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ABSTRACT: The ocean is forced by the atmosphere on a range of spatial and temporal scales. In numerical models the
atmospheric resolution sets a limit on these scales and for typical climate models mesoscale (,500 km) atmospheric forcing
is absent or misrepresented. Previous studies have demonstrated that mesoscale forcing significantly affects key ocean cir-
culation systems such as the North Atlantic subpolar gyre (SPG) and the Atlantic meridional overturning circulation
(AMOC). Here we present ocean model simulations that demonstrate that the addition of realistic mesoscale atmospheric
forcing leads to coherent patterns of change: a cooler sea surface in the tropical and subtropical Atlantic Ocean and deeper
mixed layers in the subpolar North Atlantic in autumn, winter, and spring. These lead to robust statistically significant
increases in the volume transport of the North Atlantic SPG by 10% and the AMOC by up to 10%. Our simulations use a
novel stochastic parameterization}based on a cellular automata algorithm}to represent spatially coherent weather sys-
tems realistically over a range of scales, including down to the smallest resolvable by the ocean grid (;10 km). Convection-
permitting atmospheric models predict changes in the intensity and frequency of mesoscale weather systems due to
climate change, so representing them in coupled climate models would bring higher fidelity to future climate
projections.

KEYWORDS: North Atlantic Ocean; Atmosphere–ocean interaction; Mesoscale processes; Oceanic mixed layer;
Stochastic models; Sea surface temperature

1. Introduction

The ocean is forced by the atmosphere via fluxes of heat,
moisture, and momentum at the ocean’s surface over a wide
range of spatial and temporal scales (Sun et al. 1996; Haine
et al. 2009; Holdsworth and Myers 2015; Bishop et al. 2017).
In a climate model the atmospheric forcing is limited by
what is represented in the atmospheric model (i.e., what is
resolved or parameterized). What is resolved by the atmo-
spheric model grid can be quantified by the “effective reso-
lution” metric (Skamarock 2004), which makes use of the
remarkable power-law characteristics of atmospheric ki-
netic energy (Nastrom et al. 1984; Nastrom and Gage 1985).
A power spectrum of the model winds will fall away from
the observed power-law relationship at its effective resolu-
tion, which is typically around 7Dx, where Dx is the hori-
zontal grid length [e.g., Fig. 11 in Skamarock (2004)]. In
current global coupled climate models, the atmospheric
grid resolution is typically 60 km and the oceanic grid reso-
lution is typically 1=48 (Roberts et al. 2019), meaning that at-
mospheric features smaller than around 400 km will be
absent or poorly resolved. This underrepresentation of

mesoscale weather systems is a concern, as they are critical
to atmosphere–ocean coupling and consequently the cli-
mate system.

Previous modeling studies have attempted to address miss-
ing mesoscale features in climate models in various ways. The
obvious approach is to increase model resolution to explicitly
resolve smaller-scale processes, as is exemplified in the High-
ResMIP (Haarsma et al. 2016) experiments of phase 6 of the
Coupled Model Intercomparison Project (CMIP6); for exam-
ple, in Roberts et al. (2019), their “HH” configuration has an
atmospheric resolution of 25 km and an oceanic resolution of
1/128. However, this approach is still limited by the atmo-
spheric grid resolution and is prohibitively expensive for long
simulations or large ensembles. An alternative approach is to
parameterize the missing components of the atmospheric forc-
ing in a lower-resolution framework. Previous studies have at-
tempted to parameterize specific mesoscale weather systems,
such as polar mesoscale cyclones (Condron and Renfrew 2013),
orographic jets (Sproson et al. 2010), and hurricanes (Hu and
Meehl 2009); while others have introduced stochastic fluctua-
tions into the atmospheric forcing at the grid scale (Williams
2012; Li and von Storch 2013). These studies have demonstrated
the importance of mesoscale atmospheric forcing for the ocean
(e.g., for dense water formation in the subpolar North Atlantic;
Haine et al. 2009; Sproson et al. 2010; Condron and Renfrew
2013; Jung et al. 2014; Holdsworth and Myers 2015) and as a
contribution to the forcing of the AMOC (Jung et al. 2014;
Roberts et al. 2019). However, there are major limitations to
these previous approaches. Parameterizing specific weather sys-
tems is necessarily ad hoc and so could miss out important fea-
tures, such as the impacts of tropical and midlatitude mesoscale
convective systems (Schumacher and Rasmussen 2020), and
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would be difficult to implement in a climate model. Adding
stochastic noise at the grid scale has been a popular ap-
proach to representing the “chaotic” (i.e., unpredictable)
component of the forcing field, with statistically determined
constraints to match observations (Hasselmann 1976). In-
deed, investigating ocean and climate responses to atmo-
spheric variability using this approach has been explored
extensively (Frankignoul and Hasselmann 1977; Barsugli
and Battisti 1998; Williams 2012; Li and von Storch 2013).
However, this approach does not improve the fidelity of the
atmospheric forcing (i.e., the range of spatial-temporal
scales is generally unimproved).

In this study, we present a novel approach to parameter-
ize missing mesoscale atmospheric forcing that is universal,
improves fidelity, and could be included within the coupling
component of climate models. The rest of the paper is orga-
nized as follows. In section 2, we discuss the kinetic energy
deficiency at the mesoscales in reanalysis wind fields. In sec-
tion 3 we introduce a new approach to representing this me-
soscale wind variability that stochastically parameterizes the
“missing” kinetic energy. In section 4 we describe the ocean
model configuration and the design of a small ensemble of
simulations. In section 5 the improvement in atmospheric
forcing and the impact on the surface fields and circulation

of the Atlantic are demonstrated. Conclusions and a discus-
sion are in section 6.

