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ABSTRACT: Previous studies show that some soil moisture products have a good agreement with in situ measurements
on the Tibetan Plateau (TP). However, the soil moisture response to precipitation variability in different products is yet to
be assessed. In this study, we focus on the soil moisture response to precipitation variability across weekly to decadal time
scales in satellite observations and reanalyses. The response of soil moisture to precipitation variability differs between
products, with large uncertainties observed for variations in weekly accumulated precipitation. Using June 2009 as an ex-
ample, weekly mean anomalous soil moisture varies by up to 25% between products. Across decadal time scales, soil mois-
ture trends vary spatially and across different products. In light of the soil moisture response to precipitation at different
time scales, we conclude that remote sensing products developed as part of the European Space Agency’s (ESA) Water
Cycle Multimission Observation Strategy and Soil Moisture Climate Change Initiative (CCI) projects are the most reliable,
followed by the Global Land Evaporation Amsterdam Model (GLEAM) dataset. Even products that strongly agree with
in situ observations on daily time scales, such as the Global Land Data Assimilation System (GLDAS), show inconsistent
soil moisture responses to decadal precipitation trends. European Centre for Medium-Range Weather Forecasts
(ECWMF) reanalysis products have a relatively poor agreement with in situ observations compared to satellite observa-
tions and land-only reanalysis datasets. Unsurprisingly, products which show a consistent soil moisture response to precipi-
tation variability are those mostly aligned to observations or describe the physical relationship between soil moisture and
precipitation well.

SIGNIFICANCE STATEMENT: We focus on soil moisture responses to precipitation across weekly to decadal time
scales by using multiple satellite observations and reanalysis products. Several soil moisture products illustrate good
consistency with in situ measurements in different biomes on the Tibetan Plateau, while the response to precipitation
variability differs between products, with large uncertainties observed for variations in weekly accumulated precipita-
tion. The response of soil moisture to decadal trends in boreal summer precipitation varies spatially and temporally
across products. Based on the assessments of the soil moisture response to precipitation variability across different time
scales, we conclude that remote sensing products developed as part of the European Space Agency’s Water Cycle
Multimission Observation Strategy and Soil Moisture Climate Change Initiative (CCI) projects are the most reliable,
followed by the Global Land Evaporation Amsterdam Model (GLEAM) dataset. Reanalysis products from ECWMF
show inconsistent soil moisture responses to precipitation. The results highlight the importance of using multiple soil
moisture products to understand the surface response to precipitation variability and to inform developments in soil
moisture modeling and satellite retrievals.
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1. Introduction

Subseasonal to decadal atmospheric prediction relies on cli-
mate system components with substantial “memory” includ-
ing the land surface, ocean, and sea ice (Koster and Suarez
2001). Soil moisture is a key memory variable as it regulates
surface processes, which influence the surface water and en-
ergy balance and biogeochemical cycles. Land–atmosphere
feedbacks associated with soil moisture can substantially

impact precipitation and radiation anomalies while influenc-
ing local, regional, and global climate (Seneviratne et al.
2010).

Soil moisture varies evidently in both time and space, be-
cause it is controlled by multiple elements, for example, pre-
cipitation, vegetation characteristics, topographic distribution,
and soil properties. Soil moisture dynamics is the main pro-
cess controlling meteorological processes, soil biogeochemis-
try, plant growth and nutrient cycles (Daly and Porporato
2005). Precipitation variability is among other important fac-
tors affecting the spatial and temporal pattern in soil moisture.
In semiarid biomes, it was found that only large precipitationCorresponding author: X. Meng, mxh@lzb.ac.cn

DOI: 10.1175/JHM-D-22-0181.1

Ó 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

M ENG E T A L . 625APRIL 2023

Brought to you by UK CENTRE FOR ECOLOGY & HYDROLOGY | Unauthenticated | Downloaded 04/13/23 08:03 AM UTC

https://orcid.org/0000-0001-7171-8640
https://orcid.org/0000-0001-7171-8640
mailto:mxh@lzb.ac.cn
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


events (15 and 20 mm) enhanced soil moisture and facilitated
the penetration of water into the deeper soil layers at the
grassland surface lying in northeastern Colorado in the United
States (Heisler-White et al. 2008). Although soil moisture
anomalies occurrences depend on large precipitation events, it
was found frequent rainfall usually results in soil moisture re-
sponses other than individual rainfall events (Sun et al. 2015).

The Tibetan Plateau (TP), located in southwest China, is
the largest and highest elevated plateau in the world with an
average height above 4000 m. It extends approximately 1000 km
meridionally and 2500 km zonally. With its vast distribution of
glaciers, permafrost and snow, the TP is a vital water source for
many large rivers across Asia including the Yangtze, Yellow, In-
dus, and Mekong (Yao et al. 2019). In addition to its “Asia Wa-
ter Tower” role (Yao et al. 2012; You et al. 2016; Immerzeel
et al. 2020; Yao et al. 2022), it has also been shown to affect
local, regional, and global atmospheric conditions due to its
strong thermal and dynamic influence on the atmosphere (Ma
et al. 2009; Duan et al. 2012; Wu et al. 2012; Wan et al. 2017;
Barton et al. 2021; Talib et al. 2021; Ma and Zhang 2022; Yan
et al. 2022).

