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• Modern land cover patterns drive elevated
soil & nutrient loss rates across Kenya.

• Model & compare erosion rates for pres-
ent with potential natural vegetation
cover

• >300 Mt yr−1 of soil to be lost nationally;
5 % of topsoil to be lost in <100 years.

• Highest erosion rates in croplands; >25 %
will lose top 20 cm of soil in <100 years.

• Reduced tillage and building terraces
eliminate elevated cropland soil loss rates.
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As agricultural land area increases to feed an expanding global population, soil erosion will likely accelerate, generat-
ing unsustainable losses of soil and nutrients. This is critical for Kenya where cropland expansion and nutrient loading
from runoff and erosion is contributing to eutrophication of freshwater ecosystems and desertification. We used the
Revised Universal Soil Loss Equation (RUSLE) to predict soil erosion rates under present land cover and potential nat-
ural vegetation nationally across Kenya. Simulating natural vegetation conditions allows the degree to which erosion
rates are elevated under current land use practices to be determined. This methodology exploits new digital soil maps
and two vegetation cover maps to model topsoil (top 20 cm) erosion rates, lifespans (the mass of topsoil divided by
erosion rate), and lateral nutrient fluxes (nutrient concentration times erosion rate) under both scenarios. We esti-
mated themean soil erosion rate under current land cover at ~5.5 t ha−1 yr−1, ~3 times the rate estimated for natural
vegetation cover (~1.8 t ha−1 yr−1), and equivalent to ~320 Mt yr−1 of topsoil lost nationwide. Under present
erosion rates, ~8.8 Mt, ~315 Kt, and ~ 110 Kt of soil organic carbon, nitrogen and phosphorous are lost from soil
every year, respectively. Further, 5.3 % of topsoils (~3.1 Mha), including at >25 % of croplands, have short lifespans
(<100 years). Additional scenarios were tested that assume combinations of terracing and reduced tillage practices
were adopted on croplands to mitigate erosion. Establishing bench terraces with zoned tillage could reduce soil losses
by ≥75 %; up to 87.1 t ha−1 yr−1. These reductions are comparable to converting croplands to natural vegetation,
demonstrating most agricultural soils can be conserved successfully. Extensive long-term monitoring of croplands
with terraces and reduced tillage established is required to verify the efficacy of these agricultural support practices
as indicated by our modelling.
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1. Introduction
Soil has been described as themost essential natural resource for human
security in the 21st century (Amundson et al., 2015) owing to themultitude
of ecosystem services and goods it provides, including air and water purifi-
cation, a major habitat for terrestrial biodiversity, and a fertile medium for
food production (MEA, 2005). Soil erosion by water is one of the major
pathways causing degradation of this essential resource, along with soil or-
ganic carbon (SOC) loss, vegetation degradation, aridity and salinization
(Prăvălie, 2021). The erosion of fertile topsoil will have deleterious conse-
quences for land productivity and the total environment through degrada-
tion of soil and vegetation structure and loss of key nutrients such as
carbon (C), nitrogen (N) and phosphorous (P) (e.g. Alewell et al., 2020;
Bakker et al., 2005), with knock-on effects on food security as crop yields
decline (e.g. Pimentel and Burgess, 2013; Smaling et al., 2015). Moreover,
the erosion of soil has implications for global carbon cycling and climate
change as soils lose organic carbon more rapidly as carbon dioxide to the
atmosphere and become less able to store carbon in future (Lugato et al.,
2018; Van Oost et al., 2007). There will be implications for water quality
also as more topsoil nutrients and sediment are washed into freshwaters,
making these environments increasingly deprived of oxygen and toxic to
fish (e.g. McCool and Renard, 1990; Rickson, 2014).

Current rates of annual soil loss bywater are estimated at 28–36 Pg yr−1

worldwide (Borrelli et al., 2017; Quinton et al., 2010) and, in croplands,
erosion rates exceed soil formation rates by factors of 10 to 40 (Pimentel
and Burgess, 2013). A global synthesis of measured erosion and formation
rates revealed that one third of topsoils have lifespans (defined as the time
for a soil profile to erode away) of <200 years (Evans et al., 2020). These
figures, together with the finding that one third of soils globally are de-
graded from erosion, aridity, pollution, organic carbon depletion and salini-
zation (FAO and ITPS, 2015), highlight the immediate threat that erosion
poses to soil sustainability worldwide.

Soil erosion perturbs biogeochemical cycles, namely of SOC N and P.
This is particularly important as SOC, N and P are key indicators of soil
health owing to their close associations with several physical, chemical
and biological aspects of soil structure such as plant nutrient availability
and organic matter content (Mosier et al., 2021). Quinton et al. (2010) es-
timated the magnitudes of N and P losses by soil erosion (referred to herein
as “lateral nutrient fluxes”) to be comparable to fluxes associated with crop
uptake and fertiliser application.More recent analysis suggests that soil ero-
sion is responsible for half of all P losses from the top 30 cm of soil globally
(Alewell et al., 2020). The effects of soil erosion on SOC cycling are highly
complex; for example, themobilisation of soil could increasemineralisation
rates of SOC, leading to losses of >20 % of total SOC as carbon dioxide (Lal,
2003). It has however, also been claimed soil erosion may induce a net
carbon sink (Sanderman and Berhe, 2017; Van Oost et al., 2007), though
this is disputed (Lugato et al., 2018).

Mitigating soil erosion requires an understanding of how much of it is
driven by current land use practices. One method is to calculate differences
in process rates between present-day conditions and under historical or
“potential natural vegetation” (PNV) conditions where human activity is
absent (as suggested by Wuepper et al., 2021). In so doing, the scale of
the change necessary to reduce soil erosion and its associated effects can
be identified to better target interventions (Zhao et al., 2021). Importantly,
by comparing estimated contemporary process rates with estimated rates
under PNV, one obtains a benchmark with which to contextualise the
effectiveness of interventions to mitigate soil erosion. Such an assessment
could integrate topsoil properties that are affected directly by erosion:
topsoil lifespans and lateral fluxes of SOC, N and P (Wuepper et al.,
2021). This approach is arguably appropriate, as the top three threats to
soil functions globally include soil erosion, SOC loss and nutrient imbalance
(Montanarella et al., 2016).