2. The mesoscale kinetic energy deficiency in
reanalysis winds

An evaluation of kinetic energy is performed for wind fields
obtained from the state-of-art European Centre of Mesoscale
Weather Forecast (ECMWF) fifth-generation atmospheric re-
analysis (ERA5; Hersbach et al. 2020). Both the wavenumber
and frequency spectra are computed for ERA5 winds and
compared with QuikSCAT scatterometer wind (Chelton et al.
2006) and in situ meteorological buoy wind products. In this
study, we use hourly ERA5 wind fields with ;31 km horizon-
tal resolution (Hersbach et al. 2020), mapped onto a 1=48 3 1=48

longitude–latitude grid and a daily gridded version of
QuikSCAT scatterometer wind with the same 1=48 3 1=48

spatial resolution (Ricciardulli and Wentz 2015). The in situ
buoy wind time series have data every 15 min and are sub-
sampled to hourly frequency to match the ERA5 data. All
the data are sampled over the North Atlantic Ocean region
(1008W–208E, 148S–748N) as shown in Fig. 1a.

The wavenumber spectral analyses are performed on spa-
tially detrended wind fields from QuikSCAT scatterometer

FIG. 1. Meteorological buoy availability and power spectra for the winds. (a) Locations of the meteorological buoys
selected for comparison with ERA5 winds. (b) The number of meteorological buoy segments available for each year.
(c) Average wavenumber spectra of QuikSCAT scatterometer and ERA5 winds. (d) Average frequency spectra of ob-
served and ERA5 winds at grid points collocated with the meteorological buoys. The ERA5 winds fall away from the
observations at the “effective resolution” of around 400–500 km and a time scale of around 12 h (2 cycles per day).
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observations, and ERA5 model output from January 2000 to
November 2009, when QuikSCAT observations are available.
Analysis is performed over the same Atlantic Ocean domain
shown in Fig. 1a using a discrete Fourier transform method.
A spatial detrend designed for meteorological fields over a
limited area (Errico 1985) is applied on ERA5 and QuikSCAT
wind fields to avoid planetary-scale features aliasing onto the
mesoscale and smaller scales of the interest here. Wavenum-
ber spectra are then computed along all suitable meridian lines
to accommodate the largest possible range of wavelengths,
from around 1700 km down to 25 km, the nominal grid length
of the gridded daily QuikSCAT dataset. Spectra are averaged
for each wavenumber bin for both ERA5 and QuikSCAT be-
tween 2000 and 2009. In total, over 1 3 108 samples are in-
cluded to produce the wavenumber spectra. The frequency
spectral analyses are performed on time series of buoy and
ERA5 wind velocity from January 2000 to December 2019. In
total 39 buoys situated within the North Atlantic domain are
selected for the comparison: 16 from the Prediction and
Research Moored Array in the Tropical Atlantic (PIRATA)
monitoring program, 22 from the National Data Buoy Center
(NDBC), and one private buoy (SIMORC) located in the
Norwegian Sea (Fig. 1a). As a result, we obtain 375 year-long
wind velocity time series in total from the in situ met buoy for
spectral analysis (Fig. 1b). The ERA5 time series used for compar-
ison are extracted from the nearest grid point to the buoys over
years when observations are available. In total, over 3 3 106 data
points are analyzed to produce the frequency spectra.

The resultant wind wavenumber spectra in Fig. 1c shows that
the ERA5 surface wind kinetic energy drops away from the
QuikSCAT observation, at a length scale around 400–500 km.
This critical length scale coincides with the transition between
the two spectral slopes, k23 and k25/3 (where k is wavenumber),
that characterize the two observed turbulence regimes (Nastrom
and Gage 1985). The k23 slope is associated with the large-scale

coherent structures (e.g., planetary waves), while the k25/3 slope
is thought to be associated with small-scale convection (Lilly
1983) or the generation of internal gravity waves (Dewan 1979;
VanZandt 1982). The departure of the ERA5 spectra from that
observed implies an underrepresentation of mesoscale variabil-
ity in this reanalysis. There is also a drop off in ERA5 wind
kinetic energy in the frequency domain at subdaily time scales,
when compared with collocated meteorological buoy observa-
tions (Fig. 1d). Taken together these spectra suggest missing
ERA5 features that exhibit spatiotemporal coherence on scales
of 50–500 km and 1–24 h (Fig. 1d).

