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Abstract
Bioenergy from sugarcane production is considered a key mitigation strategy 
for global warming. Improving its representation in land surface models is im-
portant to further understand the interactions between climate and bioenergy 
production, supporting accurate climate projections and decision-making. This 
study aimed to calibrate and evaluate the Joint UK Land Environment Simulator 
(JULES) for climate impact assessments in sugarcane. A dataset composed of soil 
moisture, water and carbon fluxes and biomass measurements from field experi-
ments across Brazil was used to calibrate and evaluate JULES-crop and JULES-BE 
parametrizations. The ability to predict the spatiotemporal variability of sugar-
cane yields and the impact of climate change was also tested at five Brazilian 
microregions. Parameters related to sugarcane allometry, crop growth and de-
velopment were derived and tested for JULES-crop and JULES-BE, together with 
the response to atmospheric carbon dioxide, temperature and low-water avail-
ability (CTW-response). Both parametrizations showed comparable performance 
to other sugarcane dynamic models, with a root mean squared error of 6.75 and 
6.05 t ha−1 for stalk dry matter for JULES-crop and JULES-BE, respectively. The 
parametrizations were also able to replicate the average yield patterns observed 
in the five microregions over 30 years when the yield gap factors were taken into 
account, with the correlation (r) between simulated and observed interannual 
variability of yields ranging from 0.33 to 0.56. An overall small positive trend 
was found in future yield projections of sugarcane using the new calibrations, 
with exception of the Jataí mesoregion which showed a clear negative trend for 
the SSP5 scenario from the years 2070 to 2100. Our simulations showed that an 
abrupt negative impact on sugarcane yields is expected if daytime temperatures 
above 35°C become more frequent. The newly calibrated version of JULES can 
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1   |   INTRODUCTION

The use of bioenergy with carbon capture and storage 
is considered an essential mitigation strategy to limit 
global warming to below 2°C (van Vuuren et al.,  2018). 
However, improving the representation of energy crops in 
biophysical models is still needed to further understand 
the interplay between climate and bioenergy production 
(Hanssen et al.,  2020). While food crops have multiple 
and well-detailed models delivering robust climate impact 
assessments (Müller et al., 2017), bioenergy crop models 
still lag in number and detail (Surendran Nair et al., 2012). 
Yet, it is difficult to capture the bidirectional feedback be-
tween croplands and the atmosphere (Betts, 2005), lead-
ing to high uncertainty about the effects of large land-use 
change scenarios on climate and ecosystems (Hanssen 
et al., 2020).

Land surface models (LSMs) can be coupled to gen-
eral circulation models (GCMs), providing an opportunity 
to simulate the impacts of climate on crop productivity 
while considering the feedback of croplands on atmo-
spheric processes (Pitman,  2003). Initially developed to 
represent fluxes of carbon, water and energy at the land–
atmosphere interface, they have a wide range of applica-
tions in the fields of biogeochemical, hydrological and 
energy cycles at multi-scales, including in agriculture 
(Osborne et al., 2015). Although using sophisticated meth-
ods to solve the energy balance and carbon fluxes at mul-
tiple scales, the representation of bioenergy crops in LSMs 
is often limited to a broader generalization of vegetation 
based on crop functional type/plant functional type (PFT; 
Surendran Nair et al., 2012).

Sugarcane (Saccharum officinarum) is a key bioen-
ergy crop with significant social, economic and environ-
mental importance in many developing countries (Marin 
et al., 2016). Brazil is the largest producer accounting for 
ca. 40% of global stalk fresh mass production in 8.6 mil-
lion hectares (IBGE, 2019). It is a strategic crop for bioen-
ergy production and mitigation of climate change, where 
bioethanol and electricity from sugarcane biomass com-
prise a significant share of the energy matrix in Brazil. In 
this context, many process-based models were developed 
to support decision-making and strategic planning by sim-
ulating the complex interactions between Genotype × En
vironment × Management (Dias & Inman-Bamber,  2020; 

Marin et al., 2015). Although widely tested and calibrated, 
the application of these models in large-scale modelling 
frameworks is still challenging because they were mainly 
developed to operate at the field scale.

In contrast, very few studies were dedicated to simulate 
sugarcane growth using LSMs, where only three models, 
namely Agro-IBIS (Cuadra et al.,  2012), LPJmL (Lapola 
et al., 2009) and JULES (Black et al., 2012) had their per-
formance assessed against regional yield data. Except for 
the Agro-IBIS model (Cuadra et al., 2012), the lack of data 
about sugarcane growth and energy fluxes was acknowl-
edged as the major limiting factor to assess the biophysical 
consistency of simulations. While large-scale data can be 
used to evaluate LSMs results, many processes simulated 
within those models can only by validated at the local field 
scale (e.g. layered-canopy photosynthesis, carbon alloca-
tion to organ pools and senescence). Therefore, measure-
ments from high monitored field experiments provide the 
appropriate data to isolate, calibrate and test the subrou-
tines that solve these processes, as recently demonstrated 
for the JULES model with crops such as maize (Williams 
et al., 2017), soybean (Leung et al., 2020) and Miscanthus 
(Littleton et al., 2020).

The Joint UK Land Environment Simulator (JULES) 
is a community LSM that is applied both as a standalone 
model and as the land surface component in the UK Met 
Office's Unified Model (Best et al., 2011; Clark et al., 2011). 
JULES simulations are also part of the Coupled Model 
Intercomparison Project (CMIP), a foundational element 
for climate and earth systems sciences over the last years 
(Eyring et al.,  2016). As a community model, JULES is 
freely available and it is in constant development where 
two parametrizations were recently developed to explicitly 
simulate crop growth and development, namely JULES-
crop (Osborne et al.,  2015) and JULES-BE (Littleton 
et al., 2020).

JULES-crop was initially presented by Osborne 
et al. (2015) and evaluated for wheat, maize, soybean and 
rice. Williams et al.  (2017) conducted a comprehensive 
calibration and evaluation of JULES-crop for the maize 
crop and found the need for more studies focused on soil 
moisture stress, carboxylation rates and crop thermal re-
quirements when using JULES-crop for C4 species. The 
JULES-BE was developed to represent bioenergy crops 
and continuous harvesting schemes and was tested for 
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climate and bioenergy production.