In situ observations are capable of providing accurate soil
moisture measurements. Based on these observations, the re-
sponse of soil moisture to precipitation intensity and fre-
quency has been examined across different biomes and
regions on the TP (Zhu et al. 2017; Dai et al. 2019, 2022). For
example, temporal changes in soil moisture at depths of 0–20
and 40–60 cm are consistent with precipitation variations
across alpine meadow and shrub biomes in the northeast TP
(Dai et al. 2022). For larger soil moisture depths, seasonal var-
iations in infiltration are independent to the precipitation in-
tensity (Dai et al. 2019). Over the Tanggula permafrost region
across the central TP for example, extreme precipitation has a
large influence on infiltration characteristics (Zhu et al. 2017).
The intensity of an extreme precipitation event can influence
the persistence of anomalous soil moisture conditions.

However, in situ measurements across the TP are spatially
limited, which is problematic given the substantial spatial vari-
ability in soil moisture (Zhang et al. 2018). Satellite products
and reanalyses provide a better mapping of soil moisture
across regional scales. Microwave remote sensing measure-
ments afford the possibility to obtain frequent, global sam-
pling of soil moisture over a large fraction of Earth’s land
surface (Njoku and Entekhabi 1996). Reanalyses, on the
other hand, are considered an essential substitute where satel-
lite observations are not available (Al-Yaari et al. 2014; Baatz
et al. 2021). However, before using these different soil mois-
ture products, it is necessary to evaluate them across different
spatial and temporal scales.

In spite of the hostile environment on the TP and logistical
challenges associated with developing in situ observational
networks, several site observations and three soil moisture
networks have recently been set up across different biomes
(Su et al. 2011; Yang et al. 2013). Several studies have evalu-
ated soil moisture products across the TP using these in situ
observations (Chen et al. 2013; Su et al. 2013; Al-Yaari et al.
2014; Zeng et al. 2015; Zhang et al. 2018). For example, Zeng
et al. (2015), and Zhang et al. (2018), compared different soil

moisture products to in situ measurements. They concluded
that instantaneous soil moisture observations were well repre-
sented by satellite and reanalysis products, especially for the
remote sensing products developed as part of the European
Space Agency’s (ESA) Water Cycle Multimission Observation
Strategy and Soil Moisture Climate Change Initiative projects
(hereafter referred to as CCI; Liu et al. 2012; Wagner et al.
2012), the Advanced Scatterometer (ASCAT) retrieval products
from the European Meteorological Satellite (EUMETSAT;
Wagner et al. 2010), and the assimilation products developed by
Global Land Data Assimilation System (GLDAS; Rodell et al.
2004). Products also successfully capture the soil moisture re-
sponse to daily precipitation events (Zhang et al. 2018).

While previous studies have focused on the agreement be-
tween in situ measurements and absolute soil moisture values
across the TP (Zhang et al. 2018), and the instantaneous re-
sponse of soil moisture to individual precipitation events at
site-based scale, in this study we investigate the agreement be-
tween products in the soil moisture response to precipitation
variability on weekly and decadal time scales at the shallow
layer and discuss the consistency of soil moisture dynamics in
these two time scales among the products on the TP. Section 2
introduces the different products and statistical techniques uti-
lized in this study. Section 3 investigates products variability in
soil moisture response to precipitation, across weekly and de-
cadal time scales. Section 3a describes the spatial distribution
of soil moisture on the TP. Section 3b analyses the soil moisture
response to weekly precipitation fluctuations during boreal
summer. Meanwhile, sections 3c and 3d analyze the soil mois-
ture response to interannual and decadal climate variability,
with section 3d focusing on the soil moisture response across
different biomes. Sections 4 and 5 finish the paper with discus-
sion and conclusions, respectively.

2. Data and methods

a. Remote sensing products

This study utilizes the great efforts of researchers working
on the development of microwave-based soil moisture re-
trieval algorithms by analyzing several soil moisture products,
including the Advanced Microwave Scanning Radiometer for
Earth Observing System (AMSR-E) on the National Aero-
nautics and Space Administration (NASA) Aqua satellite and
the Advanced Microwave Scanning Radiometer 2 (AMSR2)
products generated by the Land Parameter Retrieval Model
(LPRM; Owe et al. 2008) and the ESA’s CCI (Liu et al. 2012;
Wagner et al. 2012). Table 1 provides details of each individ-
ual remote sensing soil moisture product.

The AMSR-E/AMSR2 products were the first attempt to
produce soil moisture readings at an accuracy higher than
0.06 m3 m23 (Njoku et al. 2003; Njoku and Chan 2006). Dif-
ferent products were released using alternative algorithms, in-
cluding the NASA soil moisture product (version 6, i.e., the
AMSRE/2 NASA product; Njoku and Chan 2006), the Japan
Aerospace Exploration Agency (JAXA) soil moisture prod-
uct (version 7, i.e., the AMSRE/2 JAXA product; Koike et al.
2004), and the Land Parameter Retrieval Model (LPRM) soil
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moisture product (version 2, i.e., the AMSRE/2 LPRM prod-
uct; Owe et al. 2008). In this paper, we use the LPRM soil
moisture product as it performs best during daytime hours in
the unfrozen season on the TP (Zeng et al. 2015). The LPRM
soil moisture product is generated using a three-parameter
method, computing the vegetation optical depth as a function
of the soil dielectric constant and the microwave polarization
difference index (MPDI; Owe et al. 2001; Meesters et al.
2005), retrieving land surface temperature from the vertically
polarized Ka-band observations using an empirical regression
model (Holmes et al. 2009), and calculating soil moisture in
the radiative transfer equation through a nonlinear interactive
procedure (Njoku et al. 2005).