3. A new approach for parameterizing mesoscale
atmospheric forcing via a cellular automata algorithm

a. Approach

Cellular automata (CA) algorithms use a discrete computa-
tional model to generate patterns of coherent structures over
grid cells in space and time (Shutts 2005). They evolve locally
through discrete states according to a set of rules applied to
the states of the neighboring grid cells at the previous time
step. This allows the CA algorithm to generate self-organized
patterns on spatial scales that are larger than a single grid cell;
in fact, coherent patterns emerge over a range of spatial
scales. Originally, the rules of CA were deterministic, so the
evolution of the pattern was entirely predictable. However,
later adaptations led to probabilistic (or stochastic) CA where
the rules incorporate a choice from a defined probability dis-
tribution. This additional stochasticity results in an “organic”
looking of CA-generated perturbation pattern (Fig. 2a; Bengtsson
et al. 2013) that resembles observed convective-scale weather sys-
tems (Fig. 2b). CA algorithms were first introduced to the atmo-
spheric modeling community (Palmer 1997) to parameterize
subgrid-scale disturbances. For example, in ensemble numerical
weather prediction models, such stochastic CA algorithms have

FIG. 2. Illustration of the stochastic cellular automata pattern: (a) a snapshot of the 2D perturbation pattern gener-
ated from the probabilistic CA algorithm after 3000 steps, and (b) a true-color MODIS satellite image of the tropical
Atlantic Ocean that is dominated by mesoscale convective clouds on a range of scales. The CA pattern qualitatively
resembles the convective cloud patterns.
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been incorporated as part of kinetic energy backscatter parame-
terizations to represent the effects of subgrid-scale orographic
drag and gravity waves on larger-scale systems (Shutts 2005) and
to simulate organized deep convection in the tropics (Bengtsson
et al. 2013).

b. Implementation

The CA pattern evolves from an initial value, the “number
of life” (NoL), that is assigned to certain grid cells at random
locations (these cells can be regarded as “alive” while others
are “dead”). The state of each grid cell at the next step is gov-
erned by rules that involve its eight neighbors, whereby the
random alive cells gradually evolve into spatially coherent
patterns with the surrounding cells (Fig. 3). The CA pattern is
linked to the ocean model grid by two parameters: the CA
grid resolution DS and the CA temporal increment Dt. A com-
bination of the NoL, DS, and Dt parameters controls the spa-
tial and temporal characteristics of the CA pattern that is
generated, which makes it possible for a carefully calibrated
CA algorithm to improve the wavenumber and frequency

wind spectra at the same time as desired from the ERA5 wind
fields.

For a regular 3 3 3, where the central cell is surrounded by
eight neighboring cells, the general (deterministic) CA rules
are (Shutts 2004; Bengtsson et al. 2013) as follows:

(i) For a dead grid cell surrounded by exactly 2 or 3 alive
cells, at the next time step the dead cell becomes alive
and is assigned with the NoL.

(ii) For an alive grid cell surrounded by exactly 3, 4, or 5
alive cells, at the next time step there are no changes.

(iii) For an alive grid cell surrounded by a different number
of alive cells, at the next time step it decreases its as-
signed NoL by 1 until the value is equal to zero, and it is
regarded as a dead grid cell.

We apply a modification to the above to incorporate probabil-
istic (or stochastic) CA rules. Specifically, the probabilistic rules
define that for condition (i) there is only a 75% chance that the
dead cells become alive, and for condition (ii) there is a 95%
chance that the cell survives (i.e., the cell value remains un-
changed). These probability thresholds introduce stochasticity

FIG. 3. Illustration of the cellular automata algorithm. (a)–(h) Snapshots of coarse-grained CA patterns from a test experiment with the
NoL equal to 1. Following the spinup period in (a)–(d) the perturbation patterns resemble the snapshot of Fig. 2a and so are similar to the
convective-scale cloud structures seen in satellite images (Fig. 2b). (i) This time series is the postprocessed CA perturbation for the central
grid point and highlights the spinup period.
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and inhibit the favored new alive cell generation embedded in
the original deterministic CA rule over a limited-area domain
(not shown). Following Shutts (2004), the CA pattern is scaled
by the NoL and coarse-grained using a 1–2–1 filter in both the
zonal and meridional directions. The mean is then subtracted
to make sure the spatial average of the perturbation pattern is
zero.

Figures 3a and 3h show snapshots of coarse-grained CA pat-
terns at various time steps as constrained by the probabilistic
rules and with the NoL 5 1. For illustrative purposes these are
plotted on a latitude–longitude grid. The snapshots display
the evolution of coherent spatial patterns on a variety of scales.
The evolution is gradual and appears “realistic” (e.g., akin to sat-
ellite imagery of the evolution of cloud fields) (Fig. 2). Figure 3i
shows a time series of postprocessed (i.e., NoL-scaled, coarse-
grained, and mean-removed) CA values for a cell in the center
of domain. After a spinup period over the first 200 steps, the CA
evolution at the domain center levels out and the CA value flips
back and forth about zero.

The addition of the CA perturbation to the wind compo-
nents is via

uERA52CA 5 uERA5 1 CA(Dt,DS, NoL) 3 sERA5

3 a(month),
yERA5-CA 5 yERA5 1 CA(Dt,DS, NoL) 3 sERA5

3 a(month): (1)

Here the magnitude of the CA perturbation is constrained by
the spatial standard deviation of ERA5 wind speed sERA5

and a nondimensional tuning parameter a. Wind direction is
not preserved, but the changes in wind direction induced by
the CA perturbations are relatively small due to the small
magnitude of perturbation added to each wind component
(see Fig. S1 in the online supplemental material). We also es-
timated the “best” value of a for a few subdomains (i.e., that
which best fits the observed KE spectra) and found that a is

not very sensitive spatially but does vary somewhat in time.
Consequently, we set a to be spatially constant and to vary
monthly between 0.44 and 0.49. We also considered other
means of implementing the CA perturbation scheme, such as
perturbing the wind streamfunction or vorticity field (e.g.,
Shutts 2005; Condron and Renfrew 2013), but decided to di-
rectly perturb the wind velocity field since it gives us better
control of the wind KE spectra.