K E Y W O R D S

bioenergy, calibration, climate impact, JULES model, land surface models, sugarcane

 17571707, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcbb.12989 by T

est, W
iley O

nline L
ibrary on [28/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



      |  1099VIANNA et al.

Miscanthus (Littleton et al.,  2020). Although showing 
good performance to simulate water and carbon fluxes at 
one site in the UK, global observed yields of Miscanthus 
were far more variable than captured by the model, re-
quiring further evaluation across different environments 
and crops to identify limitations and opportunities for 
improvement.

In this study, we aimed to calibrate and evaluate the 
JULES model, and its crop parametrizations JULES-crop 
and JULES-BE for improved representation of the sugar-
cane crop in climate impact assessments. A dataset of bio-
mass, carbon fluxes, soil moisture and evapotranspiration 
(ET) collected across high monitored field experiments in 
Brazil was used to assist in calibration, statistical evalua-
tion and biophysical consistency of the new parameters. 
As JULES is mainly applied to large-scale climate studies, 
we also assessed the performance of the new calibration 
in predicting the interannual yield variability observed in 
five contrasting regions where sugarcane was cultivated 
for 30 years in Brazil. Finally, we extended the 30-year sim-
ulations with future climate projections to understand the 
crop response to climate change scenarios using the new 
calibrations.

2   |   MATERIALS AND METHODS

2.1  |  Brief description of JULES, 
JULES-crop and JULES-BE

We utilized the version 5.2 of JULES model which is fully 
documented and publicly available at http://jules​-lsm.
github.io/vn5.2/. Best et al.  (2011) provide the scientific 
description and set of equations employed to simulate 
the energy and water fluxes, whereas details about the 
carbon fluxes and natural vegetation PFTs are given in 
Clark et al.  (2011). Furthermore, the JULES model in-
cludes many parametrizations that are in constant de-
velopment to improve the representation of land surface 
processes. Recently, two parametrizations were made 
available to the scientific community aiming to explicitly 
represent growth and development, namely JULES-crop 
and JULES-BE (Littleton et al., 2020; Osborne et al., 2015). 
However, both parametrizations are not yet ready for fully 
coupled climate-surface simulations, as further evaluation 
across different environments and crops are still needed to 
refine and test its algorithms (Williams et al., 2017).

These employ different sets of equations for the allo-
cation of plant carbon pools, leaf area index (LAI) and 
height as compared to the natural vegetation PFTs (Clark 
et al., 2011). In JULES-crop, crop development is simulated 
on each grid tile by the crop development index (DVI), 
which is mainly used to control biomass partitioning 

among plant carbon pools, specific leaf area (SLA) and 
senescence over time. JULES-crop also simulates carbon 
remobilization from reserves to harvestable parts, and 
employs allometric equations to determine canopy height 
(CANH) from stem biomass (e.g. equations A1–A7 of 
Williams et al., 2017). In JULES-BE, instead of DVI, a set 
of allometric relationships is employed to simulate carbon 
partitioning over time. A balanced-growth LAI is calcu-
lated to derive the step-rate CANH, which, in turn, is used 
to determine carbon allocation on leaves, stems and roots 
(e.g. equations S1–S8 of Littleton et al., 2020).

When switched-on, these parametrizations take the 
daily rates of water and carbon fluxes (e.g. carbon assim-
ilation, respiration, soil water movement and ET) calcu-
lated by the main JULES engine and return key vegetation 
components required for the next step, such as CANH and 
LAI. Conversely, LAI and CANH must be prescribed as 
model input when none of these parametrizations is se-
lected. Other parametrizations can also be selected to sim-
ulate LAI and CANH, for example, the dynamic vegetation 
or the phenology parametrizations (Clark et al.,  2011). 
However, crop-related outputs in these configurations 
are limited, whereas carbon allocation and phenology are 
mainly simulated by allometric relationships determined 
by the general PFT parametrizations.

2.2  |  Study sites

A total of 11 field experiments across Brazil were com-
piled in this study with detailed information about sug-
arcane grown under different climate and soil conditions 
(Table  1; Figure  1). Some sites contained multiannual 
sequential data (plant-cane and ratoons [re-growth]) and 
different water treatments (e.g. rainfed vs. irrigated), to-
talling 25 growing seasons. Therefore, the dataset was or-
ganized in a code system to facilitate the identification for 
each combination of site location, crop season (plant-cane 
and subsequent ratoons) and water regime (irrigated and 
rainfed). For example, the first plant-cane season (0) at 
the Piracicaba-ESALQ (EQ) site under irrigated (I) water 
conditions is represented as EQ-0-I, whereas the 3rd ra-
toon (3) at the Luis Antonio (LA) site under rainfed (R) 
conditions is expressed as LA-3-R. At the Capivari and 
Valparaiso sites where two distinct planting dates were 
tested, the same code system also applies but adds a suffix 
to distinguish between the wet (W) and dry (D) periods.  
A summary description for all sites is presented in Table 1, 
whereas the full list of codes for the 25 field trials is given 
in Table S1.

Measurements of stalk dry matter were available in all 
locations, including other carbon pools (e.g. green and 
dry leaves, sucrose and roots). Most of the experiments 
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also had CANH and LAI observations, while root profile 
measurements were available only at the CT site (Laclau 
& Laclau, 2009). The EQ, PF and LA sites also contained 
soil moisture and ET measurements along with biomass 
and allometric data in nine growing seasons. In addition, 
the gross primary productivity (GPP) for sugarcane was 
also available for three growing cycles at the PF site. The 
data were collected for widely used sugarcane cultivars in 
Brazil, including the most planted cultivar RB867515. At 
all sites, the crop was grown under controlled conditions to 
avoid any effect of pests and diseases, nutrient deficiency 
or suboptimal management. Full details of the instru-
ments and the methods used for collecting these measure-
ments are shown in each citation shown in Table S1.

