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Climate change is characterized by global surface warming associated with the
increase of greenhouse gas population since the start of the industrial era.
Growing evidence shows that the upper atmosphere is experiencing appreciable
cooling over the last several decades. The seminal modeling study by Roble and
Dickinson (1989) suggested potential effects of increased greenhouse gases on
the ionosphere and thermosphere cooling which appear consistent with some
observations. However, several outstanding issues remain regarding the role of
CO2, other important contributors, and impacts of the cooling trend in the
ionosphere and thermosphere: for example, (1) what is the regional variability of
the trends? (2) the very strong ionospheric cooling observed bymultiple incoherent
scatter radars that does not fit with the prevailing theory based on the argument of
anthropogenic greenhouse gas increases, why? (3) what is the effect of secular
changes in Earth’s main magnetic field? Is it visible now in the ionospheric data and
can it explain some of the regional variability in the observed ionospheric trends?
(4) what is the impact of long-term cooling in the thermosphere on operational
systems? (5) what are the appropriate strategic plans to ensure the long-term
monitoring of the critical space climate?
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Introduction

Growing evidence shows that the upper atmosphere has been experiencing appreciable
cooling over the last several decades (e.g., Laštovička, 2017, see Figure 1A). This has
been connected to the increase in greenhouse gas concentrations since the start of the
industrial age, which drives global warming near the Earth’s surface, but causes global
cooling in the middle and upper atmosphere (Figure 1B, after Roble and Dickinson,
1989). Greenhouse gases act as a cooling agent in the thermosphere. Infrared emissions
by CO2 at 15 μm and NO at 5.3 μm transfers thermal energy up into the thinner and
thinner atmosphere without being trapped as is the case when emitted in the dense
lower atmosphere, and therefore these gases provide efficient cooling in the thermosphere.
However, the upper atmosphere, especially the ionosphere, is also very responsive to a
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wide range of other forcings, both from above, including (long-term)
variability in solar irradiation and geomagnetic disturbances, and
from below, including various wave activities, violent surface activities
(e.g., volcanic eruptions) and gradual Earth magnetic field changes.
Detecting, analyzing, and modeling the relatively weak signals over
the long term are non-trivial tasks. In the following, we discuss several
challenges the community needs to address.

Scientific challenges as future research
directions

Cooling is stronger than anticipated CO2
effects

Satellite drag data indicated that the global average thermospheric
density is reducing at a rate of 2–3% per decade at 400 km between
the 1960s and 2000s (e.g. Emmert, 2004; 2015). The CO2 trend at
105–110 km was 7–8% per decade from 2004 to 2012 as reported by
Yue et al. (2015); Rezac et al. (2018) using TIMED SABER data. This
rate is noticeably larger than a General Circulation Model (GCM)
simulation, and the corresponding simulated density trends appear
to be smaller than indicated by observations (Emmert et al., 2008).
The long-time series of CO2 measurements in the thermosphere are
currently not available to provide adequate trend analysis, and the
modeling results have not been fully validated.

Dramatic differences were found in the trends determined from
incoherent scatter radar (ISR)-based ion temperature (Ti) at multiple
locations (Zhang et al., 2011; Oliver et al., 2013; Zhang and Holt,
2013; Ogawa et al., 2014; Zhang et al., 2016) and trends inferred
from model simulations. Figure 1C provides an analysis of the
ISR Ti trends measured at Millstone Hill and elsewhere where the
trends were centered around ∼15K/decade at ∼250 km altitudes
during the day, equivalent to 75K in 50 years. GCM simulations
conducted by, e.g., Roble and Dickinson (1989), Qian et al. (2011),
and Solomon et al. (2018) showed consistently that global mean
exosphere temperature will drop at 2–5K/decade due to the increasing
CO2 mixing ratio. These results indicated that the observed strong
ionospheric cooling could be caused by important additional sources,
beyond the greenhouse effect.

Is the gravity wave activity increasing?

