation

We calculated downwelling LW radiation, LC
d (W m−2) from

1 km air temperature, specific humidity and cloud area frac-
tion, using the CHESS methodology (Robinson et al., 2017).
We calculated the downwelling LW for clear-sky conditions
using the method of Dilley and O’Brien (1998), such that

LC
d = 59.38+ 113.7

(
T C

a
Tref

)6

+ 96.96

√
wC

wref
, (A13)

where w (kg m−2) is the precipitable water content of the at-
mosphere and Tref = 273.16 K and wref = 25 kg m−2 are ref-
erence temperature and precipitable water respectively. We
calculated the precipitable water,wC, following Prata (1996):

wC
= 465

eC
a

T C
a
, (A14)

using air temperature and the vapour pressure from Eq. (A9).
We calculated the additional downwelling LW due to cloud
cover from the cloud area fraction using the equations of
Kimball et al. (1982), assuming a constant cloud base height
of 1000 m (Robinson et al., 2017).

A7 Precipitation

We did not interpolate the daily mean precipitation, PC

(kg m−2 s−2); instead we found the 1 km grid box value using
a scaling derived from the 1 km SAAR dataset (Spackman,
1993). The 1 km SAAR dataset for GB is defined on a grid
that is offset by 500 m (half a grid box) from the CHESS-
SCAPE grid, and the SAAR for NI is defined on the OSNI
projection, so we first interpolated from the native SAAR
grids to the CHESS-SCAPE grid. We aggregated these in-
terpolated 1 km SAAR values, P 1 km

SAAR, to 12 km resolution,
P 12 km

SAAR. We then calculate the ratio of each 1 km SAAR value
to the SAAR in the corresponding 12 km grid box. We used
this as a constant scaling factor for the 12 km UKCP18 pre-
cipitation, PU (kg m−2 d−2), and converted it to kg m−2 s−2,
such that

PC
=
PU

td

P 1 km
SAAR

P 12 km
SAAR

, (A15)

where td = 86 400 s is the number of seconds in a day.

A8 Wind speed at 10 m

We calculated the daily mean wind speed at 10 m, uC
10

(m s−1) by interpolating the UKCP18 12 km wind speed, uU
10

(m s−1), using a bicubic spline. We then applied a correc-
tion based on the ETSU mean wind speed dataset (Burch
and Ravenscroft, 1992; Newton and Burch, 1985). We ag-
gregated the 1 km ETSU values (u1 km

ETSU, m s−1) to 12 km
(u12 km

ETSU, m s−1) and then calculated the difference between
1 km values and the corresponding 12 km grid box. We ap-
plied this difference as an offset to the 1 km interpolated wind
speed (u1 km

10 ), such that

uC
10 = u

1 km
10 +

(
u1 km

ETSU− u
12 km
ETSU

)
. (A16)

Appendix B: Bias correction methods

In this section the downscaled-only CHESS-SCAPE data are
denoted by superscript “C”, while the downscaled and bias-
corrected CHESS-SCAPE data are denoted by the super-
script “BC”. The reference dataset, CHESS-met, is denoted
by the superscript “m”.

We calculated bias correction factors for each location i,
for each season j (DJF, MAM, JJA and SON) and for each
variable. In order to determine the number of parameters re-
quired for bias correction, we compared features of distri-
butions of the daily values for each season in the common
period of 1980–2015. If k = 1. . .ny is the year, s = 1. . .4 de-
notes the season and l = 1. . .nd is the day in each season,
then the mean of variable x(i,j,k,s, l) for location (i,j ) and
season s is given by

x(i,j,s)=
1

nynd

ny∑
k=1

nd∑
l=1

x(i,j,k,s, l), (B1)

where ny = 35 is the number of years in the common period
between the CHESS-SCAPE and CHESS-met data and nd
is the number days in the season. In CHESS-SCAPE, which
has a 360 d calendar, nd = 90. In CHESS-met, which has a
Gregorian calendar, nd depends on season. In DJF nd = 90
(or 91 in leap years), in MAM and JJA nd = 92 and in SON
nd = 91.