To evaluate the model at larger spatiotemporal scales, 
five microregions were selected where sugarcane is tra-
ditionally cultivated in Brazil (Figure  1): two in the 
Southeast (Piracicaba and Presidente Prudente), two in 
the Northeast (Petrolina and Recife) and one in the Centre-
West (Jataí) region. The selection of these locations was 
based on the availability of yield records in the SIDRA 
database from the Brazilian Institute of Geography and 
Statistics for the years 1980–2010 (IBGE, 2019), as well as 
aimed to cover contrasting edaphoclimatic conditions for 
testing the models. Any municipality with less than 80% 
of the timeseries (1980–2010) or within an area of high 

incidence of irrigation were not considered in our analysis 
(ANA, 2019; Dias & Sentelhas, 2018). Data with unreal-
istic repeated yield records for three or more consecutive 
years were also removed due to the inappropriateness in 
representing the interannual variability of yields.

2.3  |  Model inputs and configuration

All simulations were forced with sub-daily meteorological 
data of downward shortwave radiation, downward long-
wave radiation, rainfall, air temperature, wind speed, air 
pressure, specific humidity, diffuse radiation and irriga-
tion records. The weather data were obtained from mete-
orological stations located at each experiment and those 
from the National Institute of Meteorology for each cor-
responding microregion for the years 1980–2010 (Vianna 
et al.,  2020). Any missing information was gap-filled 
using the WFDEI meteorological forcing dataset (Weedon 
et al., 2014).

For the simulations under future climate, we utilized 
the two climate scenarios SSP1 (RCP2.6, low-CO2) and 
SSP5 (RCP8.5, high-CO2) from the CMIP6 database for 
each microregion until the end of the century (Eyring 
et al., 2016). We selected five GCM projections based on 
output availability from the Inter-Sectoral Impact Model 

F I G U R E  1   Field experiments 
described in Table 1 (circles) and the 
five sugarcane producing microregions 
selected in this study (triangles). The 
light-green area represents the counties 
where sugarcane production is above 
100,000 t year−1 (IBGE, 2019).
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1102  |      VIANNA et al.

Intercomparison Project: UKESM1-0-LL, MRI-ESM2-0, 
MPI-ESM1-2-HR, IPSL-CM6A-LR and GFDL-ESM4. The 
meteorological variables were bias-corrected to the 1980–
2010 weather station baseline using the quantile mapping 
bias-adjustment methodology of Lange  (2019). As the 
CMIP6 scenarios were not on a sub-daily time scale, we 
assumed the diurnal time course of events is preserved in 
our projections.

Measured soil water retention curves were utilized to 
derive the Brooks and Corey  (1964) model parameters 
(e.g. Figure S1) for the corresponding sites. When the soil 
water retention curves were missing, we employed pedo-
transfer functions adjusted for Brazilian soils to find the 
appropriate soil water retention parameters (Marthews 
et al.,  2014). Similarly, soil density, organic carbon and 
textural components were used to determine the heat ca-
pacity and conductance. A maximum soil depth of 10.8 m 
with the vertical discretization of 14 layers was assumed 
in all simulations, following the proposed improvements 
by Harper et al.  (2021). The soil information for each of 
the five microregions were sourced from previous stud-
ies using the predominant soil type classification (Dias & 
Sentelhas, 2018; Vianna & Sentelhas, 2016).

The planting and ratooning dates were set accord-
ingly to the given information for each field experiment 
(Table  1). To represent the main growing conditions in 
Brazil, our 30-year simulations and future projections con-
sidered a 12-month growing cycle with the ratooning date 
set at the mid of the milling period for each microregion: 
February for Recife and June for the other regions (Zheng 
et al., 2022). A spin-up time of 180 days before the plant-
ing/ratooning was assumed in each location to minimize 
the effect of the initial soil moisture content on the simu-
lation results as described in Figure S2.

2.4  |  Model calibration

The model was calibrated with field and literature data 
following three main steps. First, the PFT parameters 
representing C4 grass species in JULES were refined to 
reproduce the response of sugarcane to carbon dioxide, 
temperature, and low-water availability (CTW-response). 
At this step, JULES-crop and JULES-BE parametrizations 
were switched-off, and the CANH and LAI data obtained 
from the field experiments were interpolated to continu-
ous daily values and prescribed as model input at this step 
(Figure  S3). Therefore, the only processes considered at 
this step were those related to carbon fixation, plant res-
piration and stomatal conductance which are simulated 
by the JULES engine (Clark et al.,  2011). This allowed 
us to calibrate the water and carbon fluxes without bias 
or compensation associated with the JULES-crop and 

JULES-BE parametrizations. JULES can simulate the ef-
fect of limited nitrogen (N) in natural vegetation, but we 
have not considered the N-response in this study because 
(i) JULES-crop is not yet adapted to capture the effect of N 
throughout crop growth (Williams et al., 2017) and (ii) no 
observational data to support such calibration was avail-
able in our dataset.

After the CTW-response calibration, the second and 
third steps focused on fitting the parameters of JULES-
crop and JULES-BE parametrizations, respectively. We 
followed the same methodology employed by Williams 
et al. (2017) for JULES-crop and Littleton et al. (2020) for 
JULES-BE, aiming to simulate the phenology and allom-
etry patterns observed in the sugarcane fields. To ensure 
JULES-crop and JULES-BE parametrizations applied the 
same CTW-response adjusted in the first calibration step, 
the trait-based physiology feature of JULES was switched-
off in all simulations (l_trait_phys = F). The same multi-
layered canopy radiation scheme (can_rad_mod = 6) was 
selected for both parametrizations, which was extensively 
tested by Williams et al. (2017).

We used data from five growing seasons to calibrate 
the models: first to third ratoon seasons at EQ site, second 
ratoon of PF site and the third ratoon season of LA site 
(Table 1). These sites were selected because of the large 
amount of observational data required to derive the al-
lometric relationships for sugarcane, prescribe LAI and 
CANH in step one and to make it possible to compare our 
performance results with previous sugarcane modelling 
studies (Marin et al., 2015; Vianna et al., 2020).

