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Abstract: Free-living terrestrial mites (Acari) have persisted through numerous glacial cycles in
Antarctica. Very little is known, however, of their genetic diversity and distribution, particularly
within the Ross Sea region. To redress this gap, we sampled mites throughout the Ross Sea region,
East Antarctica, including Victoria Land and the Queen Maud Mountains (QMM), covering a lat-
itudinal range of 72–85 ◦S, as well as Lauft Island near Mt. Siple (73 ◦S) in West Antarctica and
Macquarie Island (54oS) in the sub-Antarctic. We assessed genetic diversity using mitochondrial cy-
tochrome c oxidase subunit I gene sequences (COI-5P DNA barcode region), and also morphologically
identified voucher specimens. We obtained 130 sequences representing four genera: Nanorchestes
(n = 30 sequences), Stereotydeus (n = 46), Coccorhagidia (n = 18) and Eupodes (n = 36). Tree-based
analyses (maximum likelihood) revealed 13 genetic clusters, representing as many as 23 putative
species indicated by barcode index numbers (BINs) from the Barcode of Life Datasystems (BOLD)
database. We found evidence for geographically-isolated cryptic species, e.g., within Stereotydeus
belli and S. punctatus, as well as unique genetic groups occurring in sympatry (e.g., Nanorchestes spp.
in QMM). Collectively, these data confirm high genetic divergence as a consequence of geographic
isolation over evolutionary timescales. From a conservation perspective, additional targeted sampling
of understudied areas in the Ross Sea region should be prioritised, as further diversity is likely to be
found in these short-range endemic mites.

Keywords: speciation; geographic isolation; Acari; Antarctic conservation; DNA barcoding

1. Introduction

Antarctic terrestrial arthropods have persisted for millions of years in microhabitats
that are ice-free yet have some liquid water available [1–3]. The extent of these micro-
habitats, and how they are distributed across the landscape, is largely determined by the
underlying geography and millennia-scale ice sheet dynamics [4], although across much
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of Antarctica the precise locations of refugia have not been identified. Even during pe-
riods of extensive ice cover, such as during the Last Glacial Maximum (LGM), in some
regions, species likely survived either on protruding nunataks [1] or in association with
geothermal features [5], although such features do not appear to explain the persistence
of most terrestrial arthropod diversity, which is limited to lower-altitude coastal areas [1].
Long-term isolation of arthropod populations across the landscape, with resulting genetic
bottlenecks, can ultimately lead to speciation through divergence via genetic drift or muta-
tion [6]. However, as these isolated habitats in Antarctica are often difficult to access and
sample, many locally unique genetic lineages are likely to await discovery. Mites are the
most taxonomically diverse and widespread microarthropods in Antarctica, with at least
19 species currently recognized from the Ross Sea region alone [7–9] (Table S1). However,
estimates of their genetic diversity and levels of divergence among populations remain
largely unknown.

Many Antarctic taxa are short-range endemics [10], limited to spatially small geo-
graphical areas within the continent. The logistical constraints inherent to remote Antarctic
fieldwork, which have limited sampling of spatially isolated habitats, also limit the number
of species that can be addressed in a single study. This is unfortunate, because taxonomic
breadth is essential for gaining a more comprehensive knowledge of diversity across the
landscape and for understanding processes of evolution and speciation. The ice-free ter-
restrial habitats of continental Antarctica have been classified into several biologically
distinct regions (bioregions), known as Antarctic Conservation Biogeographic Regions
(ACBRs) [11,12]. Within these bioregions there are also many smaller-scale landscape barri-
ers to dispersal, further structuring the distribution of species or genetic lineages [13,14].
Studies using DNA-based methods for discriminating species, including cryptic species,
have now been carried out for several Antarctic terrestrial invertebrate groups including
rotifers [15], tardigrades [16,17], mites [18,19] and Collembola [20–23]. However, many of
these studies are limited to small spatial scales, covering single bioregions [24].