The ESA CCI soil moisture product merges several data
sources, including the Special Sensor Microwave Imager
(SSMI), the Scanning Multichannel Microwave Radiometer
(SSMR), the Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager, the AMSR-E product, the ASCAT active
datasets, the WindSat microwave imaging radiometer, AMSR2
passive datasets, and the scatterometers (SCAT; Liu et al. 2012;
Wagner et al. 2012).These soil moisture products have already
been used to understand surface processes on the TP (Meng
et al. 2018; Deng et al. 2020).

b. Reanalysis products

In this study, several widely used reanalysis products are
analyzed including: the European Centre for Medium-Range
Weather Forecasts (ECWMF) reanalyses (Dee et al. 2011)
versions interim (ERA-I) and 5.0 (ERA5); the Modern-Era
Retrospective Analysis for Research and Applications (MERRA)
land-only product, produced by the Global Modeling and Assimi-
lation Office of NASA (Rienecker et al. 2011); the Global Land
Data Assimilation System (GLDAS; Rodell et al. 2004); and the
Global Land Evaporation Amsterdam Model (GLEAM) dataset,
developed by Vrije University Amsterdam and ESA (Miralles
et al. 2011; Martens et al. 2017). Details of the products are in
Table 2.

ERA-I and ERA5 are two global atmosphere reanalysis
datasets generated by different versions of ECMWF models
(Dee et al. 2011; Hersbach et al. 2020). As a superseded ver-
sion of ERA-I, ERA5 provides hourly estimates for more

variables of the atmosphere, land, and ocean than ERA-I,
with a higher spatial resolution of 30 km. In addition, ERA5
incorporates more historical observations using sophisti-
cated modeling and data assimilation systems, particularly
for the estimation of precipitation, evaporation, and soil
moisture (Hersbach et al. 2020). Unlike ERA-I, ERA5 as-
similates soil moisture from scatterometer data. In this pa-
per, we use the surface layer of 7 cm depth from both
ECMWF reanalyses.

GLDAS is developed to generate optimal fields of land
surface states and fluxes by integrating satellite- and ground-
based observational data products, using land surface model-
ing and data assimilation techniques (Rodell et al. 2004). Two
datasets from the Noah LSM model were used in the current
study because of different time durations; version 2.0 runs
from 1948 to 2010 while version 2.1 begins in 2000 and contin-
ues to the present day (Rodell et al. 2004). For GLDAS-2.0,
the model was forced entirely with the Princeton meteorologi-
cal forcing data (Sheffield et al. 2006). For GLDAS-2.1, it was
started on 1 January 2000 using the conditions from the
GLDAS-2.0 simulation, forced with National Oceanic and
Atmospheric Administration’s Global Data Assimilation Sys-
tem atmospheric analysis fields (Derber et al. 1991), the disag-
gregated Global Precipitation Climatology Project (GPCP)
precipitation fields (Adler et al. 2003), and the Air Force
Weather Agency’s Agricultural Meteorological modeling sys-
tem radiation fields, which became available for 1 March 2001
onward.

The MERRA land-only analysis product used in this study
was generated using more realistic precipitation forcing than
provided by the atmospheric reanalysis. The spatial resolution
is 0.6258 longitude 3 0.58 latitude and we use the top layer
representing 2 cm (Rienecker et al. 2011).

In GLEAM, land surface evaporation is divided into differ-
ent components including transpiration, bare-soil evaporation,
interception loss, open-water evaporation, and sublimation
(Miralles et al. 2011; Martens et al. 2017). The forcing data are
based on reanalysis net radiation and air temperature, and sat-
ellite and gauged-based precipitation. GLEAM assimilates the
satellite-observed soil moisture. In this study, we used the v3a
datasets.

TABLE 1. Information of remote sensing soil moisture products used in this work.

Data name Time period
Temporal
resolution Spatial resolution Layer Passing time

AMSR-E/2 LPRM 2002–16 Daily 0.258 3 0.258 0–5 cm 0130/1330 LT
CCI 1980–2016 Daily 0.258 3 0.258 0–5 cm Multiple overpass times depending on sensor

TABLE 2. Information of reanalysis soil moisture products used in this work.

Data name Time period Temporal resolution Spatial resolution Layer Analysis time

ERA-I 1980–2016 3-hourly 0.258 3 0.258 0–7 cm 0000 UTC
ERA5 1980–2016 3-hourly 0.258 3 0.258 0–7 cm 0000 UTC
GLDAS-Noah-2.1 1980–2016 3-hourly 0.258 3 0.258 0–10 cm 0000 UTC
MERRA 1980–2016 3-hourly 0.6258 3 0.58 0–2 cm 0000 UTC
GLEAM 1980–2016 Daily 0.258 3 0.258 0–10 cm 0000 UTC
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c. The meteorological observations

Observations of air temperature and precipitation from 1961 to
2016 are obtained from the National Meteorological Information
Center (NMIC), China Meteorological Administration (CMA).
These data had already been quality controlled and interpolated
to 0.58 latitude3 0.58 longitude grid (Zhao et al. 2014). However,
due to the arduous environment across the western side of the
TP, most of the stations are located in the east. In addition, we
used an hourly precipitation product on a 0.18 latitude3 0.18 lon-
gitude grid generated by merging the Automatic Weather Station
(AWS) observations using the Climate Prediction Center morph-
ing technique (CMORPH). The CMORPH precipitation data
were derived from NMIC too. Table 3 provides a summary of
meteorological observations used in this study. For precipitation
data, in the weekly responses, we used the CMORPH 0.18 3

0.18 hourly precipitation data, while in the decadal time scales, we
used 0.583 0.58monthly precipitation data.

d. Methods

All datasets were resampled to 0.258 3 0.258 by inverse dis-
tance weight interpolation to be spatially consistent among data-
sets in the spatial scales. Correlation analysis including temporal
and spatial correlation was used to assess soil moisture response
to precipitation changes across weekly to decadal time scales.

