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A B S T R A C T   

Disentangling land-use and climatic influences on peat subsidence, and establishing the long-term trajectory of 
subsidence, are necessary to determine the future economic and environmental sustainability of managed 
peatland landscapes. While many peatlands in temperate regions such as Europe have been drained for centuries, 
those of Southeast Asia have mostly been drained for agriculture and forestry practices within the last 30 years. 
These areas are subsiding rapidly, but few long-term subsidence records exist, and it is unclear whether currently 
high subsidence rates will be maintained in future. Furthermore, large-scale climate fluctuations associated with 
the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) exert a strong year-to-year influence on 
rainfall rates, affecting water table depth dynamics in both managed and intact peatlands. In this study, we 
analysed data collected over more than a decade of subsidence measurements from over 400 plantation and 
forest plots in Sumatra, Indonesia, including a unique set of 62 sites that have been continuously monitored since 
2007. We show that spatial and temporal variations in subsidence rates are primarily determined by water table 
depth. We also find evidence of declining subsidence rates as a function of time since initial drainage, consistent 
with previous instrumental records from high-latitude peatlands and recent satellite data from tropical peatlands. 
Subsidence rates over the study period were strongly affected by the large ENSO/IOD-linked drought event in 
2015–16, which caused an acceleration of subsidence across all sites. In plantation areas, we estimate that this 
climate perturbation caused around 14 % of subsidence observed over a twelve year period. At interior forest 
sites this rose to 32 %, and we found little evidence of ecosystem recovery to the end of 2018. This raises the 
possibility that repeated extreme droughts in the region could lead to long-term degradation of peat swamp 
forest ecosystems.   

1. Introduction 

Subsidence of drained peatlands has been a recognised challenge for 
agricultural and environmental sustainability since at least the mid-20th 
century (Thompson, 1957). Many areas that have been subject to long- 
term drainage, including large parts of the Netherlands, Northern 

Germany, Eastern England, the San Joaquin Delta in California, and 
Southern Florida, have subsided by several metres, to the extent that 
large areas of agricultural land are now below sea-level, and require 
protection from flooding by embankments and pumped drainage. 
Contemporary subsidence rates in these high-latitude peatlands are now 
typically 1 to 3 cm yr− 1 (Evans et al., 2019; Hoyt et al., 2020). This 
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subsidence is the result of a combination of ongoing soil compaction 
following the lowering of water levels, and continuous oxidation of 
aerated peat above the water table. Peat oxidation leads to CO2 emission 
from peatlands drained for agriculture and forestry, making them sig
nificant contributors to global greenhouse gas (GHG) emissions in many 
countries (Leifeld et al., 2020). 

In Southeast Asia, most peatland conversion has occurred more 
recently, with around 60 % of the tropical peat swamp forests of 
Malaysia and Indonesia having been converted since 1990 (Wijedasa 
et al., 2018). A total peatland area of 78,500 km2 has been developed for 
agriculture and silviculture, of which 43 % is under cultivation by 
smallholders, 39 % in industrial oil palm plantations, and 11 % in 
pulpwood (Acacia crassicarpa) plantations (Wijedasa et al., 2018). All of 
these activities involve some degree of peat drainage, and therefore lead 
to subsidence. In the period immediately following land conversion, 
rapid ‘primary’ subsidence, which results from consolidation of the peat 
after de-watering, can be in the order of a metre within the first two 
years (Andriesse, 1988; DID and LAWOO, 1996; Hooijer et al, 2012). 
Subsequent ‘secondary’ subsidence rates in drained tropical peatlands 
are typically in the range 2–6 cm yr− 1 (Evans et al., 2019; Hoyt et al., 
2020). Higher rates compared to high-latitude peatlands are partly 
attributable to the higher temperatures experienced by tropical peat
lands, which lead to high rates of oxidation when peatlands are exposed 
to aerobic decomposition, and may also be related to the relatively short 
time since drainage. As a result, CO2 emissions from drained tropical 
peatlands are estimated to be approximately double those from high- 
latitude peatlands exposed to a similar degree of drainage (IPCC, 
2014; Evans et al., 2021). Since many drained Southeast Asian peatlands 
are in low-lying coastal areas, it has also been suggested that ongoing 
subsidence could lead to drainability issues in plantations, and to future 
flood risk (Sumarga et al., 2016; Saputra, 2019; Lupascu et al., 2020). 

There is however an ongoing debate as to whether high observed 
subsidence rates in recently drained tropical peatlands will be main
tained over the longer-term. In Northern peatlands, for which several 
very long-term (>100 year) records exist, subsidence rates typically 
follow an exponential decay curve under conditions of constant drainage 
(Hutchinson et al., 1980; Stephens et al., 1984; Deverel and Leighton, 
2010). This is attributable to a combination of increasing mineral con
tent and decreasing porosity in the residual peat, which reduces 
compaction, oxygen transport and thus the amount of organic matter 
exposed to aerobic decomposition, and to the decreasing volume of peat 
above the water table, which again reduces the organic matter pool 
exposed to decomposition. Rapid subsidence can however be re-initiated 
if drainage levels are increased in order to maintain agricultural pro
ductivity (Hutchinson et al., 1980; Stephens et al., 1984). 

In tropical peatlands, the lack of equivalent records precludes a truly 
long-term assessment of subsidence trajectories. Some studies have 
predicted that tropical peatlands will follow a similar trajectory to high- 
latitude systems, with subsidence rates gradually slowing over time (e.g. 
Muruyama and Bakar, 1996; Wösten et al., 1997; Othman et al., 2011), a 
finding that appears to be supported by recent analysis of satellite data 
(Hoyt et al., 2020; Umarhadi et al., 2022), but which has yet to be 
confirmed by long-term ground observations. Others have argued that 
subsidence in managed plantations will proceed at a more or less linear 
rate following the initial period of rapid subsidence (Hooijer et al., 2012; 
Couwenberg and Hooijer, 2013). This argument is based, in part, on the 
very low ash content (usually less than 2 %) of most tropical peats, 
which means that there is little or no ‘dilution’ of the aerated organic 
matter pool by accumulating residual mineral material. Couwenberg 
and Hooijer (2013) also point out that in highly managed plantation 
landscapes, water levels in drainage canals will effectively ‘follow the 
peat surface down’ in order to maintain constant relative drainage 
depths and maintain crop yields, resulting in a constant depth of aerated 
peat, and near-constant subsidence until the water table intersects the 
underlying mineral substrate. On the other hand, recent regulatory de
velopments, notably in Indonesia, require that water levels are held at 

higher levels within plantations, which has the potential to slow rates of 
subsidence (Evans et al., 2019). 