c. Setting the CA parameters

We adjust the CA grid size DS, CA temporal increment Dt,
and the NoL to optimize the spectral characteristics of the
CA perturbed winds (i.e., the ERA-CA winds). Figure 4
shows wavelength and frequency power spectra focused on
the mesoscale (50–500 km) and for time scales of less than
2 days for various NoL values. Frequency spectral peaks
emerge at lower frequencies with the corresponding time
scale of the peaks shifting toward longer time scales as the
NoL increases and are absent for small NoL such as 1 or 2
(Fig. 4a). The wavenumber spectra when the NoL is 1 also
show a reasonable agreement with the difference between the
QuikSCAT and ERA5 wind spectra, especially at the smallest
scales down to ;50 km (Fig. 4b). Consequently, we set the
NoL as 1. The choices of Dt and DS are determined after set-
ting the NoL. The Dt is set pragmatically to be 1 h, the same
as the ERA5 dataset. A smaller time step could be helpful for
inducing higher-frequency wind variability but at a computa-
tional cost, while a larger time step would not fulfil our pur-
pose of improving high-frequency wind variability. The DS is
set to be 1/128, approximately one-third of the nominal ERA5
grid (Hersbach et al. 2020), and approximately matching the
ocean model grid size. This choice of DS introduces wind vari-
ability down to ;10-km length scales and fully utilizes the
1/108 resolution of the ocean model to capture as much small-
scale variability as possible. The consequences of these pa-
rameter choices lead to a slight underrepresentation of kinetic
energy around 200–500 km (Fig. 4b), which is a compromise

FIG. 4. Power spectra for the mesoscales. (a) The difference in frequency spectra between meteorological buoy and
ERA5 winds (gray) and the same quantity computed from ERA5-CA and ERA5 winds. Unwanted frequency spec-
tral peaks emerge in the perturbed wind field for larger values of NoL. (b) The difference in wavelength spectra be-
tween QuikSCAT and ERA5 winds (gray) and the same quantity computed from ERA5-CA and ERA5 winds with
different choices of the NoL value.
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that we have to bear for this current version of our perturba-
tion scheme in Eq. (1). A more scale-targeted perturbation
could be developed in future work.

4. Ocean model configuration and experimental design

We use the Massachusetts Institute of Technology general
circulation model (MITgcm) to investigate the Atlantic Ocean
response to CA-induced wind variability. The ocean model
configuration generally follows Zhai and Marshall (2013). The
model has a horizontal grid size of 1/108 (i.e., eddy resolving)
and a domain spanning from 148S to 748N and from 1008W to
208E. There are 50 uneven vertical geopotential levels whose
thickness increases from 1 m at the surface to 250 m at the
bottom. The model uses a K-profile parameterization scheme
to simulate the vertical mixing caused by surface buoyancy
and momentum flux (Large et al. 1994). For simplicity, sea ice
is not represented. The model was first spun up for 23 years at
1/58 resolution and then for another 30 years at 1/108 resolution,
forced by climatological monthly mean forcing obtained from
National Centers for Environmental Prediction–National Cen-
ter for Atmospheric Research (NCEP–NCAR) reanalysis. A
further spinup run is conducted for 5 years with atmospheric
forcing derived from the ERA5 meteorological fields from 1995
to 1999, allowing the model to adjust to this higher-resolution
forcing. The SST and sea surface salinity (SSS) are restored to
monthly mean climatology, as derived from the World Ocean
Atlas 2005 (WOA05), on a time scale of 3 months. At the north-
ern and southern boundaries exchanges are performed by re-
storing the model temperature and salinity fields toward the
monthly mean WOA05 climatological values at all depths, with
a restoring time scale that varies linearly from 3 days to infinity
over the 48-wide buffer zones.

The atmospheric forcing is computed using the COARE
3.0 bulk flux algorithm (Fairall et al. 2003) using ERA5 air
temperature, SST, dewpoint temperature, sea surface pres-
sure, radiative (longwave and shortwave) heat fluxes, sea ice
cover, total precipitation, and runoff. Note that the use of
ERA5 meteorological variables and an offline bulk flux algo-
rithm introduces a bias in the modeled SST when compared
with climatology. This is an undesirable by-product of the
ocean-only experimental design. To counter this, we apply a
constant bias correction to the turbulent heat flux fields com-
puted from a 58 3 58 spatially smoothed 20-yr mean differ-
ence between the ERA5 turbulent heat fluxes and those
calculated using the COARE algorithm. This bias correction
is applied to all the simulations and so does not affect compar-
isons between them.

Four experiments are conducted}a control simulation
(CONTROL) and a three-member ensemble of perturbation
simulations (PERTURB1, PERTURB2, and PERTURB3)}in
order to disentangle the ocean’s response to CA-induced wind
variability from the year 2000 onward. The CONTROL is ini-
tialized from the final output of the 5-yr spinup simulation (i.e.,
end of 1999) and is forced with bulk fluxes that are calculated
with ERA5 winds from 1 January 2000. PERTURB1 is initialized
in the same way as CONTROL but forced from 1 January 2000
with bulk fluxes computed from ERA5-CA winds. PERTURB2

is initialized with the ocean state at the end of the first-year
CONTROL simulation (i.e., the end of 2000) and forced by
ERA5-CA fluxes from 1 January 2001. PERTURB3 is created
by cross-matching the initial ocean state and the surface forcing; it
is initialized in the same way as PERTURB2 (i.e., using the ocean
state from the end of the first-year CONTROL simulation) but is
forced in the same way as PERTURB1 (i.e., with ERA-CA
fluxes starting from 1 January 2000). Using this procedure, we
effectively generate a three-member ensemble of ocean simula-
tions. We take ensemble averages to distinguish the ocean re-
sponse to the CA algorithm and that from internal variability.