Studies that incorporate both morphological and genetic data have shown that some
Antarctic taxa that were originally thought to be widespread single species often consist
of multiple, distinct species. For example, the collembolan Friesea grisea Schäffer with its
type locality in sub-Antarctic South Georgia was widely reported from both maritime and
continental Antarctica [25,26]. Until recently, this was one of the only micro-arthropod
species thought to occur in both the latter regions as well as the sub-Antarctic. However,
driven by the application of molecular phylogenetic analyses and also supported by de-
tailed micromorphological assessments, this species has now been redescribed as at least
five species [21,22,27,28]. Available molecular tools for detecting potential species-level
differences include barcode index numbers (BINs), which are based on a clustering algo-
rithm [29] and integrated into the Barcode of Life Datasystems (BOLD) database. Unique
BINs can provide evidence to support putative species identifications and can also be used
to quantify diversity where morphology is unclear for understudied or morphologically
cryptic taxa.

Genetic markers for species-level assessments include the 5’ region of the mitochon-
drial cytochrome c oxidase subunit I (COI-5P) gene [30], which is the most commonly
used DNA-based marker, particularly for Antarctic taxa such as Collembola [23,31,32].
Unfortunately, this standard “DNA barcoding” region has seen limited sequencing success
for mites, e.g., [33], and previous Antarctic studies of the prostigmatid genus Stereotydeus
have used the COI-3P region as an alternative [18,23,34,35]. Collectively, these studies
have provided evidence of local speciation, including two new species descriptions for
S. nunatakis and S. ineffabilis in Victoria Land [36]. However, the difficulty of obtaining
specimens from a wider range of remote and isolated locations has limited the geographic
coverage of available studies. Further, the absence of COI-5P sequences for Antarctic mites
has limited a more widespread comparison with other taxa in Antarctica and elsewhere.
Obtaining COI-5P sequences from Antarctic mite taxa would facilitate comparison with



Genes 2023, 14, 606 3 of 15

existing databases such as the Barcode of Life Datasystems (BOLD) database [37], as well
as assist in identifying potentially distinct species and population genetic structure.

One Antarctic mite taxon that would particularly benefit from further attention is
Nanorchestes (Endeostigmata), a widespread genus of small-bodied mites that are also
found globally [38]. Although yet to be subjected to similar molecular studies, the species
Nanorchestes antarcticus Strandtmann, 1963 (type locality: Observation Hill, Ross Island, Vic-
toria Land) likely provides an analogous example. It is another species that was originally
recorded from both the maritime and continental Antarctic [8]. However, Strandtmann [39]
subsequently described material from the former region as two distinct species, N. berryi
and N. gressitti. Four new species were also described from Macquarie Island [40], and
four species from the Ross Sea region [9], all of which were previously referred to as N.
antarcticus. Considering the widespread geographic distribution of this taxon and its ac-
knowledged morphological variability, it is likely that further species-level divergences
will be revealed by the application of modern molecular approaches.

Here, using integrated morphological and molecular approaches, we assessed the
species diversity of terrestrial mites collected from the Ross Sea region of Antarctica,
including North Victoria Land (NVL), South Victoria Land (SVL) and the Queen Maud
Mountains (QMM), covering a regional latitudinal range of 72–85 ◦S. We also obtained
mites from Lauft Island near Mt. Siple (73 ◦S) in West Antarctica and Macquarie Island
(54 ◦S) in the sub-Antarctic. We used mitochondrial DNA cytochrome c oxidase subunit I
gene sequences (COI-5P DNA barcode region) to assess levels of genetic diversity within
and among locations, as well as assist with species-level identifications. Our data provide
a framework for ongoing studies as well as initiate a reference library for the molecular
identification (DNA barcoding) of Antarctic taxa.

2. Materials and Methods
2.1. Study Area and Specimen Collection

Sampling for free-living mites was undertaken during austral summer field seasons
between 2008 and 2018 at 16 locations throughout the Ross Sea region (continental Antarc-
tica), spanning latitudes from 72 to 85 ◦S, and occupying the longitudinal wedge between
160 ◦E and 160 ◦W (Figure 1). This region includes three biologically distinct zones, or
Antarctic Biogeographic Conservation Regions (ACBRs) sensu [11,12], North Victoria Land
(NVL), South Victoria Land (SVL) and the Queen Maud Mountains (QMM, part of the
Transantarctic Mountains ACBR (TAM)). The Queen Maud Mountains represent some
of the southern-most terrestrial ice-free habitats in Antarctica. Further samples were ob-
tained in 2017 from the previously unsampled Lauft Island (unofficial name near Mt. Siple;
73 ◦S, 127 ◦W) in West Antarctica and sub-Antarctic Macquarie Island (54 ◦S, 159 ◦E). All
specimens were collected using modified aspirators [41], pitfall traps [42] or flotation from
soil samples [43] and immediately preserved in 100% ethanol.

