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A B S T R A C T   

Spatial management of the deep sea is challenging due to limited available data on the distribution of species and 
habitats to support decision making. In the well-studied North Atlantic, predictive models of species distribution 
and habitat suitability have been used to fill data gaps and support sustainable management. In the South 
Atlantic and other poorly studied regions, this is not possible due to a massive lack of data. In this study, we 
investigated whether models constructed in data-rich areas can be used to inform data-poor regions (with 
otherwise similar environmental conditions). We used a novel model transfer approach to identify to what extent 
a habitat suitability model for Desmophyllum pertusum reef, built in a data-rich basin (North Atlantic), could be 
transferred usefully to a data-poor basin (South Atlantic). The transferred model was built using the Maximum 
Entropy algorithm and constructed with 227 presence and 3064 pseudo-absence points, and 200 m resolution 
environmental grids. Performance in the transferred region was validated using an independent dataset of 
D. pertusum presences and absences, with assessments made using both threshold-dependent and -independent 
metrics. We found that a model for D. pertusum reef fitted to North Atlantic data transferred reasonably well to 
the South Atlantic basin, with an area under the curve of 0.70. Suitable habitat for D. pertusum reef was predicted 
on 20 of the assessed 27 features including seamounts. Nationally managed Marine Protected Areas provide 
significant protection for D. pertusum reef habitat in the region, affording full protection from bottom trawling to 
14 of the 20 suitable features. In areas beyond national jurisdiction (ABNJ), we found four seamounts that 
provided suitable habitat for D. pertusum reef to be at least partially protected from bottom trawling, whilst two 
did not fall within fisheries closures. There are factors to consider when developing models for transfer including 
data resolution and predictor type. Nevertheless, the promising results of this application demonstrate that model 
transfer approaches stand to provide significant contributions to spatial planning processes through provision of 
new, best available data. This is particularly true for ABNJ and areas that have previously undergone little 
scientific exploration such as the global south.   

1. Introduction 

As the global human population increases, so does the demand for a 
variety of natural resources, including some from the deep ocean 
(Ramirez-Llodra et al., 2011; Halpern et al., 2015; Van Dover et al., 
2017; Kroodsma et al., 2018). Increased anthropogenic pressure on the 
deep sea, in the form of mining, fishing, and climate change, means that 
effective, integrated management, including marine spatial planning 

and the use of area-based management tools (ABMTs), is becoming ever 
more critical (Mengerink et al., 2014; Wright et al., 2019). Marine 
protected areas (MPAs) are one of several ABMTs that could be 
employed. Historically, most MPAs have been designated individually 
on an ad-hoc basis to meet a range of national-level conservation targets 
(UNEP-WCMC, 2008). However, high connectivity between marine 
ecosystems means that the concept of ‘ecological coherence’ within 
networks of MPAs is now considered in numerous pieces of legislation 
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(e.g. United Nations, 2002; Convention on Biological Diversity, 
2004CBD, 2004). An important aspect of ensuring the ecological 
coherence of any MPA network is to ensure decisions are evidence-based 
with regards to the location of areas identified for protection, the spe
cies/habitats named as protected features, and which/how activities are 
restricted to meaningfully protect these areas. Having access to accurate 
ecological/biological maps is therefore integral to any spatial manage
ment process, something which becomes progressively more difficult 
with increasing area and remoteness, and therefore broad-scale man
agement has frequently been based on assumptions underpinned by 
little or no relevant data. Since there is a widespread impetus for 
basin-scale spatial management networks, the largely data-limited na
ture of the deep sea stands to pose a major challenge to evidence-based 
decision making. 

Habitat suitability modelling (HSM) has the potential to be an 
important tool when it comes to building maps of the spatial distribution 
of species and habitats across ocean basins. There are many different 
HSM techniques (García-Callejas and Araújo, 2016), but all are founded 
on the same basic principle: using knowledge of where species/habitats 
are known to occur to predict where else they might occur based on 
environmental envelope similarities. HSM has been used successfully to 
predict the distributions of a variety of deep-sea taxa including scler
actinian corals across multiple basins (Davies et al., 2008; Davies and 
Guinotte, 2011; Yesson et al., 2012; Ross and Howell, 2013; Ashford 
et al., 2014; Howell et al., 2016; Rowden et al., 2017). Increasing the 
amount of data used to characterise the relationship between the envi
ronment and ecological occurrences results in better performing models 
(Wisz et al., 2008), and thus in data-rich areas like the northeast 
Atlantic, the concept of mapping and modelling the distribution of 
vulnerable habitats has been explored. This is particularly true for so 
termed Vulnerable Marine Ecosystems (VMEs; see Gos et al., 2023), 
designated by the UN General Assembly (UNGA) under Resolution 
61/105. Outputs of these predictive models have been used to assess 
MPA networks and efficacy of conservation policy (Ross and Howell, 
2013; Ross et al., 2015; Howell et al., 2016; Howell et al., 2022). 