Previous assessments have revealed that Africa is the continent most
impacted by soil erosion (Batjes, 1996; Borrelli et al., 2017; García-Ruiz
et al., 2015) including some of the highest losses of C, N and P driven by
this process (Alewell et al., 2020; Lal, 2003; Quinton et al., 2010). Further,
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sub-Saharan Africa has the second shortest median recorded topsoil
lifespan (671 years), behind North America at 583 years (Evans et al.,
2020). The high soil erosion potential of the humid tropics portion of sub-
Saharan Africa is driven by heavy rainfall that is concentrated typically
during two rainfall seasons in the Spring and Autumn months of each
year (Labrière et al., 2015). Fenta et al. (2020) meanwhile, have high-
lighted that even in arid areas, water erosion risk can still be significant.
Compounding climate drivers are rapid land cover changes (deforestation,
cropland expansion, urbanisation and agricultural intensification), as most
human population growth currently occurs in the tropics (Hartemink et al.,
2008). This high susceptibility to soil erosion is expected to continue to be
reflected in future, with up to 66 % higher soil erosion rates by 2070
according to recent simulations of 21st Century land use and climate
change projections (Borrelli et al., 2020).

For this study, we sought to test the following hypotheses: (i) Present-
day soil erosion rates are elevated because of modern land cover patterns,
with erosion being the most severe on croplands; (ii) land management
interventions on croplands, referred to herein as “agricultural support
practices”, can reduce elevated soil erosion rates on croplands back to nat-
ural baseline levels. Here, we provide quantitative estimates of gross soil
erosion rates across Kenya, through the application of a high-resolution,
spatially distributed modelling approach. We exploit several spatial
datasets published in recent years to predict the lifespans of topsoil and
lateral fluxes of SOC, N and P resulting from erosion, thereby providing
an integrated analysis of both soil erosion risk and its consequences for
topsoil health. Maps of present-day land cover and PNV are used to drive
modelling of erosion rates under these two scenarios. Subtracting predicted
conditions under natural vegetation from present-day land cover estab-
lishes how elevated current soil erosion rates are compared to a set of nat-
ural baseline conditions. Through statistical modelling, wemap out smaller
regions of Kenya, representing unique zones of interactions among the
controls on lateral nutrient fluxes associated with soil erosion. In doing
so, we not only develop our understanding of local controls on nutrient
losses, but also produce a framework, whereby interventions to alleviate
land degradation from soil erosion can be better targeted. Demonstrating
this, we then model scenarios of agricultural support practices, to quantify
howmuch of the elevated soil erosion rates could be reversed on croplands.

2. Materials and methods

2.1. Overview and data sources

We used the Revised Universal Soil Loss Equation (RUSLE) (Renard
et al., 1997; Wischmeier and Smith, 1978) to predict gross soil erosion
rates caused by water across Kenya (see Text S1; Supplementary Mate-
rials for a detailed summary). RUSLE computes soil losses through
sheet-wash, rill and inter-rill processes within a defined area. The
model is empirical and incorporates five risk factors: Rainfall-Runoff
Erosivity (R; MJ mm ha−1 h−1 yr−1), Soil Erodibility (K; t ha h ha−1

MJ−1 mm−1), Slope Length and Steepness (LS; unitless), Cover-
Management (C; unitless), and Support Practices (P; unitless). It esti-
mates gross soil erosion rate (A; t ha−1 yr−1) as follows:

A ¼ R� K � LS� C � P (1)

RUSLE was chosen for several important advantages: (1) it is a simple,
physically plausible empirical model that provides reasonably accurate
estimates for large-scale studies and most practical purposes; (2) previ-
ous application of RUSLE at national, continental and global scales has
already been demonstrated (e.g. Borrelli et al., 2017; Panagos et al.,
2015) including in Kenya (e.g. Watene et al., 2021); (3) newly available
large scale and fine spatial resolution datasets covering Africa can be
used to calculate RUSLE's component factors; (4) its empirical nature
means that the RUSLE model does not require calibration, allowing
rapid calculation of soil loss rates under multiple scenarios; and
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(5) additional outputs can be derived from RUSLE modelling, including
estimated topsoil lifespans and lateral fluxes of soil-associated nutrients.

A core objective of our study was to estimate the extent to which soil
erosion rates under current land use are elevated compared to natural veg-
etation conditions. Therefore, we needed to create two soil erosionmaps of
Kenya: one based on current land cover; another based on the spatial distri-
bution of natural vegetation cover that could occur given present-day
climatic and edaphic conditions (Fig. 1).

Spatial datasets, including digital soil maps (DSMs) of topsoil properties
(SOC, total N, extractable P, clay, silt, sand, USDA texture class, bulk density
and stone content), soil profile data, land cover maps, a digital elevation
model (DEM), and raster layers representing rainfall volumes, were com-
piled from the ISDA soil database (iSDA, 2022) and links listed in the
paper that describe the production of the DSMs (Hengl et al., 2021).
These datasets were chosen because (except for the 1 km SM2RAIN rainfall
data) they are all 30m spatial resolution andwould allow us to produce the
finest resolution predictions of soil erosion for Kenya. All raster layers were
clipped to the Kenya shapefile taken from the “1:10m Cultural Vectors”
published by Natural Earth (Natural Earth, 2022). The ISDA soil website
hosts predicted soil properties at two depth intervals: 0–20 cm and
20–50 cm (iSDA, 2022). We modelled losses from the topsoil only and so
the term “topsoil” herein refers to the top 20 cm of soil unless stated other-
wise. Two land cover maps were used for the soil erosion modelling: The
Copernicus Africa Land Cover 2016 map to represent present-day land
cover; and the Kenyan portion of the Potential Natural Vegetation (PNV)
Map of East Africa (van Breugel et al., 2015) to represent natural vegetation
conditions. The two land cover maps were harmonised by reclassifying
their vegetation/land cover to aggregated categories of the International
Geosphere-Biosphere Programme (IGBP) classes (Fig. 1) prior to computa-
tion of C-factor and soil erosion rates (see Text S1; Supplementary Mate-
rials). All layers were re-projected to the WGS 1984 Lambert Azimuthal
Equal Area coordinate reference system, commonly used for East Africa.
The 1 km rainfall raster layers were exported from ArcMap 10.6.1 to new
Fig. 1.Distributions of aggregated land cover classes (see Text S1; Supplementary Mater
and (right) the potential natural vegetation (PNV) scenario with no human activity (no c
grassland, which are grouped together here as they have the same ranges of RUSLE C-fa
borders South Sudan. On the other hand, the Kenya shapefile, from the 1:10mCultural V
does include this area. Therefore, there is a small discrepancy in borders between the tw
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GeoTiff files with a 30 m resolution without statistical downscaling. Vector
datasets such as the Food and Agriculture Organisation Digital Soil Map of
the World (FAO DSMW) (FAO, 1977) and the PNV map were rasterised to
30 m grids and exported as new GeoTiffs. Additionally, monitored soil ero-
sion rates and topsoil lifespans estimated from these were amassed from
existing literature to evaluate model performance. Details on the soil ero-
sion model evaluation, uncertainty analysis and sensitivity to component
variables are provided in Text S2 (Supplementary Materials).