A second-order partial correlation was used to examine the
decadal response of soil moisture to precipitation, surface air
temperature, and leaf area index (LAI). In the second-order
partial correlation, we consider four variables in a time series
as xi, xj, xh, xm, with correlation coefficients between the four
variables of rij, rih, rim,…, etc. Then the partial correlation be-
tween xi and xj excluding the influence of the two other varia-
bles xh and xm can be calculated as

rij,hm 5
rij,h 2 rim,hrjm,h�����������������������������

(1 2 r
im,h2 )(1 2 r

jm,h2 )
√ , (1)

where

rij,h 5
rij 2 rihrjh�������������������������

(1 2 rih2 )(1 2 rjh2 )
√ : (2)

3. Results

a. Spatial distribution of soil moisture on the TP

To understand the soil moisture response to precipitation
variability on the TP, we first investigate the climatology in each
product. Figure 1 shows the boreal summer (June–August)

climatology of absolute soil moisture in each of the prod-
ucts, alongside the climatological precipitation and near-
surface air temperature. As several remote sensing products
have time periods with no data, we only show the climatol-
ogy at grid points with daily values for two thirds of the time
series. In addition, Fig. 1 highlights three climate zones
across the TP, arid, semiarid, and semihumid, which are de-
fined using the aridity index (AI) from the United Nations
Environmental Program (UNEP; Oliver 1980). Boreal sum-
mer precipitation across the TP increases from the northwest
to the southeast, with precipitation primarily controlling the
three climatic zones. The highest temperatures are observed
in regions on the northwestern and southern edges of the TP
as well as the driest area in the north, and southern edge
of TP show higher temperature than other regions, while
the west of the TP has the lowest temperature due to high
elevation.

Across all products a similar soil moisture gradient is ob-
served with moisture increasing from the northwest to the
southeast. However, climatological soil moisture values vary
between products. The soil moisture gradient between the
northwest and the southeast is greatest in AMSR (AMSR-E/
AMSR2), followed by ERA5. The strength of the soil mois-
ture gradient partly controls whether soil moisture differences
are observed in different climatic zones. In the remote sensing
products, AMSR illustrates stronger soil moisture differences
between semiarid and semihumid regions. CCI, on the other
hand, shows similar moisture values across both semiarid and
semihumid regions. CCI is the merged product using multiple
microwave soil moisture products, while AMSR is the prod-
uct with the largest soil moisture gradient. Zeng et al. (2015)
show that AMSR has a poor agreement with observations
with daily soil moisture values having a correlation coefficient
of 0.24 with in situ observations. With regards to reanalysis
products, GLDAS, MERRA, and ERA-I show similar mois-
ture gradients and values across the TP. GLEAM and ERA5
show the largest moisture gradients with ERA5 showing wet
conditions across the typically semiarid region. There are sev-
eral possible reasons for soil moisture differences among re-
analysis products including different precipitation forcings,
different model formulations including soil and vegetation
properties, and different surface layer depths.

b. Soil moisture response to weekly precipitation
variability

To understand differences between products in the soil
moisture response to weekly precipitation variations, we first
illustrate how weekly rainfall variability affects soil moisture
anomalies. Using June 2009 as an example boreal summer
season, Figs. 2–4 show the weekly accumulated precipitation
and soil moisture anomaly at the last day of each week in sat-
ellite (Fig. 2) and reanalysis (Figs. 3 and 4) products. Values
in each panel indicate spatial correlation coefficients between
the weekly accumulated precipitation and soil moisture anom-
alies, showing consistency exists between them. During the
beginning of June, thawing increases soil moisture across
the TP (Chen et al. 2013). However, when considering soil

TABLE 3. Information of observed precipitation and air
temperature products used in this study.

Data Time period
Temporal
resolution

Spatial
resolution

Precipitation 1980–2016 Monthly 0.58 3 0.58
Temperature 1980–2016 Monthly 0.58 3 0.58
CMORPH precipitation 2008–16 Hourly 0.18 3 0.18
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moisture anomalies, spatial and temporal variations are pre-
dominately driven by precipitation. For example, in the third
and fourth weeks of June, heavy rainfall occurs in the south-
east of the TP, and remote sensing products show this is

accompanied by increased soil moisture (Fig. 2). Spatial cor-
relation coefficients between precipitation and soil moisture
anomalies increase after the second week of June, consistent
with rainfall driving soil moisture variability.

FIG. 2. Distribution of weekly accumulated CMORPH precipitation (mm week21) and soil moisture anomalies (%; only positive anom-
alies are shown) in CCI and AMSR at the last day of each week during June 2009. Values in each panel indicate spatial correlation coeffi-
cients between the weekly accumulated precipitation and soil moisture anomalies. Gray shading indicates missing values.

