
1. Introduction
Space debris is a major problem for low-Earth orbit (LEO) spacecraft, with the potential to cause significant 
socio-economic impacts (Lloyds, 2018; Undseth et al., 2020). There are over 36,000 objects larger than 10 cm, a 
million between 1 and 10 cm, and likely over a hundred million smaller objects (European Space Agency, 2022). 
Such debris present a significant risk of damage or destruction to operational satellites due to the chance of 
collision (e.g., Lewis, 2020). Moreover, as the population of LEO satellites and debris grows, the probability of 
collisions between them increases. Hypervelocity collisions create clouds of additional debris, further increas-
ing the risk of subsequent collisions (Lewis et al., 2011). The debris density at some LEO altitudes has now 
passed the tipping point where the increase in debris due to collisions exceeds losses to the atmosphere, leading 
to a net growth of the space debris population in LEO even without new satellite launches (Lewis et al., 2011). 
Therefore, there is an increasingly important need to more accurately track spacecraft and space debris to enable 
timely and efficient planning of collision avoidance maneuvers (e.g., Lewis et al., 2012). Current orbit modeling 
and prediction are insufficiently accurate because of the poorly specified time-varying drag effect of the upper 

Abstract Forecasting of the effects of thermospheric drag on satellites will be improved significantly with 
better modeling of space weather effects on the high-latitude ionosphere, in particular the Joule heating arising 
from electric field variability. We use a regression analysis to build a model of the ionospheric convection drift 
velocity which is driven by relatively few solar and solar wind variables. The model is developed using a solar 
cycle's worth (1997–2008 inclusive) of 5-min resolution Empirical Orthogonal Function (EOF) patterns derived 
from Super Dual Auroral Radar Network (SuperDARN) line-of-sight observations of the convection velocity 
across the high-latitude northern hemisphere ionosphere. At key stages of development of the model, we use 
the percentage of explained variance P to see how well the model reproduces the EOF data. The final model 
is driven by four variables: (a) the interplanetary magnetic field component By, (b) the solar wind coupling 
parameter epsilon ε, (c) a trigonometric function of day-of-year, and (d) the monthly F10.7 index. The model can 
reproduce the EOF velocities with a characteristic P = 0.7. The model and EOF data compare best around the 
solar maximum of 2001. 𝐴𝐴 𝐴𝐴  is lower around solar minimum, due to occasional limitations in the geographical 
and temporal coverage of the SuperDARN measurements. This may indicate the need to modify our model 
around the minimum of the solar cycle. Our model has the potential to be used to forecast the ionospheric 
electric field using the real-time solar wind data available from spacecraft located upstream of the Earth.

Plain Language Summary Variations in space weather in the ionized region of the Earth's 
atmosphere (the ionosphere) can result in expansion of the atmosphere, increasing the atmospheric drag on 
objects, such as satellites, in the thermosphere. We aim to significantly improve the forecasting of the effects 
of atmospheric drag on satellites by more accurate modeling of space weather effects on the motion of ionized 
particles (plasma) in the ionosphere. We have developed a model of the variation in plasma motion using a 
few solar wind variables which are all now available in real time from satellites upstream of the Earth. The 
model was built using 5-min resolution observations of the ionospheric plasma motion from a 12-year interval, 
to capture effects on the solar cycle timescale. Our model is good at reproducing the original data set—if 0 
indicates that there is no reproduction and 1 indicates exact reproduction, then our model scores 0.7. Data set 
reproduction is best around the maximum in the solar cycle and worst at solar minimum. This is mainly due to 
differences in the spatiotemporal data coverage between these times but possibly also the model's specification 
of the physical processes coupling the Sun to the Earth's ionosphere.
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atmosphere. The dominant unknown variable in orbital trajectory predictions of LEO objects is the density of the 
thermosphere, which exerts a time and location dependent drag.

Coupling of the solar wind to the magnetosphere results in energy being injected into the magnetosphere-ionosphere 
system. In the ionosphere, this is measurable as an electric field that is generated by plasma convection. This 
energy can be dissipated via Joule heating in the ionosphere-thermosphere, which has been estimated to dissi-
pate over 50% of the total solar wind energy input to the Earth system (Østgaard et al., 2002). Joule heating is 
a key contributor to the power input into the thermosphere and thereby to the drag on satellites (e.g., Knipp 
et  al.,  2005), via upward expansion of the polar atmosphere and resultant significant density changes in the 
thermosphere. Accurate models and prediction of these high latitude processes are therefore vital to safeguard 
space assets. However, given that the thermospheric density can vary by ∼80% diurnally and by ∼250% during a 
geomagnetic storm, this is a major modeling challenge (Sutton et al., 2005).

Joule heating is specified by J 𝐴𝐴 ⋅  E in the rest frame of the ionosphere, where J and E are the current density and 
electric field vectors (e.g., Vasyliūnas & Song, 2005). The model presented here will provide the high-latitude iono-
spheric convection (E × B drift) velocity field and consequently the associated convection electric field E, having 
specified the magnetic field B. These can be used in fully coupled (neutral and ionized) models of the lower and upper 
atmosphere to specify the global thermospheric density at the lower end of LEO orbits. Such models include the 
Thermosphere-Ionosphere Electrodynamics General Circulation Model (GCM) (Qian et al., 2014) and the Advanced 
Ensemble electron density (Ne) Assimilation System (AENeAS), which is a data assimilation model derived from 
TIEGCM (Elvidge & Angling, 2019). The motivation for this study, and the production of the new model, was given by 
the UK's Space Weather Instrumentation, Measurement, Modeling and Risk—Thermosphere (SWIMMR-T) project, 
a multi-million-pound project during 2020–2024 to operationalize UK space weather modeling and forecasting.

Expertise in empirical modeling of the polar ionospheric electric field has been acquired over a period of more than 
four decades using a variety of data sets. Models have exploited both incoherent scatter radars (e.g., Foster, 1983; 
Zhang et al., 2007) and coherent scatter radars (e.g., Pettigrew et al., 2010; Ruohoniemi & Greenwald, 1996, 2005; 
Thomas & Shepherd, 2018), both low-altitude spacecraft (e.g., Hairston & Heelis, 1990; Heppner, 1977; Heppner 
& Maynard, 1987; V. O. Papitashvili & Rich, 2002; Weimer, 1995, 1996, 2001, 2005) and the high-altitude Cluster 
spacecraft (e.g., Förster et al., 2007), and ground-based magnetometer arrays (e.g., Ridley et al., 2000). To clarify, the 
high-latitude ionospheric plasma drift velocity field is typically referred to in this scientific literature as “convection.”