2.2. Modelling topsoil lifespans and lateral nutrient fluxes

Topsoil lifespan is defined here as the time for the top 20 cm of soil to be
physically lost from a grid cell due to water erosion. Topsoil lifespan is cal-
culated in a similar way to Evans et al. (2020) by dividing the mass of top-
soil at 0–20 cm depth, estimated from a DSM of topsoil bulk density for the
same depth interval, by the erosion rate (see Text S3; Supplementary Mate-
rials). However, we have not considered rates of soil formation or accumu-
lation via deposition as this information is unavailable.

For this study, lateral nutrient fluxes were defined specifically as soil-
associated nutrients that are lost from a grid cell via soil erosion. Lateral nu-
trient fluxes were calculated by multiplying maps of topsoil nutrient con-
centrations by gross soil erosion rates (see Text S3; Supplementary
Materials). As RUSLE does not calculate sediment transport or deposition
(Renard et al., 1997), the fate of topsoil nutrients lost via erosion was not
determined.

Gross soil erosion rates, topsoil lifespans and lateral nutrient fluxeswere
modelled under present-day land cover and potential natural vegetation.
Elevated soil erosion, lifespan and nutrient flux rates were calculated by
simply subtracting results for the natural vegetation scenario from the pre-
dictions under present-day conditions.

Given its geography, Kenya is likely to have high spatial variations in
soil erosion rates. For instance, much of the north and east of the country
is characterised as arid steppe or arid desert,flat (0–7% slopes throughout),
ials) under (left) the present-day scenario representing current land cover conditions
roplands or urban and built-up areas). Rangeland includes savannah, shrubland and
ctor coefficients. (The PNV map does not cover Ilemi in the northwest, where Kenya
ectors dataset of Natural Earth, whichwas used to clip the data layers from iSDA soil,
o land cover scenario maps, including the soil erosion modelling results.)
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and dominated by rangeland. In contrast, the western half of the country is
dominated by steep terrain, high rainfall and most of Kenya's agriculture,
with croplands located on steep hillsides as well as in valley bottoms. As
such, it is useful to partition Kenya into different zones characterised by
higher order interactions among environmental controls. Here, we applied
Classification andRegression Tree (CART)modelling to partition zones rep-
resenting unique interactions among controls on lateral nutrient fluxes.
CART modelling offers two key advantages: (1) the relative contributions
of each variable to the overall pattern of lateral nutrient fluxes across
Kenya can be quantified; (2) a decision tree is produced that allows an
area to be split into zones based on specified thresholds in factors such as
the RUSLE LS-factor. Further details on how CART modelling was imple-
mented can be found in Text S2 (Supplementary Materials).
2.3. Modelling of agricultural support practices

Hitherto, we have assumed that agricultural support practices do not
occur, equivalent to a RUSLE P-factor of 1. This is not to say that agricul-
tural support practices do not occur in Kenya. Indeed, as many as 80 % of
farms in the Upper Tana river basin alone have adopted interventions
such as establishing “fanya juu” (throw the soil upwards in Kiswahili) ter-
races, conservation tillage and intercropping (Muriuki and Macharia,
2011). However, there are no spatially explicit data on agricultural support
practices for Kenya. Notwithstanding, it is still possible to test hypothetical
scenarios of different interventions to conserve soil with the use of available
RUSLE P-factor coefficients.

Table S1 (Supplementary Materials) displays published P-factor coeffi-
cients for various support practices including tillage, terracing, contouring
and strip-contouring, that are applicable to the humid tropics (David,
1988), where most Kenyan croplands occur. These coefficients were used
to create P-factormaps for croplands for every combination of support prac-
tice listed (n = 16). Details on the calculation of P-factor are in Text S1
(Supplementary Materials).
Fig. 2.Topsoil erosion rates: a) Estimated rates under present-day land cover; b)Modelle
in gross soil erosion rates. Topsoil lifespans: d) Estimated soil lifespans under presen
f) Differences (present-day minus natural) in topsoil lifespans. Because (c) and (f) repr
values indicate where a value is larger under natural vegetation conditions and positive
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3. Results

3.1. Predicted erosion rates, topsoil lifespans and lateral nutrient fluxes

RUSLE factor maps are displayed in the Supplementary Materials, in-
cluding the R-factor (Fig. S2), K-factor (Fig. S3), LS-factor (Fig. S4) and C-
factor maps for each land cover scenario (Fig. S5). On average, predicted
soil erosion rates by RUSLE across Kenya equal 5.5 t ha−1 yr−1. Extrapolat-
ing this value across Kenya's ~ 58 Mha of land area results in an estimated
320 Mt of topsoil lost per year. Extrapolating average predicted lateral nu-
trient flux rates yields 8.8 Mt, 315 Kt and 110 Kt of SOC, N and P lost every
year, respectively. Predicted erosion rates under present-day land cover are
highest in thewestern half of Kenya, particularly near Lake Victoria and the
central plateau near Mt. Kenya (Fig. 2a). Similar patterns occur under po-
tential natural vegetation, albeit high erosion rates are less extensive than
under present-day land cover and appear to cluster on steep slopes without
dense forest cover (Fig. 2b). As a result, much of the west of Kenya shows
substantially elevated erosion rates, with large areas exhibiting estimated
erosion rates at least 5 t ha−1 yr−1 greater under present-day land cover
than under natural vegetation (Fig. 2c). Some steep slopes are currently cul-
tivated for crops. This, combined with high rainfall erosivity, and soil erod-
ibility produce very high elevated erosion rates (>50 t ha−1 yr−1more than
under PNV). Paradoxically, some mountainous parts of Kenya indicate
lower soil erosion rates under current land cover compared to natural vege-
tation conditions (Fig. 2c). This is driven by there being a lower elevation
forest-shrubland boundary in the mountains according to the PNV map
compared to the 2016 land cover map. We speculate that this results from
misclassifications of high altitude shrubland as dense forest in the 2016
land cover map and is an artefact of comparing land cover maps that
were generated at different spatial resolutions.

Reflecting these soil erosion dynamics, topsoil lifespans under current
land cover are estimated to be shortest (101–102 yr timescales, mostly)
in the west, with the most extreme examples showing lifespans between
1 and 10 years (Fig. 2d). Conversely, many of these same topsoils are
d potential rates under natural vegetation; c) Differences (present-dayminus natural)
t-day land cover; e) Modelled potential soil lifespans under natural vegetation;
esent differences between present-day and natural vegetation conditions, negative
values indicate where it is larger under present-day land cover.
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estimated to have lifespans of 103–105 years (Fig. 2e). The map of topsoil
lifespan differences (Fig. 2f) illustrates the disparities between land cover
scenarios. However, in some of the mountains and parts of the north,
where the PNV map suggests a greater extent of barren land than present-
day land cover, topsoil lifespans are estimated to be 103–105 years shorter
under potential natural vegetation.