2.2. Genetic and Morphological Analyses

For genetic analyses, we used DNA sequences from the mitochondrial cytochrome
c oxidase subunit I gene (COI-5P DNA barcode region) [30]. On return of the specimens
from Antarctica, DNA sequencing was undertaken either at the University of Waikato
(UoW), New Zealand or the Canadian Centre for DNA barcoding (CCDB), Canada. For
total DNA extraction, a REDExtract-NAmp kit (Sigma-Aldrich, Merck KGaA, Germany)
was used at the UoW, while a glass fibre plate method (AcroPrep, Pall Corp., New York,
NY, USA) was used at the CCDB. The COI gene was amplified using the universal primers
HCO2198 and LCO1490 [44] at the UoW, and the combination of HCO2198, LCO1490
together with LepF1 and LepR1 [45] at the CCDB. At the UoW, PCR amplifications for each
specimen were carried out in 15 µL volumes containing 7.5 µL PCR master mix solution
(i-Taq) (Intron Biotechnology), 0.2 µM (0.3 µL) of each primer and 1 µL of DNA extract
(unquantified). Thermal cycling conditions were: 94 ◦C for 5 min followed by 5 cycles
(94 ◦C for 1 min, 48 ◦C for 1.5 min and 72 ◦C for 1 min), then 35 cycles (94 ◦C for 1 min,
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52 ◦C for 1.5 min and 72 oC for 1 min) of denaturation and polymerase amplification,
with a final elongation at 72 ◦C for 5 min. At CCDB, thermal cycling conditions were:
94 ◦C for 1 min followed by 5 cycles (94 ◦C for 1 min, 45 ◦C for 1.5 min and 72 ◦C
for 1.5 min) then 60 cycles (94 ◦C for 1 min, 50 ◦C for 1.5 min and 72 ◦C for 1 min) of
denaturation and polymerase amplification, with a final elongation at 72 ◦C for 5 min.
Successful amplification products were cleaned with 0.1 µL exonuclease (EXO) (10 U/µL)
and 0.2 µL shrimp alkaline phosphate (SAP) (1 U/µL) (Illustra from GE Healthcare) at
37 ◦C for 30 min then 80 ◦C for 15 min at the UoW, or Sephadex at CCDB. Sequencing
was carried out in forward and reverse directions using an ABI 3130 at the UoW or an
ABI 3730x1 sequencer at the CCDB. Sequences were uploaded to the Barcode of Life
Datasystems (BOLD) database. Specimen collection details, photographs, primers used and
full sequence data are available from the BOLD database under dataset DS-ANTMIT (http:
//www.boldsystems.org/index.php/Public_SearchTerms?query=DS-ANTMIT, accessed
on 26 February 2023).

Following DNA extraction, the exoskeletons for some individual specimens were
carefully removed from the extract solution and permanently slide-mounted in polyvinyl
alcohol (PVA) mounting medium (BioQuip Products, Rancho Dominguez, CA, USA) for
morphological assessment. The slide-mounted specimens were then identified with the
aid of a compound microscope using the available taxonomic literature e.g., [8,9,40]. All
mounted slides are housed at the Canadian National Collection of Insects, Arachnids and
Nematodes (Agriculture and Agrifood Canada, Ottawa, ON Canada) and the remainder of
the specimens are housed at the Centre for Biodiversity Genomics (University of Guelph,
Guelph, ON, Canada). Identifications were possible for 12 specimens representing five
currently recognized species. For any uncertainties with species-level identifications, the
more conservative genus-level assignment was used.