Gravity wave (GW) activity has important direct influences on
the ionospheric and thermospheric dynamics, and also GW vertical
transport of momentum and energy associated with wave dissipation
and diffusive mixing through the mesosphere may modify the
thermospheric thermal status. Oliver et al. (2013) indicated that GW
activity at ionospheric altitudes could be increasing at Millstone Hill.
They further speculated this increase could be related to the surface
climate change affecting ocean-atmospheric interaction. It is not clear
how general this process is as commented by Laštovička (2015).
Limited observations on the ground and from space showed that
GW trends in the middle atmosphere are very regional and unstable
(e.g., Hoffmann et al., 2011; Jacobi, 2014; Liu et al., 2017). To provide
direct physical insights whole atmospheric models that can properly
resolve GWs may be used to examine the long-term GW trends at

different layers of the atmosphere and influences on the ionosphere
and thermosphere. Cnossen (2020) reported an initial effort using the
WholeAtmosphereCommunity ClimateModel eXtension (WACCM-
X), a comprehensive coupled general circulation model, however,
with parameterized GWs. High-resolution models explicitly resolving
GWs (Becker and Vadas, 2020; Becker et al., 2022), on the other
hand, are mechanistic and cannot currently provide a comprehensive
view of the whole Earth system, particularly, when the ionosphere is
considered.

Long-term trends in geomagnetic activity

The solar activity variability over solar cycles is large, however,
a general declining activity since the 1950s (Solar Cycle 19) seems
evident. Geomagnetic disturbances are caused by interplanetary
coronal mass ejections (ICMEs), which are strongly correlated with
solar activity, and high-speed stream (HSS), which is originated from
coronal holes, less dependent on solar activity, but appear periodically
on the visible solar disk.These disturbances have substantial influences
on the upper atmosphere (Mikhailov and Perrone, 2016), including
the CO2 mixing ratio (Liu et al., 2021). Most trend analyses attempted
to remove (solar and) geomagnetic activity effects via regression
with certain (solar and) geomagnetic indices or by using quiet-time
data or monthly averages. While the ion temperature Ti and neutral
densities are strongly positively correlated with enhanced magnetic
disturbances, the peak electron density in the F2 layer, NmF2, has a
very complicated relationship with these indices and therefore it is
possible that some trend analysis is, to some degree, contaminated
by geomagnetic disturbances. An improved understanding of these
effects and sophisticated techniques (e.g., using machine learning
algorithms) to deal with this challenge are needed.

The secular change of Earth’s magnetic field

The strength of the geomagnetic field has been decreasing at an
average rate of 16 nT per year over the past 180 years (Gillet et al.,
2013), accompanied bymovement of themagnetic poles andmagnetic
equator (Livermore et al., 2020). Both types of changes are potentially
important drivers of long-term change in the upper atmosphere,
especially in regions where the magnetic equator and magnetic poles
have shifted their positions considerably. These drivers have been
recognized in various simulation studies where secular changes of
Earth’s main magnetic field were considered in addition to long-
term trends in trace gas (including CO2) emissions (e.g., Yue et al.,
2008; 2018; Cnossen, 2020; Qian et al., 2021). At Millstone Hill,
the magnetic apex latitude has decreased from 57° to 52° and the
magnetic dip angle from 71° to 67° between 1950 and 2020 (Figure 2),
and less heating related to high latitude magnetosphere-ionosphere
coupling is available. The main field change can also modify the
ionospheric dynamics including the Sq pattern and the location of
equatorial electrojets (Cnossen and Richmond, 2013; Soares et al.,
2020; Elias et al., 2021). Since the effects of magnetic field changes
vary strongly with location, further studies with different types of
observations from diversified locations and model-data comparisons
are highly needed to clarify the relative contribution of main field
changes to long-term trends.
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FIGURE 1
Ionospheric and thermospheric long-term trends: (A) observations in electron density (solid line on the left) and neutral temperature (solid on the right),
after Laštovička et al. (2006); (B) incoherent scatter radar ion temperature observations at Millstone Hill (red), Sondrestrom (black), and Poker Flat (blue),
after Zhang et al. (2016); (C) simulated thermospheric temperature changes due to doubling CO2 mix ratio at ∼ 60 km altitudes (the left solid curve; the
right dashed curve is for CO2 halved), after Roble and Dickinson (1989).