Globally, around 93% of the seafloor lies below 200 m depth, and 
therefore represents a logistically challenging and cost-intensive envi
ronment to study. Collation of large basin-scale datasets is more 
achievable for ocean basins that have been the focus of scientific 
research for decades, but for less studied basins where very few bio
logical data have been collected, this remains nearly impossible 
(Menegotto and Rangel, 2018; Howell et al., 2021). The strong bias in 
sampling effort towards the northern hemisphere means that for many 
southern hemisphere deep-sea habitats and species, fundamental 
knowledge of their distribution is lacking. Consequently, there are very 
few accurate biological maps that can facilitate evidence-based marine 
spatial planning in under-explored regions. 

One such region is the South Atlantic where, despite representing 
11.1% of the global ocean area (Eakins and Sharman, 2010), multiple 
studies have highlighted it as particularly data-poor (Howell et al., 2020; 
Bridges et al., 2023; McQuaid et al., 2023). Consequently, it is not 
currently possible to build reliable HSMs using data from the South 
Atlantic, for the South Atlantic. However, it is possible to transfer 
established HSMs into different regions (Torres et al., 2015). Model 
transfer occurs when the model is used to predict in a different area/
region from which the model is calibrated, an example of which would 
be across ocean basins. This technique therefore has the potential to 
become a particularly valuable tool, as it provides an opportunity to 
mediate historic geographic biases. Specifically, it allows models to be 
transferred from ‘data-rich’ areas where data is comparably plentiful (e. 
g. the North Atlantic), to ‘data-poor’ areas where historically there has 
been little scientific survey effort (e.g. the South Atlantic). Good per
formance across this data gradient could facilitate evidence-based ma
rine management in areas that historically have not been the scientific 
focus. 

In this study we ask if models built in relatively data-rich regions can 

perform well when applied to otherwise appropriate but data-poor re
gions. Specifically, we transfer the model described in Howell et al. 
(2022) from the northeast Atlantic to the South Atlantic, evaluate 
transfer performance using an independent dataset, and demonstrate 
how the predictions and resulting modelled map can be used to inform 
area-based management in the basin. 

2. Methods 

2.1. The northeast Atlantic model (Howell et al., 2022) 

Desmophyllum pertusum (Linnaeus, 1758) reef, formerly Lophelia 
pertusa, is a VME that Regional Fisheries Management Organisations 
(RFMOs) have a responsibility to protect from significant adverse im
pacts arising from fishing activity. Howell et al. (2022) comprises a 
two-pronged approach whereby authors (1) independently validated a 
published model for D. pertusum reef, and (2) constructed a new model, 
incorporating additional large datasets collated from multiple research 
cruises, with a spatial extent covering the NE Atlantic to the west of the 
United Kingdom and Ireland. Howell et al. (2022) used maximum en
tropy modelling (MaxEnt, Phillips et al., 2006) to build the final models 
as, in addition to being a proven popular choice among ecologists (Elith 
et al., 2011; Merow et al., 2013), MaxEnt performs well when compared 
to other HSM techniques (Piechaud et al., 2015; Kaky et al., 2020). 
Duque-Lazo et al. (2016) also found that MaxEnt transferred best 
compared to other modelling techniques, making the Howell et al. 
(2022) model suitable for use in this study. Key parameters for this 
model are listed in Table 1 and full details are available in the supple
mentary material. This is henceforth referred to as ‘the data-rich model’. 

2.2. South Atlantic bathymetry and derivatives data 

To create a comparable environmental dataset on which to transfer 
the data-rich model, high-resolution 200 m bathymetry from the South 
Atlantic basin was collated from multiple sources (Table 2) to obtain the 
largest geographical extent possible. As per Howell et al. (2022), the 
Benthic Terrain Modeller plug-in (Walbridge et al., 2018) in ArcGIS 
v10.7 was used to derive fine-scale bathymetric position index (FBPI) 
and rugosity layers using the same flexible calculation options (Table 1). 
Using the same approach as Howell et al. (2022) and Bridges et al. 

Table 1 
Key parameters and details on the Howell et al. (2022) Desmophyllum pertusum 
reef model that was transferred from the northeast Atlantic to the South Atlantic 
in this study. A full breakdown of the model and evaluation process is detailed in 
the supplementary material.  