FIG. 1. Climatological soil moisture (m3 m23) in boreal summer for different satellite and reanalysis products. We also show climatologi-
cal CMA precipitation (mm day21) and air temperature (8C). All panels show climatology values for 1980–2016, apart from AMSR soil
moisture, which is for 2003–10. Gray shading indicates regions with one-third of the data missing. The green line separates arid and semi-
arid regions, while the blue line separates semiarid and semihumid climate zones.
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As for reanalyses, the sensitivity of soil moisture to weekly
accumulated precipitation during June 2009 varies substan-
tially between products, especially across central and eastern
parts of the TP (Fig. 3). Considering the last two weeks of
June 2009, when the imprint of rainfall on satellite soil mois-
ture estimates is clear (Fig. 2), positive soil moisture anoma-
lies develop in central and eastern TP in GLDAS, ERA5,
GLEAM, and to a lesser extent, ERA-I (Fig. 3). We also cal-
culate the spatial correlation coefficient between the weekly
accumulated precipitation for each product and its associated
anomalous soil moisture at the end of the week. As to the
spatial consistency between anomalous soil moisture and
CMORPH precipitation, smaller spatial correlation coeffi-
cients are observed during the last week of June 2009 in all re-
analysis products, except for MERRA, compared to CCI.
Smaller correlation coefficients in Fig. 3 are most likely re-
lated to differing qualities of reanalysis precipitation datasets.
Figure 4 shows the spatial distribution of weekly accumulated
precipitation in reanalysis products, except for GLEAM
which is not available. In GLDAS, precipitation forcing is
provided by GPCP (Adler et al. 2003), while in ERA-I and
ERA5, precipitation is simulated by an atmospheric model
which is unlikely to capture realistic small-scale precipitation
features. For ERA5, precipitation biases are reduced to some
extent by the assimilation of ASCAT soil moisture observa-
tions (Hersbach et al. 2020). Spatial correlation coefficients

are larger when using reanalysis precipitation predictions in-
stead of CMORPH, except for ERA5 in the last week. This il-
lustrates a better agreement between precipitation and soil
moisture when using weekly accumulated precipitation from
the corresponding reanalysis product instead of merged ob-
servational precipitation.

Through analyzing soil moisture anomalies during June
2009 it is evident that inconsistencies exist between satellite
and reanalysis products (Figs. 2–4). We now generalize
these findings by considering pixel-wise temporal correla-
tions between soil moisture anomalies and antecedent pre-
cipitation accumulations based on CMORPH for boreal
summer months (JJA) in 2008 and 2016. We compare soil
moisture anomalies on day d relative to a 30-day rolling
mean including 15 days before and after day d, with accumu-
lated precipitation between days d 2 N and d. We vary N
between 1 and 10 and for each pixel identify the optimal
value of N that produces the largest correlation coefficient
(Nopt). Figure 5 shows that for most products across the
majority of the TP, Nopt is typically between 5 and 10 days.
There is some consistency among all products except for
MERRA which has longer time scales in more humid re-
gions, and shorter time scales in semiarid and arid regions.
For MERRA, we hypothesis that low values of Nopt are due
to a shallow depth (2 cm, Table 2) and therefore the shortest
soil moisture memory.

FIG. 3. Soil moisture anomalies (%; only positive anomalies are shown) in GLDAS, GLEAM, MERRA, ERA-I, and ERA5 at the last
day of each week during June 2009. Values in each panel indicate spatial correlation coefficients between the weekly accumulated precipi-
tation in Fig. 2 and soil moisture anomalies.
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Maps of correlation coefficients at Nopt indicate a ranking
among products in their sensitivity to CMORPH precipitation
(Fig. 6). There is a marked northwest to southeast gradient in
correlation values which is shared across all the products.

There are multiple factors which may be responsible for this
spatial gradient including, a higher number of in situ observa-
tions across the southeast compared to the northwest, or a
minimal number of precipitating days which influence surface

FIG. 4. Distribution of weekly accumulated precipitation (mm week21) in GLDAS, MERRA, ERA-I, and ERA5 in June 2009. Values
in each panel indicate spatial correlation coefficients between the weekly accumulated precipitation in Fig. 2 and precipitation from each
product.

FIG. 5. The optimal number of accumulation days (Nopt) found when correlating soil
moisture anomaly on day d (deviation from mean of 15 days before and after day d)
with antecedent precipitation accumulated over days d 2 Nopt and d (for JJA 2008–16)
reaches maximum.
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soil moisture across the northwest. In terms of mean correla-
tions across the TP, CCI, MERRA, and GLEAM perform
best, with values of 0.290, 0.292, and 0.292, respectively.
Considering the areal fraction with significant correlations,
GLEAM and CCI score highest, 91.6% and 90.1%, respec-
tively, illustrating a reliable relationship between soil moisture
anomalies with accumulated precipitation at the weekly time
scale. On the other hand, MERRA exhibits the largest corre-
lations at the subplateau scale, with many pixels in the south-
east exceeding a value of 0.5. GLDAS, ERA-I, ERA5, and
AMSR products score worse in terms of TP-mean correlation
coefficients. In particular, AMSR and ERA5, have correlation
coefficients of 0.222 and their ratio of grids passing the signifi-
cance test are lower than 85%. We also performed the same
analysis with daily precipitation totals instead of accumulated
precipitation values. Unsurprisingly, among all products ex-
cept for MERRA, anomalous surface soil moisture is most
correlated with precipitation totals at a 1- or 2-day lag (not
shown). Similar to correlations with accumulated precipita-
tion, products which include soil moisture observations, in-
cluding CCI and GLEAM, have relatively high average
correlation values (0.23–0.28), while those using reanalysis
precipitation totals have low average correlation values
(0.12–0.21; not shown). Although comparisons of instanta-
neous soil moisture with in situ measurements give some
confidence in soil moisture products (Chen et al. 2013;

Su et al. 2013; Al-Yaari et al. 2014; Zeng et al. 2015; Zhang
et al. 2018), product variability in the soil moisture response
to precipitation remains a key uncertainty.

c. Soil moisture response to decadal precipitation trends

Alongside investigating differences among products in the
soil moisture response to weekly precipitation variations, we
have also explored how decadal soil moisture trends vary.
Figure 7 shows decadal trends in boreal summer mean soil
moisture, precipitation, and near-surface air temperature from
1980 to 2016. Focusing first on precipitation and air tempera-
ture trends, Fig. 7 shows significant increasing precipitation
trends in parts of the west, northeast, and southeast TP. Mean-
while, a decreasing trend is observed on the eastern edge of
the TP. Significant warming in the central and northern TP is
also observed, with a peak warming of 0.88C per decade.

