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ABSTRACT: Marine air temperatures recorded on ships during the daytime are known to be biased warm on average
due to energy storage by the superstructure of the vessels. This makes unadjusted daytime observations unsuitable for
many applications including for the monitoring of long-term temperature change over the oceans. In this paper a physics-
based approach is used to estimate this heating bias in ship observations from ICOADS. Under this approach, empirically
determined coefficients represent the energy transfer terms of a heat budget model that quantifies the heating bias and is
applied as a function of cloud cover and the relative wind speed over individual ships. The coefficients for each ship are
derived from the anomalous diurnal heating relative to nighttime air temperature. Model coefficients, cloud cover, and
relative wind speed are then used to estimate the heating bias ship by ship and generate nighttime-equivalent time series.
A variety of methodological approaches were tested. Application of this method enables the inclusion of some daytime
observations in climate records based on marine air temperatures, allowing an earlier start date and giving an increase in
spatial coverage compared to existing records that exclude daytime observations.

SIGNIFICANCE STATEMENT: Currently, the longest available record of air temperature over the oceans starts in
1880. We present an approach that enables observations of air temperatures over the oceans to be used in the creation
of long-term climate records that are presently excluded. We do this by estimating the biases inherent in daytime tem-
perature reports from ships, and adjust for these biases by implementing a numerical heat-budget model. The adjust-
ment can be applied to the variety of ship types present in observational archives. The resulting adjusted temperatures
can be used to create a more spatially complete record over the oceans, that extends further back in time, potentially
into the late eighteenth century.

KEYWORDS: Climate; Diurnal effects; Surface temperature; Data quality control; In situ atmospheric observations;
Ship observations

1. Background and motivation

Marine air temperature (MAT) observations from ships
form a long-term climate record used to construct gridded
data products as either the principal data source (Berry and
Kent 2009, 2011; Kent et al. 2013; Cornes et al. 2020; Junod
and Christy 2020) or for bias adjustment of sea surface tem-
perature (SST) products (Huang et al. 2017; Kennedy et al.
2019). These gridded products only use MAT observed during
nighttime (NMAT) to exclude data affected by solar heating
of the instrument and local ship environment during daytime
(DMAT). Using only NMAT approximately halves the num-
ber of available observations and limits the temporal extent
of any MAT-based dataset as early observations were often
only recorded during the daytime (Fig. 1a). For example, two
recently published NMAT datasets begin in 1880 (CLASSnmat;
Cornes et al. 2020) and 1900 (UAHNMAT; Junod and Christy
2020). Extending the MAT record further back in time requires

bias adjustment of DMAT, and if this adjustment can be deter-
mined accurately the sampling and coverage of MAT will be
improved throughout the record.

Global mean surface temperature (GMST) anomaly data-
sets, combining observations over land, ice, and ocean, have
used SST in lieu of MAT for their ocean component (Lenssen
et al. 2019; Morice et al. 2021; Huang et al. 2020), including in
the sixth Intergovernmental Panel on Climate Change Assess-
ment Report (Gulev et al. 2021). GMST is used instead of
global surface air temperature (GSAT) for three main
reasons: there are more (all-hours) SST observations than
NMAT; quantification of SST measurement bias and uncer-
tainties is more mature than for MAT (Kennedy et al. 2019);
and the belief that SST anomalies are more reliable than
MAT at large spatial scales (Kent and Kennedy 2021). It was
also asserted that large-scale anomalies of SST and MAT
display similar variability and trends (Huang et al. 2017),
although this is increasingly being questioned (e.g., Cowtan
et al. 2015; Richardson et al. 2016; Rubino et al. 2020). Here
we demonstrate a method to estimate the daytime heating
biases in MAT observations on a ship-by-ship basis that can
be applied throughout the observed record. The ultimate goal
is to use these adjusted data to create a GSAT record based
on air temperature over land, ice, and ocean. This will facili-
tate comparison of the observed surface temperature record
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with the output of climate models (Jones 2020), which most
straightforwardly provide estimates of GSAT rather than
GMST.

2. Methods

a. The Berry et al. (2004) model

Berry et al. (2004, hereafter BKT) developed a model to
quantify heating-related biases in MAT, accounting for the
energy accumulation and release by the superstructure of
ships. The BKT model was developed and tested using tem-
perature values recorded on board the Ocean Weather Ship
Cumulus during 1988 and later used to examine exposure-

related bias on 17 ships extracted from the VOSClim database
(Berry and Kent 2005). In the construction of the NOC Surface
Flux and Marine Meteorological Dataset (Berry and Kent
2009, 2011) the BKT model was used to adjust the MAT obser-
vations obtained from the International Comprehensive Ocean–
Atmosphere Dataset (ICOADS; Freeman et al. 2017) for the
period 1973–2014. However, in order to simplify the calculations
in that analysis, a fixed annual set of coefficients was applied
across all ships. Here we develop coefficients ship by ship to give
an adjustment for heating bias that reflects the characteristics of
a particular ship.