While the calibration of JULES-crop and JULES-BE 
was largely supported by field-level observations, the 
CTW-response of sugarcane was adjusted mainly with pre-
viously reported carbon assimilation and transpiration re-
sponse to CO2 and air temperature (Peixoto & Sage, 2017; 
Stokes et al., 2016), and maintenance respiration (Liu & 
Bull,  2001). We also used the response functions of re-
cently tested sugarcane dynamic models, namely DSSAT-
CANEGRO (Jones & Singels,  2018), APSIM-sugar (Dias 
et al., 2019) and SAMUCA (Vianna et al., 2020) to adjust 
and evaluate our simulations. When a parameter could not 
be derived directly from the literature or field measure-
ment, the Nelder–Mead optimization method was applied 
to obtain the optimum values that minimize the absolute 
error in the calibration set (Nelder & Mead, 1965).

2.5  |  Model evaluation

2.5.1  |  At controlled field conditions

All the remaining experimental data not used in calibra-
tion were employed to evaluate the parametrizations at 
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      |  1103VIANNA et al.

field scale by means of the statistical indexes performance: 
coefficient of determination (r2), accuracy (d), root mean 
squared error (RMSE) and the Nash–Sutcliffe model ef-
ficiency (NSE; Wallach et al., 2018). These indexes were 
calculated after each calibration step to verify the isolated 
impact of JULES-crop or JULES-BE parametrizations on 
the water and carbon fluxes simulations. The output vari-
ables selected to evaluate model statistical performance 
were stalk dry mass (SDM), LAI, CANH, soil water con-
tent (SWC), ET and GPP. We also compared the fitted al-
lometric relationships of JULES-crop and JULES-BE with 
observations at field trials and with other sugarcane mod-
els to assess the calibration consistency in representing 
sugarcane growth.

2.5.2  |  At regional scale and under climate 
change conditions

This analysis aimed to assess the performance of the new 
calibrations in representing the spatial patterns of average 
yields and its interannual variability in five contrasting 
producing regions. It is widely known that process-based 
crop models are not able to consider all the driving factors 
affecting crop yields in real conditions. This concept is de-
fined as the yield gap, and was also determined for sugar-
cane in Brazil using the IBGE database and a number of 
crop models (Dias & Sentelhas, 2018; Marin et al., 2016). 
Therefore, to compare our simulated SDM with IBGE 
yield records, we multiplied our SDM simulations by the 
water-limited yield gap factors (Ya/Yw) reported for each 
corresponding microregion in Dias and Sentelhas (2018). 
Both simulated and observed yields were expressed and 

compared in a dry basis assuming a constant moisture con-
tent of 75% and a harvest index of 80% (Marin et al., 2016).

To evaluate the model's ability in capturing the interan-
nual variability of yields, we employed the same method 
described by Müller et al. (2017) to detrend our time series 
and obtain the correlation indexes between simulated and 
observed SDM time series for each microregion. To assess 
the uncertainty and consistency of our simulations, we 
also provide a local sensitivity analysis on the calibrated 
model parameters, and the effects of different ratooning 
dates and climate inputs provided by the five GCMs histor-
ical data in Supporting Information. Finally, the ensemble 
results of SDM simulations considering both models and 
climate projections were assessed using yield trends, and 
the main climatic drivers of yield changes were isolated 
and quantified.

3   |   RESULTS

3.1  |  Modelling the CTW-response of 
sugarcane with JULES

The default C4 species parameters values of JULES repre-
sented well the characteristic response curve observed for 
sugarcane photosynthesis and stomatal conductance to 
atmospheric CO2 concentrations (Figure 2). Compared to 
the current atmospheric CO2 concentration (~410 ppm), 
the effect of atmospheric CO2 enrichment on photo-
synthesis is small for C4 species. This process, which is 
largely controlled by the PEP-carboxylases enzyme ac-
tivity, is empirically represented in DSSAT-CANEGRO 
and SAMUCA models assuming that the CO2 effect is 

F I G U R E  2   Sugarcane photosynthesis (a) and transpiration (b) response to atmospheric CO2 concentration as simulated by the 
C4 species parameters set of Joint UK Land Environment Simulator (JULES) model (solid black line in a, and black boxplots in b) in 
comparison with the response functions of SAMUCA and DSSAT-CANEGRO models (a) and measurements taken by Stokes et al. (2016)  
in a glasshouse experiment (red boxplot) (b).
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1104  |      VIANNA et al.

neglected above 270 ppm (Figure 2a). The same set of pa-
rameters also showed a consistent decline in crop tran-
spiration at increasing CO2 concentrations, with a rate 
of −0.07% ppm CO2

−1 between 400 and 1080 ppm at the 
EQ site conditions. This mimicked the transpiration re-
duction of about 28% (±8%) observed in sugarcane plants 
cultivated under 720 ppm of CO2 in a glasshouse experi-
ment (Figure 2b). Based on these results, the parameters 
related to the plant response to CO2 concentration were 
not altered in this study.

The response curve of the maximum rate of carboxyl-
ation of Rubisco (Vcmax) to temperature observed for sug-
arcane is characterized by a steep increase at suboptimal 
temperatures above 10°C, and a rapid drop in a relatively 
narrow thermal phase between 35°C and 47°C (Figure 3a). 
We refined the five parameters (tupp_io, tlow_io, q10_leaf, 
neff_io and nl0_io, Table S2) that control the response of 
Vcmax to temperature in JULES using field observations 
(Figure 3a). The shape of the curve obtained for sugarcane 
was asymmetric with a peak at around 35°C, with lower 
Vcmax below 10°C and above 42°C. This agreed with the 
overall pattern adjusted in trapezoidal equations used in 
other sugarcane models to scale photosynthesis; never-
theless, our calibration showed a more realistic response 
when compared to Vcmax data (Figure 3a).

Maintenance respiration of sugarcane is also tem-
perature dependent as demonstrated in the literature 
(Figure  3b). Using nitrogen content in sugarcane roots, 
stems and leaves from the literature (Table S2), we were 
able to fit the response curve of maintenance respiration to 

temperature in JULES. In the model, leaf dark respiration 
is calculated at the canopy layer level by multiplying Vcmax 
by a fixed dark respiration parameter (fd_io, Table  S2). 
Plant maintenance respiration is then calculated by re-
lating the whole canopy dark respiration with the current 
carbon pools at roots, stem and leaves, and the mass ratio 
parameters of nitrogen-to-carbon in roots (nr_nl_io) and 
stems (ns_nl_io) as related to leaves (Table S2).