Model parameter Model details 

Resolution 200 m/~0.002◦

Algorithm Maximum Entropy (MaxEnt; Phillips et al., 
2006) 

Regularisation parameter 1 
Response curve features allowed Linear, quadratic and product 
Available predictor variables (all 

at 200 m resolution) 
Depth (max. 1500 m), rugosity (neighbourhood 
= 3), curvature, plan curvature, profile 
curvature, slope, broad-scale bathymetric 
position index (BBPI, inner and outer radii = 5 
and 50), fine-scale bathymetric position index 
(FBPI, inner and outer radii = 1 and 5), 
temperature and salinity 

Variable pre-selection method Covariance checks, iterative removal of 
variables using MaxEnt jackknife procedure to 
promote model parsimony 

Final variables used (explanatory 
percentage contribution) 

Temperature (70.5%), rugosity (23.3%) and 
FBPI (6.2%) 

No. of D. pertusum reef presence 
points 

227 

No. of D. pertusum reef (pseudo-) 
absence points 

3064  
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(2021, 2022), generalised additive models (GAMs) built using the mgcv 
package (Wood, 2011) in R (R Core Team, 2019) were used to create a 
continuous bottom temperature layer using data from CTD (conductiv
ity, temperature and depth) sensors deployed during the UK Overseas 
Territories (UKOTs) cruises (Table 2) and data archived by the British 
Oceanographic Data Centre (BODC; full details available in the supple
mentary material). The South Atlantic was deemed an appropriate basin 
for transfer due to the similarity in predictor variable ranges between 
the two regions (full details available in the supplementary material). 

2.3. South Atlantic biological data 

D. pertusum reef habitat is found in many of the world’s oceans and is 
therefore a good candidate for model transfer between basins. Reef 
presence locations were extracted from an image dataset described in 
Bridges et al. (2021), with additional data from cruise DY159 aboard the 
RRS Discovery in late 2022 (Whomersley et al., 2023). These data were 
collected from the EEZs of Saint Helena, Ascension, and Tristan da 
Cunha – a UK Overseas Territory in the South Atlantic spanning 7 ◦S to 
40 ◦S and comprising three oceanic islands/archipelagos. Presence and 
absence points were formatted to 1 point per 200 m cell based on the 
high-resolution bathymetry, resulting in 13 presences and 110 absences 
used to independently validate the transferred predictions. 

2.4. Model transfer and independent validation 

The data-rich model was used to predict habitat suitability for 
D. pertusum reef across the newly created South Atlantic environmental 
dataset using the MaxEnt Java graphical user interface (GUI), applying 
the same model parameterisation (e.g. regularisation parameter, 
permitted response features) as Howell et al. (2022). Predictions were 
masked by the MaxEnt ‘novel climate’ output to remove areas where 
environmental values fell outside the data range on which the model 

was trained. Prediction values were extracted for each of the South 
Atlantic presence and absence points, and independent validation of the 
transferred predictions was performed using the PresenceAbsence 
package (Freeman and Moisen, 2008) in R. Area under the Receiver 
Operating Characteristic (ROC) curve, also known as the AUC, was 
calculated as a threshold-independent metric. Threshold-dependent 
performance was assessed using both the threshold of 0.44 selected in 
Howell et al. (2022), and three new thresholds that were calculated 
based on the independent data using the optimal.threshold() function 
The presence.absence.accuracy() function was used to obtain validation 
metrics for each thresholding method. Metrics used were sensitivity and 
specificity, percent correctly classified (PCC), and the true skill statistic 
(TSS). These refer to the model’s ability to correctly predict whether 
known points are presences (sensitivity) or absences (specificity); while 
PCC is a similar metric but one that does not discriminate between 
presences and absences. TSS, calculated using sensitivity and specificity, 
was used in place of Cohen’s kappa as it allows for the correction of the 
overall accuracy of the model predictions using the accuracy expected to 
occur by chance – it is particularly suited to 
presence-only/presence-pseudo-absence modelling like MaxEnt (Allou
che et al., 2006). 

3. Results 

3.1. North Atlantic model performance 

The data-rich model from Howell et al. (2022) received an AUC value 
of 0.9, deemed excellent (0.9+), and generated good (0.8–0.9) results 
when assessed using the selected threshold of 0.44 (Table 3). 

3.2. Transferred model performance 

When presented with the independent dataset from the South 
Atlantic, the model built and reported in Howell et al. (2022) performs 
reasonably well (Table 4). When assessed using the previously selected 
threshold of 0.44, the AUC drops from 0.90 (excellent) to 0.70 (fair). 
Using the optimal.threshold() function, three new thresholds were 
calculated using the South Atlantic data points. The same thresholding 
methods as in the original model were chosen; sensitivity-specificity 
equality (Sens = Spec), sensitivity-specificity sum maximisation (Max
Sens + Spec) and minimum distance to the top left corner in the receiver 
operating characteristic curve plot (MinROCdist), also in Table 4. 
Although Sens = Spec was selected as the favourable thresholding 
method for the data-rich model in its original domain, the metrics when 
using this thresholding method in the transfer region report poorly. 
MaxSens + Spec and MinROCdist both use a higher threshold of 0.41 
(compared to 0.39 for Sens = Spec), and report higher scores for both 
PCC and specificity (ability to correctly predict absences), thus this 
threshold is used in further evaluation and discussion of the transferred 
model. 