5. Results

a. Atmospheric forcing changes from the CA algorithm

The CA perturbed winds demonstrate a significant improve-
ment in spatial and temporal spectra for length scales , 400 km
and time scales , 1 day (Figs. 5a,b). This spectral improvement
shows that the CA perturbation induces mesoscale and high-
frequency wind fluctuations at the desired length scales and time
scales, thereby bringing the ERA5-CA wind field closer to ob-
servations. In addition, the CA perturbations improve the distri-
bution of wind speed by decreasing the number of low-wind
events (,7 m s21) and increasing the number of high-wind
events ($8 m s21; Fig. 5c) due to the nonlinear dependence of
the wind speed on wind velocity components [for more details,
see Zhou (2021)]. This has the effect of increasing the fraction of
winds with zero bias and reducing the fraction with negative
biases, at the expense of minor increases in a few of the positive
bias bins (Fig. 5d). Note that the purpose of the CA perturbation
is not to compensate for the wind bias in ERA5 at each individ-
ual grid point, or time, but rather to insert the right amount of
additional mesoscale variability at appropriate spatial and tem-
poral scales and with coherency, as dictated by the evolving CA
pattern (Figs. 3a–h).

The CA-induced mesoscale and high-frequency wind vari-
ability enhances the surface wind speed over the entire do-
main (Fig. 6a). But it does so only modestly, by 0.07m s21 on
average, which is ,1% of the mean ERA5 wind speed and
,10% of the mean bias, and so within the uncertainty range
of reanalyses winds. The magnitude of the wind speed in-
crease has spatial structure, with a greater enhancement in
the intertropical convergence zone (ITCZ) and subtropical
gyre (STG)}regions characterized by moderate background
wind speeds (,7 m s21). These regions have low wind vari-
ability in reanalyses products due to a lack of simulated meso-
scale convective systems in the tropical seas (Belmonte Rivas
and Stoffelen 2019) and lack of strong horizontal gradients in
sea surface temperature associated with mesoscale oceanic
frontal structures near the western boundary current region
(Chelton et al. 2004). Overall, the CA algorithm substantially
improves the fidelity of the marine wind fields: improving the
power spectra, wind speed bias, and spatial distribution but
without significantly changing the overall magnitude. It is
worth noting that the magnitude of improvement of wind
speed spatial distribution is small when compared with the ac-
tual bias between ERA5 and QuikSCAT, especially in regions
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where the ERA5 product is significantly underestimated in
the ITCZ and STG (Fig. S3 in the online supplemental
material), and this is mainly due to the small magnitude of
CA perturbation.

The CA-induced differences in wind have a direct impact
on the air–sea heat and momentum fluxes used in our ocean
model experiments as these are computed offline using bulk
formulas. On average, the CA perturbation systematically en-
hances the surface turbulent heat loss from the ocean to the
atmosphere (Fig. 6b), by 1.2 W m22, due to the small average
increase in wind speed. The most significant heat loss is within
the region of weak background wind speeds (,7 m s21),
where the greatest wind speed enhancements are located: for
example, over the Gulf Stream and east tropical Atlantic
where the heat loss enhancement exceeds 5 W m22 (Fig. 6b).
The CA perturbation also systematically enhances the wind
stress across the entire North Atlantic domain (Fig. 6c). Sig-
nificant increases in wind stress are found in regions of strong
background wind ($8 m s21) such as the subpolar region and
midlatitude westerlies where the increase in wind stress

magnitude can be more than 0.06 N m22. This is mainly be-
cause the magnitude of wind stress depends both on wind per-
turbations and the background wind owing to the nonlinear
nature of the stress law. The strengthened wind stress over
the subpolar region and midlatitude westerly region leads to
anomalous anticyclonic and cyclonic wind stress curl over the
STG and subpolar gyre (SPG), respectively (Fig. 6d), which re-
inforces the underlying wind stress curl pattern. The changes in
surface heat flux and wind stress induced by the CA algorithm
are comparable to those brought about by increases in model
resolution}for example, differences between high-resolution
and coarse-grained atmospheric forcing fields (Jung et al. 2014)
and between high-resolution and low-resolution atmospheric
model runs (Gavrikov et al. 2020). It is noted that the perturba-
tion scheme presented in Eq. (1) tends to induce northeasterly
or southwesterly anomalies to the original ERA5 wind field.
We also tested an alternative scheme where the CA component
is subtracted from the meridional wind velocity instead of being
added to it. The resultant surface wind speed and more impor-
tantly wind stress (curl; see Fig. S2 in the online supplemental