Because of the dependency between Vcmax and respi-
ration response curves employed in JULES, our adjust-
ment was best fitted to the observations within the 10 to 
30°C temperature range. This also simulates a theoret-
ical drop in respiration rates above 40°C, similar to the 
DSSAT-CANEGRO model, while there is no observational 
evidence of maintenance respiration decline at this tem-
perature threshold for sugarcane (Figure 3b). The growth 
respiration in JULES is set to a fixed proportion of assim-
ilated carbon (r_grow_io), for which we set the value of 
0.242 gC gC−1 that is employed in sugarcane modelling 
studies.

Drought stress is common in sugarcane fields; however, 
observational data capturing the direct effect of low water 
availability in sugarcane photosynthesis and biomass 
are scarce. Two of the field experiments included in this 
study, CT and UN (Table 1), aimed to capture the effect of 
drought stress on sugarcane growth but did not show any 
significant differences between irrigated and rainfed treat-
ments. At UN, the final SDM were 29.1 and 31.6 t ha−1 in 
the rainfed and irrigated treatments, respectively, whereas 
minor differences were also found between irrigated and 

F I G U R E  3   Response of maximum rate of carboxylation (Vcmax) (a) and respiration (b) to temperature. Black lines represent the 
adjustment made with Joint UK Land Environment Simulator (JULES) using measured data (filled markers) for sugarcane (Liu & Bull, 
2001; Peixoto & Sage, 2017; Sage et al., 2014). The grey dashed line in (a) is the maize crop calibration of JULES-crop provided by Williams 
et al. (2017). Coloured lines in (a and b) are, respectively, the trapezoidal function and the respiration rates used by the DSSAT-CANEGRO, 
APSIM-sugar and SAMUCA models. Solid and dashed lines in (b) represent, respectively, the crop respiration when roots and leaves are 
the dominant carbon pool (10% stems) and when the stem is the major pool (75% stems). APSIM-sugar does not simulate maintenance 
respiration; therefore, it is not included in (b).
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      |  1105VIANNA et al.

rainfed SDM, LAI and CANH in the CT trials (Figure S14). 
Sugarcane models well-adjusted to rainfed conditions 
generally assume that the photosynthetic capacity of sug-
arcane starts decreasing when the relative available soil 
water (RASW) is between 60% and 40% (Figure  4a). In 
JULES, the carbon assimilation of vegetation is linearly 
reduced with soil moisture when the RASW drops below 
a threshold, determined by the parameter fsmc_p0_io. 
Therefore, we adjusted the fsmc_p0_io = 0.6 to reproduce 
a drought stress response of recently assessed sugarcane 
models in Brazil (Figure 4a).

The root-intersect densities measured at the CT site 
were employed to fit the relative root density profile func-
tion of JULES for sugarcane (Figure 4b). As JULES does 
not simulate the effect of soil moisture in root architec-
ture, we made no distinction of root parameters under 
rainfed and irrigated conditions. In addition, to simulate 
the shallower root system of 40 cm observed at the CO site, 
the parameter rootd_ft_io was set to 0.05 only for this site 
(dashed line in Figure 4b).

The performance of JULES with refined CTW-response 
for sugarcane showed high precision (r2 = 0.94) and accu-
racy (d = 0.98) for soil moisture simulations (Figure 5a), 
with an RMSE = 0.027 cm3 cm−3 and NSE = 0.93 (Table 2). 
ET simulations showed a wider difference compared to ob-
servations, with a precision (r2) of 0.36, accuracy (d) of 0.74 
and an RMSE = 1.24 mm day−1. We found an average over-
prediction of 0.48 mm day−1 in ET simulations (Table 2), 
which is evidenced mainly at the LA site (Figure S5d) and 
can be associated with uncertainties in root water uptake 
simulations in high sand content conditions (e.g. 74% of 
sand). Still, the seasonal pattern of ET simulations showed 
a good agreement across sites (Figure S5). Simulations of 
GPP showed substantially better agreement than ET, with 
a precision (r2) of 0.77 and accuracy (d) of 0.92. These re-
sults show a better performance when compared to sim-
ulations using the PFT parameters values for maize, in 
particular for GPP which showed an NSE reduction from 
0.66 to −0.14 (Figure S7; Table S3).

3.2  |  Modelling sugarcane growth and 
development with JULES-crop and 
JULES-BE

After refining the CTW-response of sugarcane in JULES, 
we adjusted the crop-specific parameters of JULES-crop 
and JULES-BE to represent sugarcane development, car-
bon partitioning and allometry. Full details about this 
process are provided in Supporting Information along 
with the parameter values and rationale for adjustment. 
After calibration, both JULES-crop and JULES-BE para-
metrizations replicated the growth patterns of SDM, 

LAI and CANH for sugarcane at the field trials used for 
validation (Figure 6). Precision (r2) and accuracy (d) for 
SDM simulations were between 0.72 and 0.92, with an 
average RMSE of 6.4  t ha−1 for both models (Table  3). 
Simulations of CANH were similar for both JULES-crop 
and JULES-BE, which can be partly attributed to the al-
lometric relationships adopted to simulate this same crop 
variable. JULES-BE also presented higher precision for 
LAI simulations than JULES-crop, but both parametriza-
tions showed similar accuracy (d ~0.75). The performance 
of SWC, ET and GPP, was negatively affected when com-
pared to the simulations where LAI and CANH were pre-
scribed (Tables 2 and 3). Yet, SWC simulations presented 
high-performance indexes (r2 ~0.88, d  =  0.96) for both 
parametrizations, whereas the performance of ET simu-
lations was more negatively affected for JULES-BE than 
JULES-crop. This is also evident for the GPP simulations, 
where JULES-crop showed superior performance indexes 
(r2 = 0.78, d = 0.92) than JULES-BE (r2 = 0.57, d = 0.81).