3.3. Modelled distribution of areas suitable for D. pertusum reef habitat in 
the South Atlantic 

Very little environmental data was available for the southwest 
Atlantic, and of the small coverage acquired, none was for geomor
phological features appropriate for D. pertusum to form reef structures. 
We therefore present predictions in the context of the southeast Atlantic 
only. Predictions were made across 27 features (seamounts, islands and 
banks) in the southeast Atlantic (Fig. 1). Of the 91.73 km2 of seabed for 
which environmental data were suitable to predict on, 4.24 km2 

received predictions above the threshold of 0.41 (approximately 4.6% of 
the area), and thus are classed as suitable habitat for D. pertusum reef. 

Of the 27 features for which there was sufficient environmental data 
on which to transfer the model, 20 received at least one cell with a 
prediction above the threshold (Table 5). Fourteen of the 27 features are 

Table 2 
Sources of high-resolution 200 m multibeam bathymetry in the South Atlantic.  

Data provider Description Citation 

Global Multi-Resolution 
Topography (GMRT) 

All available bathymetry in 
the database covering the 
region 0 ◦N, 30 ◦E, 70 ◦W, 
60 ◦S. 

(Ryan et al., 2009) 

UK Government Blue Belt 
Programme 

Data collected during the 
2018 and 2019 cruises 
aboard the RRS James Clark 
Ross (JR17004) and RRS 
Discovery (DY100) within 
the Exclusive Economic 
Zones (EEZs) of Tristan da 
Cunha and Saint Helena. 

(Morley et al., 
2018; Whomersley 
et al., 2019) 

British Antarctic Survey Data collected during the 
2013 cruise aboard the RRS 
James Clark Ross (JR287) 
within the EEZ of Tristan da 
Cunha 

Barnes et al. (2013) 

British Antarctic Survey/ 
National Geographic 

Data collected from the 
2015 and 2017 cruises 
aboard the RRS James Clark 
Ross (JR864 and JR16NG) 
within the EEZ of Ascension 
Island 

(Barnes et al., 2019) 

Alfred Wegener Institute Data collected from the 
2012 cruise (MSM20/2) 
aboard the R/V Maria S. 
Merian from Namibia to 
Brazil 

(Jegen et al., 2015;  
Geissler et al., 
2020) 

Southeast Atlantic Fisheries 
Organisations (SEAFO)/ 
Food and Agriculture 
Organisation (FAO) EAF- 
Nansen Programme 

Data collected during the 
2015 and 2019 surveys in 
the SEAFO Convention Area 
aboard the R/V Dr Fridtjof 
Nansen. 

(Bergstad et al., 
2019; FAO, 2019)  
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within nationally managed MPAs that legislate against bottom trawling 
(within the EEZs of Saint Helena, Ascension Island and Tristan da 
Cunha). Of the 13 features in ABNJ, the South East Atlantic Fisheries 
Organisation (SEAFO) have designated precautionary full VME closures 
on five, and a sixth feature falls partially within their existing VME 

Closed Area on Valdivia Central. The 7 remaining features in ABNJ are 
undesignated (i.e. they are not identified as fishing grounds nor closed 
areas) or remain open to bottom trawling. . 

The mean depth of suitable habitat for D. pertusum reef was 655 m 
and generally occurred on feature flanks, creating a ring-like pattern, 

Table 3 
Threshold-dependent evaluation indices for the data-rich Desmophyllum pertusum reef habitat suitability model from Howell et al. (2022). Data are presented for the 
training, test, and full models.   

Average Training Models Average Test Models Full Model  

Thresholding approach PCC (SD) Sens. (SD) Spec. (SD) PCC (SD) Sens. (SD) Spec. (SD) PCC (SD) Sens. (SD) Spec. (SD) Threshold 
Sens = Spec 0.83 (0.01) 0.82 (0.03) 0.83 (0.01) 0.83 (0.01) 0.83 (0.05) 0.83 (0.01) 0.83 (0.01) 0.82 (0.03) 0.83 (0.01) 0.44 

PCC = percent correctly classified; Sens. = sensitivity; Spec. = specificity. 

Table 4 
Model transfer independent validation metrics calculated using the PresenceAbsence package in R.   