Lateral nutrient flux estimates also reflect soil erosion dynamics
under the two land cover scenarios. Over most of Kenya, estimated lat-
eral SOC fluxes are below 0.5 t ha−1 yr−1, with larger rates >2.5 t
ha−1 yr−1 occurring in regions with the highest estimated soil erosion
rates and topsoil SOC concentrations (Fig. S6; Supplementary Mate-
rials). Similar patterns occur for lateral N fluxes (Fig. S7; Supplementary
Materials), although in the case of lateral P fluxes, the total P concentra-
tion of topsoil does not appear to coincide with high flux rates (Fig. S8;
Supplementary Materials). Like for soil erosion and topsoil lifespan, the
differences in SOC, N and P flux rates between present land cover and
potential natural vegetation conditions are greatest where croplands
occur under present-day land cover.

RUSLE model results were evaluated against observed soil erosion
rates at four primary sites across western Kenya: Kalalu, Matanya, Kabete
and the croplands of Kericho County (see Table S2; Supplementary Mate-
rials for the coordinates of each site). Previous studies suggest that RUSLE
model predictions can be considered acceptable when the prediction errors
do not exceed a factor of 2 or 3 (Bagarello et al., 2012; Borrelli et al., 2017).
Our predicted soil loss rates at Kalalu (27.3 cf. the observed 12.4 t ha−1

yr−1), Matanya (5.5 cf. the observed 4.1 t ha−1 yr−1) and the croplands
of Kericho County (53.4 cf. the observed 97.8 t ha−1 yr−1) can thus be con-
sidered acceptable. However, RUSLE-predicted soil loss rates (90.5 t ha−1

yr−1) fell far short of observed (346.6 t ha−1 yr−1) rates at Kabete
(Fig. S9; Supplementary Materials). These results are in keeping with the
prevailing observation that RUSLE over-estimates low and under estimates
high soil erosion rates (Kinnell, 2005). Evans et al. (2020) synthesised
global data on soil erosion and formation rates and used these data to
estimate topsoil (in that study, the top 30 cm) lifespans. After calculating
topsoil lifespans here (the top 20 cm), it was found that all estimated values
were within the same order of magnitude as those estimated by Evans et al.
(2020) across Kalalu, Matanya, Kabete and croplands in Kericho County
(Fig. S10; Supplementary Materials).

Soil erosion modelling presented here shows a small proportion of
very large predicted rates across Kenya. The largest soil erosion rate cat-
egory visualised in our RUSLE maps is >50 t ha−1 yr−1, which includes
1–5 % of all grid cells across Kenya (Fig. S11; Supplementary Materials).
The top 0.01 % of all modelled cells show predicted soil erosion rates
>100 t ha−1 yr−1, with the most extreme examples exceeding 1000 t
ha−1 yr−1 (Fig. S11; Supplementary Materials). Compared with the
top 1 %, grid cells displaying the top 0.01 % of predicted soil erosion
rates show much larger C, K, LS and R-factor values on average
(Fig. S12; Supplementary Materials). It is highly unlikely that such enor-
mous soil erosion rates would occur through rill and sheet erosion alone
(the processes that RUSLE is concerned with explicitly). Therefore, the
most we might be able to interpret from this is that these are simply
soil erosion hotspots according to the RUSLE model projections. Else-
where, it is likely that other erosion mechanisms such as gullying may
become dominant but are not captured in the RUSLE modelling, result-
ing in model estimates that are likely too low. This remains a key re-
search challenge.

Our CART modelling revealed the relative importance of each
RUSLE factor on predicted soil erosion rates. LS and C-factor were re-
vealed to drive >75 % of soil erosion across Kenya under present-day
land cover, representing 41 % and 36 % importance, respectively
(Table S3; Supplementary Materials). Under natural vegetation, C-
factor was most important (40 %) followed by LS-factor (38 %), perhaps
reflecting the effectiveness of greater forest cover in supressing soil ero-
sion under this scenario. R-factor contributed 21–22 % and K-factor 1 %
importance under both vegetation cover scenarios (Table S3; Supple-
mentary Materials).
5

3.2. Regional controls and process rates within Kenya

The assessment of nutrient fluxes is particularly important due to the
potential off-site environmental risks that these fluxes pose, especially to
river and lake water quality. CART modelling of the controls on lateral nu-
trient fluxes was used to partition seven zones. There are different ways in
which RUSLE factors and topsoil nutrient concentrations interact to control
estimated lateral fluxes of SOC compared with total N and total P. There-
fore, the seven zones are defined differently for each nutrient as Table 1
shows. For each nutrient, the seven zones summarise key environmental
properties including dominant land cover (Table 1), average soil erod-
ibility, rainfall erosivity, slope length-steepness factor, and disparities
in gross erosion rates, topsoil lifespans and lateral nutrient fluxes be-
tween current land cover and potential natural vegetation conditions
(Figs. 3, 4 & 5).

Estimated lateral SOC fluxes across Kenya are controlled primarily
by the LS- and C-factors (35 & 31 %, respectively), followed by R-factor
(25 %) with SOC concentration (8 %) and K-factor (1 %) contributing
very little (Table S4 & Fig. S13; Supplementary Materials). Most of Kenya
falls within Zone 1 (Fig. 3a), characterised by low lateral SOCflux estimates
(0.01 t ha−1 yr−1 on average) as a result of low LS and R values (Table 1).
Zone 2 occurs in thewest,where R is higher, and Zone 3 ismost common on
steeper slopes with rangeland vegetation. Zones 1–3 represent the regions
with the lowest mean estimated erosion and lateral SOC flux debts. How-
ever, the large estimated mean topsoil lifespan disparity (12,354 yrs) in
Zone 2 probably reflects the much higher proportion of forest cover
under the PNV scenario (Fig. 3b, c & d). Zones 5–7 represent regions
where estimated soil erosion and lateral SOC flux disparities are very
large on average (95.9–356.4 t ha−1 yr−1 of soil loss; 2.9–11.9 t ha−1

yr−1 of SOC loss). Zone 7 contains some of the highest K, LS and R values
in all of Kenya (Fig. 3e, f & g) and is covered mostly by cropland under
present-day land-use (Table 1). Here, the estimated soil erosion differences
are >300 t ha−1 yr−1 on average. Zone 4 is characterised by intermediate
mean RUSLE factor values.