This can be mostly associated with the differences in 
the representation of LAI over time between parametriza-
tions (Figure 6b,e). A peak followed by a steep decline in 
LAI is verified at around 200 days after planting for JULES-
crop, while JULES-BE showed a substantially narrow LAI 
variability across sites and a systematic overprediction at 
earlier developmental stages. These can be explained by 
the approximations made to describe the biomass parti-
tioning and SLA for JULES-crop, and because the allome-
tric relationships employed by JULES-BE do not capture 
the whole variability observed in our dataset (Figure S13). 
Simulations of SDM growth by JULES-crop show a delay 
when compared to observations at PF and CT sites, with 
a steep growth until the harvest date, which can also be 
attributed to the approximation of carbon partitioning 
functions of JULES-crop.

None of the field experiments with rainfed versus irri-
gated treatments showed differences in sugarcane growth 
(CT and UN), but the rainfed field of CO where the root 
system was limited to 40 cm depth presented lower SDM, 
LAI and CANH than other sites, as a result of moderate 
water stress. Both parametrizations were able to simulate 
lower SDM, LAI, CANH for the CO site, whereas no or a 
small variation was found for simulations where rainfed 
versus irrigated trials did not show a significant difference 
(Figure  S14). This may indicate both parametrizations' 
ability in capturing water stress in sugarcane simulations.

When compared to the performance of other sug-
arcane dynamic models evaluated in some of our sites 
(Figure  S16), the LAI simulations of JULES-crop and 
JULES-BE simulations showed slightly higher cor-
relations (r = 0.69 and r = 0.77, respectively), but also 
higher RMSE. JULES-crop had a higher RMSE for LAI 
than other models (1.69 m2  m−2), whereas the RMSE 
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of JULES-BE was similar to the APSIM-Sugar model 
(1.35 m2  m−2), but still higher than DSSAT-CANEGRO 
and SAMUCA.

3.3  |  Spatiotemporal variability of  
sugarcane yields simulated by JULES-crop  
and JULES-BE

Simulations of interannual variability of SDM for sugar-
cane were similar for JULES-crop and JULES-BE for most 

of the years (Figure 7). JULES-crop showed a stronger sig-
nal than JULES-BE, as observed in some years (e.g. years 
1997–2001 at Recife and Petrolina) and evidenced by the 
higher coefficients of variation (CV; Table  4). Although 
the correlation index (r) between simulations and de-
trended yields reported by IBGE were not high (0.36–0.56), 
we found significant correlation (p < 0.05) for at least one 
parametrization in all locations (Figure  7). JULES-crop 
showed the higher correlation as compared to JULES-BE 
in most locations, except for Presidente Prudente and 
Recife.

F I G U R E  4   Drought stress response factor (β) to relative available water (RAW) of the Joint UK Land Environment Simulator (JULES) 
model, compared to drought stress factors of other sugarcane models (a); and the root density function of JULES adjusted to root intersect 
densities measured at the CT site (filled circles) (b). Black solid lines represent the adjustment made with JULES, while the dashed black 
line in (b) represents the shallower root profile (40 cm) modelled at the CO site; the coloured dashed lines in (a) represent the drought stress 
factors of DSSAT-CANEGRO (high and low atmospheric demand), APSIM-sugar and SAMUCA models as a function of RAW or the ratio of 
actual to potential transpiration (AT/PT).

F I G U R E  5   Comparison between Joint UK Land Environment Simulator (JULES) simulations with non-explicitly crop growth and 
observations of soil water content (SWC) (a), evapotranspiration (ET) (b) and gross primary productivity (GPP) (c) at the evaluation trials. 
The blue line represents the linear correlation between simulated and observed data, and the dashed red line is the 1:1 reference line. Site 
codes are given in Table 1 and Table S1.
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      |  1107VIANNA et al.

T A B L E  2   Performance of Joint UK Land Environment Simulator simulations with non-explicitly crop growth for soil water content 
(SWC), evapotranspiration (ET) and gross primary production (GPP) at the evaluation trials (Table S1)

Variable RMSE NSE r2 d μsim σsim μobs σobs

SWC (cm3 cm−3) 0.027 0.93 0.94 0.98 0.262 0.105 0.266 0.102

ET (mm day−1) 1.238 −0.06 0.36 0.74 2.951 1.346 2.474 1.202

GPP (KgC m−2 year−1) 0.962 0.66 0.77 0.92 3.130 1.940 3.332 1.639

Abbreviations: NSE, Nash–Sutcliffe model efficiency; RMSE, root mean squared error.

F I G U R E  6   Stalk dry mass (SDM), leaf area index (LAI) and canopy height observed (markers) and simulated (lines) by Joint UK Land 
Environment Simulator (JULES)-crop (a–c) and JULES-BE (d–f) in the validation field trials across Brazil. Site codes are given in Table 1 
and Table S1.

T A B L E  3   The performance of Joint UK Land Environment Simulator (JULES)-crop and JULES-BE simulations for stalk dry mass 
(SDM), leaf area index (LAI), canopy height (CANH), soil water content (SWC), evapotranspiration (ET) and gross primary production 
(GPP)

Variable

RMSE NSE r2 d

Crop BE Crop BE Crop BE Crop BE

SDM (t ha−1) 6.75 6.05 0.69 0.75 0.72 0.75 0.92 0.92

LAI (m2 m−2) 1.57 1.32 −0.11 0.21 0.39 0.54 0.75 0.76

CANH (m) 0.69 0.69 0.64 0.64 0.87 0.87 0.86 0.86

SWC (cm3 cm−3) 0.039 0.038 0.83 0.84 0.88 0.89 0.96 0.96

ET (mm day−1) 1.29 1.36 −0.15 −0.31 0.34 0.27 0.72 0.68

GPP (KgC m−2 year−1) 1.08 1.55 0.57 0.07 0.78 0.57 0.92 0.81

Abbreviations: NSE, Nash–Sutcliffe model efficiency; RMSE, root mean squared error.
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1108  |      VIANNA et al.

Petrolina is located in the Brazilian semiarid region, 
where crops experience extreme drought conditions 
leading to a high interannual yield variability for rainfed 

sugarcane (CV > 20%, Table 4). In Recife, the predictions 
of both parametrizations corresponded well to yield os-
cillations, notably between 1996 and 2008. Some events 

F I G U R E  7   Interannual variability of sugarcane stalk dry matter (t ha−1) simulated by Joint UK Land Environment Simulator (JULES)-
crop and JULES-BE (solid lines), compared with the interannual variability reported by IBGE from 1980 to 2010 (circles). The correlation 
between simulated and observed de-trended yields is given for JULES-crop and JULES-BE in r(C) and r(B), respectively, and asterisks 
indicate the p-values of significance (**p < 0.01 and *p < 0.05).