Improved understanding of the long-term trajectory of subsidence in 
cultivated tropical peatlands is of high importance from both an eco
nomic and an environmental perspective. If subsidence rates are indeed 
linear, then the onset of drainability and flood risk issues may be rela
tively rapid. If on the other hand subsidence rates decrease over time, 
these issues may be delayed, potentially by decades. The linearity or 
otherwise of subsidence also provides an indirect indication of wheher 
or not current levels of observed CO2 emissions are likely to remain 
constant in future. However, because current projections of future sub
sidence are reliant on short time series, model assumptions are hard to 
validate against available data. Furthermore, the period over which 
recent subsidence data have been collected in Southeast Asia has been 
affected by large climatic perturbations, most recently the strong com
bined El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole 
(IOD) event of 2015–16 (hereafter referred to for simplicity as the 
2015–16 El Niño) which led to a severe dry season in the region. As a 
result, it is difficult to disentangle the relative importance of drainage- 
related management from that of variations in climate. It is also diffi
cult to determine the extent to which accelerated subsidence during 
drought periods may be considered reversible (i.e. a broadly natural 
fluctuation superimposed on the drainage-related trend, for example 
due to short-term shrinkage and swelling of the peat) or irreversible (i.e. 
an acceleration of existing drainage impacts, for example as a result of 
additional oxidation). These potential interactions may also differ be
tween plantations with managed water levels, and forests without direct 
management impacts. 

In this study, we analyse temporal variations and the long-term 
trajectory of subsidence in a uniquely long-term (12 year), large-scale 
and methodologically consistent dataset of subsidence measurements 
obtained from one of the largest tropical peatland regions in Indonesia, 
Riau province in Sumatra. The analysis follows a previous study (Evans 
et al., 2019) which quantified average rates of subsidence in industrial 
Acacia plantations and adjacent conservation-managed native forests, 
and evaluated the factors influencing spatial variations in subsidence 
rate. This analysis, based on 312 subsidence monitoring points for which 
at least three years of data were available, showed an average subsi
dence rate of 4.3 cm yr− 1 under Acacia, with similar rates of subsidence 
in forest edge locations, declining to a lower (but still substantial) 
average subsidence of 2–3 cm yr− 1 at forest interior sites (i.e. those >
300 m from the plantation edge). The reasons for this apparent subsi
dence at forest interior sites was unclear, with possible explanations 
including an extended impact of plantation drainage on forest hydrol
ogy, a more widespread degradation of peat domes within the region 
(for example due to large-scale climatic changes or to historic distur
bances such as logging activity), or the impact of the 2015–16 El Niño. In 
the current study, we first analyse drivers of spatiotemporal variation in 
the full dataset of 434 subsidence poles, and then analyse in detail a 
subset of 62 measurement sites that have been in continuous operation 
since monitoring began in 2007. Our aims were to: i) examine the spatio- 
temporal coherence of subsidence variations at different sites; ii) eval
uate the long-term trajectory of subsidence in both plantation and native 
forest areas; iii) disaggregate the effects of drainage and ENSO/IOD- 
related climate perturbation on overall rates of subsidence within 
plantation, forest edge and forest interior areas. Based on the results, we 
consider the implications of different subsidence trajectories for the 
management and conservation of tropical peatlands. 

2. Methods 

2.1. Study area and measurement sites 

The coastal lowlands of Eastern Sumatra hold one of the world’s 
largest contiguous areas of tropical peatland (Vernimmen et al., 2020). 
Peat largely formed during the last 8000 years, and extends over 
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approximately 70,000 km2 (Dommain et al., 2014). Peat thickness ex
ceeds 3 m over almost all of the area, and exceeds 10 m in some areas, 
while surface elevations rarely exceed 10 m above sea level. Mean 
annual rainfall at Pekanbaru Airport, Riau Province, is 2900 mm. There 
are two wet seasons, during which mean monthly rainfall exceeds 300 
mm, in November-December and March-April. There is a short dry 
season in February, and a longer dry season from June to August, during 
which mean monthly rainfall falls below 200 mm. Air temperatures are 
high and stable, with monthly means ranging from 29 to 32 ◦C (Badan 
Meteorologi, Klimatologi dan Geofisika, 1994–2017 data). 

We analysed subsidence data collected by Asia Pacific Resources 
International ltd (APRIL) in Riau, Sumatra, from Acacia plantations and 
adjacent native forest areas. The study area encompasses Measurements 
includes the Kampar Peninsular, a 6800 km2 peat dome with a large 
intact central forest area, surrounded by plantations, and other large 
peatland areas including the islands of Pulau Padang and Pulau Rupat to 
the north, and areas adjacent to the Kerumutan National Park to the 
south (Fig. 1). The Acacia plantations were established from 1992 

onwards, and are managed on a five-year rotation from planting to 
harvest. Peat in plantation areas is mainly fibric (poorly decomposed 
with abundant plant remains) but becoming hemic (fewer visible plant 
remains) towards the surface (Hooijer et al., 2012). In undeveloped 
forest areas, the majority of the peat is fibric. To support plantation 
growth, water table depths (WTDs) are managed within 
topographically-defined water management zones, comprising large 
canals either side of a pair of plantation compartments, and smaller field 
drains within each compartment, with water levels within each zone 
controlled by outlet sluices (see Evans et al., 2019 for further details). 
Until recently, Acacia plantations were managed for a target WTD of 70 
cm. However the El Niño fires of 2015 led the Indonesian government to 
establish a Peat Restoration Agency (Badan Restorasi Gambut, BRG) 
with a remit to reduce fire incidence and restore 2 million ha of 
degraded peatland by 2020, and to introduce new regulations (most 
recently SK.22/PPKL/PKG/PKL.0/7/2017) requiring that water tables 
be maintained within 40 cm of the peat surface at the centre of each 
plantation block for at least half of the year, and within 100 cm of the 

Fig. 1. APRIL concession areas on peat and subsidence monitoring locations, Riau, Indonesia. Blue circles indicate subsidence poles that have been monitored since 
2007 (used for time series analysis), red circles indicate sites that were established more recently (also included in the multivariate analysis). Land cover is shown for 
APRIL concession areas only. 
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surface at all times. No active management of water levels occurs within 
the forests, but there is evidence that peripheral forest areas (within 300 
m from the last canal in the plantation) are affected by water manage
ment in the adjacent plantations (Evans et al., 2019). For interior forest 
sites (>300 m from the nearest canal) the same analysis showed no 
evidence of a direct drainage impact, although water levels appear 
generally lower than would be expected in a truly pristine peat swamp 
forest, for reasons that remain uncertain (Evans et al., 2019; Deshmukh 
et al., 2021). 