2.3. Data Analyses

In addition to our newly generated sequences, 491 publicly available COI-5P se-
quences of at least 400 bp in length were downloaded from GenBank in July 2022 for
the genera Nanorchestes, Eupodes and Rhagidia. No previous sequences were available for
Stereotydeus or Coccorhagidia. None of the existing public records were from Antarctica
or the sub-Antarctic. To simplify the analyses, we reduced these public records to one
sequence per unique barcode identification number (BIN) or named species (n = 26). The
final sequence alignment of 156 sequences, each ranging from 404 to 658 bp in length,
included our new sequences (n = 130) as well as the 26 representative publicly available
sequences (n = 11 Eupodes, n = 10 Nanorchestes, n = 5 Rhagidia). All sequences were aligned
in Geneious Prime v2021.2.2 using MUSCLE 3.8.425 and then exported as a PHYLIP file
for downstream analyses. A maximum likelihood tree was built using IQ-TREE 2 [46]
(-nt AUTO -s alignment.phy -st DNA -m MFP -bb 1000 -bnni -alrt 1000) where the best
fit model of TIM+F+R4 chosen according to BIC was inherently applied during the tree-
building process. The resulting tree file was then imported to R using read.tree from ggtree
v3.1.5.900 [47] for visualisation, along with tidyverse v1.3.1 [48] and treeio v1.17.2 [49].
Table S2 provides collection details, BINs and BOLD codes for each sequence included in
the phylogenetic tree. Haplotype networks were created in R for Stereotydeus and Nanorch-
estes, using pegas v1.1 [50] and phylotools v0.2.2 [51], and are available as supplementary
material (Figures S1 and S2).

Based on the maximum-likelihood phylogenetic tree, monophyletic clades were con-
sidered as “genetic clusters”, or putative species, if members of the group had already
been taxonomically identified to species level (slide-mounted specimens) or otherwise
based on location, as there was a clear genetic distinction between regions. A barcode gap
analysis [52] was then performed on these putative species groups using ape v5.6.2 [53],
spider v1.5.0 [54] and ggplot2 v3.3.5 [55]. Following the genetic analyses, all specimens
that occurred within the same BIN as the morphologically identified specimens were also
attributed to this taxonomic name following protocols in deWaard et al. [56].

http://www.boldsystems.org/index.php/Public_SearchTerms?query=DS-ANTMIT
http://www.boldsystems.org/index.php/Public_SearchTerms?query=DS-ANTMIT
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Figure 1. Standard COI barcodes were obtained from 130 individual mites that were collected from
16 sampling locations throughout the Ross Sea region and Lauft Island and Macquarie Island (a),
including the Queen Maud Mountains (b) and Victoria Land (c,d).

3. Results

We obtained 130 COI-5P sequences for individual free-living mites collected from
16 locations throughout the Ross Sea region as well as from the Lauft and Macquarie Islands.
Each specimen was identified morphologically to at least the genus level (Prostigmata: Coc-
corhagidia, Eupodes, Stereotydeus; Endeostigmata: Nanorchestes), and five taxa (12 specimens)
were identified to species level (Coccorhagidia gressitti, C. keithi, Eupodes wisei, Stereotydeus
belli and S. punctatus). A maximum likelihood tree delineated the Antarctic sequences into
13 major monophyletic groups (genetic clusters), 5 of which represented the taxonomically
identified species, and none of which contained the publicly available (i.e., non-Antarctic)
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COI-5P sequences (Figure 2 and Figure S3). The 13 clusters were each separated by 8–19%
sequence divergence (Figure 3; Table 1). Seven of the clusters were represented by a sin-
gle barcode index number (BIN) and contained < 2.9% sequence divergence, while the
remaining six clusters each contained 2–3 BINs and 3.7–14% sequence divergence (Table 1).
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Figure 2. Maximum likelihood tree including 26 publicly available COI-5P mite sequences (in grey),
as well as our 130 individual mites sequenced from the Ross Sea region that were grouped into
13 genetic clusters (putative species) based on morphological identifications and sequence-based
analyses. Each cluster was found in only one of the major biogeographic regions, being restricted to
one of the Queen Maud Mountains (QMM), South Victoria Land (SVL) or North Victoria Land (NVL).
The Lauft Island population of Nanorchestes was most similar to one of the QMM species. See the
supplementary figures for a more detailed version of the tree. Created with BioRender.com.
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Figure 3. Barcode gap analysis confirmed that our genetic-based clustering into putative species-level
groups was appropriate and in agreement with species named in traditional morphological taxonomy
(for those specimens that could be identified to species level using available taxonomic keys). See
Table 1 and Table S3 for precise intraspecific and interspecific divergence values.

Our genetic data support the taxonomic species designations of C. keithi and E. wisei,
as they were represented by a single BIN each. However, we found multiple BINs (i.e.,
potential cryptic species) for C. gressitti, S. belli and S. punctatus (Table 1). The three BINs of
C. gressitti (>6% divergence) were all present at Christie Peak, while the BINs for S. belli
and S. punctatus were geographically isolated. Stereotydeus belli and S. punctatus each
had a unique population found only at Cape Hallett, which was genetically distinct from
their respective populations found either at Redcastle Ridge (S. belli; 7.8% divergent) or
Tombstone Hill (S. punctatus; 11.04% divergent).