We define several measures of temperature in Eqs. (1)–(3),
which are illustrated in Fig. 2: Tair is the true air temperature;
Tship is the measured air temperature; Tnt is the background

FIG. 1. Sampling characteristics of MAT observations from ship reports in ICOADS (Freeman et al. 2017). (a) The 1784–2020 percentage
of MAT observations recorded annually during daytime (DMAT, black line, left-hand axis), the red dashed line indicates 50% daytime obser-
vations. The solid blue line (right-hand axis) is the annual total number of MAT observations, and the dotted blue line is the number of MAT
observations associated with a ship track of 12 or more reports, with diurnal sampling, and including only observations with associated cloud
and relative wind speed (V) observations. Free text comments indicate the annual average number of MAT observations for select periods (or
the total amount for 1784–1853). (b) Stacked plot of the percent of MAT observations with a corresponding cloud and/or V value. The red
area indicates reports with both cloud and V; the blue area indicates reports with neither. Reports with either cloud or V, but not both, are in-
dicated in green and yellow, respectively. The dotted line indicates MAT with V but without cloud when the green color overrides. When
yellow is visible, lack of cloud information is the major constraint on applying the heating bias model introduced in section 2a; when green is
visible, lack of V is the constraint. (c) Stacked plot of the percentage of MAT observations with an associated present weather code (WW;
green) and with WW code indicating precipitation (red). The dashed line shows the percentage of extant WW indicating precipitation.
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nighttime air temperature (see section 2b); DTerr is the change
in measured temperature due to ship heating; DTdiur is an esti-
mate of DTerr; DTBKT is the estimate of the temperature dif-
ference from the BKT model; and Tadj is the measured air
temperature adjusted using the BKT model:

Tship 5 Tair 1 DTerr ’ Tair 1 DTdiur, (1)

DTdiur 5 Tship 2 Tnt, (2)

Tadj 5 Tship 2 DTBKT: (3)

The BKT model relates Tair and Tship (both measured in Kelvin)
to the heat exchange, Eq. (4):

mc
d(Tship)

dt
5 QSW 1 QLW 1 QConv 1 QCond: (4)

In this equation m is the mass (kg) and c the specific heat
capacity (J kg21 K21) of the sensor environment (that part of
the ship that affects the measurement), t is time (s), QSW is the
shortwave irradiance [Eq. (5)], and QConv and QCond are the
rates of heat transfer between the ship and the atmosphere
through convection and conduction [all in W m22, Eq. (6)]:

QSW 5 asAsRtop(ai 1 bi sinu)sinu, (5)

QConv 1 QCond 5 (Tair 2 Tship)Ac(hm 1 ho): (6)

Here, as is the solar absorptivity of the sensor environment,
As is the surface area normal to the direction of the incoming
direct solar radiation (m2), Rtop is the solar radiation at the
top of the atmosphere (we use 1368 W m22), u is the solar ele-
vation, ai and bi are cloud-cover-dependent coefficients (index
i indicates categories of total cloud cover quantities by oktas;
from Dobson and Smith 1988), hm and ho are the convective
and conductive heat transfer coefficients (W m22 K21), and
Ac is the surface area of the sensor environment (m2). Follow-
ing Berry and Kent (2005) we exclude the small thermal

energy transfer component (QLW), shown by BKT to account
for a maximum ;3% of the estimated heating bias. Assuming
d(Tair)/dt ’ 0, Eq. (4) becomes

mc
dDTerr

dt
1 (hm 1 ho)AcDTerr 5 asAsRtop(ai 1 bi sinu)sinu:

(7)

Substituting the coefficients given in Table 1 into Eq. (7) gives

dDTerr

dt
1 (x3Vx4 1 x5)DTerr 5 x1[Rtop(ai 1 bi sinu)sinu],

(8)

where V is relative wind speed (m s21) and the empirical coef-
ficients x1,3,4,5 represent terms of the energy budget model
(Table 2). We have redefined the coefficients x3 and x5 to in-
corporate and exclude x2 (used in the original BKT defini-
tion), so cooling depends on (x3Vx4 1 x5) and heating on x1.
Expansion of the sinu terms in Eq. (8) and further substitu-
tions (Table 2) gives

dDTerr

dt
1 h1(DTerr) 5 h2 1 h3 cos(f) 1 h4 cos2(f), (9)

where f is hour angle in radians. The solution to Eq. (9), gives
the value of the heating error at any time during daylight
hours (for a full description of the solution, see BKT):

DTerr;day 5
h2

h1
1

h3a
h2

1 1 a2
1 sin(f) 1

h1

a
cos(f)

� �

1
4a2h4

h2
1 1 4a2

cos(f) sin(f)
2a

1
h1 cos2(f)

4a2 1
1

2h1

� �

1 kint exp(2h1t), (10)

where a is 2p/12. The integrating factor kint can be deter-
mined assuming the sensor environment is in equilibrium at
sunrise (dDTdiur/dt ; 0) such that
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FIG. 2. (a) Tship (black line, circles show individual observations),
Tadj (Tship 2 DTBKT) (blue), and Tnt (red) for the ship Raphael dur-
ing October 1884 and (b) DTdiur (black) and DTBKT (blue, dark
shading corresponds to 61 standard deviation of the DTBKT value
from the 60-member ensemble and light shading corresponds to
62 standard deviations).

TABLE 1. Empirical coefficients; V is relative wind speed (m s21).

Coefficient Definition Min Max

x1 Asas/mc 0.0001 0.1
x3Vx4 (Ac/mc)hm

x3 0.0001 10
x4 22 2
x5 (Ac/mc)ho 0.0001 10

TABLE 2. Substitutions used in solving the BKT model; dec is
the solar declination and the k terms use latitude in radians.