Decadal trends in surface soil moisture vary between prod-
ucts with no product showing a significant trend in soil mois-
ture anywhere on the TP. Comparing precipitation and soil
moisture trends, GLEAM and ERA5 show a consistent pat-
tern with increases across the west and central TP, and a slight
reduction along the eastern edge of the TP. Discrepancies oc-
cur across the northwest of the TP, where precipitation shows
an increasing trend, with GLEAM showing a positive soil
moisture trend while ERA5 shows a broadly drying trend.
For CCI, a purely remote sensing product, changes in the west

FIG. 6. The largest correlation coefficients between the soil moisture anomaly on day d
(deviation from mean of 15 days before and after day d) and antecedent precipitation ac-
cumulated over days d 2 Nopt and d 2 1, where Nopt is shown in Fig. 5. Mean values of
the largest correlation coefficients and the confidence interval across the TP are dis-
played in the top of each panel, and the ratio of grids with the values passing the signifi-
cance test at 95% level are shown in the bottom-left corner of each panel.
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TP cannot be quantified due to missing data, while positive
trends are observed across the eastern TP. In comparison to the
precipitation trends, ERA-I and GLDAS exhibit quite different
soil moisture trend patterns, and in places the trends are of the
opposite sign to that of precipitation. For MERRA, although it
is a land product with a more realistic precipitation forcing than
an atmospheric reanalysis such as ERA-I and ERA5, soil mois-
ture trends are also inconsistent with precipitation changes.

To quantity how TP soil moisture responds to different fac-
tors at the decadal scale, we compute a second-order partial
correlation between JJA-average soil moisture with precipita-
tion (Fig. 8) and surface air temperature (Fig. 9) from 1980 to
2016. Figure 8 indicates a major influence of precipitation on
interannual and decadal soil moisture variability. Partial cor-
relations of CCI and GLDAS soil moisture with precipitation
show similar patterns, but with higher correlations in GLDAS.
Similarly, the patterns in MERRA and GLEAM are compara-
ble with each other and indicate significant precipitation control
on soil moisture in almost all pixels outside of the northwest.
The two ECMWF products show clear distinction from other
products. In most regions, ERA5 soil moisture also exhibits a
strong response to precipitation, but stands in contrast to the
limited positive correlations in ERA-I. Considering partial cor-
relations of soil moisture with temperature (Fig. 9), there is
some interproduct consistency in the northwest edge of the TP,
where there is a large area of glaciers distributed. Here, and to
some extent in the south of the semiarid region, soil moisture has

a significant negative correlation with surface air temperature in
ERA5, which is quite different to other products. It is noted that
for ERA-I, although precipitation dominates soil moisture
changes in only a limited area, surface air temperature does not
show a clear influence on soil moisture either. On the other
hand, in ERA5, both surface air temperature and precipitation
show extensive and often strong correlations with soil moisture.
We also performed the same analysis using LAI values derived
fromGlobal Land Surface Satellite (GLASS) product (Xiao et al.
2016). We observe only weak correlations between soil mois-
ture and LAI (not shown), with some consistency across prod-
ucts showing a positive correlation in semiarid environments.

d. Soil moisture response to decadal precipitation across
different biomes

From this analysis we can infer that across the TP changes in
precipitation are primarily responsible for interannual and de-
cadal soil moisture variability. While summer precipitation has
exhibited an increase over the period 1980–2016, it is not strong
enough to have driven a trend in any of these products. To ex-
plore differences in the sensitivity of soil moisture trends to
precipitation due to surface biome, Fig. 10 shows a time series
of boreal summer-averaged soil moisture and precipitation be-
tween 1980 and 2015 across three climate zones and the entire
TP. When considering the interannual correlation between bo-
real summer soil moisture and precipitation, all soil moisture
products show positive correlations, with values ranging from

FIG. 7. Trend of soil moisture [m3 m23 (10 yr)21] in boreal summer for different products, air temperature [8C (10 yr)21] and precipita-
tion [mm21 (10 yr)21 per JJA] from 1980 to 2016. The gray color masks areas with one-third of the data missing. The dots indicate the
trend values that are significantly at or above 95% confidence level.
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0.36 to 0.73. Correlations between GLEAM and precipitation il-
lustrate there is a high correlation between soil moisture and pre-
cipitation. Most products show high correlation coefficients across
subhumid and semiarid regions, and low correlation coefficients in
arid areas due to relatively small soil moisture trends. But incon-
sistency across the products, for example, correlation coefficients
for ERA-I in arid and subhumid regions are 0.13 and 0.59, in con-
trast with the values of 0.42 and 0.02 for ERA5 is presented.