The basis for our model is 12 years of data from the Super Dual Auroral Radar Network (SuperDARN), which 
has been used to monitor mid to high-latitude ionospheric plasma velocities over the last few decades (Chisham 
et al., 2007; Greenwald et al., 1995; Nishitani et al., 2019). The interval of data, from 1997 to 2008 inclusive, starts 
just after the solar minimum of August 1996, and includes the solar maximum of November 2001 and the solar 
minimum of December 2008. In building our model, we first note the mostly two-cell morphology of the clima-
tology of the ionospheric convection at high latitudes driven by magnetic reconnection, and its strong dependence 
on the interplanetary magnetic field (IMF) magnitude and the Sun-Earth component of the solar wind velocity 𝐴𝐴 𝐴𝐴𝑥𝑥 . 
It is also dependent on the IMF clock angle (e.g., Grocott & Milan, 2014). If we consider the IMF components 𝐴𝐴 𝐴𝐴𝑥𝑥, 

𝐴𝐴 𝐴𝐴𝑦𝑦 , and 𝐴𝐴 𝐴𝐴𝑧𝑧 in Geocentric Solar Magnetospheric (GSM) co-ordinates (Hapgood, 1992), then the IMF clock angle, 
𝐴𝐴 𝐴𝐴clock , is the angle between the projection of the IMF vector onto the GSM y-z plane and the GSM z axis,

𝜃𝜃clock = tan
−1

(

𝐵𝐵𝑦𝑦

𝐵𝐵𝑧𝑧

)

 (1)

Indeed, the solar wind electric field magnitude (𝐴𝐴 |𝑣𝑣𝑥𝑥|

√

𝐵𝐵
2
𝑦𝑦 + 𝐵𝐵

2
𝑧𝑧  ), the IMF clock angle, and the dipole tilt of the Earth, 

drive the TS18 model (Thomas & Shepherd, 2018), which is also based on SuperDARN data. Second, we note that a 
study into the data-driven basis functions of the SuperDARN velocity field that we use here (Shore et al., 2021) finds 
that the IMF Bz component is the dominant driver for the background mean field and, as expected, Bz also drives a 
series of non-leading modes that describe the variability of the two-cell motion (e.g., Cowley & Lockwood, 1992) 
and that of substorms (e.g., Akasofu, 1964). However, it is IMF By that dominates the variability of the convection 
velocity (Shore et  al.,  2021). This observation, and the strong azimuthal asymmetries imposed by IMF By (e.g., 
Friis-Christensen & Wilhjelm, 1975; Friis-Christensen et al., 1985; Tenfjord et al., 2015), are motivations for the 
inclusion of IMF By as a driver in our model. Third, we consider the time lag between changes in the solar wind 
impinging the magnetosphere and the response in the ionosphere. Shore et  al.  (2019) performed a regression of 
surface external and induced magnetic field (SEIMF) variations onto solar wind data. Their paper examined the corre-
lation between the terrestrial magnetic field and solar wind coupling parameters, as a function of time lag between the 
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two quantities. It was found that the epsilon coupling parameter ε (Akasofu, 1979) resulted in a greater percentage of 
explained variance (which Shore et al. term the “prediction efficiency”) than the Milan parameter (Milan et al., 2012).

In addition to the cross-polar-cap electric potential driven by magnetic reconnection, the spatial variation of the 
high-latitude ionospheric convection velocity is also influenced indirectly by the plasma conductivity. Conductiv-
ity is a strong function of magnetic local time (MLT), the seasonal change in the tilt of the Earth toward/away from 
the Sun, and on changes in the output irradiance of the Sun. Our final additions to the model will allow for these 
conductivity variations and will also accommodate solar cycle variations via a dependence on both the day-of-year 
and the phase of the solar cycle. We are developing a model from purely northern hemisphere data, and so this 
can be straightforwardly applied to the northern hemisphere. It can also be used for the southern hemisphere by 
applying the model with all the same input coefficient values, but for an IMF By of opposite sign, with the caveat 
that any hemispheric differences other than the large-scale IMF By-related ones will be missing. Due to the lower 
amount of SuperDARN data covering the southern hemisphere, this is the best that we can currently achieve.

We initially create a hindcast model (the Version 1 or v1 model) using ε, and then develop a second hindcasting 
version (v2) of the model that also includes IMF By as a driver. Finally, a version (v3) of the model is produced that 
is dependent on the day-of-year and a monthly value of F10.7, the solar radio flux at 10.7 cm (Covington, 1948), 
to represent annual and solar cycle variations, respectively, including those in the ionospheric conductivity. We 
give details of the data sets used to develop the models in Section 2. In Section 3 we present our methodology 
for producing the three versions of the model. The results are presented in Section 4, including values for the 
percentage of explained variance, here given as a number between 0 and 1, which gives us a measure of how well 
the regression model is reproducing the parent data set. In Section 5, we focus on potential causes of variability in 
the percentage of explained variance, possible future improvements to the model, and our next steps. In Section 6, 
we present our summary and conclusions.

2. Data
In this section we discuss the data used to build the models. We build our model using 144 months of data for the 
interval 1997 to 2008 inclusive. A previous study used data from February 2001 to demonstrate the derivation of 
Empirical Orthogonal Function (EOF) model patterns from SuperDARN data (Shore et al., 2021), as this month 
has particularly good data coverage. We also use February 2001 (Figure 1) to illustrate our method. Please refer 
to the Data Availability Statement at the end of this paper for details regarding access to the data.

2.1. Solar Wind Data

We make use of the IMF and the solar wind velocity data as extracted through OMNIWeb, specifically the OMNI 
1-min data set (King & Papitashvili, 2005). The variables are in GSM co-ordinates (Hapgood, 1992). The OMNI 
solar wind data are provided already lagged from near the L1 Lagrangian point to the arrival time at the bow 
shock nose using the bow shock model of Farris and Russell (1994). This model requires the magnetopause nose 
distance which has been calculated for the data in terms of the solar wind pressure and IMF Bz using the magnet-
opause model of Shue et al. (1997). We create 5-min means of the IMF components 𝐴𝐴 𝐴𝐴𝑥𝑥, 𝐴𝐴 𝐴𝐴𝑦𝑦 , and 𝐴𝐴 𝐴𝐴𝑧𝑧 , and the solar 
wind velocity component 𝐴𝐴 𝐴𝐴𝑥𝑥 , time-stamped at the center of the 5-min epoch. In subsequent calculations, we omit 
any 5-min epoch for which there is no OMNI coverage. The remaining epochs are used to calculate the coupling 
parameter ε at 5-min resolution,

𝜀𝜀 =
4𝜋𝜋

𝜇𝜇0

⋅ |𝜈𝜈𝑥𝑥||𝐵𝐵𝑇𝑇 |
2
sin

4

(

𝜃𝜃CLOCK

2

)

𝑙𝑙
2

0 (2)

where the permeability of free space 𝐴𝐴 𝐴𝐴0  = 4π × 10 −7, |𝐴𝐴 𝐴𝐴𝑇𝑇| is the solar wind magnetic field magnitude, 𝐴𝐴 𝐴𝐴
2

0
 is a scale 

factor intended to represent the cross-sectional area over which dayside reconnection takes place with 𝐴𝐴 𝐴𝐴0  = 7 𝐴𝐴 𝐴𝐴𝐸𝐸 , 
and 𝐴𝐴 𝐴𝐴𝐸𝐸  = 6,371.2 km is the mean Earth radius. Here, ε is measured in Watts (e.g., Akasofu, 1979).