2.2. Subsidence and water table depth measurements 

Since 2007, APRIL has monitored an expanding number of subsi
dence poles throughout its plantation and conservation forest conces
sions in Riau (Fig. 1). For this study we analysed data from a total of 434 
poles – 319 in Acacia plantations, 115 in conservation (native) forest. 
These sites extend across much of APRIL’s production and conservation 
concession areas. We then undertook a more detailed temporal analysis 
of data from a subset of ‘long-term’ subsidence poles that were installed 
at the start of the monitoring programme in 2007, and which have 
continued (with few or no missing quarterly data points) until December 
2018. This subset comprised 62 sites, of which 38 were in Acacia plan
tation, and 24 in conservation forest. The sites were located along nine 
monitoring transects, of which seven are in the western part of the 
Kampar Peninsular, and two in the smaller Mandau plantation area to 
the northwest. Four of the transects provided data from plantation sites 
only, three from forest sites only, and two from both plantation and 
forest sites. The forest sites were located in forest fragments within the 
plantation area, within buffer zones (areas of native forest of approxi
mately 300 m width on the boundary of – but within – the plantation 
concessions), and in adjacent conservation-managed concessions. The 
most remote long-term site was 1.4 km from the nearest plantation 
canal. 

At each location, peat subsidence is measured using a hollow, 
perforated 5 cm diameter PVC pipe, inserted vertically into the peat and 
anchored into underlying mineral subsoil (Fig. 2). Ground elevation 
change is recorded quarterly by measuring distance from the top of a 
pole (the datum point) to the ground surface. Concurrently, WTD is 
measured by recording the distance from the pole top to the water table, 
and subtracting the distance from the pole top to the ground surface. 
While subsidence represents a cumulative measure of peat elevation 
change since the previous measurement, the WTD measurement is 
simply a ‘snapshot’ of conditions at the time of sampling. Further details 
of the site network and measurements are provided in Evans et al. 
(2019). 

2.3. Supporting meteorological data 

Long-term records of rainfall were obtained from a network of 22 
weather stations operated by APRIL across their concessions throughout 
the monitoring period. To provide a single, spatially-averaged index of 
rainfall across the study area we took a mean of the total measured 

rainfall across all sites during each quarterly period. We also obtained 
data for the ENSO Index (https://origin.cpc.ncep.noaa. 
gov/products/analysis_monitoring/ensostuff/ONI_v5.php) and the IOD 
Index (https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/). These 
indices describe east–west sea surface temperature gradients in the 
equatorial Pacific and Indian Oceans, respectively. The ENSO represents 
one of the largest climate cycles in the Earth System, affecting weather 
conditions in many parts of the world. In Indonesia, positive ENSO Index 
values (i.e. El Niño events) are associated with higher temperatures and 
extended dry seasons, contributing to ecological degradation of peatland 
regions through increased incidence and severity of fires (van der Werf 
et al., 2008; Nechita-Banda et al., 2018). The IOD is a linked phenom
enon occurring within the Indian Ocean, with the potential to exacer
bate climate perturbations in Sumatra (Saji and Yamagata, 2003). All of 
the meteorological and climate index data were aggregated up to 
quarterly means or totals, to correspond to the frequency of subsidence 
measurements, and to annual (calendar year) values. 

2.4. Full-dataset multivariate analysis 

To evaluate the combined effect of a wide range of locally measured 
environmental variables on subsidence rates, we implemented a multi
variate regression analysis on the full dataset of 434 subsidence poles. 
The analysis included variables which vary both spatially and tempo
rally (e.g. WTD), temporally only (a single rainfall time series was 
applied for all sites), and spatially only, including both continuous 
variables (e.g. distance from canal) and categorical variables (e.g. tree 
species). Variables used are shown in Table 1. TIME refers to time (in 
quarters) since the start of monitoring. DCANAL represents the distance 
(m) of the measurement point from the nearest plantation canal, while 
DFOREST represents the distance (m) to the nearest forest edge (plan
tation sites only). PLANT and FOREST are dummy variables (1/0) 
describing site type. Within the plantation areas, sites were assigned a 
value of 1 for the dummy variable ACACIA if they were located in Acacia 
crassicarpa stands, or OTHER if a different plantation species was present 
(e.g. Melaleuca sp.). Because all sites are either plantation or forest, we 
excluded FOREST from the multivariate analysis, and similarly for tree 
species within plantations we excluded the variable OTHER. Peat 
thickness was not included in the analysis, because previous work on the 
same dataset suggests that it has little influence on subsidence rates 
(Evans et al., 2019), and because around 20 % of the dataset lacked peat 
thickness data. We also lacked sufficient information on peat properties 
at all subsidence poles to enable detailed peat classification (e.g. Veloo 
et al., 2014) so were unable to include this explicitly in the analysis. 

Fig. 2. Subsidence poles in forest (left) and plantation (right).  

Table 1 
List of Variables for Multivariate Regression Analysis.  

Variable Description Type Unit 

SUBS Quarterly subsidence rate Response 
(spatiotemporal) 

cm 
quarter-1 

WTD Water table depth Explanatory 
(spatiotemporal) 

cm 

RAIN Quarterly rainfall volume Explanatory 
(temporal) 

mm 
quarter-1 

TIME Number of quarters (time) since 
the start of the monitoring 

Explanatory 
(spatiotemporal) 

scalar 

DCANAL Distance to nearest canal Explanatory (spatial) m 
DFOREST Distance to nearest 

conservation forest (plantation 
sites) 

Explanatory (spatial) m 

PLANT Plantation sites Explanatory 
(categorical) 

1/0 

FOREST Conservation forest sites Explanatory 
(categorical) 

1/0 

ACACIA Acacia tree species (plantation 
sites only) 

Explanatory 
(categorical) 

1/0 

OTHERS Other tree species (plantation 
sites only) 

Explanatory 
(categorical) 

1/0  
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However as noted above, peat is consistently fibric in forest areas, 
whereas it grades from fibric at depth to hemic near the surface in the 
plantations, so broad effects of peat type could be captured by the 
PLANT summary variable. 

Prior to analysis, we removed data outliers using an objective pro
cedure to avoid anomalous measurements exerting undue influence on 
the results. According to Baltagi (2011) such influential observations 
can be attributable to: (i) improperly recorded data; (ii) observational 
errors in the data; (iii) misspecification of the statistical model (i.e. 
wrongly included or excluded explanatory variables); or (iv) legitimate 
outlying data points. The subsidence and WTD data were collected for 
operational rather than research purposes, and following consultation 
with APRIL field staff and initial assessment of the data, we considered 
that outliers were most likely to be genuine errors (e.g. due to recorder 
error or site disturbance). We employed the blocked adaptive compu
tationally efficient outlier nominator (bacon) procedure in Stata to 
detect and then exclude these outlying observations from our dataset. 
The original algorithm of the bacon procedure was proposed by Billor 
et al. (2000), and enhanced by Weber (2010). The procedure imple
ments the Mahalanobis Distance approach, which has been widely 
recognized in statistical analysis, and used in a previous analysis of this 
dataset by Evans et al. (2019) to detect and exclude outliers for calcu
lating average subsidence rates. Outlier exclusion reduced the total 
number of observations used in the analysis, as shown in Table 2. Outlier 
exclusion reduced the range and standard deviation of SUBS, but had 
relatively little impact on mean SUBS, or on the other variables. 