Three further genetic clusters (Nanorchestes sp. 1 and sp. 6, Stereotydeus sp. 4), which
were identified morphologically to genus level, also included more than one unique BIN.
These BINs were distributed differently across the landscape, depending on the taxon.
For instance, some taxa had all BINs present at a single location, while for other taxa
unique BINs were each found at a different location. All three BINs of Nanorchestes sp.
1 (>6% divergence) were found at Ebony Ridge, and the two BINs for Nanorchestes sp.
6 (>3% divergence) were found at the same site on Macquarie Island. In contrast, BINs
were unique to single locations for three of the four Stereotydeus clusters, the exception
being Cape Hallett, where two BINs for S. punctatus were present in sympatry (Table 1).

Based on the morphological and genetic data, we identified two locations at which
four or more putative mite species were present (Table 1). At Cape Hallett in North Victoria
Land (72 ◦S), C. gressitti, E. wisei, S. belli and S. punctatus were present in sympatry. Two
unique BINs for S. punctatus were also found at Cape Hallett, giving a total of five unique
mite BINs at this location. At Mount Franke in the Queen Maud Mountain region (84 ◦S),
two genetic clusters each of Stereotydeus and Nanorchestes were present (five unique BINs in
total), representing 4–5 putative species.
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Table 1. Geographic distribution of the 13 genetic clusters of Antarctic mites identified in this study; NVL: North Victoria Land, SVL: South Victoria Land, QMM:
Queen Maud Mountains, (B): in the vicinity of Beardmore Glacier, (S): Shackleton Glacier.

Genus Coccorhagidia Eupodes Nanorchestes Stereotydeus Totals

Putative Species Clusters gressitti keithi wisei sp. 1 sp. 2 sp. 3 sp. 4 sp. 5 sp. 6 belli punctatus sp. 3 sp. 4 13

n sequences 14 4 36 9 7 5 3 2 4 27 7 5 7 130
n BINs 3 1 1 3 1 1 1 1 2 2 3 1 3 23

Max. intra. 6.23% 0.46% 2.58% 6.56% 0.57% 0.00% 2.90% NA 3.77% 7.80% 11.04% 0.30% 14.13%
Min. inter. 10.94% 10.94% 13.97% 8.24% 8.24% 19.35% 19.21% NA 19.13% 11.09% 11.09% 12.10% 14.44%

Region Location Locations where each putative species cluster was found Total n clusters
per location

Macquarie Is. [X] **
Lauft Island X *

NVL Cape Hallett X X X * X ** 4
NVL Christie Peak [X] X 2
NVL Luther Vale X X 2
NVL Unnamed Ridge X 1
NVL Tombstone Hill X * X * 2
NVL Redcastle Ridge X * 1

SVL Cliff Nunatak X 1
SVL Mt. Murray X 1
SVL Mt. Seuss X 1
SVL Taylor Valley X 1

QMM (B) Gateway Spur X * 1
QMM (B) Ebony Ridge [X] X 2
QMM (B) Harcourt Spur X 1
QMM (B) Mt. Kyffin X 1

QMM (S) Mt. Franke X X X X * 4
QMM (S) Mt. Wasko X X X * 3

Total n locations 4 2 3 4 1 1 3 2 1 2 2 2 3

[X]: all BINs for this species cluster were found in sympatry at this location; X *: this location harboured a BIN that was found nowhere else; X **: two BINs were found here and
nowhere else.
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4. Discussion

We assessed the genetic diversity of Antarctic mites from across a wide geographic and
taxonomic range in the Ross Sea region. We obtained 130 standard COI-5P DNA barcode
sequences sensu [30] from individual mites representing the four genera Nanorchestes,
Stereotydeus, Coccorhagidia and Eupodes. The sequences were grouped into 13 distinct
genetic clusters and a total of 23 unique BINs, some of which were found at only a single
location. We also identified locations where multiple clusters or BINs occurred in sympatry,
highlighting the potential conservation priorities for protecting sites with high levels of
diversity, in keeping with the Antarctic Specially Protected Area priorities outlined by the
Protocol on Environmental Protection to the Antarctic Treaty [57].