4. Discussion

a. Uncertainties and ranking of the products

At weekly time scales we observe a strong soil moisture
response to precipitation across all products. Pixel-wise tem-
poral correlations between weekly accumulated antecedent

precipitation and weekly mean soil moisture anomalies sub-
stantial product variability in the soil moisture response to
precipitation variability. TP-average correlation values range
from 0.22 to 0.29 between different products (Table 4). The
uncertainty between products is smaller in the east of the TP
compared to the west, due to a higher density of rainfall
gauges. This highlights the need for an increased number of in
situ observational sites in the west of TP.

At interannual and decadal time scales, precipitation domi-
nates changes in soil moisture on the TP, while air tempera-
ture and, to an even lesser extent, vegetation variability play a
weaker role. Atmospheric reanalyses, including ERA-I and
ERA5, are somewhat distinct from other products, with larger
precipitation totals (Fig. 4) and smaller air temperatures (not
shown). Decadal trends in soil moisture are insignificant across

FIG. 9. Partial correlations between soil moisture and surface air temperature from 1980 to 2016. Correlations are only shown if significant
at the 95% confidence level.

FIG. 8. Partial correlations between soil moisture and precipitation from 1980 to 2016. Correlations are only shown if significant at the
95% confidence level.
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different climatic zones in all products. Concerning inconsis-
tencies among products is observed. For example, in the west
of TP, GLDAS shows a decreasing decadal trend in soil mois-
ture while GLEAM highlights an increased trend (Fig. 7).

Studies evaluating instantaneous soil moisture values with
in situ observations conclude that CCI, ASCAT, and GLDAS
perform well (Zeng et al. 2015; Zhang et al. 2018). In this

study, we quantify the soil moisture response to precipitation
at different time scales and products. Table 4 provides a sum-
mary of our analysis. We conclude that CCI is the most reli-
able product with robust and relatively high correlations
between precipitation and soil moisture on weekly and inter-
annual time scales. Land data assimilation products such as
GLEAM, which are forced by observational estimates of pre-
cipitation and assimilated satellite derived soil moisture, are
the next reliable soil moisture products to use. As there is no
previous comparison for GLEAM with in situ observations, we
calculated the correlation coefficient (R), root-mean-square er-
ror (RMSE), and mean bias as was performed in previous stud-
ies (Zeng et al. 2015; Zhang et al. 2018). Ten-centimeter-depth
soil moisture observations from Maqu and Naqu soil moisture
networks (Su et al. 2011; Yang et al. 2013) are used for valida-
tion (data in August 2009 and June and July 2010 for Maqu;
data in August 2010 and June and July 2011 for Naqu). We
conclude values of 0.66, 0.0465, and 20.044 m3 m23, respec-
tively, which score slightly better than CCI (0.62, 0.11, and
20.06 m3 m23, Zeng et al. 2015). This again illustrates robust
performances of CCI and GLEAM products. It is also noted
that GLDAS shows a very high score when comparing instan-
taneous observations (Zeng et al. 2015; Zhang et al. 2018), but
only shows a relatively moderate correlation in the weekly soil
moisture response to accumulated precipitation (Table 4).
GLDAS shows an opposite trend to decadal precipitation varia-
tions in the west of the TP compared to other products. Different
skills at predicting the soil moisture response to precipitation

TABLE 4. The statistical values of soil moisture’s response to
precipitation at different time scales summarized from Figs. 6
and 10. The Rw_TP is the mean value of the largest correlation
coefficients between weekly anomalous soil moisture and accumulated
precipitation on the TP (i.e., the values at top of each panel in
Fig. 6), C is the ratio of grids with the values passing the
significance test at 95% level in Fig. 6, Rd_TP is the correlation
coefficient between soil moisture and precipitation in decadal
time scale over the TP in Fig. 10, and Rd_a, Rd_sa, and Rd_sh are
the same as Rd_TP, but for arid, semiarid, and subhumid areas,
respectively.

Weekly Decadal

Rw_TP C Rd_TP Rd_a Rd_sa Rd_sh

CCI 0.29 90.1 0.52 0.30 0.31 0.45
AMSR 0.22 83.6 } } } }

GLDAS 0.24 87.6 0.28 0.06 0.19 0.61
GLEAM 0.29 87.6 0.56 0.48 0.73 0.68
MERRA 0.29 91.6 0.20 0.04 0.59 0.41
ERA-I 0.25 86.6 0.23 0.13 0.36 0.59
ERA5 0.22 80.7 0.23 0.42 0.45 0.02

FIG. 10. Time series of JJA-average soil moisture (m3 m23) and precipitation (mm day21) in the (a) TP, (b) arid
area of TP, (c) semiarid area of TP, and (d) semihumid area of TP. Correlation coefficients between soil moisture and
precipitation are shown above each panel, with stars at the top right showing a statistical significance at or above the
95% level. AVE denotes the average based on all soil moisture products.
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across different time scales could be induced by the high-quality
assimilation of soil moisture in recent years. The assimilation of
soil moisture may not improve predictions of decadal soil mois-
ture changes. CCI does a poor job at decadal trend due to missing
data in the west of the TP. Atmospheric reanalyses on the other
hand, have a poor agreement with in situ observations (Zeng et al.
2015; Zhang et al. 2018) and a minimal soil moisture response to
weekly and interannual precipitation variability. This highlights
that care must be taken when using soil moisture values from
reanalysis products. The best products are those which rely on
surface observations, i.e., ESA CCI, or describe the physical rela-
tionship between precipitation and soil moisture well, i.e.,
GLEAM.