We also checked for correlations between explanatory variables, to 
avoid problems of collinearity. The strongest correlation was between 
WTD and RAIN (r = 0.37), well below the threshold of 0.75 often used as 
a cut-off (Hair et al., 2010), so we retained all variables in the analysis. 
Because some explanatory variables were only applicable to plantation 
or conservation forest areas, we applied three regression equations: 
Plantation and Forest (1); Plantation only (2); and Forest only (3). Each 
equation was regressed using Pooled Least Square (PLS) specification 
with robust standard error. 

All sites: 

SUBSit = α+ β1− 4SUBSi,t− x + β5− 9WTDi,t− x + β10− 14RAINt− x + β15TIMEt 

+ β16DCANALi + β17PLANTi + εit (1) 

Plantation sites: 

SUBSit = α+ β1− 4SUBSi,t− x + β5− 9WTDi,t− x + β10− 14RAINt− x + β15TIMEt 

+ β16DCANALi + β17DFORESTi + β18ACACIAi + εi,t (2) 

Forest sites: 

SUBSit = α+ β1− 4SUBSi,t− x + β5− 9WTDi,t− x + β10− 14RAINt− x + β15TIMEt 

+ β16DCANALi + εit (3) 

In addition to the variables already specified in Table 1, α is the 
intercept, the β terms are coefficients, and ε is the residual. The subscript 
i indicates pole, and t indicates time in quarters. Subscript × indicates 
lags. For SUBS, the lags are from 1 to 4 (i.e. from the preceding quarter 
up to one year, to account for autocorrelation). For WTD and RAIN, the 
lags are from 0 to 4 (i.e. from the time of subsidence measurement up to 
one year before). 

2.5. Analysis of long time series 

Whereas the multivariate analysis above was used to explore the 
overall drivers of spatio-temporal variation across the entire dataset of 
> 7500 individual observations, the time-series analysis aimed to pro
vide more detailed understanding of the temporal trajectory of subsi
dence as a function of plantation management and climatic variation, 
using data from sites with complete 12 year time series. Based on in
formation provided by APRIL, we assumed that there was no long-term 
change in drainage intensity at individual monitoring sites over the 
monitoring period. This reflects the management of the plantations 
(prior to new Indonesian Government regulations) to achieve a target 
mean WTD of 70 cm, via adjustment of sluice levels at the outflow of 
each water management zone. This assumption does not preclude short- 
term fluctuations in WTD in response to periods of high or low rainfall, 
or spatial variations in the mean WTD at different sites due to local 
variations in topography or proximity to a canal. Adjustments in 
drainage depth made to meet the new Indonesian water table regula
tions, which came into force in 2018, were assumed to have occurred too 
late in the monitoring period to influence results. 

Based on the large-dataset analysis of Evans et al. (2019), which 
showed no clear spatial controls on variation in subsidence within the 
plantation dataset, and declining subsidence with distance from the 
nearest canal within the forest dataset, we divided our time series 
dataset into three subsets, namely: 1) all plantation sites; 2) ‘forest edge’ 
sites, located<450 m from the nearest canal; 3) ‘forest interior’ sites 
located>450 m from the nearest canal. The choice of cut-off value 
within the forest sites was partly informed by the previous analysis, 
which suggested stronger plantation impacts within 300 m of the 
plantation boundary, and partly pragmatic as the long-term forest sub
sidence data split naturally into two similarly sized subsets (13 sites <
404 m to the nearest canal, 11 sites > 504 m to the nearest canal). 

Data from each land cover category were then analysed according to 
the following procedure. Firstly, we subtracted the initial pole height 
from each individual time series in order to derive a time series of 
elevation change relative to an initial value (in December 2007) of zero. 
Sites within each subset were then aggregated by taking the median, 
10th and 90th percentile relative elevation value for each quarterly 
measurement interval. This analysis provides an indication of the 
average trajectory of change within each category, as well as the 
between-site variability in absolute rates of subsidence. However, given 
the small size of each dataset this approach is sensitive to missing values 
(over the full dataset 5.4 % of quarterly measurements were missing), 
and differences in absolute rates of subsidence will to some extent mask 
underlying coherence in temporal behaviour. Therefore, we also trans
formed each individual time series into consistent dimensionless units 
(‘Z-scores’) by subtracting the mean of the dataset and dividing by the 
standard deviation (Equation (4)): 

Z =
x − μ

σ (4)  

where x is the observed value, μ is the mean of the data for that location, 
and σ is the standard deviation. This transformation gives all time series 
a mean of zero and a standard deviation of 1. For each quarterly mea

Table 2 
Descriptive statistics of dynamic variables before and after outlier exclusion.  

Variable Observations Mean Std. Dev. Min Max  

Before After Before After Before After Before After Before After 

SUBS 11,049 10,814 0.86 0.84 3.69 2.51 − 52.5 − 11.7 95.2 14.0 
WTD 10,980 10,814 − 61.5 − 61.5 32.9 32.2 − 376 − 219.2 131 81.7 
RAIN 11,049 10,814 526 619 180 180 213 213 1040 1040 
TIME 11,049 10,814 31.96 32.06 11.66 11.63 2 2 49 49 
DCANAL 10,944 10,709 284 283 342 341 4 4 2816 2816 
DFOREST 10,944 10,709 714 715 752 751 0 0 4261 4261  
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surement interval, we then calculated the median, 10th and 90th 
percentile Z-score for the full set of sites in each data subset. This 
approach, which has been widely applied to the analysis of multi-site 
water quality monitoring datasets (e.g. Watmough et al., 2004; Davies 
et al., 2005; Evans et al., 2010; Oulehle et al., 2013) provides an effec
tive measure of the degree of spatio-temporal coherence within the 
dataset. High-coherence datasets will have narrow 10th-90th percentile 
Z-score ranges, whereas low-coherence datasets will have wide ranges. 
The approach also provides an indication of the relative importance of 
short-term variability relative to the long-term trend; datasets domi
nated by long-term trends will exhibit large changes in median Z-score 
over the monitoring period, whereas datasets dominated by short-term 
fluctuations will have large inter-year variations in median Z-score 
compared to the full-dataset trend. For a more detailed description of 
this approach, see Evans et al. (2010). 

For the quarterly WTD measurements, which were made concur
rently with the subsidence measurements, we applied an identical 
standardisation procedure. For the rainfall, ENSO and IOD index data, 
we calculated annual and quarterly means. Relationships between hy
drometeorological variables and subsidence were analysed by linear 
regression with the residuals of subsidence trends, described below. 