FIGURE 2
Long-term variations of the main magnetic field at Millstone Hill based on the IGRF model.

Impact of the cooling upper
atmosphere

Consequences of some long-term changes in the upper
atmosphere could appear subtle over short time scales but the
accumulated effect can be significant in the long term. For example,
incoherent scatter radar observations at Millstone Hill and elsewhere
suggested that the ion temperature has decreased by 100 + K above
300 km since the space age. Neutral density at 400 km has reduced
by 10–25% for the same time period. Although the ionosphere and
thermosphere are subject to larger changes between day and night

and across a solar cycle, the increased cooling in the background
have gradually become a permanent feature. As the increase in CO2
concentration will continue in this century and the CO2 mixing ratio
will be likely close to being doubled from its pre-industrial levels by the
end of this century, really substantial ionosphere and thermosphere
changes can be anticipated.

Potential risks of space debris surviving in orbitals harmful
to spacecraft and humans in space become larger due to global
cooling and the associated drop in upper atmosphere air density,
as this reduces the drag on space debris, increasing its lifetime
(Lewis et al., 2011). Brown et al. (2021) indicated that if the 1.5°C
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warming limit target in the surface atmosphere is met, objects in
Low Earth Orbit (LEO) will by 2050 have orbital lifetimes around
30% longer than comparable objects from the year 2000. Radio
propagation and communication systems use the ionosphere as a
reflection or refraction or transmission medium and they depend on
the ionospheric plasma density. For example, sea level monitoring
using the altimeter to sense radio wave propagation needs calibration
with proper TEC climatology for earlier observations with the single
frequency system (Scharroo and Smith, 2010). It is clear that future
designs should take into consideration the propagation condition
changes (Elias et al., 2017) due to changes in the height and number
density of the background ionosphere and in the main magnetic
field.

Monitoring upper atmospheric climate
change

The scientific community needs to maintain and develop the
important capability to monitor space climate over the long-term. Not
only long-term data availability but also stability and cross-calibration
of the observing system are important aspects.

Various satellite missions provide important observations
of neutral density, CO2 mixing ratio, thermospheric infrared
cooling power, GW activity, and topside plasma density (e.g.
Emmert, 2015; Yue et al., 2015; Liu et al., 2017; Mlynczak et al., 2018;
Cai et al., 2019). The longevity of these missions can be up to 1–2
decades.

Long-term monitoring is relatively easier to achieve using
ground-based observational systems, complementary to mission-
based in situ space observations. These systems are characterized
by a clear separation between temporal and spatial ambiguity as
well as consistency and stability of observing environment and
maintenance. Ionosonde records can span easily over 50 years;
continuous ISR data at Millstone Hill available for research started
in the 1960s. They remain critically important tools for space climate
monitoring.

A list of important ground-based techniques that can enable
atmospheric long-term monitoring include magnetometers,
ionosondes, incoherent scatter radars, Fabry-Perot Interferometers,
All-sky imagers, SuperDARN HF radars, and LIDARs. The
communities use them to understand and predict short-term
space weather and furthermore to establish climatology and
detect climate changes. It is essential that our space weather and
space climate monitoring systems can detect a comprehensive
set of physical characteristics, from neutral and plasma state
parameters (densities and temperatures), to their dynamical
behaviors, and to geomagnetic main field and perturbations; it
is important also that they are sensitive to spatial variability and
time variation in all scales, from short to long-term (Pulkkinen,
2007; Kerridge, 2019).

To maintain efficient long-term investments in monitoring the
space climate, proper observational configuration and networks
to measure key physical parameters appear a practical approach.
It is necessary to balance the needs for building cutting edging
new instruments and ensuring the longevity of existing key
facilities.
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