2.2. The Shore EOF Analysis of SuperDARN Velocity Data

The convection velocities that we use here to develop our models have been published (Shore et al., 2022). These 
data will be referred to in this paper as the Shore EOF model analysis patterns or values. The Shore EOF model 
analysis used SuperDARN plasma velocity observations of the F-region ionosphere measured using the north-
ern hemisphere radars of the SuperDARN global array. The fitted Doppler velocities were derived from the 
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Figure 1. Solar wind and ionospheric convection velocity data for February 2001. Interplanetary magnetic field (IMF) values (a) Bx, (b) By, (c) Bz, and (d) |𝐴𝐴 𝐴𝐴𝑇𝑇|, (e) 
IMF clock angle 𝐴𝐴 𝐴𝐴CLOCK , (f) logged epsilon parameter 𝐴𝐴 log

10
𝜀𝜀 , (g) north-south, and (h) east-west components of the ionospheric convection velocity as given by the 

Shore Super Dual Auroral Radar Network Empirical Orthogonal Function model analysis at 73.0°N magnetic latitude and 00:09 magnetic local time.
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original autocorrelation functions using version 4.5 of the radar software toolkit, RSTv4.5 (SuperDARN Data 
Analysis Working Group,  2021) and, within that toolkit, fitting routine “FitACF v2.5.” In the production of 
the Shore EOF model patterns, the geolocation is dealt with using the Chisham virtual height model (Chisham 
et al., 2008), which is the state-of-the-art methodology. Further details about the selection of good quality data 
from the F-region are available in the data section of Shore et al. (2021).

The Shore EOF model analysis patterns were determined by applying the EOF method (Shore et al., 2021) to 
12 years of SuperDARN plasma velocity measurements (1997–2008 inclusive), which is similar to the length 
of a typical solar cycle. In contrast to other SuperDARN methods of representing convection, the Shore method 
includes a self-consistent SuperDARN infill solution, which does not rely on climatological averages or external 
information, and which achieves complete coverage of the plasma velocity field variability in time and space.

The Shore EOF model analysis patterns (Shore et al., 2022) provide a complete representation of the northern 
hemisphere convection velocity field at ∼250–400 km altitude (within the F-region ionosphere), at 5-min reso-
lution. The velocity data are presented separately as the north-south (NS) and east-west (EW) components of the 
flow at 559 spatial locations. These locations are defined as the central co-ordinates of equal-area spatial bins 
extending from 60°N latitude to the pole in the Quasi-Dipolar co-ordinate system (Richmond, 1995). The latitude 
step for the equal-area grid is ∼3.0°. The north and east directions are defined as positive for these two velocity 
components. Figures 1g and 1h show example NS and EW velocity components from the Shore EOF model 
analysis for February 2001 for a single location (73°N magnetic latitude, 00:09 MLT).

2.3. Solar Irradiance Proxy: F10.7 Index

We make use of observations of the solar radio flux at 10.7 cm/2800 MHz (often called the F10.7 index) from 
the Low-Resolution OMNI (LRO) data set. This index correlates well with several ultraviolet (UV) and visible 
solar irradiance records and is easily measured at the Earth's surface. The daily values of F10.7 were used to create 
monthly mean values for the interval from 1997 to 2008 inclusive. Three of the months had missing data (missing 
5 daily values or less), so those days were not included in the calculation of the monthly mean value.

3. Methodology
The OMNI data set timestamp takes into account the time lag between the satellite location and the Earth's 
bow shock nose. In order to best estimate the further time lag τ of the ionospheric response, for use in their 
solar-wind-driven model of the Earth's magnetic field, Shore et al. (2019) calculated the peak correlation between 
the terrestrial magnetic field and ε. The peak correlation commonly occurred at a time lag of ∼20 min, but it 
varied with MLT and latitude. It was longer than 20 min in some parts of the nightside, reflecting the dominance 
there of the substorm response to the solar wind. In a similar fashion, we calculated the Pearson correlation coef-
ficient between the ε parameter and each velocity component of the ionospheric plasma E × B drift velocity at all 
locations, for the February 2001 data set. We calculated the correlation for a series of time lags ranging from −10 
to +500 min in 5-min steps up to τ = 150 min, then 10-min steps thereafter, totaling 68 separate lags. The results 
(not shown) strongly resemble the published correlations between ε and the Earth's SEIMF (Shore et al., 2019) in 
that the correlation in the polar region tends to peak at a time lag of ∼20 min, with a secondary peak correspond-
ing to a longer time lag for some parts of the nightside ionosphere. The time lag value of ∼20 min is supported by 
much of the literature (e.g., see Grocott and Milan (2014)) and therefore we deem 20 min to be a representative 
time lag for much of the ionosphere and use that value to develop our models in this paper.

The Shore EOF model data set comprises 144 monthly individual analyses of SuperDARN plasma velocity data, 
extending from January 1997 through to December 2008. For each month of EOF model data, we produce two 
versions of a hindcast model. Version 1 (v1) is produced via a regression of the data onto ε alone, Version 2 
(v2) is produced from a regression of the data onto both ε and IMF By. We then produce a Version 3 (v3) model 
by performing a regression analysis of the 144 sets of monthly regression coefficients from the v2 model, with 
respect to trigonometric functions of day-of-year and to the monthly F10.7. The coefficients resulting from this 
analysis can be used to form a model that could potentially be used for forecasting, which we will refer to as the 
Lam 2023 (v3) model. We make use of version 8.7 of the Interactive Data Language (IDL) REGRESS function, 
which performs a multiple linear regression fit (Harris Geospatial Solutions, 2022).

