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 25 

Abstract: Challenges in distinguishing natural and engineered nanomaterials (ENM) and the 26 

lack of historical records on ENM accidents have hampered estimating the accidental release 27 

and associated environmental impacts of ENM. Building on knowledge from the nuclear 28 

power industry, we provide an assessment of the likelihood of accidental release rates of 29 

ENM within the next 10 and 30 years. We evaluate risk predictive methodology and compare 30 

the results with empirical evidence, which enables us to propose modelling approaches to 31 

estimate accidental release risk probabilities. Results from two independent modelling 32 

approaches based on either assigning 0.5% of reported accidents to ENM-releasing accidents 33 

(M1) or based on an evaluation of expert opinions (M2), correlate well and predict severe 34 

accidental release of 7% (M1) in the next 10 years and of 10% and 20% for M2 and M1, 35 

respectively, in the next 30 years. We discuss the relevance of these results in a regulatory 36 

context. 37 

 38 
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Main: 40 

Particles of all kinds of elemental compositions and sizes between roughly 1 nm and 1 µm, 41 

generally referred to as colloids, have been present in large quantities throughout terrestrial 42 

history 1. Within the past two decades concerns have been raised regarding the health and 43 

environmental impacts of engineered nanomaterials (ENMs), which, following the EU’s 44 

recommended definition, are manufactured materials where more than 50% of the particles 45 

are between 1 and 100 nm. 2 The overlapping size ranges between natural nanomaterials and 46 

ENMs challenge traditional risk assessment techniques, especially for ENMs having natural 47 

(geogenic) counterparts. For example, experiments with paints for exterior use revealed that 48 

nanoscale titanium dioxide (TiO2) particles were washed off from facades and reached the 49 

(aquatic) environment. 3 Recent analytical advances in the field of mass spectroscopy based 50 

single particle analysis either used as stand a alone technique 4–7 or in combination with 51 

characteristic total elemental ratios of bulk samples 8,9 allowed estimating the share of 52 

selected ENMs in complex matrices. Although these developments are very promising, they 53 

only allow detecting a limited selection of ENMs, as for example carbon based EMNs cannot 54 

be detected using these methods. Thus, distinguishing between engineered and natural 55 

nanomaterials in the environment is still challenging, 10–12 which hampers connecting the 56 

ENM release from production processes and product uses to exposure concentrations for 57 

either the public or the environment. The traditional strategy of detecting and quantifying 58 

contaminants in the environment to validate release models and inform on potential 59 

environmental relevance and significance of laboratory-based ecotoxicity values has, 60 

therefore, not been fruitful. 61 

In response, significant effort has been directed towards estimating the future 62 

quantities of ENMs that might enter the environment to assess the risks associated with the 63 

increasing use of ENM.13 Assessments of potential ENM releases during production or 64 

product use were based on probabilistic reasoning 14–20 and were expanded to include 65 

unintended ENM releases during ENM product use over the course of their life cycles. Yet, 66 

there are limited opportunities for model evaluation and validation considering the 67 

fragmentary knowledge of production volumes and the remaining analytical challenges 68 

surrounding field studies. 18 There is abundant literature on risk assessments on ENM that can 69 

be sourced from multiple EU funded projects. 21–24 However, none of these projects, 70 

addressed the accidental release of ENM and the associated risks beyond the research and 71 

development stage. Various papers consider the governance of ENM, but an accidental 72 

release of these ENM is outside the scope of such governance, e.g., 25. This paper, therefore, 73 

stands as a unique attempt to provide a basis for assessing the likelihood the accidental release 74 

of ENM to the environment. The output from this study serves as a basis for reviewing risk 75 

management methodologies to ensure their applicability for the accidental release of ENM. 76 

Accidental release will lead to spatially and temporally elevated ENM concentrations, making 77 

it more pertinent for assessing potential risks to the public and the environment as bystanders. 78 