Thresholding method PCC (SD) Sens. (SD) Spec. (SD) TSS (Sens + Spec 
− 1) 

AUC (SD) Threshold 

Threshold independent 
evaluation 

– – – – – 0.70 – 

Threshold-dependent 
evaluation  

0.72 0.62 0.73 0.34 0.70 0.44 (from Howell et al., 
2022) 

Re-threshold Sens = Spec 0.69 
(0.04) 

0.69 
(0.13) 

0.69 
(0.04) 

0.38 0.70 
(0.09) 

0.39 

MaxSens + Spec and MinROC 
dist 

0.72 
(0.04) 

0.69 
(0.13) 

0.72 
(0.04) 

0.41 0.70 
(0.09) 

0.41 

PCC = percent correctly classified; Sens. = sensitivity; Spec. = specificity. 

Fig. 1. All features with suitable environmental data that allowed for the transfer of the D. pertusum reef model. The dashed line depicts the South East Atlantic 
Fisheries Organisation (SEAFO) Convention Area. Designated fishing grounds and closures are also shown. Map drawn in WGS84. 
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often tracing the summit-slope break (presence histograms for each 
variable are available in the supplementary material). Predictions for 
Wust (seamount 2) and Valdivia Central are shown (Fig. 2); these fea
tures were selected to provide examples of predictive patterns. 

4. Discussion 

Large scale model transferability can be challenging (see e.g. Bam
ford et al., 2009; Roach et al., 2017) but the current work showed that a 
model transfer approach, in our case using a habitat suitability model for 
North Atlantic D. pertusum reef, can give significant and robust power to 
aid spatial planning across important, but data-poor ocean basins. When 
the transferred model was evaluated using an independent dataset from 
the South Atlantic, the model performed reasonably well, with the AUC 
decreasing from what is deemed excellent to fair. The decrease in per
formance is reflected equally across all major metrics (PCC, specificity 
and sensitivity). 

4.1. Is model transfer an option for data poor regions of the deep sea? 

There are several factors that may have contributed towards the 
successful transfer of this model, not least because of the unique envi
ronments it deals with. At a global scale, the deep sea is typically a more 
uniform environment than the terrestrial biome, with much greater 
similarity in environmental conditions between ocean basins than be
tween, for example, terrestrial continents. Previous studies have re
ported poor and/or variable model transferability across large regions, 
but these have largely targeted terrestrial habitats/species (Bamford 
et al., 2009; Torres et al., 2015; Roach et al., 2017). The environmental 
similarity and long-term stability in deep ocean conditions between 
basins may mean that deep-sea habitats and species are particularly 
suited to model transfer (sensu Yates et al., 2018). This said, there are 
stark differences in the water mass structure between ocean basins 
which means predictor choice is key in designing a well-performing, 

transferrable model. Whilst depth is often the variable with the high
est predictive power (e.g. the Pheronema carpenteri model from Howell 
et al., 2022), a reliance upon depth, without acknowledgement of its key 
correlates, in models designed for transfer across ocean basins may 
inhibit success; this is because high dissimilarity (e.g. water mass 
structure) between the reference and target systems will increase pre
diction error (Yates et al., 2018). Therefore, when building models for 
the purpose of transfer, it is important to consider the generality of the 
predictors and where possible, select the most appropriate without 
compromising model performance. 

In addition to its improved generality compared to depth, the se
lection of temperature as a predictor may also contribute to successful 
model transfer because it’s a direct predictor. Direct and indirect gra
dients are initially described in Austin (1980, 1985) and Austin and 
Smith (1990). Direct predictors are variables that are required for 
physiological maintenance but are not consumed (e.g. temperature, pH). 
Indirect predictors are those that are not directly linked to physiological 
performance but are thought to be linked via other processes (e.g. 
bathymetrically derived variables such as rugosity and curvature). 
Several studies and reviews focusing on both marine and terrestrial 
fauna have found that SDMs based on direct predictors are more 
transferable than those that use indirect predictors (Graf et al., 2006; 
Randin et al., 2006; Strauss and Biedermann, 2007; Gray et al., 2009; 
Sundblad et al., 2009). Whilst there are three predictor variables used in 
Howell et al. (2022), temperature is significantly more important than 
bathymetrically-derived (indirect) predictors. The strong reliance of the 
model on the only direct predictor may contribute to the success of the 
transfer. 

When considering models of deep-sea habitat and/or species distri
bution for transfer, it is important to understand the pertinence of 
parsimony (i.e. model simplicity). Less complex models with fewer 
predictors and smooth response curves could, in theory, facilitate 
greater transferability (Yates et al., 2018). In the current study, the se
lection of only three predictor variables and the smooth response curves 

Table 5 
Prediction area for each feature/complex with the percentage of which were above the selected threshold of 0.41. STSE = Subtropical southeast. TSE = Temperate 
southeast. Asc = Ascension Island. SH = St Helena. TdC = Tristan da Cunha. ‘Open’ fishing zones are still subject to their respective SEAFO conservation measures.  

Number in  
Fig. 1 

Feature/Complex Broad location Prediction area (km2; 2 d. 
p.) 

% of predictions >0.41 (2 d. 
p.) 