2.6. Attributing subsidence rates 

We fitted three alternative best fit lines to the median Z-score sub
sidence rates for plantation (Zpl), forest edge (Zfe) and forest interior (Zfi) 
(Equation 5). First, we fitted a simple linear regression to the full dataset 
(Zpl all, Zfe all, Zfi all). Since the full measurement period includes the 
2015–16 El Niño, this model incorporates both land-use and climate- 
related contributions to subsidence. To exclude the potential influence 
of the 2015 event, we also fitted a linear regression to median Z-score 
data collected before the start of 2015 (Zpl pre, Zfe pre, Zfi pre). This 
approach provided an estimate of linear subsidence in the absence of 
large climatic disturbances, and could be considered an estimate of the 
average rate of subsidence that is attributable to land-use activities.  

Zi = ai + bit + ε                                                                             (5) 

where Zi is the mean Z-score in dataset i = [Zpl all, Zfe all, Zfi all, Zp pre, Zfe 

pre, Zfi pre], ai and bi are regression coefficients, t is time elapsed from the 
beginning of observations (January 1st 2007, t in years) and ε is the 

residual term. Finally, to allow for possible non-linear rates of subsi
dence, we also fitted an exponential curve (first order decay model) to 
the same pre-2015 dataset, of the form:  

Zi + 10 = m e(-kt)                                                                            (5) 

where Zi represents the Z score of median subsidence for each landcover 
class i as above, t is time in years since January 1st 2007, and m and k are 
fitted constants (m represents the starting value and k the decay rate in 
yr− 1). An arbitrary value of 10 was added to Zi to ensure that all values 
were positive during both the observation period and the projection 
period. This approach allows for a gradual slowing of subsidence rates 
over time, and also excludes the effects of large climate perturbations. 

3. Results 

3.1. Hydrometeorological data 

The 2015–16 El Niño event is clearly evident as a prolonged and 
strongly positive series of both climate indices, with peak IOD index 
values following the ENSO index peak (Fig. 3). There was a smaller 
ENSO index peak in 2009, with negative values for most of the 
remainder of the study period. The IOD index showed a similar small 
positive phase in 2009–2010, followed by a more extended positive 
phase rising from the end of 2012 to a peak in early 2016. On both 
occasions the IOD index remained positive after the ENSO index had 
returned to neutral or negative values. 

Rainfall data show seasonally alternating wet and dry periods. The 
third quarter of 2015, during the El Niño event, was the driest three- 
month period in the record, and the following wet season was the 
weakest recorded. The weaker 2009 El Niño event led to two quarters of 
below-average rainfall, but conditions were not exceptional compared 
to other time periods. Water table depths were also only slightly affected 
by the 2009 El Niño, and remained predominantly above the whole- 
period mean (i.e. positive median Z score) until the end of 2012, 
when both the ENSO and IOD indices were mostly in a negative phase. 
From 2013 onwards, when the IOD index was consistently positive, 
water levels were predominantly below the long-term mean, while the 
strong 2015–16 El Niño led to extremely low water levels over a sus
tained period through 2015–16. During 2017–2018, when the ENSO and 
IOD indices returned to mainly negative values, WTDs were similar to 

Fig. 3. Quarterly values of a) mean El Niño Southern Oscillation Index, b) Indian Ocean Dipole Index, c) quarterly rainfall totals averaged for all rain gauges on 
APRIL concessions, and d) median water table Z scores. The x-axis for the rainfall plot intersects the mean quarterly rainfall value for the measurement period. 
Median water table Z scores are based on all plantation and forest sites. 
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pre-2013 levels. 
Over the full record (based on the subset of 62 sites with continuous 

records) median quarterly water table Z scores showed a weak positive 
correlation with quarterly rainfall totals (R2 = 0.16, p = 0.009), a weak 
negative correlation with the IOD index (R2 = 0.13, p = 0.014), and a 
stronger negative correlation with the ENSO index (R2 = 0.28, p <
0.001). Comparing water table Z scores for the three land cover cate
gories shows a high degree of temporal coherence (Fig. 4). Median water 
table Z scores were strongly correlated between the three landcover 
categories (plantation vs forest edge R2 = 0.60, plantation vs forest 
interior R2 = 0.46, forest edge vs forest interior R2 = 0.71, all p < 0.001). 

3.2. Full-dataset regression analysis 

Table 3 shows results of the multivariate regression analysis for the 
full dataset, the plantation and forest subsets. For all three regression 
equations, WTD, RAIN and TIME and their lags were in general highly 
significant (p < 0.01) in explaining spatiotemporal variations in subsi
dence, with mostly negative coefficients indicating that statistically 
quarterly subsidence was lower compared to subsidence in previous 
periods, showing general pattern of lower subsidence rates over time. 
Meanwhile, in general the results also indicate that subsidence was 
lower when water tables were shallower, rainfall was higher, and more 
time had elapsed since the start of monitoring. The fitted coefficient for 
lagged SUBS was highest for the forest subset. Fitted coefficients for 
WTD and RAIN were also highest for the forest subset. The magnitude of 
coefficients appears physically plausible; for example, raising water ta
bles by 10 cm in plantation areas would reduce annual subsidence by 
0.86 cm yr− 1. The effects of time were strongest in the plantation 
dataset, with subsidence reducing on average by 0.084 cm yr− 1, 
compared to 0.061 cm yr− 1 in the forest dataset. The variable PLANT 
was also strongly significant and negative for the full dataset, suggesting 
that subsidence rates are on average 0.80 cm yr− 1 lower in plantation 
versus forest sites if all other conditions are equal. 

For the plantation-only dataset, the spatial variable DCANAL was 
also significant, indicating that subsidence is reduced by 0.36 cm yr− 1 

for every 100 m from the nearest canal. Other variables describing 
distance to the nearest forest and tree species (Acacia versus other spe
cies) were not significant. For the forest-only dataset, the significant 
predictors were antecedent SUBS, WTD, RAIN and TIME (i.e. distance 
from the nearest drainage canal did not explain any additional variance 
beyond the covarying effect of WTD). The coefficient for WTD was 
similar to the plantation-only and full-dataset analyses, but the coeffi
cient for RAIN was larger (-0.0023 for the forest-only versus − 0.0006 for 
the plantation-only dataset), suggesting that subsidence rates in the 
forest are more responsive to rainfall variation. The R2 for the forest 
dataset was the highest overall (0.192 versus 0.140 and 0.131 for the 
full- and plantation-only dataset respectively). 

3.3. Subsidence time series 

The Acacia plantation data show fairly steady subsidence over most 
of the monitoring period (Fig. 5a), but with a ‘step change’ quarterly 
subsidence of almost 10 cm between September and December 2015, 
which was followed by slower average subsidence during 2017–18. The 
10th to 90th percentile range increased steadily over the monitoring 
period, reflecting different rates of subsidence at different sites (Fig. 5). 
Overall, plantation sites recorded a median subsidence of 51 cm (10th- 
90th percentile range 32 to 82 cm) over the 12 year monitoring period. 