FIG. 5. Characteristics of the near-surface wind from observations, from ERA5 and from ERA5-CA, i.e., perturbed
with the stochastic cellular automata algorithm. (a) Averaged wavelength spectra for near-surface wind kinetic energy
derived from QuikSCAT scatterometer observations (black), ERA5 (blue), and ERA5-CA (red) from 2000 to 2009.
The observed winds obey power laws for 2D turbulence theory with a k23 slope over larger scales (.500 km) and a
k25/3 over mesoscales (,400 km). (b) Frequency spectra averaged over the locations of several meteorological buoys
for in situ observations, ERA5, and ERA5-CA. (c) Histogram of wind speed derived from the QuikSCAT scatterom-
eter, ERA5, and ERA5-CA from 2000 to 2009. The CA perturbations improve the wind speed distribution by
reducing the fraction of low wind speed events (,7 m s21) and increasing the fraction of high wind speed events
($8 m s21). (d) Histogram of wind speed differences between ERA5 and QuikSCAT (blue) and between ERA5-CA
and QuikSCAT (red) for the period 2000–09. The CA perturbations reduce the negative bias of the original ERA5
winds, at the expense of an increase in bias in a few of the positive bias bins.
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material) resembles that of Fig. 6, namely, a pronounced in-
crease of wind speed in weak wind regions and greater wind
stress enhancement over strong wind regions. This implies that
the distribution of the CA-induced difference in wind speed

(and therefore net surface heat fluxes) and wind stress (curl) is
mostly dependent on the magnitude of the background wind
speed, with only secondary modulation from the relative differ-
ence between the original and perturbation wind directions. On

FIG. 6. CA-induced atmospheric forcing difference and surface ocean response, showing the 20-yr-mean difference
in (a) wind speed, (b) net surface heat flux, (c) wind stress, and (d) wind stress curl (shading) between ERA5-CA and
ERA5 (i.e., ERA5-CA minus ERA5). In (a)–(c), the black contours show the 20-yr-averaged ERA5 wind speed, and
in (c) the white arrows represent the averaged wind stress vectors. Also shown is the 20-yr-mean difference in (e) SST
and (f) ML depth between the PERTURB ensemble mean and CONTROL, with contours showing the ML depth in
the CONTROL simulation. Dash-outlined boxes in (e) highlight four latitude bands representing the subpolar gyre,
Gulf Stream, subtropical gyre, and tropical region, over which the subdomain-averaged SST response and ML depths
are calculated (cf. Fig. 7, below).
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the other hand, Fig. S2 does show that the application of an
alternative CA scheme leads to some noticeable difference in
surface forcing fields in the NE trade wind region between 108
and 208N. Future work could examine the impact of these sec-
ondary wind direction perturbation factors on the ocean but
this is beyond the scope of this first study.

b. Impact on sea surface temperature and mixed
layer depth

The response of the sea surface temperature (SST) and
mixed layer (ML) depth (defined as the shallowest depth
where temperature is 0.88C colder than SST; Kara et al. 2000)
to the CA-induced wind variabilities is evaluated by taking
the difference of the SST and ML depth between CONTROL
and ensemble mean of PERTURB1–3 to minimize the model
internal variability brought by the random eddy generation.

The CONTROL simulation is sufficiently comparable to
observations and a state estimate of the climatological ML
depth seasonality and mean SST state particular in the tropics
and subtropics (Fig. S4 in the online supplemental material).
Our model overestimates ML depth in the spring, winter, and
autumn, which might influence the response of the North
Atlantic subpolar ocean (Fig. S4). However, in our analysis
we focus on the differences between the CONTROL and per-
turbation simulations (PERTURB1–3), so the bias in ML
depth due to ocean model configuration will be removed
when the differences are examined.

The SST and ML depth differences show a systematic cool-
ing of sea surface and a deepening of the North Atlantic’s
SPGML (Figs. 6e,f). Averaged over the entire model domain,
the SST drops by about 0.28C in response to the CA-induced
surface flux changes. The pronounced SST decrease is found
in the ITCZ and STG, where the SST decreases by over 0.58C
when averaged mostly over the boreal summer and autumn
months (Figs. 6e and 7).

The magnitude of the SST response is strongly correlated
with seasonal changes in the background stratification as evi-
denced by the ML depth (Fig. 7). At subtropical latitudes the
ML is shallow in summer and autumn, implying a small ML
heat capacity, which amplifies the ML temperature response
to surface buoyancy loss and/or entrainment of cold water
from underneath the ML. As a result, subtropical latitudes in-
cluding the interior of STG and the boundary current region
as Gulf Stream region experience pronounced CA-induced
SST cooling, particularly during the summer and autumn sea-
sons. In tropical regions, the ML depth is relatively shallow all
year long, which in turn leads to a large SST cooling in all
four seasons (Fig. 7). Both the seasonal (Fig. S5 in the online
supplemental material) and mean (Fig. 6f) difference in ML
depth between the CONTROL and ensemble mean are near
negligible over the tropical and subtropical region, which
strongly dismisses the importance of any CA-induced ML
depth changes in determining the pronounced SST response
seen in these regions. The similarity between the SST re-
sponse and surface heat flux differences (Figs. 6b,e) also high-
lights the dominant role played by surface heat flux changes
in determining the SST response pattern.