Read, Kass et al., 26 recommend: “identifying proactive measures to prepare for the 79 

occurrence of a negative event in order to ensure that the broader market for all products 80 

utilising a new technology are not unduly affected by an isolated incident”. Therefore, 81 

investigating the probability of accidental ENM release is a key component of horizon 82 

scanning exposure and risk assessment efforts.  83 

The goal of this study was to make an assessment of the likelihood of ENM released 84 

as a consequence of accidents occurring during ENM-product fabrication, transport and end-85 

of-life processes. Earlier investigations of such accidents were primarily qualitative 86 

discussions of ENM production equipment failure 27 and an accompanying commentary on 87 

the need for regulation to avoid accidents, 28 or were examinations of workplace exposures to 88 

incidental releases of nanoaerosols.29,30 In making this first assessment, we provide 89 



 

 

methodologies that may be readily applied to groups of chemicals for which conventional risk 90 

assessments of accidental release are limited due to lack of knowledge on accident rates, 91 

extents and material hazard. 92 

 93 

Adjusting modeling approaches from the nuclear power industry. 94 

The developed approach relies on stochastically varying and combining uncertain or 95 

fragmentary (as well as assumptive) past accident frequency data to compute a multitude of 96 

probability generating functions (PGFs) for future accident probabilities. The generated PGFs 97 

serve as a basis for organizing and running the developed stochastic-probabilistic 98 

computations (see the method section below and supplementary S3 for more detailed 99 

information). To assess the frequency of accidental releases of ENMs, we searched for 100 

information and analogies from neighboring fields. In the chemical industry, the estimation of 101 

the accident probability is usually done based on process risk analysis at the plant scale 31,32 102 

and involves the determination of the likelihood of occurrence of each of the undesired 103 

situations defined in the hazard identification step. This can be done typically by extrapolating 104 

historical failure frequency data. However, these data are missing for ENM sectors and do not 105 

encompass accidents occurring at customer plants, where the ENM is an ingredient, or during 106 

the transportation of ENMs to customer sites. 107 

In that context, we decided to evaluate alternative approaches developed in the nuclear 108 

power sector for which an extensive probabilistic risk analysis (PRA) methodology has been 109 

developed. 33–35 (see also supplementary S3 for a review of the method).  110 

There are differences between the nuclear power and the ENM sectors (see also 111 

supplementary table S5). The nuclear power industry can focus on a limited spectrum of plant 112 

sites and possible events, has a well-established definition of release of radioactive material 113 

and benefits from the technological similarity among nuclear power plants which share a 114 

rather uniform set of operational practices. The ENM sector lacks these information affecting 115 

the development of a predictive risk analysis method for accidental release of ENMs. We, 116 

therefore, reviewed experiences and challenges regarding model uncertainty and predictability 117 

of (major) accidents in the nuclear power plant sector to identify adjustments required for 118 

bridging the approaches to the ENM sector. The major adjustment is that mechanistic-119 

technical considerations of accident-initiating and other events (and their probabilities) had to 120 

be discarded. We instead used a theoretical approach to derive probabilities of accidental 121 

release from a more superordinate point of view that projects such release frequencies 122 

(probabilities) from the past into the future without considering what went or may go wrong 123 

from a mechanistic point of view. 124 

Selected combinatory and probability calculations for predicting ENM accident 125 

frequency and likelihoods emerged from our comparative analysis and were embedded into a 126 

stochastic Monte Carlo framework designed to cover as many accident frequency/probability 127 

scenarios as possible. Such a spread of model input scenarios also addresses unspecified 128 

differences between past and future ENM market and technology developments, including 129 

safety progress of ENM producing and handling technologies.  130 

We collected data from the chemical industry on accidents involving chemical 131 

compounds, as well as the frequency of such accidents. Special attention was given to the 132 

Analysis, Research, and Information on Accidents (ARIA) database 36 of the French Ministry 133 

of the Environment, which is a compilation of (worldwide) accidents that led to 134 

environmental releases of chemicals. We searched this database to identify accidents 135 

involving chemical compounds which may have resulted in the accidental release of ENM. 136 

The actual presence of the substance in the nanoform is not specified explicitly in the 137 



 

 

database, which introduces an uncertainty when interpreting the data. The proposed modeling 138 

approach based on stochastic analysis is designed to address this uncertainty. 139 

 140 

Modelling approaches using fixed shares and expert opinions 141 

We considered major accidents with high release volumes but low frequencies of occurrence 142 

as well as smaller incidents with low release volumes but higher frequencies of occurrence. 143 