We will use a simple measure to assess how well each model that we build reproduces the Shore EOF model 
values. Let 𝐴𝐴 𝐴𝐴 denote the index for the 559 spatial bins and 𝐴𝐴 𝐴𝐴  denote the index for each 5-min interval in a given 
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month. For a given velocity component, let 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑛𝑛 denote the set of Shore EOF model velocity values, 𝐴𝐴 𝑦𝑦
𝑖𝑖 denote the 

spatial mean of 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑛𝑛 , and 𝐴𝐴 𝑉𝑉
𝑖𝑖

𝑛𝑛 denote the set of our model velocity values. For each of our model versions, we calculate:

𝑃𝑃 (𝑡𝑡𝑖𝑖) = 1 −

559
∑

𝑛𝑛=1

(

𝑦𝑦
𝑖𝑖

𝑛𝑛 − 𝑉𝑉
𝑖𝑖

𝑛𝑛

)2

559
∑

𝑛𝑛=1

(

𝑦𝑦
𝑖𝑖

𝑛𝑛 − 𝑦𝑦
𝑖𝑖
)2

= 1 − 𝑒𝑒∕𝐴𝐴 (3)

We can see that Equation 3 can be expressed in terms of the mean squared “error” 𝐴𝐴 𝐴𝐴 between one of our regression 
models (v1, v2, or v3) and the Shore EOF model values, and the mean squared deviation 𝐴𝐴 𝐴𝐴 of the Shore values 
from their spatial average value. This is similar to the formula for the prediction efficiency which is a measure of 
skill (e.g., Equation 19 of Liemohn et al. (2021)). We shall use 𝐴𝐴 𝐴𝐴 (𝑡𝑡𝑖𝑖) as a way of evaluating the ability that each of 
our models has at reproducing the parent data set, namely the Shore EOF model values. Hence, we refer to 𝐴𝐴 𝐴𝐴 (𝑡𝑡𝑖𝑖) 
as the “percentage of explained variance” rather than the “prediction efficiency.” For instance, we can calculate 
the time development of the percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡𝑖𝑖) for the NS velocity component in February 2001, 𝐴𝐴 𝐴𝐴NS(𝑡𝑡𝑖𝑖), for i = 1 
to 8,064 where 8,064 is the number of 5-min intervals in that month. We can calculate 𝐴𝐴 𝐴𝐴EW(𝑡𝑡𝑖𝑖) in a similar fash-
ion. This measure applies to the velocity component across the whole spatial region for any given 5-min interval. 
Obviously, it does not provide a validation of the model against other independent data sets provided, for instance, 
by satellite or incoherent scatter radar. It only provides a measure of how well the regression model performs at 
reproducing the data set from which it was derived.

3.1. Version 1 Model

We first create a simple linear hindcast model. The model relates the NS and EW components of the Shore Super-
DARN EOF model velocity to 𝐴𝐴 𝐴𝐴 via:

𝑉𝑉1NS = 𝑚𝑚1𝜀𝜀NS 𝜀𝜀 + 𝐶𝐶1NS (4a)

𝑉𝑉1EW = 𝑚𝑚1𝜀𝜀EW 𝜀𝜀 + 𝐶𝐶1EW (4b)

In all versions of our models, we use 𝐴𝐴 𝐴𝐴 to denote the slopes and 𝐴𝐴 𝐴𝐴 to denote the constant terms. The subscripts in 
these coefficients are as follows: 𝐴𝐴 1 denotes model version 1, 𝐴𝐴 𝐴𝐴 denotes that the coefficient relates to the solar wind 
coupling parameter 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 NS (or 𝐴𝐴 EW ) relates to that specific velocity component. For a given month, for each 
velocity component and for each of the 559 EOF model analysis location bins, we perform a linear regression 
analysis of the 5-min velocity data with respect to 𝐴𝐴 𝐴𝐴 , as indicated by Equations 4a and 4b.

3.2. Version 2 Model

The second version of the hindcast model relates the NS and EW components of the Shore EOF model velocity 
to 𝐴𝐴 𝐴𝐴 and IMF 𝐴𝐴 𝐴𝐴𝑦𝑦 via:

𝑉𝑉2NS = 𝑚𝑚2𝜀𝜀NS 𝜀𝜀 + 𝑚𝑚2𝐵𝐵NS𝐵𝐵𝑦𝑦 + 𝐶𝐶2NS (5a)

𝑉𝑉2EW = 𝑚𝑚2𝜀𝜀EW 𝜀𝜀 + 𝑚𝑚2𝐵𝐵EW𝐵𝐵𝑦𝑦 + 𝐶𝐶2EW (5b)

where the subscript 𝐴𝐴 𝐴𝐴 in the coefficients denotes the IMF component 𝐴𝐴 𝐴𝐴𝑦𝑦 . We again perform the regression anal-
ysis for each velocity component, each location bin and for each of the 144 months.

3.3. Version 3 (Lam 2023) Model

The third and final version of the model could potentially be used for forecasting, dependent on the availability 
of forecasts of the input variables, and allows for the indirect effects of conductivity variations and solar cycle 
variations. It is built from the six v2 model coefficients in Equations 5a and 5b, for which there are values for 
each of 144 months and each of the 559 spatial locations. Conductivity depends on the seasonal change in the tilt 
of the Earth toward or away from the Sun, and on changes in the output irradiance of the Sun. Therefore, for each 
velocity component and each location bin, we perform a regression analysis using the 144 monthly values of each 
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regression coefficient, in terms of a trigonometric function of the day-of-year 
and the monthly value of F10.7. For instance, for the NS velocity component, 
the regression equations are:

𝑚𝑚2𝜀𝜀NS = s3𝜀𝜀NS sin 𝑥𝑥 + c3𝜀𝜀NS cos 𝑥𝑥 + 𝐹𝐹3𝜀𝜀NS 𝐹𝐹10.7 + 𝐶𝐶3𝜀𝜀NS (6a)

𝑚𝑚2𝐵𝐵NS = s3𝐵𝐵NS sin 𝑥𝑥 + c3𝐵𝐵NS cos 𝑥𝑥 + 𝐹𝐹3𝐵𝐵NS 𝐹𝐹10.7 + 𝐶𝐶3𝐵𝐵NS (6b)