Estimated lateral N fluxes are controlled chiefly by LS-factor (37%) and
total N concentration in topsoil (25 %). This is followed by R (20 %) and C
(18%),with K-factor (1%) being least important (Table S4& Fig. S14; Sup-
plementary Materials). Like SOC, for controls on lateral N fluxes, most of
Kenya is mapped as Zone 1 (Fig. 4a). Unlike SOC, however, Zone 1 is de-
fined here as parts of the country where estimated total N concentration
is <1 g kg−1 and the terrain is flat (Table 1). Zones 2–4 are characterised
by relatively small estimated average disparities of erosion rates, lateral N
fluxes and topsoil lifespans (Fig. 4b, c & d). Zone 4 is predominantly forest
under both land cover scenarios, but also includes some of themountainous
areas that have less forest cover under the PNV scenario. Zone 5 exhibits the
largest mean estimated topsoil lifespan disparities (28,888 yrs) in Kenya,
which likely reflects the differences in predominant land cover under the
two scenarios (cropland under current land cover and forest under the
PNV scenario). Zones 6 and 7 are marked by the highest estimated average
erosion and lateral N flux disparities (112.8–316.6 t ha−1 yr−1 of soil loss:
0.1–0.4 t ha−1 yr−1 of N loss). This is due to the combination of land cover
differences between the two scenarios (cropland versus forest; see Table 1)
and the high mean LS, K and R values in Zone 7 (Fig. 4e, f & g).

Estimated lateral P fluxes are controlled in a similar fashion to lateral
SOC fluxes. LS and C are the main drivers (42 % & 35 %, respectively),
then R (19 %), with total P content (4 %) and K (0 %) contributing very lit-
tle overall (Table S4& Fig. S15; Supplementary Materials). Again, much of
Kenya falls within Zone 1 (Fig. 5a), characterised by relatively little esti-
mated soil erosion and land cover differences between the two land cover
scenarios (Fig. 5b). Large lifespan disparities (38,043 yrs) in Zone 2
(Fig. 5c) reflect the predominance of croplands under present-day land
cover compared with much greater extents of rangelands under the PNV
scenario (Table 1). In contrast, Zones 4 and 5 reflect higher proportions
of forest cover under current land cover (Fig. 5b, c & d). Zones 6 and 7
exhibit the greatest modelled erosion and lateral P flux disparities
(0.02–0.09 t ha−1 yr−1), which can be explained by the interactions of



Table 1
The modal land cover category in each nutrient flux zone under the present-day land cover and PNV scenarios according to our modelling. The Zone column details the de-
lineation of each zone (N=Total Nflux rate [t ha−1 yr−1], LS=slope length and steepness [unitless],R=rainfall-runoff erosivity [MJmmha−1 h−1 yr−1] andC=cover-
management [unitless]).

Nutrient Zone Area (ha) Present-day land cover Potential natural vegetation

SOC 1) LS < 1.4 & R < 3131 45,234,610 Rangeland Rangeland
2) LS < 1.4 & R ≥ 3131 4,166,104 Croplands Rangeland
3) LS ≥ 1.4 & C < 0.22 4,396,355 Forest Rangeland
4) 1.4 ≤ LS < 3.3, C ≥ 0.22 & R < 6350 1,322,823 Croplands Forest
5) LS ≥ 3.3, C ≥ 0.22 & R < 6350 689,226 Croplands Forest
6) 1.4 ≤ LS < 4.5, C ≥ 0.22 & R ≥ 6350 42,736 Croplands Forest
7) LS ≥ 4.5, C ≥ 0.22 & R ≥ 6350 28,896 Croplands Forest

Total N 1) N < 1 & LS < 1.1 46,749,127 Rangeland Rangeland
2) N < 1, LS ≥ 1.1 & C < 0.22 3,282,528 Rangeland Rangeland
3) N < 1, LS ≥ 1.1 & C ≥ 0.22 1,219,221 Croplands Rangeland
4) N ≥ 1 & C < 0.22 2,217,953 Forest Forest
5) N ≥ 1, C ≥ 0.22 & LS < 3 1,889,122 Croplands Forest
6) N ≥ 1, C ≥ 0.22, LS ≥ 3 & R < 6753 484,350 Croplands Forest
7) N ≥ 1, C ≥ 0.22, LS ≥ 3 & R ≥ 6753 38,449 Croplands Forest

Total P 1) LS < 1.4 & C < 0.22 38,901,169 Rangeland Rangeland
2) LS < 0.52 & C ≥ 0.22 7,082,051 Croplands Rangeland
3) 1.4 ≤ LS < 1.4 & C ≥ 0.22 3,417,493 Croplands Rangeland
4) LS ≥ 1.4 & C < 0.041 1,711,159 Forest Forest
5) LS ≥ 1.4 & 0.041 ≤ C < 0.22 2,685,196 Rangeland Rangeland
6) LS ≥ 1.4 & C ≥ 0.22 & R < 6551 2,021,606 Croplands Forest
7) LS ≥ 1.4 & C ≥ 0.22 & R ≥ 6551 62,075 Croplands Forest
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large K, LS and R RUSLE factor values (Fig. 5e, f & g). Croplands dominate
Zones 6 and 7 under present-day land cover; in contrast forests cover these
same zones under the PNV scenario (Table 1). Therefore, there will be large
differences in the RUSLE C-factor as well that contribute to large modelled
disparities here.
Fig. 3. a) Seven distinct zones characterised by controls, described in Table 1, on estimat
(t ha−1 yr−1), c) topsoil lifespan (yr) and d) SOC flux rate disparities (t ha−1 yr−1) (pr
factors, e) K (t ha h MJ−1 ha−1 mm−1), f) R (MJ mm ha−1 h−1 yr−1) and g) LS (dimen
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3.3. Effects of agricultural support practices

Under most combinations of agricultural support practices, our model-
ling indicates that erosion rates are reduced to levels comparable to
converting croplands to PNV (Fig. 6). Zoned and mulch tillage-based
ed rates of lateral SOC fluxes under present-day land cover. The mean b) erosion rate
esent-day minus PNV scenario equals "debt") in each zone. The mean of the RUSLE
sionless) within each zone.



Fig. 4. a) Seven distinct zones characterised by controls, described in Table 1, on rates of lateral Nfluxes under present-day land cover. Themean b) erosion rate (t ha−1 yr−1),
c) topsoil lifespan (yr) and d) Total N flux rate disparities (t ha−1 yr−1) (present-day minus PNV scenario equals "debt") in each zone. The mean of the RUSLE factors,
e) K (t ha h MJ−1 ha−1 mm−1), f) R (MJ mm ha−1 h−1 yr−1) and g) LS (dimensionless) within each zone.
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practices induce the steepest reductions in erosion rates, especially when
combined with either of the terracing interventions. The most effective in-
tervention – combining bench terracing with zoned tillage – reduces
modelled soil loss rates by at least 75 % on all croplands, and by >95 %
in most cases (Fig. 7). Here, the median reduction in modelled soil loss
rates is about 9.7 t ha−1 yr−1, and in the top 5 % of cases, estimated ero-
sion rates are reduced by at least a factor of 9. Even the least effective
intervention – combining conventional tillage with contouring – re-
duces soil erosion rates by 40–50 % across most croplands (Fig. 7),
and by an overall median value of about 4.4 t ha−1 yr−1. To put this
into perspective, taking the median bulk density (1.32 g cm3) and soil
formation rates (0.035 mm yr−1) reported for Kenya (Liniger, 1992),
an erosion rate reduction of 4.4 t ha−1 yr−1 (equivalent to 0.333 mm
yr−1) is >7 times the estimated tolerable soil loss of 0.046 mm yr−1

(see “Liniger” in Supplementary Table 2 of Evans et al., 2020). Although
not shown here, it should be safe to assume that these interventions
would be similarly powerful in reducing lateral fluxes of SOC, N and
P, and for enhancing topsoil lifespans.