Bottom fishing status 

1 Harris-Stewart Asc EEZ 0.29 51.29 Closed 
2 Young Asc EEZ 0.36 30.49 Closed 
3 Grattan Asc EEZ 0.58 25.03 Closed 
4 Ascension Asc EEZ 1.58 17.15 Closed 
5 Bonaparte SH EEZ 0.39 23.60 Closed 
6 Cardno/Southern Cross SH EEZ 0.89 22.06 Closed 
7 Saint Helena SH EEZ 1.25 19.91 Closed 
8 Gough TdC EEZ 0.38 27.08 Closed 
9 Tristan da Cunha TdC EEZ 0.38 22.76 Closed 
10 Nightingale and 

Inaccessible 
TdC EEZ 1.68 19.04 Closed 

11 Yakhont TdC EEZ 1.62 18.08 Closed 
12 McNish TdC EEZ 0.45 14.65 Closed 
13 Crawford TdC EEZ 2.22 9.00 Closed 
14 RSA TdC EEZ 2.13 8.47 Closed 
15 Wust Seamount 1 STSE 0.94 0.19 Closed 
16 Wust Seamount 2 STSE 2.24 9.42 Closed 
17 Schmitt-Ott TSE 0.33 0.00 Closed 
18 Vema STSE 0.01 38.18 Closed 
19 Valdivia North STSE 0.07 0.00 Open 
20 Valdivia Middle STSE 0.10 3.09 Open 
21 Valdivia Central STSE 0.47 2.78 Mostly open, partial VME 

closure 
22 Valdivia West STSE 0.10 4.41 Open 
23 Ewing Tropical southeast 

Atlantic 
0.10 0.00 Open 

24 Herdman TSE 0.02 0.00 Closed 
25 Shannon TSE 0.98 0.00 Open 
26 Yermelenko and Discovery TSE 8.21 0.00 Open and/or not designated 
27 Yunov TSE 0.21 0.00 Not designated  
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of the model likely contribute to its successful transfer. Therefore, 
although complex models do have their uses (e.g. in very dynamic, 
data-rich systems), model parsimony is a key consideration for effec
tively transferring models from data-rich to data-poor regions. 

Yates et al. (2018) consider whether model transferability is trait- or 
taxon-specific, and this is another factor that would be helpful to 
consider prior to building models with the intent of transfer. D. pertusum 
is a sessile coral with a relatively well-defined niche thanks to many 
focused deep-sea studies (Rogers, 1999; Roberts et al., 2006; Dodds 
et al., 2007; Howell et al., 2011). Such niche knowledge has likely 
contributed to the successful transfer in our study. On the contrary, 
building transferrable models for taxa with high behavioural and/or 
adaptive plasticity is more challenging as the assumption that underpins 
distribution modelling, that the relationship between taxa and the 
environment is constant despite geographic location, is less rational 
(Yates et al., 2018). Therefore, to build reliable models for transfer from 
data-rich to data-poor deep-sea regions, it is perhaps safer to focus on 
sessile taxa with well-defined niches that often provide habitat for other 
species. 

Manzoor et al. (2018) investigated the role of resolution (also known 
as grain-size) on the transferability of plant models and found that 
although fine-scale (50 m) models predicted best in the region in which 
they were calibrated, intermediate-scale (300 m) models transferred 
better than both fine- and broad-scale (1 km) models. Similarly, Olivier 
and Wotherspoon (2008) address the issue of scale in transferability of 
HSMs. They investigated nest selection by snow petrels in Antarctica, 
and found that when transferred, models at the habitat-scale were more 
successful than those at the nest-scale, attributing this to high variability 

at smaller scales. The transferred model in this study has a resolution of 
200 m, similar to the medium-scale resolution in Manzoor et al. (2018). 
Finer-scale models can be prone to over-fitting (Olivier and Wother
spoon, 2008), where predictions are too specific to the dataset on which 
the model was trained and thus the model is unable to predict in new 
areas. Conversely, the coarser a model, the greater the extent to which it 
will over-estimate distribution (Marshall, 2011), and depending on the 
size of the ecosystems/features that are targeted, may not be useful from 
a management perspective. Therefore, when building models for 
transfer in the deep sea, intermediate resolutions will likely perform 
better. This is of course only if the variability of the predictors is relevant 
to that resolution. Nevertheless, the biggest hurdle in creating trans
ferable models at oceanographic basin scales is the lack of intermediate 
resolution environmental data, evidenced in this study by the lack of 
predictions for the southwest Atlantic. This is despite the known pres
ence of geomorphological structures suitable for reef-building scler
actinians to inhabit (e.g. the Rio Grande Rise). Although collecting this 
type of data is considered ‘easier’ than physical samples, in 2022 less 
than 25% of the seafloor had been directly mapped using multibeam 
sonar data (Seabed 2030 Project, 2023). 