Parameter Substitution

h1 x3Vx4 1 x5
h2 x1Rtop(ak1 1 ak2

1)
h3 x1Rtop(ak2 1 2bk1k2)
h4 x1Rtop(bk2

2)
k1 sin[lat sin(dec)]
k2 cos[lat cos(dec)]
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kint 5 2
h2

h1
1

4a2h4

4a2 1 h2
1

cos(fsr) sin(fsr)
2a

1
h1 cos2(fsr)

4a2

��

1
1

2h1

�
1

ah3

a2 1 h2
1

sin(fsr) 1
h1

a
cos(fsr)

� ��
, (11)

where fsr is the hour angle at the time of sunrise. At night the
heating error is

DTerr;night 5 (Terr;ss) exp(2h1 tss), (12)

where tss is the time elapsed since sunset.
Using Eq. (10) (daytime) or Eq. (12) (nighttime) DTBKT at

any location and time can be calculated using the coefficients
x1,3,4,5 along with cloud cover and V.

b. Estimation of the temperature error due to ship heating

Both the true diurnal variation of Tair and the heating error
are poorly known. BKT estimated the heating error (DTerr) in
two ways: as the MAT anomaly from the local midnight to
sunrise mean and as the Tship 2 SST difference. The former is
likely to overestimate DTerr as it incorporates the true diurnal
cycle of Tair, while the latter is likely to be an underestimate.

Given the difficulty of making an adjustment that accounts
for the real diurnal cycle of Tair, a pragmatic approach was
taken to estimate DTdiur [Eq. (2)], and hence the adjustment
[DTBKT, from Eqs. (10) and (12)] relative to an estimated
background nighttime temperature (Tnt). First, an estimate of
the expected diurnal SST anomaly associated with every value
of Tship was calculated as a function of cloud cover and wind
speed following Morak-Bozzo et al. (2016) and subtracted
from Tship. Nighttime values were then calculated using the
normal definition of 1 h after sunset to 1 h after sunrise
(Bottomley et al. 1990). These nighttime averages were as-
signed to the time of each sunrise and were linearly interpo-
lated over the 24-h period for each ship (Tnt). This approach
allows the construction of climate records from a combination
of adjusted all-hours MAT with unadjusted NMAT.

c. Solar parameterization

The BKT model uses cloud-cover-dependent coefficients to
estimate solar radiation based on location, date, and time.
BKT used coefficients from the Dobson and Smith (1988)
okta model, which were derived from a limited geographical
region. Using the same okta model as Dobson and Smith
(1988), we generate a set of updated coefficients. To do this,
we used data from the Surface Solar Radiation dataset–Heliosat
version 2.1 (Pfeifroth et al. 2019), which covers most of the
Atlantic (658S–658N, 658W–658E). We collocate the 30-min
sampling interval of satellite instantaneous incoming solar radi-
ation values with ICOADS cloud observations for the period
1983–2017 and use this information to generate updated okta
model coefficients (https://git.noc.ac.uk/glosat_tc/okta_model).
The resulting coefficients produce a less peaked solar cycle than
the original Dobson and Smith coefficients and reduce the over-
all RMSE of estimated to satellite incoming solar radiation by
;10% for data not included in the fit. The ai and bi terms

[Eq. (5)] become ai,lat and bi,lat as specific coefficients are avail-
able for 108 latitudinal bands. Presently the BKT model imple-
mentation requires the solar parameterization to be in the
same form as the okta model, precluding the use of, for exam-
ple, the parameterization of Aleksandrova et al. (2007).

Other than adjusting nine oktas to eight when the ICOADS
present weather code indicates precipitation (Aleksandrova
et al. 2018), we do not make any adjustments to the ICOADS
cloud record. Considering long-term temporal trends, biases
likely remain due to heterogeneous recording practices and
conversions across the diversity of ICOADS source data. For
example, cloud observations pre-1949 (when cloud recording
changed from tenths to oktas) may be biased low due to being
double adjusted if the original observation was in oktas (Gulev
and Aleksandrova 2020).

d. Optimization

The optimization selects values for the x coefficients that min-
imize the difference between DTdiur and DTBKT using Eqs. (10)
and (12), and using several different cost functions. Coefficients
are derived for selected individual ships, but could also be ap-
plied across a group of ships thought to have similar DTdiur

characteristics.
The solution uses the L-BFGS-B (Byrd et al. 1995) solver

in R (an option in the optim function; R Core Team 2019)
with lower and upper coefficient limits from Table 1. We min-
imize six different cost functions to evaluate the BKT model
solutions. Each cost function tests different aspects of the
goodness of fit and the spread across the cost functions is
wider giving more realistic estimates of fit uncertainty:

1) The residual root-mean-square error (RMSE),

RMSE 5
�����������������������������������������
(1/n)�n

k51(DTdiurk
2 DTBKTk

)2
	

, the RMSE

gives the simplest measure of the fit.
2) Weighted RMSE (RMSEw) only using MAT observation

times between 3 and 8 h after sunrise. RMSEw gives
weight only to hours where DTBKT values are expected to
be largest.

3) RMSEV2
, where the RMSE is calculated from bin means

of data in 2 m s21 V and local-hour intervals.
4) RMSEV5

, as RMSEV2
but with 5 m s21 V and 2-hourly inter-

vals. Both RMSEV2
and RMSEV5

are designed to greater
weight the importance of minimizing the (DTdiur 2 DTBKT)
residual through the day and across values of V.