Forest sites within 450 m of a plantation canal showed a similar 
pattern to the plantation sites, with steady subsidence until 2014, high 
subsidence during 2015, and limited subsidence thereafter (Fig. 5b). 
Median subsidence in this dataset over the 12 year monitoring period 
was 35 cm, with a 10th-90th percentile range of 22 to 64 cm. Forest 
sites>450 m from the nearest plantation canal (Fig. 5c) showed little or 
no subsidence until 2010, followed by approximately linear subsidence 
until the end of 2014, a sharp decrease in 2015–16, and little further 
change during 2017–18. Median total subsidence for this dataset was 27 
cm, with a 10th-90th percentile range of 17–35 cm. 

Standardisation of the data greatly reduces the range of apparent 
between-site variability (Fig. 6), indicating a high degree of temporal 
coherence in underlying subsidence dynamics within each land-cover 
category, regardless of the absolute rate of change. This is most 
strongly evident for the plantation sites, as reflected in the narrow 10th- 
90th percentile ranges (mean 0.34 standardised units) compared to the 
change over the monitoring period (around − 3.16 standardised units). 
For the forest edge sites, the mean 10th-90th percentile range is slightly 
wider at 0.54, and the overall change slightly smaller at − 3.02. For 
forest interior sites the equivalent figures are 0.52 and − 2.53. The forest 

Fig. 4. Quarterly median Z scores of water table depth for plantation (n = 38), 
forest edge (n = 13) and forest interior sites (n = 11) (based on the subset of 
sites with 12 years of monitoring data). 

Table 3 
Fitted coefficient values for full-dataset regression analysis of drivers of spatio
temporal drivers of subsidence (in cm quarter-1), see Equations 1–2 Table 3. 
Fitted coefficient values for full-dataset regression analysis of drivers of spatio
temporal drivers of subsidence (in cm quarter-1). The dependent variable is SUBS 
(t), independent variables are antecedent quarterly subsidence from the pre
ceding quarter (t-1) to one year (t-4); water table depth and rainfall at time t and 
for each antecedent quarter.  

Variable Unit 1) Full 
dataset 

2) Plantation 
sites 

3) Forest 
sites 

SUBS cm quarter- 

1    

t-1  − 0.2106*** − 0.1970*** − 0.2669*** 
t-2  − 0.0831*** − 0.0585*** − 0.1636*** 
t-3  − 0.0196* − 0.0086 − 0.0519** 
t-4  − 0.0097 0.0048 − 0.0542*** 
WTD Cm    
t  − 0.0216*** − 0.0216*** − 0.0219*** 
t-1  0.0024 0.0016 0.0036 
t-2  0.0037** 0.0027 0.0057** 
t-3  − 0.0017 − 0.0019 − 0.0011 
t-4  0.0004 0.0016 − 0.0031 
RAIN mm 

quarter-1    

t  − 0.0011*** − 0.0006** − 0.0023*** 
t-1  − 0.0011*** − 0.0006** − 0.0026*** 
t-2  − 0.0006** − 0.0002 − 0.0020*** 
t-3  − 0.0007*** − 0.0007** − 0.0011** 
t-4  − 0.0004 − 0.0007** 0.0003 
DCANAL m − 0.0002* − 0.0009** − 0.0001 
PLANT dummy − 0.1980*** NA NA 
TIME quarters − 0.0196*** − 0.0210*** − 0.0153*** 
DFOREST dummy NA 0.0000 NA 
ACACIA dummy NA 0.1699 NA 
Intercept dummy 3.3189*** 2.3745*** 5.4988*** 
Observations  7,541 5,518 2,023 
R2  0.1397 0.1308 0.1924 

Notes: NA = Not analysed for that site type; *** indicates p < 0.01, ** p < 0.05, * 
< 0.1. 
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sites thus show higher internal variability relative to the long-term 
trend. Nevertheless, strongly coherent behaviour is evident in all three 
categories, and all show a clear acceleration of subsidence during the 
2015–16 El Niño. This is most evident at the forest interior sites, where 
around half of all observed subsidence occurred during this one-year 
period (Fig. 6c). 

3.4. Empirical models of long-term subsidence 

The three alternative regression model fits to the median Z score 
values for each land-cover class are shown in Table 4 and Fig. 6. All three 
regression models were highly significant for all three land-cover cate
gories, although they were consistently weakest for the Forest Interior 
sites. The full-period linear regression model gave subsidence rates of 
− 5.17 cm yr-1 in the Acacia plantation, − 3.76 cm yr-1 in the forest edge 
sites, and − 2.86 cm yr-1 in the forest interior sites. The linear model 
fitted to the pre-2015 data gave subsidence rates of − 4.46, − 3.49 and 
− 1.86 cm yr-1 respectively. The effect of including or excluding the 

2015–16 El Niño event in the linear model was smallest for the forest 
edge sites, and greatest for the forest interior sites (compare black and 
red lines in Figure 6). 

The pre-2015 exponential model gave marginally stronger correla
tions than the linear model fitted to the same period for the plantation 
and forest edge datasets, but a slightly weaker correlation for the forest 
interior dataset, consistent with the inclusion of time since drainage as a 
predictor in the multivariate analysis (Table 3). The model indicated a 
reduction on the subsidence rates over 12 years monitoring period 
(excluding ENSO/IOD impacts) from − 4.89 to − 3.74 cm yr-1 in the 
Acacia plantation, − 3.85 to − 2.91 cm yr-1 in the forest edge sites, and 
− 2.01 to − 1.67 cm yr-1 in the forest interior sites. While differences in 
model performance are slight (Table 4) and there is very limited 
divergence between linear and non-linear models fitted to the pre-2015 
data (Fig. 7, comparing green and red lines), the exponential model is 

Fig. 5. Median, 10th and 90th percentile peat surface elevation change relative 
to a December 2007 zero datum for Acacia, forest edge and forest interior 
subsidence monitoring sites. Gap in data for June 2014 at the Acacia plantation 
sites is due to missing data from over half of all monitoring sites at this time. Fig. 6. Median (solid black) and 10th/90th percentile (grey) standardised peat 

surface elevation data (Z-scores) for Acacia, forest edge and forest interior 
subsidence monitoring sites. Dashed lines show alternative regression models: 
Black – linear fit to full dataset; Red – linear fit to 2007–2014 (pre 2015 El 
Niño) data; Green – exponential fit to 2007–2014 data. 
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the most consistent with the results of the multivariate analysis in 
showing a negative effect of time on subsidence rates. 

3.5. Influence of the 2015-16 El Niño 

To evaluate the influence of the El Niño event on post-2015 subsi
dence, we calculated residual Z scores for subsidence in each land cover 
category after removing the linear subsidence trend for the pre-2015 
period (red line in Fig. 6) and compared these to median water table Z 
scores in the same category (Fig. 7). In all cases, we found that the El 
Niño led to a ‘step change’ drop in peat surface elevation between 
September and December 2015. Furthermore, for all categories we 
observed a significant linear correlation between residual subsidence Z 
score and water table Z score during both the pre- and post-El Niño 
periods (Table 3), but in all cases this relationship was offset after the El 
Niño event (compare grey and black circles in Fig. 7). At the plantation 
sites, the gradient of the peat elevation versus water table relationship 
was similar before and after the El Niño, while for the forest edge sites it 
became steeper. Conversely, in the forest interior sites the relationship 
between peat elevation and water table (which was very strong before 
the El Niño event) became markedly weaker afterwards. 