A larger ML deepening due to the CA perturbations is
commonly found north of 358N, where the background upper
ocean ML is deep (.200 m; Fig. 6f), implying that the upper
ocean is weakly stratified. In the SPG region, the ML typically
deepens by over 100 m (averaged annually; Fig. 6f) and by
over 250 m in the winter months (supplemental Fig. S5). Be-
cause the water column in the SPG in wintertime is precondi-
tioned with a weak vertical density gradient, the relatively
small amount of additional surface buoyancy loss induced by
the CA perturbations is able to trigger deep convection and
this can result in a significant deepening of the ML (e.g., in the
western Labrador Sea; Fig. 6e), suggesting that CA-induced
mesoscale wind perturbations may have an impact on the
strength and characteristics of the AMOC (Kuhlbrodt et al.
2007; Yeager et al. 2021).

c. Impact on large-scale ocean circulation

Current observational techniques do not facilitate an accu-
rate estimate of the SPG based on the minimum barotropic
streamfunction of the basinwide full-depth velocity field as
defined in this study, so a comparison with observations was
not performed directly. However, the CONTROL SPG does
capture the observed interannual variability well (Fig. S6 in
the online supplemental material) when comparing with an

FIG. 7. Seasonally averaged ML depth and difference in SST
(dSST) for the four regions of the North Atlantic. The dSST is be-
tween the three PERTURB experiments and the CONTROL. The
four latitude bands are the subpolar gyre (label SPG; 408–658N),
the Gulf Stream (GS; 308–408N), the subtropical gyre (STG;
108–308N), and the tropics (TP; 108–108N). The CONTROL ML
depth can be regarded as an indicator of background stratification.
Error bars show the upper and lower bounds of the dSST across
the ensemble for each subdomain and season. Both dSST and
CONTROL ML depth are averaged over four seasons distin-
guished by color: winter [December–February (label DJF)], spring
[March–May (MAM)], summer [June–August (JJA)], and autumn
[September–November (SON)].
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SPG index derived from monthly sea surface height observa-
tions (Berx and Payne 2017). This suggests that the key pro-
cesses dominating the SPG changes are well represented in
our model configuration and justifies an assessment of the im-
pact of the CA perturbation on the SPG strength by compar-
ing the CONTROL and PERTURB experiments.

The intensified cyclonic wind stress curl and enhanced sur-
face heat loss in the subpolar North Atlantic, brought about
by the CA wind perturbations, lead to a strengthening of the
SPG in the PERTURB simulations (Fig. 8a). The SPG strength
is determined from a measure of the direct gyre rotation inten-
sity using the minimum barotropic streamfunction within the
closed contour of the monthly barotropic streamfunction field
that has the largest area north of 408N (Biri and Klein 2019). A

strengthening of SPG is also found to be one of the key ocean
responses to atmospheric forcing associated with mesoscale/
high-frequency weather systems (Condron and Renfrew 2013;
Holdsworth and Myers 2015) or forcing associated with the
positive phase of the North Atlantic Oscillation (NAO1)
(Eden and Willebrand 2001). All three PERTURB experi-
ments simulate an intensified SPG circulation throughout the
20-yr period, with an ensemble-mean increase in the SPG
strength of about 10% (4.6 Sv; 1 Sv 5 106 m3 s21). Both the
two-tailed Student’s t test and binomial test show that the en-
hancement of SPG in response to the CA-induced forcing is
statistically significant with a 99% confidence level (Table 1).

The strength of AMOC presented in our study is defined as
the maximum overturning streamfunction at 268N (Danabasoglu

FIG. 8. CA-induced ocean circulation changes. (a) Monthly time series (thin dashed lines) of
the North Atlantic SPG strength for the CONTROL (black), PERTURB1 (blue), PERTURB2
(orange), and PERTURB3 (yellow) simulations, with the corresponding 24-month running
means (thick lines). The colored bars show the differences between the running means of the in-
dividual PERTURB experiments and CONTROL, and the thick dashed line shows the differ-
ence between the PERTURB ensemble mean and CONTROL (using the right-hand axis).
(b) As in (a), but for the strength of the AMOC; here the RAPID AMOC observations are plot-
ted in gray. (c) Similar to (a), but for the upper-1000-m heat transport difference at 268N; here
the red line is the cumulative heat transport (right-hand axis). The SPG and AMOC are both in-
tensified in response to the CA perturbation, and there is enhanced poleward heat transport
over the upper 1000 m as a result of the intensified AMOC.
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et al. 2016). The AMOC simulated in the CONTROL has a
strength of 17.66 3.6 Sv at 268N between 2009 and 2019, slightly
higher than estimated from observations (17.0 6 3.3 Sv) from
the Rapid Climate Change–Meridional Overturning Circulation
and Heatflux Array (RAPID-MOCHA; Cunningham et al.
2007) at the same latitude. Figure 8b shows that the CONTROL
AMOC broadly captures the interannual variability of the
RAPID-MOCHAAMOC and has a comparable standard devi-
ation. Two [PERTURB2 (18.4 6 2.7 Sv) and PERTURB3
(18.86 2.3 Sv)] out of the three perturbation experiments simu-
late a consistent strengthening of the AMOC after the first
5 years, while PERTURB1 (18.0 6 2.4 Sv) also generally simu-
lates a strengthening of the AMOC but with a dip between 2013
and 2016 (Fig. 8b). The ensemble-mean perturbation AMOC
transport is 0.4 Sv stronger than the CONTROL when averaged
over the 20-yr simulation period, with transient peak increases
of over 3 Sv, equivalent to over 10% of the CONTROL
AMOC. Two-tailed t tests and binomial tests for the SPG and
AMOC volume transport differences are statistically significant
(p, 0.01; Table 1).