Nanorchestes was the most genetically diverse and widespread genus in our dataset,
with six major genetic clusters distributed across ten locations, covering all three ACBRs
in the Ross Sea region [11,12] as well as Lauft Island and Macquarie Island. Although
considerable morphological variation was noted in the original description of Nanorchestes
antarcticus [8], this taxon was subsequently divided into multiple distinct species based
on detailed morphology [9,39,40]. Based on the geographic range of each of the genetic
clusters we found, it is likely that Nanorchestes sp. 3 in NVL is either N. antarcticus or N.
lalae, Nanorchestes sp. 5 in SVL could represent either N. bellus, N. lalae or N. antarcticus,
and Nanorchestes sp. 1 and 4 in the QMM could represent N. lalae and N. brekkeristae.
We also found a genetically distinct cluster (Nanorchestes sp. 2) at Lauft Island near Mt.
Siple, a location from where microarthropods including Nanorchestes had not previously
been sampled or described. The individuals collected from Lauft Island were genetically
most similar to the Nanorchestes found in the QMM region (8% sequence divergence),
and we speculate that refugial locations in the QMM may have potentially acted as a
source habitat for Lauft Island. Based on available physical modelling and biological
evidence [58,59] areas in the QMM were likely to have remained ice-free during the last
glacial maximum (LGM). In the absence of the present-day Ross Ice Shelf during warmer
periods [59], individuals could have dispersed (e.g., via rafting on ocean currents) from
the QMM and populated any suitable habitats near Lauft Island until the Ross ice sheet
reformed [60]. Future morphological and multi-gene analyses focused on individuals
from both Lauft Island and the QMM would help distinguish putative species and the
evolutionary relationships between the Nanorchestes populations at these two locations.

Stereotydeus belli and S. punctatus are currently known only from the North Victoria
Land region, with S. punctatus reported from only a single location, Crater Cirque [34].
However, we found genetic variants of S. punctatus (three BINs) from two additional
locations in NVL, suggesting that even further genetic diversity may exist within this
species. Stereotydeus belli and S. punctatus were each represented by multiple BINs and some
of these BINs were geographically isolated. Both species had a unique population found
only at Cape Hallett and a genetically divergent population (7–11% sequence divergence)
at either Tombstone Hill or Redcastle Ridge. Both Redcastle Ridge and Tombstone Hill are
located towards the inner end of the Edisto Inlet, presumably isolated from Cape Hallett
by local marine currents. Indeed, the isolation of Cape Hallett from other NVL sites has
already been recognised for S. belli [34].

Patterns of genetic variability among sites in the QMM differed depending on the
taxon considered. We found two genetic clusters of Stereotydeus in the QMM and it is
plausible that at least one of these is S. shoupi, the only Stereotydeus species currently
described and recorded from this region [8]. Demetras et al. [18] previously addressed
the genetic diversity of S. shoupi from the QMM using the alternative COI-3P gene region
and found 8% genetic divergence between the Darwin Glacier (79 ◦S) and Beardmore
Glacier (83 ◦S). We also found high levels of genetic divergence in this region, of up
to 14% between populations at Beardmore Glacier and the more southerly Shackleton
Glacier (84 ◦S), for Stereotydeus sp. 4 (which also could be S. shoupi). Such high levels of
genetic variation between the Beardmore and Shackleton Glaciers have also been found
for Collembola, with over 13% COI-5P sequence divergence in Antarctophorus subpolaris
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between these two locations [58]. In contrast, Nanorchestes had shared BINs between the
Beardmore and Shackleton Glacier sites. One possible explanation is that a smaller body
size and greater tolerance of lower environmental temperatures for Nanorchestes relative to
Stereotydeus [61] facilitated increased levels of dispersal among habitats. However, further
work sensu [42,62,63] would be required to test this hypothesis.

Stereotydeus sp. 3 was found only in the vicinity of the Shackleton Glacier, and could
represent a more southern population for a northern species of Stereotydeus. This has
previously been found for the collembolan Gomphiocephalus hodgsoni, a common SVL species
that was only recently reported from the QMM region [58]. Alternatively, Stereotydeus sp. 3
may represent a previously undescribed species unique to the area. Similar to Stereotydeus
sp. 3, Tullbergia mediantarctica (Collembola) is also only known from a small area near
the mouth of the Shackleton Glacier in the QMM and has previously been identified as
potentially vulnerable to extinction due to this narrow distributional range [58]. We suggest
that some of the mite taxa we have identified with narrow geographic distributions may
also be vulnerable under future climate scenarios [64].