This resulted in two data sets which were used for two different modelling approaches (model 144 

1 (M1) and model 2 (M2)), but both including global data on accident frequencies (see 145 

comments on data limitations in the supplementary S2). Both approaches aimed at assessing 146 

the probability of the accidental release of ENM, whereas the fate of the released ENMs was 147 

not addressed. In M1 we used the ARIA accidents collection to derive generic accident 148 

frequencies for varying release volumes of chemicals in general (see supplementary Figure S1 149 

and Tables S1-S3). In principle, ARIA distinguishes between non-transport accidents, 150 

including all on-site plant events, and accidental release off-site, during transport on roads or 151 

in pipelines (see supplementary Table S1 and S2). We combined these two categories to one 152 

general accident category. We assumed that past and future accidental release rates of ENM 153 

correspond to the market share of ENM currently amounting to 0.5% of the total chemical 154 

market (see supplementary section S1.1).37 Consequently, on average 0.5% of accidents in the 155 

ARIA database were associated with the release of ENMs. An uncertainty range of 50% was 156 

considered on each side of all annual accident frequencies derived from the empirical data. 157 

We constructed empirical (hypothetical) accident frequency data as input for M1, using a 158 

Monte Carlo approach to address the uncertainty of the future market share of ENM and the 159 

relative frequencies of various release levels. The amount of ENM released during accidents 160 

increases by a log10 unit from one level to the next. In M2, the ARIA data were evaluated and 161 

out of 1000 chemical accidents, a dozen accidents possibly resulting in the release of ENM 162 

were identified. The reports of those accidents were classified by a panel of 11 experts from 163 

academia, with a background in chemistry, according to the likelihood of ENM release. Four 164 

categories were defined, ranging from very unlikely release of ENMs (category 1) to very 165 

likely release of ENMs (category 4). The 12 accidents were scaled to 192 out of 16,000 events 166 

reported in total. Based on the expert judgements of the probability of ENM release in these 167 

accidents, the frequencies of past accidents associated with such release were estimated and 168 

used as input data for M2 (see supplementary Figure S1 and Tables S1-S4). Such input was 169 

fed into individual, expert-based predictive Monte Carlo simulations. These calculations for 170 

M2 were conducted for the lowest release level (level 1); the M2 results of higher release 171 

levels were derived by extrapolating the level 1 accident probabilities to lower accident 172 

numbers and frequencies of higher level (more severe) accidents. The supplementary S1 gives 173 

a full description of data sets and methods of M1 and M2. 174 

Based on the aforementioned dual evaluation of empirical data following risk analyses 175 

concepts from nuclear power and chemical industry, we assessed for the first time the 176 

probability of accidents associated with the release of ENM in the near (10 years) and mid-177 

term (30 years) future considering different accident severity levels. 178 

 179 

High likelihood of nano accidents within the next 10 years  180 

The results from the two approaches (M1, M2, supplementary Figure S1) predicting the 181 

occurrence of minor to major accidental release of ENM were in excellent agreement. 182 

Predicted probabilities resulting from the models M1 and M2 are shown in Figures 1-4 and 183 

Table 1. These predictions revealed a wide range of accident numbers (0-200 and more) and 184 

associated probability of occurrence and – for pessimistic scenarios – suggested a 100% 185 



 

 

likelihood for level 1 ENM accidents within the next 10 or 30 years (Table 1). We note that 186 

the ranges of uncertainty of the predicted accident probabilities often comprise a factor larger 187 

than 2, when comparing the extremes of the model output (Figures 1 and 2, Table 1). 188 

Furthermore, the central values, as given in Figures 3 and 4, only reflect probable estimations, 189 

which still may deviate from the real (precisely known) values.  190 

For limited ENM release rates of level 1 (see supplementary Table S2 for a description 191 

of the levels), the results from the 10-year simulation from M1, predict 21–30 accidents with 192 

a very high probability (96%, Figure 3). This translates roughly into 2 - 3 ENM accidents per 193 

year. In the 30-year forecast, the predicted range of 61–80 accidents has the highest 194 

probability (80%). This is in line with the 10 year predictions and would also lead to 195 