Finally, we plotted quarterly residuals of the 2007–2014 linear 
regression model against time in Fig. 8. The data show little deviation 
from the linear trend during 2007–2014, but a clear and consistent 
negative deviation for all land-cover categories from 2015 onwards. For 
the plantation and forest edge sites, residual Z scores were close to zero 
in the most recent measurements, suggesting that peat elevations have 
returned to the levels that would have occurred in the absence of the El 
Niño. This was not the case in the forest interior sites (>450 m from the 
nearest canal), where residuals remained strongly negative at the end of 
the measurement period. 

4. Discussion 

Our analysis demonstrates sustained long-term subsidence across a 
large 12 year dataset and supports previous findings that plantation 

management has contributed to subsidence both within the plantations 
themselves and in adjacent native forest (Hooijer et al., 2012; Evans 
et al., 2019). Multivariate analysis of the time series data suggests that 
water table depth exerts a dominant control on subsidence rates within 

Table 4 
Regression fits (Equations 5 and 6) to subsidence data for Acacia plantation, 
forest edge and forest interior sites, as shown in Figure 5. Regression fits to 
median Z score values for each group are also converted to annual subsidence 
rates for illustrative years. Total subsidence is calculated as the modelled change 
from 2007 to 2050 based on the regression equation shown, and does not include 
primary subsidence during initial forest to plantation conversion.  

Projection Equation R2 p Subsidence rate 
(cm yr− 1) 

2007 2018 

Linear, full period ZPL = 1.904 ─ 
0.2955 t 

0.984 <0.001 − 5.17 − 5.17 

Linear, excluding 
2015 El Niño 

ZPL = 1.772 ─ 
0.2582 t 

0.986 <0.001 − 4.46 − 4.46 

Exponential, 
excluding 2015 El 
Niño 

ZPL =

11.81e− 0.02424t ─ 
10 

0.988 <0.001 − 4.89 − 3.74 

Linear ZFE = 1.866 ─ 
0.2902 t 

0.983 <0.001 − 3.76 − 3.76 

Linear, excluding 
2015 El Niño 

ZFE = 1.799 ─ 
0.2695 t 

0.976 <0.001 − 3.49 − 3.49 

Exponential, 
excluding 2015 El 
Niño 

ZFE =

11.85e− 0.02538t ─ 
10 

0.977 <0.001 − 3.85 − 2.91 

Linear ZFI = 1.792 ─ 
0.2767 t 

0.920 <0.001 − 2.86 − 2.86 

Linear, excluding 
2015 El Niño 

ZFI = 1.435 ─ 
0.1801 t 

0.855 <0.001 − 1.86 − 1.86 

Exponential, 
excluding 2015 El 
Niño 

ZFI =

11.46e− 0.01709t ─ 
10 

0.850 <0.001 − 2.01 − 1.67  

Fig. 7. Residuals of observed versus predicted quarterly subsidence Z scores 
obtained from a linear regression model fitted to measurements made prior to 
the 2015 El Niño, plotted against Z scores of water table depth, for each land 
cover category. Grey symbols show measurements made prior to the 2015 El 
Niño dry season, black symbols show measurements made after this time. Ar
rows denote an apparent step change decrease in peat elevation between 
September and December 2015. 
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both plantation and native forest areas. However, plantation sites were 
found to have slightly lower subsidence rates than forest sites (0.8 cm 
yr− 1 lower) if all other conditions were equal, and rates within planta
tions were slightly higher in areas closer to canals. These results suggest 
some additional influence of plantation management activities on sub
sidence, such as prior compaction of the peat during site preparation and 
harvesting operations, although these effects appear to be secondary. As 
noted earlier, we did not have detailed peat characterisation data for all 
monitoring sites so could not investigate this in detail, however it is 
likely that variations in peat type and properties account for some of the 
unexplained variance in the multivariate analysis. Time since initial 
plantation establishment was also found to exert a significant negative 
influence on subsidence rates in both plantation and native forest rates; 
this is discussed below. 

We found a clear influence of climate variations on subsidence rates. 
For the full dataset, higher rainfall was consistently associated with 
lower rates of subsidence. In the context of managed plantations, and to 
some extent also adjacent forest, rainfall and WTD may be partly 
decoupled due to plantation water management activities. Differences in 
the time period represented by each measurement (quarterly rainfall 
totals versus instantaneous WTD data) likely lead to further decoupling, 
although RAIN and WTD were nevertheless still correlated in the full 
dataset (r = 0.37), and it seems likely that most climatic impacts on 
subsidence are ultimately determined by their effect on WTD over 
weekly to monthly timescales. Based on the subset of sites with 12 years 
of monitoring data, it seems that large-scale climate indices provide a 
better representation of subsidence drivers than quarterly rainfall data, 
perhaps because they better capture periods of intense drought. In 

particular, the acute 2015–16 El Niño exerted a strong influence on 
subsidence rates, triggering an abrupt fall in peat surface elevation of 
around 4 to 10 cm (depending on land cover type) within a three month 
period. If we remove the effect of this short-term climate perturbation on 
the dataset by fitting regression models to the pre-2015 period, the 
estimated rate of subsidence in the plantation sites is reduced by 14 % 
(from − 5.17 cm yr− 1 to − 4.46 cm yr− 1). The compounding influence of 
the 2015–16 El Niño appears to have been smaller in the forest edge sites 
(7 % lower subsidence rates after removing the El Niño effect) but larger 
in the forest interior sites (32 % lower). 

During the three years following the 2015–16 El Niño, it appears that 
the peat surface had largely rebounded to the level that would have 
occurred due to drainage alone in the plantation and forest edge sites; 
this is illustrated by the near-zero residuals at the end of the measure
ment period in Fig. 8a-b, and the convergence of the black (observed) 
and dashed red (linear model fitted to pre-2015 data) subsidence Z 
scores in Fig. 6a-b. On this basis, we infer that the somewhat lower es
timates of long-term subsidence obtained by fitting empirical models to 
the pre-2015 data may provide a better estimate of the true rate of 
drainage-related subsidence than those obtained from a linear model 
fitted to the full dataset. 