4. Discussion

4.1. Erosion implications and mitigation in Kenya

Globally, soil erosion rates from conventionally tilled croplands
outpace soil formation rates by at least an order of magnitude
(Montgomery, 2007). Consequently, many soils are undergoing rapid
rates of thinning and their profiles have short lifespans. As soil thickness
controls soil functioning, including water retention, and nutrient stor-
age capacities, thinning is a major threat to long-term soil sustainability
(Power et al., 1981). These links between topsoil erosion, lifespans and
nutrient storage underpin our integrated modelling approach of erosion
and its effects on topsoil properties which is discussed below.
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Recently, it was revealed that ~93 % of conventionally managed
soils were thinning and ~16 % had short lifespans <100 years (Evans
et al., 2020). In contrast, ~7 % of conservation plots had short lifespans
<100 years, with ~39 % having long lifespans >10,000 years; this dem-
onstrates the role that land-use management plays in conserving soil
(Evans et al., 2020). Our modelling suggests that 3.1 Mha, 86 % of
which are croplands, in Kenya are estimated to have short topsoil
lifespans <100 years. This suggests that croplands are a significant
hotspot of soil thinning and ameliorating thinning in these areas will
be key to increasing topsoil lifespans.

Like soil thickness, soil organic matter (SOM) plays a fundamental
role in soil structure and functioning. SOM consists mainly of SOC and
contains large amounts of N and P, with a change in any one of these nu-
trients directly influencing the other two. For example, enhancedminer-
alisation of SOC associated with soil erosion will cause a relative
increase in the more biologically accessible dissolved forms of N and P
(Quinton et al., 2010). Together with high erosion rates and soils that
are generally nutrient-poor, SOC-N-P feedbacks may exacerbate land
degradation problems across Kenya, especially where vegetation cover
is reduced (Hartemink et al., 2008; Smaling et al., 2015) and erosion-
associated nutrient losses outstrip fertiliser inputs (Mulinge et al.,
2016; Quinton et al., 2010). Accelerating erosion here may induce
land cover change, which itself will perturb SOC, N and P cycling di-
rectly and, indirectly, by contributing to climate change through further
losses of C to the atmosphere in the form of greenhouse gases (Bakker
et al., 2005; Feddema et al., 2005; Quinton et al., 2010). Our own
modelling provides for the first time, maps of SOC, N and P fluxes asso-
ciated with soil erosion at high spatial resolution (30 m). These maps
could be used to guide future monitoring and interventions to conserve
nutrients in Kenya's soils, or as data inputs for further modelling (e.g. of
C, N and P exchanges between soil, vegetation, freshwater bodies and
the atmosphere).



Fig. 5. a) Seven distinct zones characterised by controls (see Table 1), on rates of lateral P fluxes under present-day conditions. Mean b) erosion rate (t ha−1 yr−1), c) topsoil
lifespan (yr) and d) Total P flux rate disparities (t ha−1 yr−1) (present-dayminus PNV scenario equals "debt") for each zone. Themean of the RUSLE factors, e) K (t ha hMJ−1

ha−1 mm−1), f) R (MJ mm ha−1 h−1 yr−1) and g) LS (dimensionless) within each zone.
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In Kenya, the impacts of nutrient fluxes to aquatic ecosystems have
been well documented, especially in the case of the Winam Gulf of
Lake Victoria (May et al., 2022). Blooms of the invasive water hyacinth
(Eichhornia crassipes), which threaten fishing activities and block water
pumps, have intensified in recent years as suspended sediment, N and P
loads from contributing river basins have increased (Nyawacha et al.,
2021). Locally, high sediment and P loads are driven by agricultural
runoff, and the erosion of riverbanks and P-rich carbonatite rocks
(Guya, 2019). Our results appear to reflect this, which show the upper
reaches of rivers draining into Winam Gulf such as the Nyando and
Sondu-Miriu basins are classed as zones 5 to 7 in Figs. 3-5 (areas contrib-
uting the largest nutrient flux rates). Given the climate of Kenya, the
fluxes of sediments and associated nutrients from rivers into Lake
Victoria are likely to be greatest during the rainy seasons (March–May
and August–October), which Humphrey et al. (2022) demonstrated
using the RUSLE model at monthly resolution.

Alewell et al. (2020) highlighted that Africa has some of the highest soil
P depletion rates in the world, driven by the challenges of fertiliser afford-
ability and exacerbated by high soil erosion rates. Indeed, although
fertiliser use has increased on average across Kenya from 82 kg ha−1 in
1992 to 100 kg ha−1 in 2013, this remains far below the recommended
levels to sustain high crop yields long-term (Jena et al., 2021). Together,
high erosion rates and insufficient fertiliser use are likely driving stagnant
yields on Kenyan croplands (Fig. S16; Supplementary Materials). Our
own modelling shows that elevated soil erosion rates are driving high
rates of SOC, N and P losses across Kenya, especially on croplands. The com-
parisons of predicted erosion and nutrient flux rates under present land
cover with natural baseline conditions (mapped in Fig. 2 and Figs. S6-S8;
SupplementaryMaterials)may help landowners and policymakers to inter-
vene to reduce future losses of soil and nutrients. For example, relatively
flat terrain (slopes of 0–7 %) may require extra tree planting and use of
cover crops to reduce bare soil exposure; steeper terrain meanwhile may
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require the construction of terraces to break up long and steep slopes that
could convey large volumes of eroded soil very rapidly into water courses.