(roughly) 2 - 3 events annually. The results of M2—although they are based in large parts on 196 

another modelling approach and an entirely different model’s input data —agree well with the 197 

results of M1. For level 1, the 10 year forecast of M2 predicts > 3 ENM accidents with a high 198 

probability (99%), which is in line with the results from M1 suggesting (with 100% 199 

probability) at least 3 minor ENM accidents in 10 years. Most probable results from M2 200 

further suggest with about 80% probability > 20 accidents within the next 10 years and > 60 201 

events within the next 30 years, which agrees with the predictions derived from M1.  202 

At level 2 (more severe accidents) and following M1, at least one ENM accident 203 

(calculated in Table 1 as 1-P(0 events)) is predicted with a high probability (64%) within the 204 

next 10 years, and such an event is even more likely (94%) in 30 years. These values are in 205 

excellent agreement with the results from M2, suggesting a very high likelihood of at least 206 

one accident every 10 years (95%) and every 30 years (almost 100%).  207 

For level 3, the probabilities derived from M1 of one or more events within 10 years 208 

were around 50%. For a 30-year period, the probability of one or more events increased to 209 

around 85%. In M2 at least one accident of level 3 within the next 10 years seems even more 210 

likely (79%), and in 30 years the probability of one or more accidents reaches almost 99%.  211 

At least one level 4 ENM accident is possible (29%) based on the 10 year predictions 212 

of M1. During the next 30 years, at least one event seems rather likely (probability of 62%). 213 

The results of M2 suggest slightly higher probabilities of 45% (10 years) and 91% (30 years) 214 

for at least one level 4 ENM accident and are, thus, in agreement with the results from M1. 215 

For severe accidents at levels 5 and 6, with even more (104 and 105 times more) 216 

material released, the average 10-year probabilities resulting from M1 for at least 1 event 217 

range from 4 to 7% (Figure 3). The most conservative Monte Carlo simulations revealed 218 

probabilities of around 11% and 18% for the 10-year forecast for level 5 and 6 (Table 1), 219 

respectively. The corresponding worst-case probabilities in the 30 year predictions are 45% 220 

and 27% for levels 5 and 6, respectively. The results from the M2 computations for severe 221 

ENM accidents are generally lower compared to the corresponding results from M1, with a 222 

probability of around 10% for at least one level 5 event within a 30 year period (Figure 3). To 223 

what extent a level-6 release event can be excluded based on almost zero M2 results is 224 

difficult to evaluate. Regarding the difficulty of interpreting almost zero M2 probability 225 

values for level 6, one may refer to discussions in the nuclear power sector: “The 226 

interpretation of a probability, such as 10-10 per year, runs into some philosophical questions. 227 

It is mathematically correct to interpret this probability as meaning a chance for the postulated 228 

accident to occur once in 1010 years, a period of time exceeding the age of the earth (about 4.5 229 

x 109 years)”. 38 However, per our computations, the output range and uncertainty are 230 

considerable due to both the limited number of accidental release records at this maximum 231 

release level (none of the reported accidents involved nanomaterials) and the uncertainty of 232 

the extrapolation of the frequency observed in the analysed sample (1000 accidents) to this 233 

maximum release level. The past accident of Blanzy, 37 however, during which about 5 tons 234 



 

 

of carbon black were released suggests that large accidental ENM releases may happen in the 235 

future. 236 

The good agreement observed in all the results compared above between the outputs 237 

of model M1 (fixed share of ENMs) and model M2 (expert opinions) is reflected in Figure 3 238 

and visualized by projecting the M1 model output into the optimistic-realistic M2 simulation 239 

in Figure 2. The model values of the probabilities for an accidential ENM release for both 240 

prediction periods (10 and 30 years) are in excellent agreement (see the blue curves in ‘Expert 241 