𝐶𝐶2NS = s3𝐶𝐶NS sin 𝑥𝑥 + c3𝐶𝐶NS cos 𝑥𝑥 + 𝐹𝐹3𝐶𝐶NS 𝐹𝐹10.7 + 𝐶𝐶3𝐶𝐶NS (6c)

where 𝐴𝐴 𝐴𝐴 = 2𝜋𝜋 (𝑡𝑡𝑗𝑗 – 79)∕365.25 and 𝐴𝐴 𝐴𝐴𝑗𝑗 is the day-of-year in the middle of each 
of the 12 months of the year (𝐴𝐴 𝐴𝐴  = 1 to 12). Following Shore et al. (2019), 
we assume that the length of a year is 365.25 days and place the zero of the 
sine function at Spring equinox and we use day-of-year 79 (20 March) to 
represent the vernal equinox (Coxon et al., 2016). The regression analysis 
on the coefficient relating to the slope of ε in the v2 model, that is, Equa-
tion 6a, yields four coefficients: 𝐴𝐴 s3𝜀𝜀NS , 𝐴𝐴 c3𝜀𝜀NS , and 𝐴𝐴 𝐴𝐴3𝜀𝜀NS are the slopes and 

𝐴𝐴 𝐴𝐴3𝜀𝜀NS is the intercept term. This is also the case for the slope in 𝐴𝐴 𝐴𝐴𝑦𝑦 (Equa-
tion 6b) and the intercept term in the v2 model (Equation 6c), resulting in 
12 coefficients for the NS regression analysis. There is an equivalent set of 
equations for the EW velocity component (not given here), which means 
that there are 24 regression coefficients that define the v3 model. These 
model coefficients (Lam et al., 2023) could be used to forecast by specify-
ing the day-of-year in the middle of the current month (or the actual DOY) 
and the current monthly mean of F10.7. Equations 6a–6c then define values 
of the three coefficients of the v2 NS model for each of the 559 spatial 
bins. The same process is used to find the values of the three coefficients 
for the EW component of the v2 model for each of the 559 spatial bins. 
Equations 5a and 5b require values of 𝐴𝐴 𝐴𝐴 and IMF 𝐴𝐴 𝐴𝐴𝑦𝑦 to produce the associ-
ated plasma velocities. Real-Time Solar Wind (RTSW) data from spacecraft 
located upstream of the Earth, typically orbiting the L1 Lagrange point, can 
provide the values needed to forecast Earth's ionospheric electric field, as 
will be discussed in Section 5.

4. Results
4.1. Version 1 Model

We use the regression coefficients found from Equations 4a and 4b to deter-
mine the v1 model convection velocities. We assess how well the v1 model 
recreates the Shore EOF model analysis of the SuperDARN data by calculat-

ing the regional values of percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) using Equation 3. Figures 2a and 2b show the occurrence distribution 
of 𝐴𝐴 𝐴𝐴 (𝑡𝑡) for the two velocity components for February 2001 (dashed line). The shape of the distribution has a clear 
peak value (the monthly mode value), which is typical of the distributions observed for any of the 144 months. The 
mode values for this month are 0.40 (NS velocity component) and 0.60 (EW velocity component). These mode 
values are always positive which indicates that the v1 model has skill in recreating the Shore EOF model values. 
There is a cyclical nature to the mode in 𝐴𝐴 𝐴𝐴 (𝑡𝑡) over the course of the 12-year interval (Figures 2c and 2d, dashed line) 
which is about the length of a solar cycle. There also appears to be a seasonal cycle within the variation of percent-
age 𝐴𝐴 𝐴𝐴 (𝑡𝑡) . For instance, in (northern hemisphere) summertime 𝐴𝐴 𝐴𝐴 (𝑡𝑡) is higher for 1999–2003 (especially in the EW 
component) and lower for 2004–2008 in the NS component. We characterize percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) for this version of the 
model by finding the average value, χv1, of the monthly mode values over the whole 12-year period and over both 
velocity components. The characteristic percentage of explained variance for the v1 model χv1 = 0.70.

Figure 2. Comparison of the percentage of explained variance 𝐴𝐴 𝐴𝐴 (𝑡𝑡) for the 
version 1 and 2 hindcast models. The occurrence frequency of 𝐴𝐴 𝐴𝐴 (𝑡𝑡) across the 
whole model region during February 2001, with the monthly mode marked 
by a vertical line for (a) the north-south (NS) and (b) the east-west (EW) 
components of convection velocity. The monthly mode of the percentage of 
explained variance 𝐴𝐴 𝐴𝐴 (𝑡𝑡) for the v1 and v2 models for (c) the NS, and (d) the 
EW velocity components of ionospheric velocity over 12 years.
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4.2. Version 2 Model

As discussed in the introduction, there are reasons why the model would be improved by adding an 
explicit IMF 𝐴𝐴 𝐴𝐴𝑦𝑦 dependence to the convection velocity. Having obtained the regression coefficients 
�2�NS, �2�NS, �2NS, �2�EW, �2�EW , and 𝐴𝐴 𝐴𝐴2EW , we use Equations 5a and 5b to construct the velocities for the v2 
model. We derive the values of percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) for the v2 model using Equation 3 for February 2001 (Figures 2a 
and 2b, solid line). A comparison with the value for the v1 model shows that the monthly mode of percentage 

𝐴𝐴 𝐴𝐴 (𝑡𝑡) for the polar region has increased from 0.40 (v1) to 0.80 (v2) for the NS plasma velocity component, and 
from 0.60 (v1) to 0.85 (v2) for the EW component. The v2 formulation has markedly improved the percentage 
of explained variance for both velocity components compared with those of the v1 model. This improvement, 
resulting from the addition of IMF 𝐴𝐴 𝐴𝐴𝑦𝑦 , is seen for the whole 12-year period (Figures 2c and 2d). The seasonal 
variation in the monthly mode value of percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) is no longer apparent in the v2 model results, and the 
sinusoidal-like solar-cycle-related dependence is much reduced in magnitude. The characteristic value of percent-
age 𝐴𝐴 𝐴𝐴 (𝑡𝑡) for the v2 model χv2 = 0.90 is also an improvement over that of the v1 model (χv1 = 0.70). This indicates 
that the v2 model is a high-quality hindcast model that is good enough to base a forecast model on.

For February 2001, the maps of the regression coefficients of the v2 model (Figures  3a–3f) possess a high 
degree of coherent spatial structure, which is further evidence that the solar wind variables in the v2 model are 
good choices. The spatial pattern formed by the IMF By slope coefficients that relates to the EW plasma velocity 
values, 𝐴𝐴 𝐴𝐴2𝐵𝐵EW (Figure 3d), is similar to the dominant spatial pattern of the EOF analysis of the SuperDARN data 
from February 2001 (Figure 4, Shore et al., 2021). This dominant mode (Mode 1, labeled Velocity Perturbation 
Y in Shore et al. (2021)) relates to the flow driven by variability in IMF 𝐴𝐴 𝐴𝐴𝑦𝑦 after reconnection and is very similar 
to the Disturbance-Polar Type Y in the magnetic field (Friis-Christensen & Wilhjelm, 1975). Using the v2 model 
coefficients to build a model that could be used for operational purposes has the advantage that the v2 model 
velocities can be estimated from only two solar wind quantities, namely the IMF and the solar wind velocity.