T A B L E  4   Average and coefficient of variation (CV) of stalk dry mass yields simulated for sugarcane by Joint UK Land Environment 
Simulator (JULES)-crop (crop) and JULES-BE as compared to the reported yields by IBGE before (Yw) and after (Ya) the corrections to 
account for the yield gap (Ya/Yw) in each region

Site Ya/Ywa

Yw (t ha−1) Ya (t ha−1) CV (%)

Crop BE Crop BE IBGE Crop BE IBGE

Petrolina (Northeast) 0.45 12.0 13.7 5.4 6.1 10.5 25.2 19.6 20.3

Recife (Northeast) 0.46 48.8 40.6 22.5 18.7 14.6 5.8 4.0 9.3

Piracicaba (Southeast) 0.75 44.5 38.3 33.3 28.7 25.0 3.2 2.7 7.8

Presidente Prudente 
(Southeast)

0.70 46.3 39.2 32.4 27.4 22.2 6.2 4.0 5.8

Jatai (Centre-West) 0.48 46.7 40.2 22.4 19.3 23.5 4.3 3.4 9.8
aValues obtained from Dias and Sentelhas (2018).
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      |  1109VIANNA et al.

were not captured well in our simulations, such as the 
year 1993 in Petrolina and Recife, 1987 in Piracicaba and 
between 1998 and 2001 in Jatai for JULES-BE. Yet, simu-
lations of both parametrizations showed good agreement 
with IBGE data for Presidente Prudente, even with low 
interannual variability.

The average SDM simulated by JULES-crop was 
nearly 10% higher than JULES-BE, which is explained 
by the differences in SDM growing curves at the end 
of the season (Figure  6). Sugarcane yields reported by 
IBGE were on average 48% lower than those simulated 
by the JULES-crop and JULES-BE models (Table  4). 
This difference was lower for Petrolina and higher for 
Recife, which are mainly explained by other limiting 
factors that the models are not yet ready to simulate, 
such as pest and diseases, nutrients deficiency or sub-
optimal managements. After correcting our simulated 
yields with yield gap factors (Ya/Yw), the RMSE of sim-
ulations dropped from 20.1 to 5.8 t ha−1, improving the 
representation of yields reported by IBGE (Table 4 and 
Figure  S18a). Our simulations also replicated the pat-
tern of yield variability observed in different regions, 
with higher-to-lower CV% from the semi-arid region 
of Petrolina to favourable edaphoclimatic conditions in 
Southeast (Figure S18b).

3.4  |  Climate change impact on  
sugarcane yields simulated by JULES-crop  
and JULES-BE

Future yield projections for sugarcane using the cali-
brated JULES-crop and JULES-BE showed an overall low 
sensitivity to climate change (Figure  8). In general, all 
locations indicated a small positive trend for SDM yields 
for both scenarios (SSP1 and SSP5) until the end of the 
century (Table 5), except Jataí which showed a clear nega-
tive trend for the SSP5 scenario between 2070 and 2100 
(−0.18 t ha−1 year−1). This was also verified in the simu-
lations at Presidente Prudente for the same period and 
scenario, but at lower rate (−0.05 t ha−1  year−1). In con-
trast, simulations in Petrolina for the SSP5 scenario are 
pointing to the higher trends among locations and sce-
narios (+0.17 t ha−1 year−1). However, sugarcane yields in 
this region by 2100 would be still below the current yields 
of regions in Centre-South Brazil and with high interan-
nual variability. Although yield projections of JULES-
crop show larger variability as compared to JULES-BE, 
the same trend patterns were found for both models 
(Figure S26).

The temperature was the main driver for negative 
trends observed in Jataí and Presidente Prudente for sce-
nario SSP5 (Figure  9). Projected daytime temperatures 

above 35°C are expected to decrease the rate of carbon 
assimilation, as it falls on the rapid drop phase of the  
T-response curve for sugarcane (Figure 3). In Presidente 
Prudente, the effect of high temperature is only noticed 
in the end century (2080–2100), whereas in Jatai, the av-
erage of the temperature factor starts decreasing much 
earlier (2066). Simulations for Petrolina in scenario SSP5 
also showed a negative impact of high temperature from 
2072 (Figure 9), but the small positive trend projected for 
precipitation (+1.13 mm year−1, p < 0.001) was enough to 
compensate the small positive trend observed in SDM sim-
ulations (Figure 8; Table 5). This effect was likely ampli-
fied by the higher atmospheric CO2 concentration in the 
SSP5 scenario (Figure 2; Figure S27), as it induces a better 
water use efficiency in sugarcane. Despite the rising tem-
peratures in the SSP5 scenario, we did not find any trends 
in droughts and temperature that significantly affected 
the SDM simulations in Piracicaba and Recife regions.

4   |   DISCUSSION

4.1  |  Adjusting the sugarcane response to 
environmental conditions with JULES

Refining the CTW-response has become important for 
improved agricultural representation in integrated assess-
ment models (Ruane et al., 2017). While field experiments 
datasets were key to support calibration of crop phenology 
and biomass partitioning, pre-existing sugarcane model 
parametrizations and literature were important to adjust 
and evaluate JULES for conditions not fully covered in 
our datasets (e.g. CO2 enrichment, Figure 2 and drought-
stress, Figure  4). We verified that the default parameter 
values used in the photosynthesis-stomatal conductance 
method implemented in JULES (Clark et al.,  2011) rep-
licated well the response of sugarcane to CO2 concentra-
tions (Figure 2), thereby not requiring any change.