5) RMSEDW 5 (1 2 l)RMSE 1 l(|DW 2 2|), where DW is
the Durbin–Watson statistic and l is a scaling factor that
we set to 0.3. RMSEDW, is used to down-weight solutions
where the residual displays autocorrelation.

6) RMSEKS 5 (1 2 l)RMSE 1 l(KS), where KS is the
Kolmogorov–Smirnov statistic. This cost function gives
greater weight to solutions where the cumulative sums of
daytime values of DTdiur and DTBKT are small.

An ensemble of these cost functions is used to test different as-
pects of the structure of the residual (DTdiur 2 DTBKT) to ensure
a reasonable fit throughout the day and across all cloud-cover
and relative wind speed combinations. Avoiding unphysical start-
ing coefficient combinations improves efficiency and helps to
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avoid local minima so we use a pool of ;350 precalculated sets
of starting coefficients to initialize the fit. For each ship, we ran-
domly select 10 sets of starting coefficients and 5 subsets of 70%
of available days. This gives an ensemble of 300 sets of coeffi-
cients (10 starting values, 5 data subsets, and 6 cost functions),
and any convergence failures are rerun until there are 50 sets of
coefficients per cost function. Unless otherwise stated, hereafter
the DTBKT value is the ensemble mean taken from 60 realizations
of the DTBKT using the 10 best-fit time series from each of the 6
cost functions.

3. Results

a. Fitting to individual ships

To illustrate the application of the BKT model, we show
results from 16 ships covering different time periods, sam-
pling frequencies, and original input sources (Table 3).
The data for these ships were obtained from the ICOADS
(Freeman et al. 2017) archive: release 3.0.0 up to 2014 and
release 3.0.1 thereafter. Quality checking has been applied
to the data prior to model fitting (appendix). The reports
from these 16 ships contain all of the variables required to
fit the adjustment model, and all have reported data over at
least 150 days. Collectively, these ships provide a global
sample of data between 608S and 608N, with 64% of obser-
vations in the tropics (308N–308S), 26% in the Northern
Hemisphere, and 10% in the Southern Hemisphere. Longi-
tudinally, there are 31% of observations in the Atlantic
Ocean, 29% in the Pacific Ocean, 18% in the Indian Ocean,
17% in the South China Sea and adjoining gulfs/seas, with
3% in the Mediterranean Sea and remainder (2%) of obser-
vations from minor ocean basins.

Figure 2 shows the diurnal adjustment for the ship Raphael dur-
ing October 1884. Figure 2a shows Tship, Tnt, and Tadj. Figure 2b
shows the estimates of DTdiur and DTBKT.

Figure 3 shows the mean DTdiur, DTBKT, and residuals
(DTdiur 2 DTBKT) using the best-fit set of coefficients for each
cost function (i.e., six lines) for the ship Mary (Figs. 3a–d),
split across local hour of the day, cloud cover, 2 m s21 intervals
of V, and 108 latitude bins. Following BKT we use a target accu-
racy of 60.28C. Figure 3 shows that across the input parameters
of the BKT model (time/position, cloud cover, and V), the heat-
ing bias is removed, with bin-mean residuals that are generally
within 60.28C, and the bin-mean local-hour average residuals
are always within the 60.28C target. However, for this ship the
BKT model appears to underadjust for clear skies (0 okta) and
a V of 22–24 m s21, although these bins are poorly sampled
(14 observations for 0 oktas and 45 and 16 observations for the
22 and 24 m s21 bins, respectively).

Figures 4a–c display the DTdiur, DTBKT, and residuals
(DTdiur 2 DTBKT) across all 16 ships as a function of the num-
ber of hours since sunrise. DTdiur can be ,08C, as MAT values
close to sunrise will be cooler than the nighttime mean MAT.
DTBKT is always above 08C, and this is reflected in the nega-
tive residuals for hours 0–1 and $18. Aside from the 28–34,
46, and 50 m s21 wind speed bins and 608N latitude bin, the
bin-mean residuals (Figs. 4c–f) are all within 60.28C. The
pattern of a relative DTdiur 2 DTBKT underadjustment for
hours 3–5 and 9–14 (Fig. 4c) appears consistent regardless of
whether a single cost function is used or a different sample of
ships is selected (not shown). Possible causes are inaccurate
estimates of solar radiation [Eq. (5)] or systematic errors in
our estimate of DTdiur.

The mean overall DTdiur 2 DTBKT residual for each individ-
ual ship is always within 60.28C, with 11 out of 16 ships within
60.058C. The largest residual (0.148C) is found for the U.S.
Navy 12388 ship. The WWII period is one of the more diffi-
cult periods to apply the BKT model correction, due to the
limited number of observations from which determine Tnt, as
well as the occurrence of and a warm bias in nighttime obser-
vations over 1942–46 (Cornes et al. 2020).

TABLE 3. Sixteen ships selected from ICOADS to illustrate the results of fitting the BKT model. Deck refers to the original source
data collection in ICOADS. Metadata contain information that could be readily obtained via an Internet search of the original call
sign or name of the ship. The ship U.S. Navy 12388 samples at 0800, 1200, and 2000 local hour, a common feature of currently
available WWII-era ships.