3’ calculations in Figure 2). 242 

Based on the demonstrated validity of the calculation methodology in the nuclear 243 

power industry, 39 a systematic documentation of accidental ENM releases, also including 244 

specific information about the ENM substance and the spilled amount, would decrease the 245 

model uncertainties. Two scenarios developed during a workshop 40 are offered in the 246 

supplementary S4 that can serve as the basis for identifying the type of data that should be 247 

collected during such incidents for improving, amongst others, the predictive modeling and its 248 

benefit for policy regulation purposes. Of utmost importance are improved information on 249 

accident frequencies and on the severity of their consequences (ENM hazardous 250 

characteristics). 40 Our modeling study establishes a baseline and the results of a related 251 

workshop in our supplementary S5 the range of future challenges for accident probability 252 

estimations when also addressing questions of socio-economic regulation and ENM hazard. 253 

Our study expands a robust methodology from the nuclear power industry to predict 254 

the likelihood of accidents involving ENMs by stochastically addressing the extreme 255 

uncertainty in the available data. The quality of such data depends on our level of 256 

understanding in relating documented chemical accidents to accidents involving ENM release 257 

and thus to reconstruct a historical database from ENM accidents. Although M1 and M2 were 258 

different and fed with independent datasets their outputs were very similar. The broad 259 

spectrum of the model input carries over to a large spread of the model output which occurred 260 

for both model calculations. 261 

Our modelling approach did not address questions relating to the hazard resulting from the 262 

exposure to accidentally released ENM 41–43 as this would further complicate the assessment. 263 

In accordance with others,44 commercial ENM are presently compared to nuisance dusts and 264 

pigments and are not necessarily as hazardous as, for example, high-reactivity chemicals. 26 It 265 

is interesting to note that there have been very few reports from insurers regarding how to 266 

deal with ENM risks. However, others 42 have explicitly pointed out insurers’ lack of 267 

scientific guidance in this regard for underwriting consumer, occupational, general, accident-268 

based, or other ENM risks. An early report from Lloyd’s of London, 45 concluded that “Our 269 

exposure to nanotechnology must therefore be considered and examined very carefully”. 270 

Nanotechnology related accidents apparently caused very few financial losses, so there is 271 

little by way of example that can be used to support insurers’ responses to nanotechnology 272 

driven accidents. 273 

 274 

Conclusions 275 

Our pioneering predictions provide a basis for further investigation of the risk of accidental 276 

release of ENM, and help to evaluate the societal impacts of accidental release of ENM, 277 

which range from emergency response to site remediation. With this contribution we provide 278 

initial numbers and uncertainties of the likelihood of future accidental ENM release events, so 279 

that risk analysts and other stakeholders no longer have to rely on their gut feelings when 280 

predicting those accidents. We were challenged by enormous uncertainties due to limited 281 

knowledge and fragmentary documentation of those accidents in the past. However, the well-282 



 

 

corresponding results from different stochastic approaches that unfold in two largly different 283 

models, make us feel confident to have approached realistic predictions of the accidental 284 

release of ENMs happening in the future. In the study, we assume that the probability of an 285 

accidental release of ENM is independent of the type (and the hazardous potential) of the 286 

ENM. This assumptions may or may not be justified as different safety measures may be 287 

applied during for example the transport of ENMs. However, the fragmentary data available 288 

on past accidents forced us to lump all ENM accidents into one ENM category. We are aware 289 

of the limitations of our model calculations which are in large parts caused by the 290 

reconstructions of the frequency of past accidental release of ENMs. More accurate reporting 291 

of ENM accidents as suggested in our work, would, thus, greatly decrease the uncertainties 292 

associated with our model results. If, in addition, also information about the the 293 

hazardousness of the released material were reported, the accidental release predictions could 294 

be extended and be used by risk analysts for hazard forecast and classification purposes as 295 

well. 296 

 297 
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 328 

Methods Going beyond qualitative discussion of accidental ENM release, we aimed to compute the first 329 

quantitative probabilities of accidental ENM release. The modelling approach presented here is based on 330 

probability-generating functions (PGF), which are extensively used to perform fundamental probability 331 

calculations and have also been applied to estimate accident likelihoods in the nuclear power sector.39 With 332 

available past accident statistics, as seen in our review for this sector (supplementary S1), those calculations do 333 

as well or better in terms of their predictive precision than predictions that partly or completely follow the 334 

mathematical-mechanistic considerations of accidental release cause, process, and frequency. However, in 335 

contrast to their use with robust empirical data in the nuclear power sector, we have developed a stochastic 336 

approach to process these functions in order to account for the significant uncertainties associated with the 337 

identification of (past) ENM accidents. Those uncertainties develop in the model by varying e.g., the annual 338 

accident rates and associated probabilities of occurrence, as well as combinations thereof.  339 