4.3. Version 3 (Lam 2023) Model

The high-latitude ionospheric convection velocity is influenced by solar cycle and seasonal variations, such as 
those in the ionospheric plasma conductivity. Hence, we formulate the final version of the model using a regres-
sion analysis of v2 model regression coefficients with respect to a trigonometric function of the day-of-year, the 
monthly value of F10.7, and an intercept (Equations 6a–6c). F10.7 is more than a conductivity marker—it tracks the 
solar cycle and so its inclusion may allow the representation of other solar-cycle-related variations. The maps of 
the regression coefficient values in the polar region (Figures 4 and 5) show a high degree of coherent spatial struc-
ture. If the maps lacked coherent spatial structure, then we might question whether the variables in the v3 model 
are reasonable choices, or whether there are sufficient data in the analysis. The Lam 2023 (v3) model is visibly less 
skilled (Figures 6a and 6b) than the v2 hindcast model at reproducing the Shore EOF model patterns, but this is 
understandable given that  the v2 model is based on EOF patterns for the month in question, whereas the Lam (v3) 
model is not. The Lam model has an overall characteristic value for percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) of χv3 = 0.70 and is particu-
larly skilled for the years 2000–2004 inclusive (for which χv3 = 0.75), as will be discussed further in Section 5.

We represent the convection velocity visually by taking the velocity value for a particular spatial bin and assum-
ing a packet of plasma travels on the velocity trajectory for a characteristic time related to the resolution of 
the measurement. The end position of the packet is found using spherical trigonometry and scaled for ease of 
viewing. We present an example of how well the Lam 2023 (v3) model reproduces the Shore EOF model veloc-
ity field at a time when percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) is very high, during February 2001. At 05:42 UT (13 February 2001), 

𝐴𝐴 𝐴𝐴 (𝑡𝑡) ≈ 0.85 for both the NS and EW velocity components. The morphology of the Shore EOF model velocity 
field (Figure 7a) is reproduced very well by the Lam (v3) model (Figure 7b), including the shape of the two-cell 
motion and much of the plasma flow across the magnetic pole.

The two intervals either side of solar maximum, 1997 to 1999 inclusive and 2005 to 2008 inclusive, are char-
acterized by lower values for percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) (χv3 = 0.68 and 0.67, respectively) and have excursions in the 
monthly mode values that fall below 0.5 (Figures 6a and 6b). One of the lowest values in the monthly mode 
of percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) occurs for June 1999. We again present an example of how well the Lam 2023 (v3) model 
reproduces the Shore EOF model velocity field, but for a time when percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) has a low value. On the 18 
June at 07:17 UT, percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) = 0.40 in both the NS and EW components. The Lam (v3) model (Figure 7d) 
velocity field possesses a clearer two-cell structure than the Shore EOF model data (Figure 7c), especially around 
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noon. The Lam model has also replaced the anomalous vectors (those not of similar size and/or direction to the 
surrounding flow) at lower latitudes in the Shore SuperDARN EOF model velocity field. Since these values 
are likely to be poor data (Shore et al., 2021), the Lam model values may be more accurate than these specific 
Shore EOF model values. This means that the v2 model has some usefulness in its own right as a data set (also 
see Section 5).

Figure 3. Version 2 model regression coefficients for February 2001. Maps of the northern hemisphere polar region in 
magnetic latitude and magnetic local time. The values of the intercept: (a) 𝐴𝐴 𝐴𝐴2NS (for the NS convection velocity component) 
and (b) 𝐴𝐴 𝐴𝐴2EW (for EW); the interplanetary magnetic field By slope values: (c) 𝐴𝐴 𝐴𝐴2𝐵𝐵NS (north-south [NS]) and (d) 𝐴𝐴 𝐴𝐴2𝐵𝐵EW (east-
west [EW]); the ε slope values: (e) 𝐴𝐴 𝐴𝐴2𝜀𝜀NS (NS) and (f) 𝐴𝐴 𝐴𝐴2𝜀𝜀EW (EW), in Equations 5a and 5b.
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Figure 4. Regression coefficients for the Lam 2023 (v3) model. These values relate to Equations 6a–6c (north-south velocity component). The coordinate system is the 
same as in Figure 3. The coefficients for the sine terms: (a) 𝐴𝐴 s3𝐶𝐶NS , (b) 𝐴𝐴 s3𝜀𝜀NS , and (c) 𝐴𝐴 s3𝐵𝐵NS ; the cosine terms: (d) 𝐴𝐴 c3𝐶𝐶NS , (e) 𝐴𝐴 c3𝜀𝜀NS , and (f) 𝐴𝐴 c3𝐵𝐵NS ; the F10.7 terms: (g) 𝐴𝐴 𝐴𝐴3𝐶𝐶NS , 
(h) 𝐴𝐴 𝐴𝐴3𝜀𝜀NS , and (i) 𝐴𝐴 𝐴𝐴3𝐵𝐵NS ; and for the intercept terms: (j) 𝐴𝐴 𝐴𝐴3𝐴𝐴NS , (k) 𝐴𝐴 𝐴𝐴3𝜀𝜀NS , and (l) 𝐴𝐴 𝐴𝐴3𝐵𝐵NS . The maximum value (and minus the minimum value) of the color scale are at the 
top right of each dial in italics. The units for each column of coefficients are written at the top of that column, for example, v2-intercept-related values are in m s −1.
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4.4. Summary of Model Results

The v1 regression model, based on the epsilon parameter (Akasofu, 1979) has some ability to reproduce the 
original Shore EOF model patterns, and possesses both a seasonal and a solar-cycle-related sinusoidal-like 
structure in the monthly mode of the percentage of explained variance 𝐴𝐴 𝐴𝐴 (𝑡𝑡) . We defined a “characteristic 
value” for 𝐴𝐴 𝐴𝐴 (𝑡𝑡) as the mean value, χv1, of the monthly mode value of 𝐴𝐴 𝐴𝐴 (𝑡𝑡) over the whole 12-year period and 

Figure 5. Regression coefficients (v3 model). As for Figure 4, but for the east-west ionospheric velocity component.
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over both velocity components. The characteristic value for 𝐴𝐴 𝐴𝐴 (𝑡𝑡) for the v1 model χv1 = 0.70. This value is 
improved on by the v2 model for the whole 12-year period (Figures 2c and 2d), due to the addition of IMF �� . 
Compared to the v1 model, the seasonal structure in the monthly v2 mode of 𝐴𝐴 𝐴𝐴 (𝑡𝑡) is no longer apparent, the 
solar-cycle variation has been much reduced, and the v2 model characteristic percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) is significantly 
larger (χv2 = 0.90). The Lam 2023 (v3) model has a lower value for 𝐴𝐴 𝐴𝐴 (𝑡𝑡) than the v2 hindcast model and the 
same value as the v1 hindcast model (χv3 = 0.70) but, importantly, it has the potential to be used to forecast 
ionospheric convection or to nowcast outside of the epoch of the Shore EOF model analysis, as outlined in the 
next section.