Ship Year Hourly sampling frequency Deck Metadata

USS Constitution 1854 2 721 Sail, wood
USS Despatch 1858 2 701 Screw steamer
USS Merrimac 1858 2 721 Steam frigate
Mary 1884 2 704 Unknown
Panay of Salem 1884 2 704 Sail
Raphael 1884 2 704 Sail, wood
Chosen Maru 1916 4 762 Cargo, steel, screw steamer
Kanagawa Maru 1916 4 762, 706 Passenger, steel, screw steamer
U.S. Navy 12388 1942 3 times daily 195 Unknown U.S. naval ship
U.S. hourlies 2129 1955 1 116, 117 Unknown
Merchant Marine 0805 1955 3 116, 117 Unknown
Kajtum 1975 6 927 Cargo ship
Westfalen 1995 3 926, 892, 888 Passenger/cargo ship
Cape Azalea 2014 1 992 Bulk carrier
Polar Resolution 2014 1 992 Oil tanker
Alliance St. Louis 2020 1 798, 992 Vehicle carrier
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To determine the relative improvement of MAT data
after applying the BKT model adjustment, DTdiur and
DTdiur 2 DTBKT should be compared. First, it is clear that
the spread of DTdiur values (Fig. 4a) is greater than the
spread for both DTBKT (Fig. 4b) and DTdiur 2 DTBKT

(Fig. 4c), as expected. The RMSE reduction (DTdiur cf.
DTdiur 2 DTBKT) ranges from 15% (U.S. Navy 12388,
1.538–1.358C) to 53% (Kajtum, 2.458–1.138C), with a mean
of 28% across all 16 ships. The RMSE reduction signifi-
cantly correlates (r 5 0.92) with the magnitude of DTdiur.
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FIG. 3. The mean DTdiur (solid blue line), DTBKT (dashed lines), and residual (dotted lines) for the ship Mary (Table 3) grouped by
(a) local hour (every 2 h), (b) cloud cover (one okta intervals), (c) 2 m s21 intervals of V, and (d) 108 latitude bins. Individual dashed and
dotted lines represent the best-fitting DTBKT from each of the six cost functions described in section 2d. The horizontal red lines indicate
08 and 60.28C limits. Each bin contains at least 100 observations, except for 0 and 7 oktas, 18 and .20 m s21, and 408 latitude.

�2
�1

0
1

2
3

4
5

Hours After Sunrise

M
AT

 (d
eg

.C
)

0 4 8 12 16 20 24

a)

�2
�1

0
1

2
3

4
5

Hours After Sunrise

M
AT

 (d
eg

.C
)

0 4 8 12 16 20 24

b)
�3

�2
�1

0
1

2
3

Hours After Sunrise

M
AT

 (d
eg

.C
)

0 4 8 12 16 20 24

c)

�4
�2

0
2

4

Okta

M
AT

 (d
eg

.C
)

0 1 2 3 4 5 6 7 8

d)

�4
�2

0
2

4

V (m/s)

M
AT

 (d
eg

.C
)

0 10 20 30 40 50

e)

�4
�2

0
2

4

Latitude

M
AT

 (d
eg

.C
)

�60 �40 �20 0 20 40 60

f)

FIG. 4. Boxplots displaying the bin mean (solid line), bin mean 61 standard deviation (box limits), and 5th and 95th percentiles
(whiskers) for (a) DTdiur and (b) DTBKT as grouped by the number of hours after sunrise. (c)–(f) The DTdiur 2 DTBKT residual when
grouped by (c) the number of hours after sunrise, (d) cloud cover, (e) 2 m s21 intervals of V, and (f) 108 latitude bins. All 16 ships from
Table 3 are included and the DTBKT is taken as the ensemble mean across 60 realizations of the DTBKT (the 10 best-fit realizations from
each of the 6 cost functions described in section 2d). The horizontal solid red and dark-red dashed lines indicate zero and 60.28C limits,
respectively. The box widths correspond to the square root of the sample size in each bin.
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It is not expected that DTBKT will exactly match DTdiur. Re-
siduals will include the effects of any model misfit, errors in V,
cloud cover, or the parameterization of solar radiation and
other nonsystematic differences such as weather effects. The
magnitude and variability of the residuals, and the percentage
changes, will depend on the relative sizes of the adjustment
required and these other factors.

Figure 5 illustrates values of DTBKT under fixed environ-
mental conditions and for selected latitudes for each ship, us-
ing the 60 ensemble member BKT model coefficients for each
ship. Under these conditions, DTBKT in terms of amplitude
and timing is similar for some ships (e.g., the pairing of the
USS Merrimac and Kanagawa Maru), and different for
others. To adjust the Kajtum using the coefficients generated
for the Chosen Maru would leave the Kajtum still retaining a
large MAT diurnal cycle, whereas the inverse operation
would generate a physically unrealistic diurnal cycle for the
Chosen Maru. Uncertainties across the ships are largest

around the peak heating hours, and the uncertainty range
across different ships will relate to the magnitude of the DTdiur

and the environmental conditions, which will depend on the
region in which the ship was operating. Figure 5 illustrates the
importance of obtaining a BKT model solution for individual
ships, but also suggests that coefficients can be estimated for
groups of similar ships (see sections 3c and 3e).