 340 

The developed stochastic methodology (for details see supplementary S3) sets alongside other parameters, 341 

values for the coefficients of the probability mass functions px(x) and the exponents of zx, computing a plethora 342 

of PGFs (defined by G in Equation 1).  343 
 344 

            𝐺𝑥(𝑧) = ∑ 𝑝𝑥(𝑥)𝑥=0 𝑧𝑥       (1) 345 

 346 

These coefficients represent the probabilities that can be associated with different outcomes in a particular time 347 

period reflected in the exponent, in our case the annual number of accidental release events. However, the PGFs 348 

themselves are only a practical means for handling the probability calculations; the variable z has no further 349 

meaning for the probability considerations. We stochastically vary the data within and outside of those functions 350 



 

 

by identifying the possible (empirical or historical) numbers of accidents, their transformation into considered 351 

annual values, and their probabilities, thereby exploring a large spread of model inputs and outputs. Such a 352 

spread can be derived from highly uncertain and incomplete knowledge about the number of past accidental 353 

ENM release events.  354 

 355 

The minimum requirement for developing ENM-based model input values is that we use a particular past time 356 

period during which accidental release events have either happened or can be assumed to have happened. Based 357 

on such initial raw data frequencies, the probability for varying numbers of accidents is computed (e.g., for 10 358 

and 30 years) using higher-order polynomial calculations (Equation 2). These are needed for multi-year 359 

timeframe predictions and are achieved by raising the corresponding function to the needed target power, n: 360 

 
361 

    (𝐺𝑥(𝑧))
𝑛

  (2) 362 

 363 

Hence, expanding the polynomial reveals all possible ways of differentiating the number of accident events and 364 

their respective probabilities over varying time horizons. This, however, only works under the condition that the 365 

accident frequencies/probabilities do not substantially change during the used prediction timeframe. Thus, faced 366 

with significant ENM-accident-frequency uncertainty and knowledge gaps concerning the number of past 367 

accidents involving ENM release (or not), we transformed the deterministic use of PGFs into a stochastic one. 368 

Instead of generating one function (Equation 2) for each prediction, we conduct for example, m=10,000 369 

iterations, based on Monte Carlo (MC) routines, allowing us to combine the emphasized broad spectrum of 370 

possible model input data. In doing so, we algebraically manipulated the polynomial coefficients, multiplying 371 

out the PGFs embedded in the MC iteration routines (Figure S1). This process allows one to vary the empirical 372 

accident frequency for each MC iteration and produce the statistical forecast output that is used to compute 373 

density (probability) curves and evaluate ranges and central tendencies (Equation 3).  374 

 375 

  

∑ 𝐺𝑗
𝑛𝑚

𝑗=1

𝑚

  (3) 376 

 377 

The differences in the model input may stem from, for example, variations in the relevant time periods for 378 

deriving empirical accident data and from the different probabilities (0–100%) of the ENM being released from 379 

past accidents. We may have an sound overview of incidents that resulted in the release of chemicals during a 380 

certain time period; however, it is up to us to assess whether ENMs were released during these incidents. The 381 

data input differentiation covers the assumed differences between past, current, and future accident frequencies 382 

that may change over time due to factors such as technological developments. 383 

 384 

The modelling was programmed in R,46 and the possible conceptual programming procedures are shown in 385 

supplementary Figure S1 and S2. These procedures, however, vary from case to case. A single, exemplary model 386 

of a MC routine is shown in supplementary Figure S3, for iteratively drawing, for example, a die with a 1-50% 387 

probability of sampling an ENM accident.  388 

 389 

We also tested our stochastic output (supplementary Table S6) by remodeling results from the nuclear power 390 

sector. 39 In addition, we performed a comparative evaluation of our results based on own Poisson MC 391 

computations. We modelled the reference case study on worldwide accident predictions (International Nuclear 392 