5. Discussion
We have developed a model of high latitude ionospheric convection that is both skilled at reproducing its 
parent data set and suitable for operational purposes, as part of the SWIMMR-T project. It is worth briefly 
speculating here on the causes of the drops in the percentage of explained variance 𝐴𝐴 𝐴𝐴 (𝑡𝑡) that we see in the 
12-year interval examined, both for scientific interest and to aid the development of future improved versions 
of the model.

Figure 6. The percentage of the explained variance 𝐴𝐴 𝐴𝐴 (𝑡𝑡) for the Lam 2023 model (v3) and the Super Dual Auroral Radar Network (SuperDARN) radar data coverage. 
The monthly mode of the percentage of explained variance 𝐴𝐴 𝐴𝐴 (𝑡𝑡) for the v3 model for the: (a) north-south and (b) east-west ionospheric velocity components. The dotted 
lines in panels (a, b) show the characteristic value of the percentage of explained variance for the v3 model; (c) the data coverage level of the SuperDARN instruments 
as given by the total monthly data count using all location bins. For all panels, the data points for June 1999 and February 2001 are marked by red diamonds.
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First, one potential cause of reductions in percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) is a decrease in the amount of SuperDARN data used 
to produce the Shore EOF model velocity patterns for a particular month. The data coverage within the Super-
DARN archive has gaps, both spatially and temporally. The SuperDARN data coverage varies with time of day, 
year, and solar cycle. This is due to the variation in the high-frequency (HF) propagation conditions, the level of 
irregularity occurrence, and the dependence of solar wind-magnetosphere coupling on solar cycle phase. In addi-
tion, since the radars only measure signals along the line-of-sight direction, the accuracy of the velocity vectors 
will vary with location and time, causing variations in the degree to which the EOF analysis of the data set is able 
to represent the plasma motion in any given region. At low latitudes, data gaps have been filled by a sinusoidal 
fitting procedure (Shore et al., 2021). When the data coverage is very low, the fitted north and east directions can 
be unrepresentative of the true values, resulting in high-error vectors at lower latitudes in the Shore EOF model 
values (e.g., Figure 7c), that do not resemble the surrounding flow.

Figure 7. Comparison of Lam 2023 (v3) model with the original Shore Empirical Orthogonal Function (EOF) model 
velocity field. Five-min snapshots selected from the two months marked by red diamonds in Figure 6. The top row shows 
velocities at a time when the percentage of explained variance 𝐴𝐴 𝐴𝐴 (𝑡𝑡) is high (February 2001): (a) the Shore Super Dual Auroral 
Radar Network (SuperDARN) EOF model analysis patterns, (b) the Lam 2023 (v3) model. The bottom row is for a time of 
low 𝐴𝐴 𝐴𝐴 (𝑡𝑡) (June 1999), (c) the Shore SuperDARN EOF model analysis patterns, and (d) the Lam 2023 (v3) model. Color is 
used to indicate speed as there is no single arrow length for a reference speed.
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We examine the binned monthly SuperDARN data coverage for the Shore EOF model patterns, where full cover-
age for a given location bin is defined as having a valid data point in all the 6°-wide look direction bins and each 
of the 5-min epochs for the whole month. The monthly Shore EOF model analysis radar count is the number of 
data points in that month when summed over the direction bins, 5-min epochs and location bins. We investigate 
here whether there is any relationship between the amount of SuperDARN data in a particular month and the 
value of the percentage of explained variance 𝐴𝐴 𝐴𝐴 (𝑡𝑡) for the Lam 2023 (v3) model. The monthly Shore EOF model 
data count (Figure 6c) is mostly below ∼1.5 × 10 6 from the start of the data set (January 1997) until September 
2000. Between September 2000 and April 2003, the data count oscillates and is often above ∼1.5 × 10 6 but is 
mostly below this value for the remainder of the 12-year interval examined. Therefore, there is a gross corre-
spondence between the SuperDARN data coverage (Figure 6c) and the value of percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) for the Lam 
(v3) model (Figures 6a and 6b). However, there is no indication that there is a one-to-one correspondence on a 
monthly timescale. This is consistent with values of the correlation (Pearson coefficient) between the mean data 
count and the Lam 2023 (v3) model value for percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) , which are 0.24 for both the NS and EW velocity 
components.

It is undisputed that the reduced SuperDARN data coverage will affect the quality of the Shore EOF model 
patterns and therefore the percentage of explained variance 𝐴𝐴 𝐴𝐴 (𝑡𝑡) of the model developed, but it does not seem to 
be the only factor. If the quality of the Shore SuperDARN EOF model values is generally high for the 12-year 
interval, then the quality of the Lam (v3) model has the potential to be good, and indeed appears to be good, 
according to the characteristic value for percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) . Therefore, it is possible that at times when percentage 

𝐴𝐴 𝐴𝐴 (𝑡𝑡) is low, the Lam (v3) model may give a better idea of the plasma motion when the SuperDARN coverage is 
low and the Shore EOF model analysis values are unreliable, especially around solar maximum. Future compar-
isons with an independent data set should resolve this.

A second potential cause for a fall in the percentage of variance explained by the model is a decrease in how 
well the physical processes driving the convection velocity are being represented. The Lam (v3) model exhibits 
two intervals of lower and variable values for percentage 𝐴𝐴 𝐴𝐴 (𝑡𝑡) . The first spans 1997 to 1999 inclusive, which 
are the three years just after the solar minimum of August 1996. The second (2005–2008 inclusive) comprises 
the  three years leading up to the solar minimum of December 2008. In contrast, the Lam (v3) model reproduces 
the parent data set consistently well in the months at the end of 1999 and for the interval 2000 to 2004 inclu-
sive,  that is, the two years before and the three years after the solar maximum of November 2001. It is possible 
that our model of magnetosphere coupling is more accurate around solar maximum and less accurate around 
solar minimum, due to the differing nature of the solar wind at different phases of the solar cycle (e.g., McComas 
et  al.,  2003) and the resultant differing geomagnetic effects (e.g., Tsurutani et  al.,  2006). We do not aim to 
prove that this is the case here but propose this as a hypothesis for further study. Although coupling functions 
should be used with care  (Lockwood, 2022) and other more recent coupling functions are available (Lockwood 
& McWilliams, 2021), the Lam (v3) model has a respectable level of skill and should prove to be a valuable tool 
for operational purposes, due to its simplicity.