If a ship contains observations where it was not possible to
determine Tnt, but there are sufficient Tnt observations for
that ship to fit the BKT model, then every observation with a
corresponding cloud and V can be adjusted since sets of BKT
model coefficients can be determined.

b. Estimating missing cloud and V values

Depending on the observation source, MAT will not always
be accompanied by cloud and wind observations. Figure 1 shows
the proportion of potentially adjustable MAT observations using
the BKT model has been decreasing since a sustained peak in
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FIG. 5. The mean (solid line), standard deviation range (darker shading), and 5th–95th-percentile range (lighter shading) for DTBKT for
the 16 different ships (Table 3) under fixed environmental conditions of 15 m s21 V, four oktas cloud cover, 2208 longitude, Julian day 150,
and variable latitudes 258N (red), 508N (green), and 658N (blue). The vertical line is at 1300 local time and the number in the upper left of
each panel indicates the peak heating hour at 258N.
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the 1980s, likely due to increasing contributions from automatic
weather stations in ICOADS in the modern era (Freeman et al.
2017).

As a means to examine the impact of infilling data on the
BKT model adjustment (explored in section 3d), we generate
the empirical histogram of clouds on a 18 spatial grid at
monthly resolution (using ICOADS data from 1961 to 1990).
We can then sample cloud cover values from this climatologi-
cal histogram to generate ensembles of cloud cover estimates
for MAT with missing cloud cover, which will vary across a 18
grid and month. Similarly for V, we sample wind speed (ws)
values from the Rayleigh distribution, with the scale parame-
ter set as ws/

���
p

�
, and direction sampled from the climatologi-

cal distribution of the 16-point compass direction. To generate
V, we further add a random directional component from the
uniform distribution (622.498) to the coarse-resolution wind
direction and then use the observed ship speed and value to
recalculate a sampled V.

c. Bulk application of the BKT model using “stock”
coefficient combinations

The optimization of model coefficients is computationally
intensive and impractical for application to every ship in
ICOADS. To avoid this the optimization was applied to over
10 000 ships in ICOADS during the period 1854–2020, gener-
ating a collection of “stock” coefficients (without using infilled
cloud and V). Many of these coefficient combinations were
similar, so we reduced the number of stock coefficients. We
first reduced the number of the coefficients by removing du-
plicate values across the four x coefficients when rounding to
two significant figures. We then calculated the hourly BKT ad-
justment value for a selection of spatial locations, environmen-
tal conditions, and days, and removed coefficient combinations

resulting in the same hourly rounded (0.18C) values of the
DTBKT throughout the day. This results in a stock coefficient da-
taset of 2500 coefficients, suitable for adjustment of data from
widely differing ships. The 2500 different possible DTBKT values
can be calculated and the coefficients selected using the same
set of cost functions used for optimization. DTBKT values can be
determined following the same approach in section 2d allowing
efficient adjustment of large datasets.

d. BKT adjustment and uncertainty using “stock”
coefficients and climatological infilling

The impact of infilling missing cloud and V values (section 3b)
and fitting the model using a pool of stock coefficients in lieu of
running the optimization (section 3c) is shown in Fig. 6. Figure 6a
shows that the mean uncertainty value (defined as one stan-
dard deviation of the 60-member DTdiur 2 DTBKT ensemble
spread) is at a minimum when using raw observation data and
fitting via optimization, with largest uncertainty values during
the peak heating hours of 6–12 h after sunrise. The uncertainty
increases slightly when using raw observation data and the
stock coefficients (black line with crosses), and further in-
creases when infilling V and cloud cover (green and magenta
lines). The greatest increase in uncertainty comes from replac-
ing observation data with climatological infilling of both V and
cloud. Using either optimized (section 2b) or stock coefficients
(section 3c) when infilling both variables makes little differ-
ence (both blue lines). The greater increase in uncertainty
when infilling cloud only (magenta line) as opposed to V only
(green line) is logical in the context of the BKT model
[Eq. (10)] as the okta value scales the incoming solar radiation,
and that sets the initial magnitude of DTBKT. This pattern typi-
cally holds true when assessing the uncertainty change against
bins of cloud cover, V, and latitude, though some bin values
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FIG 6. (a)–(d) The bin-mean DTdiur 2 DTBKT residual and (e)–(h) the bin mean of the 60-member standard deviation of the DTdiur 2 DTBKT

residual. Six different approaches to defining the DTBKT were used: the “normal” approach using raw observational data (black line
with circles), using infilled cloud (magenta line), V (green line), both cloud and V (blue line with circles) alongside fitting the DTBKT

using “stock” coefficient combinations for raw observational data (black line with crosses) and infilled cloud and V (blue line with
crosses).
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differ. Climatological infilling of both parameters typically
doubles the uncertainty compared to using raw data and opti-
mizing (Fig. 6). The relatively minor increase in uncertainty
when using stock coefficients and raw data gives us confidence
in the en masse application of the BKT model using this
approach.

e. Application to pre-1854 ships

If it is not possible to generate any Tnt values for a ship,
DTdiur cannot be estimated [Eq. (2)] and the BKT model can-
not be fit using the methodology we outline in section 2d. A
DTBKT value can be determined using stock coefficients, but
the chosen sets of coefficients have to be determined via ana-
log, based an expected DTdiur profile for the particular ship.