The strengthened AMOC in the PERTURB experiments
leads to an increase of mean poleward heat transport of
0.8 PW (1 PW 5 1015 W) over the top 1000 m of the modeled
ocean at 268N, 4% of the CONTROL mean heat transport of
19.6 PW, and transiently to peak increases of over 3 PW
(Fig. 8c). This leads to an increase in the cumulative poleward
heat transfer of over 500 ZJ (1 ZJ 5 1021 J) from the top 1000 m
after the 20-yr integration period. Part of the extra heat that is
transported poleward is lost to the atmosphere and part is re-
turned equatorward via the lower limb of the AMOC, while the

remainder warms the SPG, particularly at middle depths (not
shown). Enhanced northward heat transport due to a strengthened
AMOC has also been reported in high-resolution coupled simu-
lations when compared with their low-resolution counterparts
(Roberts et al. 2019), suggesting that including the CA-induced
wind perturbations in PERTURB brings ocean circulation
changes akin to those from increased model resolution.

6. Conclusions and discussion

Our results show that adding “missing” mesoscale (10–500 km)
wind variability to state-of-the-art atmospheric reanalyses used to
force an ocean model can lead to systematic and significant
changes in simulations of the Atlantic Ocean: its structure, large-
scale circulation, and associated heat transport. The strengthened
SPG and AMOC and an enhanced poleward heat transport in
our CA perturbation experiments are qualitatively consistent
with changes in ocean circulation found in previous studies as a
result of increasing model resolution (Jung et al. 2014; Roberts
et al. 2019). A key advantage of our approach is that the CA
perturbation scheme is comparatively computationally inex-
pensive, and so has the potential to be used in long simulations
or ensembles.

Our approach could be adapted to fit within the coupling
component of a coupled atmosphere–ocean model. For exam-
ple, a CA perturbed wind field could be generated offline and
used to calculate perturbed air–sea flux fields, which are then
applied as boundary conditions to both the ocean and atmo-
spheric models. Alternatively, other stochastic physics param-
eterizations, such as the kinetic energy backscatter of Shutts
(2005), which improves the KE spectra, could be utilized. At
present, the stochastic physics in ensemble weather forecast-
ing systems are set to taper to zero through the atmospheric
boundary layer (e.g., Leutbecher et al. 2017; Walters et al.
2019). This taper could be removed over marine grid points in
order to improve the representation of mesoscale winds and
thus the fidelity of the atmospheric forcing of the ocean.

The intensification of the SPG and AMOC in response to
the CA perturbations also resembles the ocean responses
found in experiments where the ocean is forced by NAO1 re-
lated surface fluxes (Eden and Willebrand 2001; Delworth
and Zeng 2016). This is because CA wind perturbations lead
to strengthened westerly wind stress and enhanced surface
heat loss over the SPG, features that are broadly consistent
with atmospheric forcing during the NAO1 period (Marshall
et al. 2001; Delworth and Zeng 2016). It is worth noting that
the atmospheric forcing changes induced by the CA perturba-
tion are a tenth of typical NAO1 forcing, while the response
observed in our experiments is of the same order of magni-
tude as that reported from NAO1 forcing experiments (Eden
and Willebrand 2001; Marshall et al. 2001; Delworth and Zeng
2016). This highlights that ocean models are highly sensitive to
atmospheric forcing differences, with these sensitivities also af-
fected by the ocean model resolution and configuration. There-
fore, it calls for careful consideration of the air–sea fluxes used
in high-resolution simulations of general ocean circulation, such
as the AMOC (Hirschi et al. 2020).

TABLE 1. Statistical significance (p values) for differences in
the volume transport in the SPG and AMOC. Tabulated are
p values of two statistical tests}a two-tailed t test and a
binomial test (in parentheses)}for the difference in volume
transport for the AMOC and SPG, where the difference is
between the ensemble member, or the ensemble mean, and the
CONTROL simulation. The tests are performed on monthly
time series for the whole simulation period and for the second
half of the period as well since both AMOC and SPG still
experience model spinup over the first half of the period. The
ensemble mean differences are statistically significant for both
tests and are generally more significant for the second half of the
period, while many of the PERTURB simulations are also
statistically different from the CONTROL (p values less than
0.05 are in boldface font).

Monthly
(2000–19)

Monthly
(2010–19)

AMOC
PERTURB1 0.29 (0.08) 0.31 (0.31)
PERTURB2 0.04 (<0.01) <0.01 (<0.01)
PERTURB3 0.01 (<0.01) <0.01 (<0.01)
Ensemble mean 0.04 (<0.01) 0.02 (<0.01)

SPG
PERTURB1 0.04 (<0.01) 0.07 (<0.01)
PERTURB2 0.01 (<0.01) <0.01 (<0.01)
PERTURB3 <0.01 (<0.01) <0.01 (<0.01)
Ensemble mean <0.01 (<0.01) <0.01 (<0.01)
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The mesoscale “weather” components that we parameterize
in this study have been recognized to be critical for both the
mean state and the variability of the general ocean circulation
(Condron and Renfrew 2013; Jung et al. 2014; Roberts et al.
2019) and so are key for simulating changes in ocean heat
transport convergence and the resultant regional ocean heat
content (Danabasoglu et al. 2016; Grist et al. 2018), for basin-
scale atmosphere–ocean feedbacks (Chang et al. 1997), and
for interbasin teleconnections and broader-scale climate vari-
ability (Frankignoul et al. 2017; Zhang et al. 2019). Recent
convection-permitting regional atmospheric climate simula-
tions (Kendon et al. 2014; Finney et al. 2020) predict changes
in the intensity and frequency of mesoscale weather systems
this century. This points to a need to represent mesoscale
weather systems in coupled climate models, so that their im-
pacts on the ocean are captured and can feed back onto the
simulated changing climate system.
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