B1 Air temperature

The variability of the 1.5 m air temperature is very similar be-
tween the two datasets, but the seasonal means showed some
differences. Therefore we calculated a simple offset, given
by

µT (i,j,s)= T C
a (i,j,s)− T m

a (i,j,s), (B2)

where T C
a is the air temperature in the reference period of

the CHESS-SCAPE dataset and T m
a is the air temperature
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in the CHESS-met dataset. We then applied the bias correc-
tion to the whole period 1980–2080. Thus the bias-corrected
CHESS-SCAPE air temperature, T BC

a is given by

T BC
a (i,j,k,s, l)= T C

a (i,j,k,s, l)−µT (i,j,s). (B3)

B2 Specific humidity

The specific humidity also only required a correction to the
mean bias, so we calculated the offset of the 1.5 m specific
humidity to be

µq (i,j,s)= qC
a (i,j,k,s, l)− qm

a (i,j,k,s, l). (B4)

The bias-corrected specific humidity is given by

qBC
a (i,j,k,s, l)= qC

a (i,j,k,s, l)−µq (i,j,s). (B5)

B3 Precipitation

For precipitation, again the variability was very similar, so
the only correction required was to remove the mean bias.
Since removing an absolute difference could result in un-
physical negative values, we instead calculated a scaling cor-
rection to be

µP(i,j,s)=
PC(i,j,s)

Pm(i,j,s)
. (B6)

The bias-corrected precipitation was thus given by

PBC(i,j,k,s, l)=
PC(i,j,k,s, l)
µP(i,j,s)

. (B7)

B4 Wind speed

The wind speed also only required a correction to the mean
bias, and a scaling correction was applied to avoid unphysical
negative wind speeds, such that

µu(i,j,s)=
uC(i,j,s)
um(i,j,s)

. (B8)

The bias-corrected wind speed was thus given by

uBC(i,j,k,s, l)=
uC(i,j,k,s, l)
µu(i,j,s)

. (B9)

B5 Downwelling longwave radiation

The radiation terms are more complex and could be charac-
terised by a simple offset or scaling. For downwelling LW ra-
diation, inspection of the distributions showed a smaller dif-
ference between higher radiation values in CHESS-SCAPE
and CHESS-met than between the lower values. The differ-
ence between the distributions was best characterised by the

difference between the seasonal means and an upper thresh-
old of 400 W m−2. We defined the distributions relative to
this upper threshold via a parameter µL:

µL(i,j,s)=
LC

d (i,j,s)− 400.0

Lm
d (i,j,s)− 400.0

. (B10)

The bias-corrected downwelling LW is then given by

LBC
d (i,j,k,s, l)= 400.0+

(LC
d (i,j,k,s, l)− 400.0)

µL(i,j,s)
. (B11)

This has the effect of applying a larger correction to the lower
CHESS-SCAPE values and a smaller correction to the larger
values and compressing or stretching the range of the distri-
bution as necessary.

B6 Downwelling shortwave radiation

Comparing the distributions of the downwelling SW radia-
tion, showed that the values at the higher end of the distribu-
tion were similar between CHESS-SCAPE and CHESS-met,
but the lower and middle parts of the distribution could be
offset substantially. Therefore we apply a form of distribu-
tion mapping using two parameters, which adjust the lower
and upper parts of the distribution separately. The first pa-
rameter is a scaling of the distribution for when the CHESS-
SCAPE value is smaller than its local and seasonal mean.
This parameter is given by

µS,1(i,j,s)=
SC

d (i,j,s)

Sm
d (i,j,s)

. (B12)

The second parameter is a normalisation used for when the
CHESS-SCAPE value is larger than its local and seasonal
mean. This parameter is based on the distance between the
mean and the maximum value of CHESS-SCAPE for that
location and season:

S
C,x
d (i,j,s)=max(SC

d (i,j,k,s, l))|k,l . (B13)

The second parameter is thus given by

µS,2(i,j,s)=
SC

d (i,j,s)− SC,x
d (i,j,s)

Sm
d (i,j,s)− SC,x

d (i,j,s)
. (B14)

We combined this to give the bias correction as follows:

SBC
d (i,j,k,s, l)=

SC
d (i,j,k)

µS,1(i,j,s) if SC
d (i,j,k,s, l)< SC

d (i,j,s)

S
C,x
d (i,j,s)

+
SC

d (i,j,k,s,l)−SC,x
d (i,j,s)

µS,2(i.j ) otherwise.