When assessed against threshold-dependent metrics, the perfor
mance of our transferred model (Table 4) drops in all three by approx
imately 0.12, equivalent to 12%, from the performance of the Howell 
et al. (2022) model (Table 3). In the current study, there were only 13 
presences available to validate the model, acutely highlighting just how 
little data is available for some large areas, such as the South Atlantic. 
Resultantly, it is difficult to ascertain to what extent the reduction in 
model performance can be attributed to the methodology (i.e. model 

Fig. 2. Both continuous and threshold-dependent (0.41) predictions for Wust seamount 2 (A, B) and Valdivia Central (C, D). Approximate locations of these features 
can be found on Fig. 1. 

A.E.H. Bridges et al.                                                                                                                                                                                                                            



Journal of Environmental Management 345 (2023) 118325

7

transfer), versus the drop being an artefact of the limited validation data. 
This said, the excellent validation performance of the model in the North 
Atlantic is important to consider with regards to the model’s predictive 
power. Eight of the 13 validation presence points received predictions 
above the 0.41 threshold calculated to determine D. pertusum reef 
presence, but five points received lower predictions, ranging from 0.01 
to 0.41, and there are several possible reasons for this. Firstly, it is 
extremely unlikely that a model should predict every point correctly; 
even in its calibration domain, the data-rich model does not achieve 
100% accuracy and therefore it would be unrealistic to expect a trans
ferred model to. For example, D. pertusum reef clumps can grow on soft 
sediment (Howell et al., 2009). The data-rich model does not predict 
these formations well in the North Atlantic, and therefore the poor 
predictive performance for this particular type of reef formation will 
carry over. The second reason relates to the scale at which models are 
built. Two of the incorrectly predicted true presence points were located 
on seamount summit centres, whilst a further two were located just 
above the seamount summit-shelf break. In all four cases, points were in 
areas where the 200 m multibeam bathymetry showed flat seabed with 
low topographic complexity. Vertical walls and overhangs are known to 
provide important habitat for reef-building cold-water corals including 
D. pertusum (Huvenne et al., 2011; Davies et al., 2017), but features such 
as pinnacles that provide vertical habitat can have a small footprint. In 
these cases, it is plausible that multibeam bathymetry gridded at 200 m 
resolution is too coarse to resolve these features, and instead artificially 
smooths the seabed within cells where these features are present. This 
would explain the presence of D. pertusum reef, but the low prediction 
likelihood values for these cells. Whilst this result does raise the ques
tions of whether key predictors are missing, the good performance of the 
Howell et al. (2022) model in the North Atlantic suggests this is unlikely. 

In summary, model transfer is an option for data poor regions of the 
deep sea. However, if building a model with the intention of transferring 
it, care should be taken, and decision be considered carefully, to maxi
mise transferability based on the information above. 

4.2. How is D. pertusum reef distributed across the study area? 

The transferred model in our study provides best available data on 
the likely occurrence of D. pertusum reef habitat in the southeast 
Atlantic. Suitable habitat is predicted to occur on 20 of 27 modelled 
features, suggesting D. pertusum reef is widespread. All features where 
more than 5% of the modelled surface was suitable for D. pertusum reef 
have legislation in place that prohibits bottom trawling, although these 
closures were not necessarily designated based on the presence of 
D. pertusum reef. 

Features within the EEZs of Ascension Island, Saint Helena and 
Tristan da Cunha provide large areas, highly suitable for D. pertusum reef 
as represented by their high percentages of presence predictions per 
feature (Table 5). The governments of Ascension and Saint Helena and 
Tristan da Cunha have all approved large MPAs/Marine Protection 
Zones that prohibit bottom-trawling and therefore protect VMEs 
including cold-water coral reefs. Whilst full habitat mapping of the 
South Atlantic is required in order to quantify the basin-scale impor
tance of these MPAs, it is likely they play an important role in conserving 
D. pertusum reef given the high number of features they cover and the 
high percentages of each feature that receive presence predictions. 

The model predicts presence of D. pertusum reef across seven 
acoustically mapped seamounts in ABNJ (Table 5) but finds no likely 
presence on six features. These findings are important in the context of 
fisheries management of the region. The South East Atlantic Fisheries 
Organisation (SEAFO) is the RFMO for ABNJ east of 20 ◦W in the South 
Atlantic (Fig. 2). RFMOs are required to regulate bottom fisheries in 
ABNJ and adopt the precautionary principle to avoid significant adverse 
impacts to VMEs. In reality, this is managed by bottom fishery closures, 
and through enforcing more reactive measures such as the move-on 
protocol which requires fishing vessels to move away at least 2 

nautical miles if they come into contact with VME indicator taxa when 
fishing. Up to this point, VME data for the region has largely been 
collected through the FAO EAF-Nansen programme (Bergstad et al., 
2019), or ad-hoc reporting from vessels whose encounters have trig
gered the move-on protocol. This approach has resulted in several 
spatial closures to bottom trawl fishing. Four of the seven features with 
above-threshold predictions for D. pertusum reef are already either 
entirely closed or have a portion closed to bottom trawling (Table 5). 