In the forest interior sites, the peat surface had not rebounded from 
the 2015–16 perturbation by the end of the record, as shown by the 
persistence of large negative residuals in Fig. 8c. This finding has a 
number of implications. Firstly, it suggests that the observed whole- 
period subsidence at these sites is at least partly associated with 
climate perturbation rather than with plantation impacts. This is 
consistent with the multivariate analysis, which did not show a clear 
influence of distance from the nearest canal on forest subsidence rates, 
and with a previous analysis of spatial variations in subsidence rates 
across the larger APRIL dataset (Evans et al., 2019) which did not show 
clear evidence of plantation impacts on water table depth or subsidence 
beyond around 300 m from the plantation edge. Secondly, our results 
suggest that native peat swamp forests are highly susceptible to severe 
and sustained subsidence during drought events. This may be explained 
by their typically lower bulk density compared to plantations (Anshari 
et al., 2010; Junedi et al., 2017), leading to rapid compaction and 
consolidation following loss of porewater from the upper peat layer. To 
some extent, peatlands naturally adjust to hydrological variations via 
oscillations in their surface elevation (sometimes termed ‘bog breath
ing’), for example on a seasonal basis (e.g. Howie and Hebda, 2018). 
This self-regulatory function helps to reduce variations in peat surface 
wetness, conferring some resilience against climatic extremes. However, 
the magnitude of the elevation change in this case appears very large, 
and the extent to which observed ENSO/IOD related subsidence is 
reversible remains uncertain. Our results, to the end of 2018, suggest 
only slight recovery towards pre-2015 levels, and the El Niño event also 
appears to have a caused a sustained change in the relationship between 
peat surface elevation and water table (Fig. 7c). This could indicate that 
peat compaction due to the El Niño has led to an irreversible change – or 
at least very slow recovery – in the hydrological functioning of the peat 
at these sites. 

At this stage, it is difficult to attribute observed subsidence in the 
forest interior sites to natural or human causes, either direct or indirect. 
It is possible, for example, that peat swamp forests are subject to periodic 
natural downward adjustments in surface elevation during dry periods, 
which are offset by the accumulation of low-density peat during wetter 
periods. This would lead to a long-term ‘sawtooth’ pattern of slow peat 
growth interspersed with short periods of more rapid subsidence. Even if 
this were the case, however, the amplification of ENSO/IOD impacts 
under a warming climate (Rifai et al., 2019) could make these periodic 
downward adjustments more frequent or severe. At worst, this could 
negate or reverse natural processes of peat formation, leading to 
degradation of peat swamp forests in the region even in the absence of 
direct human intervention. This interpretation also appears to be sup
ported by recent eddy covariance CO2 flux data collected over peat 

Fig. 8. Time series of quarterly residuals of observed versus predicted quarterly 
subsidence Z scores obtained from a linear regression model fitted to mea
surements made prior to the 2015–16 El Niño event. 
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swamp forest in the Kampar Peninsular (Deshmukh et al., 2021) and in 
the Maludam National Park, Sarawak (Tang et al., 2020). These results, 
together with our subsidence data, could provide an early indication of 
the large-scale destabilisation of peat swamp forests due to intensifying 
climate change impacts, although more data would be needed to 
establish this. 

With regard to direct human impacts, our previous observations of a 
limited (up to 300 m) lateral extent of water table drawdown into forests 
adjacent to plantations argue against a direct drainage-related contri
bution to subsidence in the forest interior (Evans et al., 2019). However 
we cannot rule out the possibility of more regional-scale impacts of land- 
use on the hydrology of peat swamp forests, for example by increasing 
topographic gradients at the edge of peat domes (Cobb et al., 2017) and 
subsequently reducing equilibrium peat dome volume (Cobb et al., 
2020). The Kampar area included in our study (and that of Deshmukh 
et al.) may have been subject to hydrological modification by historic 
logging canals, while the study site of Tang et al. (2020) appears to have 
been affected by logging during the study period. Nevertheless, it seems 
clear that a large fraction of the observed subsidence at forest interior 
sites during our study period is not associated with steady subsidence 
due to plantation-induced water table drawdown. 

With regard to the more sustained subsidence observed in plantation 
and forest edge locations, a key uncertainty for future plantation man
agement, as well as for future CO2 emissions (associated with the 
oxidative component of subsidence) and potential flood risks, is the 
trajectory of future subsidence. As noted earlier, long-term observations 
from drained temperate peatlands generally show exponentially 
decreasing subsidence rates over time, but no such records exist for 
tropical peatlands. Previous authors have argued that subsidence in 
these systems should proceed more or less linearly until most of the peat 
is lost (Hooijer et al., 2012; Couwenberg and Hooijer, 2013), whereas 
Hoyt et al. (2020) and Umarhadi et al. (2022) used satellite (InSAR) data 
and a space-for-time substitution to infer that subsidence rates were 
lower in areas that had been subject to longer-term drainage. Our 
dataset, which represents the longest continuous time series of subsi
dence observations from tropical peatlands, does indeed suggest 
possible slowing of subsidence over time, at least in plantation areas. 
Time since the start of monitoring was found to be a significant predictor 
of subsidence for all three land classes, consistent with sites that have 
been subject to drainage effects for longer having lower average subsi
dence rates (Table 1). For the subset of long time series plantation data, 
the R2 of an exponential model fitted to pre-2015 data was marginally 
higher than the linear model (Table 2), again suggesting slowing rates of 
subsidence with time since drainage. This apparent slowing was how
ever superseded by the rapid subsidence that occurred in response to the 
2015 ENSO/IOD event, making any long-term projections uncertain. 
The selection of a linear versus a non-linear model made small difference 
to modelled subsidence during the short-term period, however 
increasing divergence would occur if the models were projected into the 
future. 

5. Conclusions 

Our analysis of one of the largest and longest-running subsidence 
monitoring datasets available for tropical peatlands reveals a profound 
influence of climate fluctuations on subsidence rates within both plan
tation and forest landscapes. In particular the severe 2015 dry season led 
to a sharp acceleration in subsidence rates, accounting for an estimated 
14 % of overall subsidence observed over a 12 year period at plantation 
sites, rising to 32 % at forest interior sites. Whereas plantation and forest 
edge sites had, by the end of 2018, largely rebounded from the effects of 
the El Niño/IOD event, interior forest sites had not, raising the possi
bility that more frequent climate extremes could be contributing to 
slowly reversible or even irreversible changes in these ecosystems. Given 
the strong influence of the El Niño and IOD, determining the long-term 
trajectory of subsidence in plantation areas is difficult, however our 

analysis provides indications that subsidence rates is slowing with time 
since drainage, consistent with longer records from temperate peat
lands. Given the low-lying nature of Southeast Asian peat landscapes, 
the magnitude of future subsidence will determine impacts on drain
ability and susceptibility to flooding. Our results suggest that the more 
extreme scenarios based on sustained linear subsidence may over
estimate the long-term trajectory of peat subsidence. Nevertheless 
continued future subsidence could have major implications for future 
plantation water management, greenhouse gas emissions, and regional 
livelihoods. Resolving uncertainties in future subsidence projections for 
these economically important but vulnerable, carbon rich ecosystems 
requires continued and expanded subsidence monitoring, and an 
improved understanding of the interacting effects of plantation man
agement and intensifying climate perturbations on peatland function. 
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