(B15)

This ensured that the seasonal mean of CHESS-SCAPE
matched the seasonal mean of CHESS-met. Where the
CHESS-SCAPE mean was smaller than the CHESS-met
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mean, this stretched the distribution below the mean and in-
creased the values, while compressing the distribution above
the mean to fit in to the range between the CHESS-met mean
and maximum. Where the CHESS-SCAPE mean was larger
than the CHESS-met mean, this did the opposite and com-
pressed the lower part of the distribution while stretching the
upper part.

Appendix C: Alternative climate scenarios

C1 Linearity assumptions

To generate alternative warming scenarios we used a com-
bination of time shifting and pattern scaling (see e.g. James
et al., 2017). Both of these require the assumption that sea-
sonal anomalies in UK variables are linear with respect to
global air temperature:

x(i,j,k,s)=Dx(i,j,s)T G(k), (C1)

where T G(k) is annual mean global mean air tempera-
ture in year k, Dx(i,j,s) is the gradient of the variable
x(i,j,k,s) with respect to the global mean air temperature
and x(i,j,k,s) is the seasonal mean anomaly with respect
to the baseline period (1981–2000) of variable x at location
(i,j ) for season s in year k.

For some variables it is more appropriate instead to con-
sider the relative anomaly, particularly where an absolute
anomaly could result in unphysical negative values. The rel-
ative anomaly is given by

x(i,j,k,s)
xref(i,j,s)

=Dr
x(i,j,s)T G(k), (C2)

where xref(i,j,s) is the baseline mean of the variable and
Dr
x(i,j,s) is the gradient of the relative anomaly with respect

to global mean air temperature.

C2 Time shifting

For each year of each target CMIP5 scenario (RCP2.6,
RCP4.5 or RCP6.0), we found all years of the RCP8.5 sce-
nario for which the global annual mean air temperature
anomaly was within a threshold 1T = 0.5 K of the target
global annual mean air temperature anomaly and randomly
selected 1 year for substitution. Once this initial series was
defined, we checked each year for repeats within 20 years.
If a repeat was found, we discarded the originally selected
year and performed the random selection again. We iterated
this until a time series of year substitutions with no repeats
within 20 years was found. We then copied the 1 km data
from each of the RCP8.5 years to the target year to create
the time-shifted scenario. Note that years were defined to be
season years, running from December to January.

C3 Pattern scaling

We calculated the gradient Dx(i,j,s) or Dr
x(i,j,s) for each

variable using linear regression of the RCP8.5 scenario to
the linear or relative anomalies, where the UK variables are
the CHESS-SCAPE 1 km variables and the global mean air
temperature is taken from the corresponding UKCP18 GCM-
PPE ensemble member. Then we found the difference be-
tween the CMIP5 original RCP8.5 temperature and target
RCP temperature. We used this with the seasonal maps of
the gradients to calculate new time-shifted and pattern-scaled
time series.

For air temperature, specific humidity, surface air pressure,
daily minimum air temperature and daily maximum air tem-
perature, we calculated the resulting time series of the vari-
able x′(i,j,k,s, t) for location (i,j ), year k, season s and day
of season t using

x′(i,j,k,s, t)= x(i,j,k,s, t)

+Dx(i,j,s)
(
T
′

G(k)− T G(k)
)
, (C3)

where T G(k) is the global mean air temperature in the time-
shifted year k and T

′

G(k) is the global mean air temperature
in the target RCP time series.

We scaled precipitation, wind speed, downwelling SW ra-
diation and downwelling LW radiation using relative anoma-
lies:

x′(i,j,k,s, t)= x(i,j,k,s, t)(
1+Dr

x(i,j,s)
(
T
′

G(k)− T G(k)
))
. (C4)
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