Four genetic clusters were found at Mount Franke, near the Shackleton glacier in the
QMM region, probably representing two species of Stereotydeus and two of Nanorchestes.
While reductions in biodiversity are often observed with increasing latitude, we found no
evidence of this occurring in the Ross Sea region, as a similar level of diversity was found at
both QMM and NVL (four genetic clusters each). Caruso et al. [65] and Colesie et al. [66] also
concluded that levels of diversity were more likely to have been influenced by microhabitat
water availability rather than macroclimatic temperature changes associated with latitude
in this region. For example, we found six Nanorchestes species clusters, each with different
distributional ranges, which could be due to different habitat preferences, a feature already
hypothesised among other species of this genus from the Antarctic Peninsula region [67].
Notably, some soils that were exposed during the LGM may provide less suitable habitats
today owing to salt accumulation [68–70]. While abiotic factors are usually considered the
predominant factor shaping biological communities across continental Antarctica [71], it is
possible that additional biotic interactions have remained undetected [72,73].

For the five species that were taxonomically verified, we found 0.46% to 11.04% se-
quence divergence among populations. Previous genetic studies of Antarctic mites have
suggested that they may have differing levels of genetic divergence relative to sympatric
Collembola. Possible explanations include ecological factors, such as mites being able
to colonize and tolerate newly available habitats before Collembola (and hence longer
potential divergence time) or that they have differing rates of evolution [18,23,35]. The Dry
Valleys are the most accessible and widely studied ice-free areas in the Ross Sea region.
However, at the time of those studies, only Stereotydeus mollis was known from this area.
With the recent description of an additional species in the same area, S. ineffabilis [36],
we suggest the possibility that the “intraspecific diversity” described for S. mollis by
McGaughran et al. [35] and Stevens and Hogg [23] may be the result of genetic differ-
ences between S. mollis and S. ineffabilis. Furthermore, all existing mite studies that include
DNA-based methods [18,23,34,35] have used the alternative COI-3P gene region. The COI-
3P gene region is more suitable for resolving more deeply-rooted phylogenetic relationships
and is more reliably amplified and sequenced than the standard COI-5P region, which has
a particularly low success rate (<50%) in mites [74]. Unfortunately, direct comparisons of
genetic divergence for mites and Collembola are only likely to be accurate when the same
gene region is used. The COI-5P sequences we provide here can now be used as a reference
for future comparisons of divergence rates.

In conclusion, based on sequencing of the COI-5P gene region, we found between 13
and as many as 23 putative species representing four mite genera, far exceeding previously
recognized diversity from this geographic region. Further mite diversity is likely to remain
undetected and ongoing and targeted sampling initiatives, e.g., [75] will advance this
field. Understudied areas that should be specifically targeted include the area south of the
Drygalski Ice Tongue (76 ◦S) in NVL, around the Darwin Glacier (80 ◦S) in the Transantarctic
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Mountains and in the vicinity of the Byrd Glacier (82 ◦S) in the QMM. We highlight the value
of DNA barcoding for providing initial evidence of species-level diversity, and encourage
combined morphological and molecular approaches as part of a more rigorous assessment
of distinct species. The standardized DNA sequences (barcodes) we provide serve as a
baseline reference library for mites in the Antarctic and will facilitate future DNA-based
studies, including comparative studies among locations and taxa. Future studies are likely
to benefit from multi-gene or meta-genomic approaches. Depending on the quality of DNA
preservation, future studies may be able to use existing sample collections and limit the
need for repeat visits to previously visited locations, thereby helping to reduce the costs and
carbon footprint of conducting research in Antarctica [76]. However, ongoing fieldwork
will be required for fresh specimens (non-degraded) that may not have yet been analysed
for DNA variability (e.g., Stereotydeus villosus from the maritime Antarctic) or for targeting
specific taxa that may not yet have been collected, such as the oribatid mite Maudheimia
petronia from NVL or Protereunetes maudae (Eupodidae) from QMM [8].

Overall, our data suggest that the combination of highly isolated locations and long
evolutionary timescales have resulted in high levels of genetic differentiation and local
speciation for mites throughout the Ross Sea region. A fuller understanding of the locally
unique and endemic mite taxa of Antarctica, which occupy the most southern terrestrial
habitats on Earth, will provide valuable insights into the evolutionary history of the
Antarctic landscape.
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