While identifying the reasons why different products exhibit
a broad range of soil moisture behaviors is beyond the scope
of this work, we note that products which use observational
precipitation estimates, including GLEAM and MERRA, bet-
ter predict the soil moisture response to precipitation. For ex-
ample, GLEAM assimilates AMSR data, and as a result,
outperforms the original AMSR soil moisture product. On the
other hand, GLDAS scores relatively poorly in spite of ob-
served precipitation forcing, while CCI performs well without
using any meteorological data. However, there is a large frac-
tion of missing data across the TP in the CCI product (Fig. 2).
The uncertainties of the soil moisture products were found
across other areas, such as in Australia, where all products in
the study can better capture the interannual and seasonal var-
iations against the in situ reference than short-term dynamics
(Holgate et al. 2016). Focuses on detecting irrigation induced
soil moisture variations based on different products found the
uncertainties among the satellite soil moisture products in
China and the northeast of the Iberian Peninsula, and they
emphasized the informed assessment for purpose by the users
(Escorihuela and Quintana-Seguı́ 2016; Qiu et al. 2016).

Due to the large area of permafrost on the TP, soil thawing
could affect the soil moisture response to precipitation. For
example, positive soil moisture anomalies along the north-
western edge of the TP during the second and third weeks of
June can be seen in both satellite and reanalysis products
(Figs. 2 and 3). For GLDAS, MERRA, and satellite-based
products, we conclude that positive soil moisture anomalies
are associated with increased glacial melting as soil tempera-
tures from GLDAS and MERRA are greater than 08C (not
shown) and regions of positive anomalous soil moisture corre-
sponds to areas where the land surface is typically categorized
as seasonally frozen soil (Zou et al. 2017). But for ERA-I and
ERA5, a zonal precipitation band across the northwest of the
TP is the most likely cause of positive anomalous soil mois-
ture (Fig. 4).

b. Future perspective

Alongside short-term (,3 days) precipitation-driven per-
turbations in soil moisture, a recent study illustrated that
anomalous soil moisture on the TP can persist beyond the
seasonal scale due to soil freezing (Yang and Wang 2019). In
addition, land surface modeling of a site in northeast China
indicated that anomalous soil moisture can persist beyond a

year, dependent on the initial soil moisture state and atmo-
sphere condition (Song et al. 2019). Both of these studies de-
pend on one soil moisture product or a single land surface
model. Through focusing on the soil moisture response to pre-
cipitation variability on weekly time scales, we demonstrate
the necessity of using multiple products to investigate soil
moisture memory on the TP.

As a key parameter in land–atmosphere feedbacks, surface
soil moisture can substantially affect the partitioning of the
surface energy balance, local precipitation rates, and regional
atmospheric circulations (Seneviratne et al. 2010). Two recent
studies have highlighted that soil moisture heterogeneity plays
important role on the initiation of deep convection on the TP,
especially in regions with minimal vegetation and low topo-
graphic complexity (Barton et al. 2021; Zhao et al. 2022).
Zhao et al. (2022) argues that surface soil moisture is a strong
driver of atmospheric variability across the TP due to low
near-surface air density associated with high elevation. Stud-
ies have also shown that anomalous surface soil moisture
across the TP can influence local and regional atmospheric
conditions and improve subseasonal predictions across much
of China (Wan et al. 2017; Talib et al. 2021). In addition, Bao
et al. (2010) concluded that the assimilation of satellite de-
rived soil moisture on the TP improves the prediction of
the southeast Asian monsoon onset, while Xu et al. (2013),
showed that a weakening of the East Asian summer monsoon
is closely associated with surface cooling on the TP. In this
study we have highlighted that the soil moisture response to
precipitation varies between products, therefore diagnosing
the control of soil moisture on local and regional atmospheric
conditions depends on the chosen soil moisture product. Future
research investigating soil moisture–atmosphere feedbacks across
the TP need to evaluate multiple soil moisture products.

In our analysis we focus on the shallow-layer soil moisture
response to weekly precipitation accumulations and interan-
nual variability; however, future work should investigate
whether differing soil moisture responses are observed to
different precipitation characteristics including precipitation
intensity, frequency, and total. The combined uncertainty of
the soil moisture and infiltration response to precipitation,
alongside a poor understanding of thawing and glacial melt,
makes it challenging to predict hydrological and atmospheric
processes on the TP. Due to the arduous environment across
most of the TP, most rainfall gauges and soil moisture networks
are installed in low-altitude regions across the eastern TP. This
study emphasizes the importance of improving instantaneous, in
situ observations of both soil moisture and precipitation across
other parts of the TP. An observational network across a broader
area of the TP will improve our understanding of surface pro-
cesses, support model development, improve the reliability of
soil moisture estimates, and enhance our understanding of land–
atmosphere interactions.

5. Conclusions

We investigate the soil moisture response across the TP to
precipitation variability in boreal summer on weekly to de-
cadal time scales in different products. The soil moisture

J OURNAL OF HYDROMETEOROLOGY VOLUME 24636

Brought to you by UK CENTRE FOR ECOLOGY & HYDROLOGY | Unauthenticated | Downloaded 04/13/23 08:03 AM UTC



response to differences in weekly accumulated precipita-
tion varies among products, although several products
illustrate good consistency with in situ measurements. De-
cadal trends of boreal summer soil moisture are small
across all products; meanwhile precipitation dominates in-
terannual and decadal soil moisture variability. Through
investigating the soil moisture response to precipitation
variability on weekly to decadal time scales, it is clear the
soil moisture response to precipitation varies between
products. The results emphasize the importance of evaluat-
ing soil moisture products and setting up observations
across central and west TP.
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