Before ca. 1854 there are increasingly fewer NMAT observa-
tions (Fig. 1a), and ships that do sample the diurnal cycle are
unlikely to have cloud and V observations available (Fig. 1b).

Stock coefficients enable an estimation of the DTBKT to be
made without a DTdiur target. As the accuracy of the adjust-
ment cannot be directly assessed this way, the quality of the
adjustment will be based on the efficacy of the grouping of
the ships. For example, we can expect that most ships pre-
1854 are wooden-hulled sailing ships, with nonstandard
observing practices (i.e., differences between countries and in-
dividual ships). It would therefore be desirable to obtain a set
of coefficients that have been successfully applied to analog
ships during the following years. Good analogs are difficult to
derive during the early 1850s as the global shipping fleet transi-
tioned from sail to steam. However, the 1853 Brussels Marine
Conference (Maury 1853) led to an increased standardization
of measuring practices and hence the metadata in ICOADS/
digitized records could enable selection of ships in the decades
following 1854 that are the most appropriate counterparts to
the assumptions listed above.

We trial two attempts to adjust the pre-1854 data. First,
data from all ships between 1854 and 1870 are used as the
pre-1854 analog period. Each stock coefficient combination is
given an identification number, and the number of times each
set of stock coefficient occurs within the 60-member ensemble
for a ship in the 1854–70 period occurs is counted. From this,
a break in the most frequently occurring coefficients was identi-
fied at n 5 83, which generated an ensemble of 83 different
realizations from the stock coefficients that are then applied to
the pre-1854 ships. The mean of the DTBKT is determined from
these 83 sets of coefficients and the standard deviation of the
DTBKT values becomes the uncertainty range. Second, for pre-
1854 ships with over 50 DTdiur observations, we generate cloud
and V values as in section 3b, which enables the BKT model to
be fit as in section 3c, resulting in a 59 member ensemble size.

Figure 7a presents a density plot of the ratio between the
heating and cooling terms of the BKT model. This allows a
broad approximation of the exposure and heating bias of a
ship. The 1854–70 ensemble is characterized by most ships’ ra-
tio being below ;0.002, which after Fig. 4 in Berry and Kent
(2005), is an appropriate range for good ships with a low heat-
ing bias. The pre-1854 ensemble distribution is more uni-
formly spread, indicative of more ships with larger heating
biases. This is reflected in Fig. 7b, using the same fixed envi-
ronmental conditions as Fig. 5; the DTBKT is shown to be
larger (and less certain) for the pre-1854 ensemble. The im-
pact on a MAT time series using either ensemble is shown in
Fig. 7c, alongside the DTdiur. For the HMS Favorite during
December 1831, it is clear that the pre-1854 ensemble (Fig. 7c)
captures the evolution of the DTdiur more appropriately than the
1854–70 ensemble (Fig. 7d) as the DTdiur often falls out of the
uncertainty range for the latter.

En masse application of the pre-1854 ensemble of coeffi-
cients to the pre-1854 data would result in larger values of
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FIG. 7. (a) Density plot of the ratio between the BKT model heating and cooling terms (i.e., x1/x3Vx4 1 x5) for
each cost function as selected by either the 83-member ensemble using the 1854–70 grouping (blue) or the 59-member
ensemble using pre-1854 ships (green). (b) The magnitude and uncertainty of DTBKT under the same fixed environ-
mental conditions as in Fig. 5 at 258N. (c) The DTdiur time series (black dashed line) for the ship HMS Favorite during
December 1831, with TBKT for the pre-1854 ensemble (solid green line) where shading intensity corresponds to 61–2
standard deviations. The TBKT for the 1854–70 grouping is shown without shading for comparison (solid blue line).
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DTBKT as opposed to using the 1854–70 ensemble. The pur-
pose of the comparison here is not to identify the better over-
all choice, but to highlight that it is possible to achieve
sensible heating bias adjustments to the early data. Rather
than a broadscale adjustment, specific BKT model coefficient
groupings could be made for different ICOADS decks or
source IDs, and as for newly digitized data as they become
available. Utilizing this analog approach to the heating bias
adjustment is not limited to pre-1854, and could be used
throughout the full ICOADS period.

4. Summary and discussion

a. General application of the BKT model

In this paper we have extended the method developed by
BKT for the correction of diurnal heating biases in ship-based
air temperature measurements. From our estimate of this
heating bias, we are able to generate MAT time series for in-
dividual ships, Tadj (Fig. 2), that substantially reduces the
DTerr, leaving a mean residual within 60.28C (Fig. 4). Results
focus on a sample of 16 ships, but the approach is applicable
to all ship-based observations in ICOADS and ultimately will
be used in the construction of improved estimates of global
surface air temperature trends.

Our DTdiur estimate [Eq. (2)], based on the difference be-
tween MAT and the underlying NMAT trend, minus the cli-
matological SST cycle from buoys as defined in Morak-Bozzo
et al. (2016), is likely an overestimate of the true heating bias.
The heating bias is difficult to disentangle from the true diur-
nal cycle as both depend on the incoming solar radiation.

Application of the BKT model requires observations to be
part of a ship-track time series, either through an extant iden-
tifier or after application of a tracking methodology (Carella
et al. 2017), to enable DTdiur to be calculated. This can be
ameliorated by improved tracking methods or ensuring ship
identify information is preserved in metadata records as they
are stored/digitized.