Mitigating elevated soil erosion and nutrient flux rates requires an un-
derstanding of how these rates are being driven spatially. The CARTmodel-
ling approach we applied to estimate regional drivers of soil erosion across
Kenya follows earlier work on global scale modelling by Borrelli et al.
(2017). In our study, the CART modelling revealed that slope length-
steepness and land cover account for >75 % of the relative contribution
to soil erosion rates across Kenya, and this is broadly commensurate with
the published global scale analysis (Borrelli et al., 2017). This is unsurpris-
ing given the steep valley topography found in much of western Kenya.
While rainfall erosivity can be important (especially near Lake Victoria
where annual rainfall rate is highest), slope morphology is very important
for carrying away any soil particles detached by rain splash. CART model-
ling could be applied at smaller scales such as river catchments or individ-
ual fields. Within these alternative contexts, factors such as soil erodibility
or the relationship between rainfall erosivity and slope might be found to
be most important. If so, CART modelling would reveal very different pro-
cess interactions and necessitate using alternative intervention strategies
like cover crops to reduce soil losses. However, our findings that topogra-
phy and land cover drive most of the erosion rates are also commensurate
with studies at plot (Benkobi et al., 1994) and catchment (Estrada-
Carmona et al., 2017) scales. Thus, the interventions that we would recom-
mend based on our national-scale analysis will likely apply just as effec-
tively at smaller scales such as individual river catchments. Similar
statistical modelling could also be applied to other drivers of soil loss,
such as wind erosion. This would provide a more complete assessment of
the main controls on soil erosion dynamics which could usefully guide
the design of interventions to mitigate elevated soil loss rates.

Given our findings that, apart from on forested lands, the combination
of slope length and steepness is the key factor driving modelled soil loss
rates under different land cover types, interventions aimed at modifying



Fig. 6. Erosion rate reductions in croplands under various agricultural support practices comparedwith converting back to natural vegetation cover.Whiskers on the boxplots
extend to the 5th and 95th percentiles.
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slopes and surface runoff pathways should be a priority for preventing soil
loss. The effects of many such interventions can be modelled by RUSLE via
the support practices P-factor. The scenarios tested here focus on combina-
tions of different tillage practices with measures including terracing,
contouring and contour strip-cropping for two reasons. First, these inter-
ventions are applied widely across Kenya; second, minimum and no-till
practices are known to generally reduce surface runoff compared to con-
ventional tillage (e.g. Strauss et al., 2003), while terracing breaks up the
slope to promote infiltration and reduce surface runoff (Arnáez et al.,
2015). Introducing either bench or broad-based terracing was found to re-
duce modelled soil erosion rates on croplands by a similar extent to
converting these lands to natural vegetation cover (Fig. 6). Similar effects
of terracing were measured in Rwanda with up to 93 % reductions in soil
loss rates recorded (Rutebuka et al., 2021). Contouring on Ethiopian
hillslopes meanwhile yields similar P-factor coefficients (0.57–0.9) to
the ones we tested (0.5–0.95) in Kenya (Taye et al., 2017). Not only
do terracing and reduced tillage practices reduce soil erosion, they
improve soil fertility by limiting nutrient losses, and promoting SOM
accumulation and formation of stable aggregates (e.g. Kagabo et al.,
2013; Rutebuka et al., 2021). While it would be possible to estimate
nutrient loss rates under these interventions, we could not verify if in-
troducing terraces and reduced tillage promotes additional SOC, N
and P accumulation. This is not possible to test with RUSLE, but it
would be a useful subject for a future modelling study.

4.2. Uncertainties, limitations and future research

The RUSLE model has been applied to Kenya several times in the past,
including at national scale (e.g. Kassam et al., 1991; Watene et al., 2021),
and as part of global scale modelling (Borrelli et al., 2017). Where national
scale predictions exist, estimated long-term soil loss rates are no higher than
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5 t ha−1 yr−1 across most of the country, particularly in the flat (0–7 %
slope), arid and uncultivated northern and eastern regions of Kenya
(Borrelli et al., 2017; Watene et al., 2021). This is replicated by our own
modelling of predicted soil erosion rates under present-day land cover
(Fig. 2a). Projected soil erosion hotspots, where modelled rates exceed
20 t ha−1 yr−1, occur throughout much of western Kenya (see Supplemen-
tary Fig. 2 in Borrelli et al., 2017). Again, our modelling reflects this
(Fig. 2a), including under the PNV scenario (Fig. 2b), likely due to the
limited protection from erosion conferred by rangeland vegetation on
very steep slopes.

Like this study, Watene et al. (2021) produced national-scale predic-
tions of soil erosion rates across Kenya at 30 m grid resolution using the
RUSLE model. They also summarised their results by regions defined by
various physiographical and administrative units. Comparing our erosion
rate predictions shows close similarities between the results in this work
and those of Watene et al. (2021) by region (Fig. S17; Supplementary Ma-
terials). For 37 out of 43 (~86 %) regions, the difference between our
two studies was <50 % (Fig. S17; Supplementary Materials). We would ex-
pect to see some discrepancies in modelled soil loss rates, considering that
the input datasets and calculations for the R, K, C and LS factors differ be-
tween the two studies. Nevertheless, there are strong agreements overall
between model predictions for the spatial distribution and magnitudes of
soil erosion rates, which we argue should support a high level of confidence
in our own predictions.

However, several model uncertainties exist which stem from limitations
in the design of RUSLE, including landscape evolution processes, such as
deposition and gullying that are not captured by the modelling, and the
appropriateness of applying RUSLE outside of temperate agricultural
environments (see Alewell et al., 2019; Benavidez et al., 2018; Labrière
et al., 2015). We detail the model limitations with respect to Kenya's envi-
ronmental context and themodel input layers, including the two land cover



Fig. 7. Effects of the least effective (contouring with conventional tillage) and most effective (bench terracing with zoned tillage) changes in land management practices on
soil erosion rates on croplands across Kenya: a) Percentage reduction in erosion rates by the least effectivemeasure compared to present-day settings with no interventions;
b) Gross soil erosion rates on croplands after the least effective intervention is introduced; c) Percentage reduction in erosion rates by themost effectivemeasure compared
to present-day settings with no interventions; d) Gross soil erosion rates on croplands after themost effective intervention is introduced.
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maps, in the Supplementary Materials (Text S4). In the remainder of this
discussion, we focus on limitations to coupling RUSLE-predicted soil ero-
sion rates with topsoil lifespans and nutrient fluxes and suggest how this
coupling might be improved.

The increased availability of high spatial resolution digital soil maps
(DSMs) has opened new opportunities to predict soil erosion and its conse-
quences at large scale. DSMs of physical properties make for easy estima-
tion of soil erodibility, soil mass and thinning rates, while chemical
properties can be combined with erosion rates to simulate important bio-
geochemical fluxes. While the proliferation of new DSMs will be helpful,
10
the predicted values of soil properties will depend on the quality and quan-
tity of input soil data, covariate layers such as parent material and land
cover maps that control the magnitude of a soil property, and the methods
used to generate the DSM such as regression kriging and machine learning.
It has been shown, for instance, that DSMs of topsoil texture across Ghana
differ markedly from each other (Maynard et al., 2022), with similar find-
ings uncovered for SOC DSMs of Great Britain (Feeney et al., 2022). Uncer-
tainties in the DSMs used for our study will affect predicted soil erodibility,
lateral nutrient fluxes and topsoil lifespans. However, given the relatively
minor importance of soil erodibility compared to topography and land
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cover in our study, the impact of DSM uncertainties on our model results
should be minimal.