Event Scale ≥ 4), and the results were similar.  393 

 394 

The stochastic variation in our calculations may stem, as discussed, from the derivation of the empirical accident 395 

numbers from selected time periods and the expert-based assessment of the fraction (probability) of the ENMs 396 

released during the respective accidents. If we consider these probabilities at the plant scale, technological 397 

advances may be the major factor affecting plant accidents in the future (including advances in technology 398 

driven by regulation). If we consider the regional scale, the major driver controlling accidental release of ENMs 399 

in the future, is the size of the market and the number of production plants. The supplementary S1 and S3 400 

provide a full description of the data and methods used in the modelling studies and the critical methodology 401 

review that drove our own methodology development. 402 
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Figures captions:  574 

Figure 1. Accident probability predictions according to model 1 (M1). Probability (density) 575 

curves for the probabilities (x-axis) of at least one accident resulting in engineered 576 

nanomaterial release of a certain severity (level 1 - 6) in the next 10 (A) and 30 (B) years 577 

(worldwide) based on model M1. Compare these curves with the M1- results in Table 1 578 

Figure 2. Accident probability predictions according to model 2 (M2). Probability (density) 579 

curves for the numbers of accidents associated with engineered nanomaterial release in 10 580 

(density curves on the left side of each graph) and 30 years (density curves on the right side of 581 

each graph) worldwide. Each illustration (1-11) represents results based on data input 582 

following the assessment of one expert (1-11) and computed in model M2. In the graph of 583 

expert 3, the results from model 1(M1, blue line) and M2 (green area) are projected in the 584 

same graph for comparison (see also M2 results in Table 1 for comparison). 585 

Figure 3. Probabilities (P in %, mean values) for engineered nanomaterial accidental release 586 

in the next 10 (top) and 30 (bottom) years (worldwide) computed based on two models (M1 587 

and M2) and for different amounts of materials release (Level 1 – Level 6, see Table S2 for an 588 

explanation of the different levels). The most realistic scenarios are highlighted in yellow and 589 

underline the good agreement between the outputs of the two models (M1 and M2). There are 590 

no linearity or dependency between levels and between models. Due to rounding effects, the 591 

values do not necessarily add to 100%. Accident predictions lower than 0.005% (in all our 592 

tables) have been set to zero (n.c. = not computed). 593 

Figure 4. Probabilities (P, mean values) of ENM accidental release level 1 in 10 and 30 years 594 

worldwide. These results reflect expert opinions based raw data used in the modeling for level 595 

1 accidents (see Table S2 for an explanation of level 1). There are no linearity or other 596 

dependencies between these sub-models (for each expert 1-11) of Model 2 (M2).  597 

  598 



 

 

Tables: 599 

Table 1. Optimistic and pessimistic accident probability predictions. Minimum (Min) and 600 

maximum (Max) probabilities for accidental release of engineered nanomaterials (worldwide) 601 

during the next 10 and 30 years calculated based on model M1 and M2 (see main text for the 602 

description of the two models and supplementary Table S2 for a description of the different 603 

levels).  604 

       

              

  

One accident  
(at least) in 10 years 

Min 
(M1) 

Max 
(M1) 

Min 
(M2) 

Max 
(M2)   

  Level 1 100.0% 100.0% 97.6% 100.0%   

  Level 2 31.1% 92.5% 47.9% 100.0%   

  Level 3 22.6% 82.1% 0.9% 100.0%   

  Level 4 11.5% 56.2% 0.0% 100.0%   

  Level 5 2.7% 17.5% 0.0% 0.0%   

  Level 6 1.5% 10.8% 0.0% 0.0%   

  

One accident 
(at least) in 30 years 

Min 
(M1) 

Max 
(M1) 

Min 
(M2) 

Max 
(M2)   

  Level 1 100.0% 100.0% 98.8% 100.0%   

  Level 2 70.2% 99.9% 98.8% 100.0%   

  Level 3 51.2% 99.2% 86.7% 100.0%   

  Level 4 31.8% 93.5% 23.4% 100.0%   

  Level 5 8.3% 44.6% 0.0% 66.9%   

  Level 6 4.7% 27.1% 0.0% 0.0%   

              

 605 
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