Valdivia Bank is a seamount complex in the subtropical southeast 
Atlantic and has previously been bottom-trawled for orange roughy 
and/or alfonsino (FAO, 2011). In 2016 a small area of Valdivia Central, 
one of the seamounts in the complex, was closed to all fishing except for 
pots and set longlines (CM 30/15, 2015) to protect VMEs. The closure 
roughly tracks the 550 m bathymetric contour around the southern flank 
of the feature, and whilst it does encompass some areas with high pre
diction values, the northern flank of Valdivia Central appears to provide 
more (both spatially and environmentally) suitable area for D. pertusum 
reef (Fig. 2. 3C-D). This VME closure, although not providing maximum 
coverage for D. pertusum reef, will likely incorporate other VMEs such as 
Solenosmilia variabilis reef, or deep-sea sponge aggregations, and there
fore predictive outputs for other taxa like those created in this study will 
be valuable to fisheries managers during reviews of existing and future 
VME closed areas. The modelled outputs presented here identify all four 
features within the wider Valdivia Bank complex as likely harbouring 
D. pertusum reef. They also represented the only features within ABNJ 
that have a high predicted likelihood of D. pertusum reef habitat, whilst 
still being open to bottom trawling. Therefore, in the case of Valdivia 
Bank, our data suggest that additional closures could further prevent 
significant adverse impacts to D. pertusum reef in the subtropical 
southeast Atlantic. 

Six features in ABNJ show no likely presence of D. pertusum reef in 
the modelled outputs, and this is based on their environmental profiles. 
Despite their varying latitudes, Herdman, Ewing and Schmitt-Ott all 
receive no presence prediction for D. pertusum reef, likely because they 
all have deep (>800 m) summit depths, although both Herman and 
Schmitt-Ott fall within VME precautionary closures. On the contrary, 
from the small amount of high-resolution bathymetry available, Shan
non, Yunov, Yermelenko and Discovery all appear to have shallower 
summits (<500 m). However, they are all located below the South 
Subtropical Front at approximately 39 ◦S, and are therefore permanently 
surrounded by cooler subantarctic water (Deacon, 1937; Smythe-Wright 
et al., 1998) below 6 ◦C, outside the known thermal niche cold of 
D. pertusum reef (Rogers, 1999). Nevertheless, lower temperatures do 
not rule out the presence of other VMEs including S. variabilis reef that is 
also found in the South Atlantic (Bridges et al., 2021). Shannon, Yer
melenko and Discovery all harbour open fishing grounds, whilst Yunov 
remains undesignated to either closure or fishing. Whilst the lack of 
D. pertusum reef suitable habitat on these features suggests that any 
fishing taking place may not adversely impact this VME, further explo
ration should be undertaken to ascertain whether other VMEs are pre
sent on these features and if so, act accordingly to protect these from 
significant adverse impacts. 

5. Conclusion 

This study is the first example of a deep sea HSM being transferred 
from a data-rich to a data-poor ocean basin. Knowledge gaps in species 
and habitat distribution in the deep ocean will become more apparent 
with increasing human use, and without accurate maps of where habi
tats occur or are likely to occur, it will be difficult to implement an 
ecologically coherent, evidence-based High Seas MPA network to help 
achieve global sustainability targets. This encroaching need to consider 
areas for protection, means that successful transfer of basin-scale HSMs 
stands to provide significant contributions to the spatial planning pro
cess, particularly in ABNJ and areas that have previously undergone 
little scientific exploration. 
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The results of this initial application are promising, however more 
research is urgently needed to understand when model transfer is likely 
to work and when not; it is only after this that the full potential of this 
method will be realised. We have demonstrated how model transfer 
stands to offer best available data for understudied regions which could 
significantly benefit environmental managers. For example, promoting 
the precautionary principle through avoidance of areas with high like
lihoods of VME presence from transferred models, rather than relying on 
physical encounters to trigger other protocols. 

Whilst ensuring access to robust independent validation data is 
important, further collection of intermediate resolution (i.e. 200-300 m) 
environmental data, particularly in the understudied global south and 
ABNJ, is critical to maximising the efficacy of model transfer. Thus, 
initiatives such as the Nippon Seabed 2030 Project, 2023 Project that 
advocate for 100% of the ocean floor to be mapped by 2030 could help 
significantly advance our understanding of model transfer techniques, 
ultimately facilitating more evidence-based decision making in spatial 
management processes. 
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