We anticipate that the Lam (v3) model may be improved by a change of the formulation, including additions 
to the parameters currently used. First, a study of the spatial dependence of the appropriate time lag, as has 
been done for the terrestrial magnetic field (Shore et al., 2019), would allow the model to be adjusted to have a 
location-dependent time lag. Second, an increase in the percentage of explained variance of the model may result 
from developing the v2 model from the preceding month's data and using it to forecast the coming month. Such 
a model would require continuous determination of monthly EOF model values, which in turn would require all 
SuperDARN data to be available on a near-real-time basis. This may be possible in the future. Finally, the move-
ment of plasma in the ionosphere is ordered by the open-closed magnetic field line boundary (OCB) (e.g., Milan 
& Grocott, 2021). The inclusion of the OCB location and motion in the model should decrease errors that would 
otherwise arise when the OCB motion is fast and/or significant. We would welcome the production of a new 
version of the SuperDARN EOF model analysis values at higher spatial and temporal resolution, as we believe 
that this may prove to be a useful improvement to the data.

Our next challenges are to drive the model using RTSW data rather than the quality-checked OMNI 1-min data 
set used here, and to implement our model within a GCM such as TIEGCM (Qian et al., 2014). In practice, the 
latter will involve generating electric potential values from our model velocity values, since this is how the solar 
wind influence on the high-latitude ionospheric plasma is input into TIEGCM. The U.S. National Oceanic and 
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Atmospheric Administration (NOAA) Space Weather Prediction Center (SWPC) data service provides real-time 
measurements from L1 (presently DSCOVR is the active satellite, with the advanced composition explorer (ACE) 
also contributing). These will be provided in real time by a combination of satellites monitoring near-Earth space, 
and forecast models, and so may have quality and data gap issues. This means that we have an opportunity to fore-
cast the ionospheric potential that will be imposed on the Earth's ionosphere in advance, by a time interval Tadv. 
Observations of interplanetary shocks by the ACE spacecraft at L1 and associated sudden commencements in the 
magnetosphere can give an estimate of the propagation delay between L1 and the Earth. For instance, Baumann 
and McCloskey (2021) estimate that the delay varies between ∼20 min for extremely fast ICMEs (1,000 km/s) 
and ∼90 min for slow shocks (300 km/s). If we assume that there is also ∼20 min delay for the ionosphere to 
respond, then we can estimate the ionospheric potential in advance by a time interval Tadv ≥ 40 min, using the 
solar wind variables observed at L1 and currently provided by the NOAA SWPC (https://www.swpc.noaa.gov/
products/real-time-solar-wind). The term RTSW refers to data from any spacecraft located upwind of Earth (typi-
cally orbiting the L1 Lagrange point) that is being tracked by the RTSW Network of tracking stations. Since we 
can trivially specify the day-of-year and only need the rolling monthly value of the F10.7 index to use our model, 
all the variables needed are already available to use the Lam (v3) model to forecast the ionospheric electric 
field. Our ultimate goal is to quantify the model's effectiveness in estimating satellite drag due to Joule heating 
in comparison to the existing climatological electric field models such as Weimer (1995, 1996, 2001, 2005) and 
Heelis et al. (1982).

6. Conclusions
We present the Lam (2023) model of the northern hemisphere high-latitude ionospheric convection velocity (and 
by extension the convection electric field), suitable for future development as an operational forecast model. It has 
been developed from 12 years (approximately a solar cycle's worth) of SuperDARN HF radar EOF model analysis 
patterns. The model has been developed in three key stages. First, we created a linear hindcast model of plasma 
velocity driven by the epsilon parameter ε, with a universal time lag between the driver and ionospheric plasma at 
all polar region locations of 20 min. Second, we expanded the hindcast model to include IMF By, which generally 
resulted in a significant improvement in the monthly value of the percentage of explained variance during the 
solar cycle examined. Finally, a regression analysis of the seasonal and solar cycle dependence of the hindcast 
model coefficients was used to build a final version of the model. This final model (the Lam 2023 model) was 
driven by day-of-year, the monthly value of F10.7, IMF By, and ε. Therefore, forecasts of the ionospheric plasma 
convection velocity could be obtained from the observed rolling monthly average of F10.7 and currently available 
real-time values of IMF By and ε at the L1 point upstream of Earth.

When the Lam 2023 model was assessed to see how well it could reproduce the Shore EOF model analysis 
patterns (the parent data set), it exhibited a respectable level of skill, and hence it could be a valuable tool for 
operational purposes due to its simplicity. In this paper, however, we have only verified our model by ensuring 
that the formulation is consistent with the data set upon which it was constructed. The validation of the model 
against other independent data sets provided, for instance, by satellite or incoherent scatter radar remains a neces-
sary outstanding task. Although the data coverage of the parent data set from which the model is developed (the 
Shore et al. (2021) SuperDARN velocity EOF model analysis) will influence the ability of the Lam 2023 model to 
reproduce the parent data set, it is also possible that the assumed form of the regression equations is more accurate 
around solar maximum and less so around solar minimum. In which case we can improve on the regression equa-
tions used in future versions of the model.

Data Availability Statement
We used NASA/GSFC's Space Physics Data Facility's OMNIWeb service https://omniweb.gsfc.nasa.gov and 
OMNI data, provided by the Goddard Space Flight Center (GSFC) at the National Aeronautics and Space Admin-
istration (NASA) to access the solar wind data such as IMF and velocity (N. E. Papitashvili & King, 2020a). It 
was also used to access the solar radio flux at 10.7 cm/2800 MHz which was obtained from the Low Resolution 
OMNI (LRO) data set (https://omniweb.gsfc.nasa.gov/ow.html (N. E. Papitashvili & King, 2020b). The British 
Antarctic Survey (BAS) EOF model analysis of the SuperDARN plasma velocity data and supporting software 
(https://doi.org/10.5285/2b9f0e9f-34ec-4467-9e02-abc771070cd9), and also the peer-reviewed description of its 
derivation (Shore et al., 2021) have all been published. The regression coefficients for the models presented in 
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this study and accompanying software have also been published (https://doi.org/10.5285/22272b8e-1aa3-483b-
9867-224fe02db4e8). We used version 8.7 of IDL to produce our figures (Harris Geospatial Solutions, 2022).
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