The calculation of topsoil lifespans uses a simplemass balance approach
based on estimating the mass of topsoil and losses in relation to erosion
rates. This type of mass balance approach, which has been used to estimate
the residence times of sediments deposited in upland valleys (Dietrich and
Dunne, 1978) and river floodplains (Feeney et al., 2020), can provide an
initial indicator of erosion severity. However, unlike Evans et al. (2020),
the calculation of topsoil lifespans used here did not consider soil formation
rates. There are very few estimates of soil formation rates for Kenya and
these will vary as a function of the key soil formation factors: parent mate-
rial, topography, organisms, climate and time (Jenny, 1941). Consequently,
we cannot yet incorporate soil formation rates into our modelling. There-
fore, our lifespan predictions in general are likely to be conservative
estimates and suggest that all topsoils are thinning. At smaller scales,
without deposition predictions, topsoils in landforms such as piedmonts
probably have much longer lifespans than our modelling suggests. Con-
versely, the exclusion of other erosion processes, such as gullying and land-
slides, means lifespans may be under-estimated by significant amounts at
affected locations. Enhancing our understanding of soil loss and accumula-
tion by landform type should improve quantification of topsoil lifespans.
Lastly, we assume that long-term soil erosion rates will not fluctuate over
the course of a topsoil lifespan. This becomes increasingly unrealistic with
longer lifespans, and if soil properties change significantly with depth, thin-
ning rates may increase or decrease markedly (Batista et al., 2022). We
have tried to control for varying erosion rates at depth by calculating
lifespans for the topsoil only.

Although shown here through our modelling that support practices re-
duce erosion rates substantially, important caveats must be addressed.
First, the range of support practices is enormous and these are not always
applied individually. Second, we assume that the coefficient of one support
practice is multipliable by another to estimate their combined reduction of
soil erosion rates. This may not be the case and, given the multitude of dif-
ferent combinations, a huge amount of observational data is necessary to
verify this. Third, we do not know how effective adopted practices will be
in the long-term. Conservation trenches and stone bunds, for instance, are
known to degrade after only a few rainy seasons due to infillingwith eroded
sediment from up slope (Taye et al., 2015). We also assume that interven-
tions have been applied optimally and remain well maintained. Terraces,
if installed poorly or abandoned, canworsen rather than reduce soil erosion
(Deng et al., 2021). Thus, even though a support practice may be present, it
does not mean that it is working at its full potential. Fourth, the quantity
and exact locations of specific agricultural support practices cannot be
mapped accurately yet, meaning the P-factor is seldom taken into account
in modelling at large spatial scales (Fenta et al., 2020). Hence, the reader
should take care to interpret our scenario modelling results as preliminary
and requiring verification.

As there are relatively few available observations in Kenya of soil loss
rates, nutrient fluxes and estimated topsoil lifespans, it is difficult to prop-
erly verify the accuracy of our modelling against real-world processes.
Such constraints on data availability are not uncommon and in part at
least, this has led some to suggest that model validation sensu stricto is im-
possible to attain (Oreskes, 1998; Oreskes et al., 1994). Indeed, validation
issues bedevil all models of Earth surface dynamics. For example, incom-
plete representation of fluvial processes and scarce historical observation
data have led users of the CAESAR-Lisflood landscape evolution model to
adopt model evaluation over validation (Feeney et al., 2020; Meadows,
2014; Pasculli and Audisio, 2015). Evaluation has the advantage of consid-
ering model shortcomings and uncertainties in addition to comparing pre-
dictions with existing datasets. The few assessments we could make
against measured erosion rates and topsoil lifespans (e.g. Figs. S9-S12 &
S17; Supplementary Materials), indicate the model performed well overall.
However, extremely high soil loss predictions occurred in<1% of grid cells
that are most likely unrealistic (Fig. S11; Supplementary Materials).

Notwithstanding limitations inherent in the model predictions, our re-
sults present the first approximation of the integrated dynamics of erosion,
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lateral nutrient fluxes and topsoil lifespans for Kenya, and demonstrate the
direction and scale of change with changing patterns of land cover and
management. Interpreting these results should be taken in terms of: i) the
spatial distributions of high and low magnitude process rates relative to
Kenya on average; ii) the effects of tested scenarios relative to one another;
and iii) how the phenomena of i) and ii) might be explained by the under-
standing of process controls and their interactions at various scales. Further,
our modelling represents a highly comprehensive assessment of the
consequences of erosion on soil structure at a national scale. Future re-
search should be directed more towards targeted long-term monitoring,
as this would both improve soil loss predictions in future and facilitate
the integration of other processes such as sediment transport to get a
more complete assessment of soil erosion dynamics. Our results provide
both a useful assessment of topsoil degradation from erosion and a proof
of concept that can guide policy and innovation, and be adapted for future
modelling (e.g. of additional topsoil characteristics, environmental change
scenarios or degrading landscapes elsewhere).
5. Conclusion

We applied an integrated modelling approach to predict soil erosion
risk, associated loss rates of SOC, N and P, and topsoil lifespans across
Kenya under both current land use and PNV conditions. Our analysis re-
vealed four key findings. First, modelled soil erosion is most severe in the
west of the country where croplands, steep slopes and high annual rainfall
predominate. Second, accelerated erosion rates drive increased modelled
lateral fluxes of SOC, N and P, and topsoil lifespans decline by multiple or-
ders of magnitude. Third, topography and land cover are the main drivers
of modelled erosion rates everywhere apart from in forested areas. This is
just as true for the PNV scenario as it is for present-day land cover, illustrat-
ing that large soil losses can occur even under natural baseline conditions.
Fourth, incorporating into croplands agricultural support practices that
decrease surface runoff by interrupting slope profiles are just as effective
at reducing modelled soil erosion rates as converting these lands to natural
vegetation cover. We can therefore accept both of our hypotheses: that
present-day soil erosion rates are elevated due to current land cover pat-
terns (particularly on croplands); and applying agricultural support prac-
tices (specifically terracing and reduced tillage) can reduce soil erosion
rates back to natural baseline levels.

While our modelling successfully demonstrates how elevated soil ero-
sion rates can be ameliorated, additional long-termmonitoring of an exten-
sive number of cropland sites with agricultural support practices in place is
required to verify our predictions. The methodology we used is applicable
to different contexts, including in other biomes, and could be expanded to
capture erosion from wind, gullying and mass movements. Future research
should also focus on other land degradation pathways besides soil erosion,
notably above and below ground carbon stocks and forest cover. This
would give a more complete assessment of land degradation and spur inno-
vation to deliver long-term sustainable land use under global environmen-
tal change.
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