For ships that lack accompanying cloud and V it is possible
to estimate the MAT daytime bias (Fig. 6) by infilling these
variables. The uncertainty in DTBKT inflates to account for
the infilling.

It is possible to achieve a removal of the daytime heating
bias for ships without sampling across the diurnal cycle; this is
required for temporal extension of the MAT record further
back in time than ca. 1854. For example, the English East
Indian Company ships (ICOADS Deck 248) mostly report a
single daily observation at local noon, which makes determin-
ing a nighttime value and DTdiur estimate impossible. How-
ever, in this paper we have demonstrated that if a sufficient
number of analog ships can be identified, which are able to be
adjusted, the most commonly occurring BKT model coeffi-
cients used in the adjustment of these ships can be used to
generate an ensemble of DTBKT for these older ships (Fig. 7),
enabling a backward temporal extension of the MAT record.
Here, an outline for choosing analog ships was made, but this
can be refined in the future as data from newly recovered

sources are digitized, and/or metadata tied to existing obser-
vations are utilized.

b. Data issues and quality control

Relatively strict quality control procedures have been ap-
plied (appendix) to ensure the analysis uses data that accu-
rately portray the measured diurnal cycle.

The diurnal-cycle-based quality control routine (appendix)
identified data from a number of ships in the 1880s that
passed the climatology-based QC checks but that had a ;12-h
offset. Without removal or adjustment these data would ad-
versely affect NMAT datasets. Furthermore we were able to
identify ships suspected of making measurements in cabins,
by analysis of the peak hour of DTdiur (appendix). Overall,
this shows that there is still much to be learned about MAT
observations and diurnal-cycle-based assessments are likely to
remain a useful tool in improving the long-term records
(Cornes et al. 2020; Chan and Huybers 2021). A further unre-
solved issue is whether some reported ICOADS wind and di-
rection values are the true wind and direction, or relative
values uncorrected for ship trajectory (Gulev 1999).

c. Precipitation and weather codes

The presence of precipitation invalidates the energy trans-
fer assumptions of the BKT model. When the recording of
the present weather (WW) code is systematically high (.95%
during the 1960–70s, green color in Fig. 1c), the percent of
WW observations indicating precipitation is ;10% (red color
in Fig. 1c). As the WW code is not always recorded with every
MAT observation, it may not be possible to identify all obser-
vations that may have been affected by precipitation. Further
work is required to better identify affected observations and
to understand the impact of precipitation on the heating bias.

d. Systematic structure in diurnal residuals

The approach outlined here, across the 16 analyzed ships,
reduces the mean hourly local time error in all-hours observa-
tions (DTerr ’ DTdiur) to within 60.28C (DTdiur 2 DTBKT).
However, a systematic diurnal structure remains in the resid-
uals of the BKT model adjustment (Fig. 4c). Further reduc-
tion in these residuals is likely to require an improved analysis
method. Examples of possible improvements might be better
estimates of incoming solar radiation, potentially including a
diffuse term; reinstatement of the original x6 thermal transfer
term (which would add dewpoint temperature as a data re-
quirement in applying the BKT model); or explicitly estimat-
ing, or fitting the true diurnal cycle of MAT.

e. The need for more complete data and metadata

The value in the recovery and digitization of MAT data, in
terms of the marine contribution to extending the global tem-
perature record, cannot be overstated. While much work has
been done in extracting historical observations from available
archives, e.g., Garcı́a-Herrera et al. (2005), extra value can be
prescribed to MAT observations that cover the full diurnal cy-
cle and have concomitant cloud and wind speed observations,
particularly for pre-1854. Cloud cover is an essential climate
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variable, but the advent of automated measurements has re-
sulted in major drop in ship-based cloud observations in
ICOADS since the peak in the 1980s (Kent et al. 2019).
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APPENDIX

Data Selection and Quality Control

MAT values that fail quality control (QC) checks are
excluded from this analysis. The QC routine includes the
following:

1) The QC flag from CLASSnmat (Cornes et al. 2020), which
is a combination of an initial application of the Met Office
QC checks (https://github.com/ET-NCMP/MarineQC) and
the outliers identified in the processing of CLASSnmat.

2) QC checks as applied to the Shipboard Automated Mete-
orological and Oceanographic System data described in
Smith et al. (2018). We also remove any observations in a
track where the MAT deviates from the running median
by 6158C (window length depending on sampling fre-
quency). Individual ship tracks are split into segments if
gaps in MAT exceed two days. Observations in each seg-
ment where the MAT is $4 standard deviations above or
below the mean for that segment, and the absolute lag1

MAT exceeds the mean value of absolute lag1 differences
are removed. Additionally, observations with DTdiur val-
ues $258 and #158C are removed.

3) All precipitation-flagged observations identified from the
ICOADS present weather code following Petty (1995) are
excluded.

4) We identify and exclude observations from ships where a
one-tailed t test indicates a statistically significant warmer
night than day. This test is applied both monthly and an-
nually, removing months and years that fail either of the
tests. Ships with less than 5 days with corresponding day
and night observation values are not assessed.

5) Observations from ships during the period 1854–94 with
mean peak heating hour #2 or $13 h after sunrise or be-
tween 2200 and 0600 local time are excluded. This identifies
observations that may have been taken in cabins during
rough conditions}predominantly at nighttime, in colder
months in the higher latitudes, as investigated by Chenoweth
(2000).
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