We used Vcmax observations from two independent 
studies to refine the carbon assimilation response of 
sugarcane to temperature (Peixoto & Sage,  2017; Sage 
et al.,  2014), where the shape of response function rep-
licated the trapezoidal pattern simulated in other well-
tested dynamic models (Figure 3a). Sugarcane leaves and 
roots have a relatively higher respiration rate than stems 
(Liu & Bull,  2001); thus, the respiration rate per unit of 
crop biomass is expected to be higher at earlier develop-
mental stages than at the maturation stage, when stem 
biomass is the dominant carbon pool. DSSAT-CANEGRO 
and SAMUCA models differentiate crop respiration rates 
by carbon pool, and JULES was also able to mimic this. 
However, the maintenance respiration response at high 
temperatures is a source of uncertainty, particularly 
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1110  |      VIANNA et al.

because of the divergence verified among models' re-
sponse curves and the lack of observations at high tem-
peratures (Figure 3b).

Measurements of the direct effect of drought on sug-
arcane biomass and photosynthesis are scarce. In a 
field trial limiting the root of depth to 0.97 m, Smit and 
Singels (2006) found a significant increase in leaf senes-
cence and lower developmental rates of sugarcane when 
the RASW dropped from 70% to 30%. This agrees with 
the other sugarcane models that we used for calibration 
of the drought response function in JULES (Figure  4a). 
Furthermore, both JULES-crop and JULES-BE were able 
to better capture the moderate drought effect observed 
at the CO site when the root system was limited to 40 cm 

depth (Figure  S15). This suggests that unless root pene-
tration is not limiting, sugarcane can resist moderate dry 
spells.

Field observations from Laclau and Laclau (2009) also 
show that root plasticity may offset drought stress by bet-
ter exploring the soil profile as compared to irrigated con-
ditions. They also found a maximum root depth greater 
than 4  m in both irrigated and rainfed treatments (irri-
gated = 4.25 m, rainfed = 4.70 m), with unnoticeable dif-
ference on the root front velocity between both treatments. 
Although JULES-crop can simulate variable root depth 
throughout the growing cycle, this feature is switched off 
in previous studies by setting the parameter rt_dir_io to 
zero (Osborne et al., 2015; Williams et al., 2017). We also 

F I G U R E  8   Historical and future projections of stalk dry matter yield of sugarcane simulated in five traditional producing regions with 
Joint UK Land Environment Simulator (JULES)-crop and JULES-BE, considering five general circulation models (GCMs; UKESM1-0-LL, 
MRI-ESM2-0, MPI-ESM1-2-HR, IPSL-CM6A-LR and GFDL-ESM4) and two scenarios (SSP1 and SSP5). Solid lines are the median and the 
ribbons are the standard deviations of the five GCMs and both models' ensemble. The blue lines represent the average between JULES-crop 
and JULES-BE simulations driven by weather observations (e.g. Figure 7).
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      |  1111VIANNA et al.

Site Scenario

Yield trends (t ha−1 year−1)

Crop BE Ensemble

Jatai (Centre-West) SSP1 (RCP2.6) 0.002 0.002 0.002

Petrolina (Northeast) 0.016 0.018 0.017

Piracicaba (Southeast) 0.019 0.004 0.011

Presidente Prudente 
(Southeast)

0.011 0.009 0.010

Recife (Northeast) 0.012 0.009 0.011

Jatai (Centre-West) SSP5 (RCP8.5) −0.137 −0.033 −0.085

Petrolina (Northeast) 0.190 0.157 0.174

Piracicaba (Southeast) 0.041 −0.003 0.019

Presidente Prudente 
(Southeast)

0.028 0.015 0.022

Recife (Northeast) 0.045 0.014 0.030

T A B L E  5   Sugarcane yield trends 
simulated with Joint UK Land 
Environment Simulator (JULES)-crop, 
JULES-BE and the ensemble from 2020 to 
2100 considering five general circulation 
models (GCMs) and two scenarios (SSP1 
and SSP5) in five traditional producing 
regions

F I G U R E  9   Future projections of temperature (T-factor) and drought stress (β) factors simulated by Joint UK Land Environment 
Simulator (Figures 3 and 4) and the corresponding projections of daytime temperature and precipitation in five traditional producing 
regions, considering five general circulation models (GCMs; UKESM1-0-LL, MRI-ESM2-0, MPI-ESM1-2-HR, IPSL-CM6A-LR and GFDL-
ESM4) and two scenarios (SSP1 and SSP5). Solid lines are the median and the ribbons are the standard deviations of the five GCMs and both 
models' ensemble. The dashed grey line in daytime T represents the 35°C threshold.
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followed this because JULES-crop relates root depth as a 
function of carbon allocated to root biomass (rootc), which 
may lead to oversensitivity of drought stress particularly 
at early developmental stages. Other models simulate the 
deepening of the root front as a function of degree days 
only (Jones & Singels,  2018; Marin et al.,  2015; Vianna 
et al.,  2020), resulting in more realistic results. This 
should be considered an improvement for future versions 
of JULES for plant cane systems, while assuming a fixed 
root depth may best represent the root growth pattern in 
ratooning sugarcane systems (Smith et al., 2005).

4.2  |  Modelling sugarcane growth and 
phenology with JULES-crop and JULES-BE

Both parametrizations were able to replicate the grow-
ing patterns observed at sugarcane field experiments 
(Figure 6). Although requiring a higher number of pa-
rameters, JULES-crop provides more flexibility and de-
tails in sugarcane simulations as compared to JULES-BE. 
Some structural improvements required to refine sug-
arcane simulations with JULES-crop are related to the 
implementation of multiannual growing seasons and in 
carbon partitioning equations. We found high sensitiv-
ity to the carbon partitioning parameters (Figure  S19), 
which was also confirmed for maize (Prudente Junior 
et al., 2022). Cuadra et al. (2012) implemented the car-
bon partitioning equations of the DSSAT-CANEGRO 
model to simulate sugarcane growth in the Agro-IBIS 
model. Black et al. (2012) employed the same approach 
to simulate sugarcane with JULES in Ghana; however, 
their parametrization was not available to compare with 
our calibrations. Making the carbon partitioning equa-
tions of JULES-crop more flexible may be sufficient to 
refine simulations without the need of a dedicated para-
metrization for sugarcane.

Sugarcane dynamic models also explicitly simulate 
other processes which are not considered in JULES-crop 
or JULES-BE. An example is the tillering process (til-
ler m−2), which controls plant population and then used 
to upscale stalk biomass and LAI (Jones & Singels, 2018). 
In both parametrizations, LAI is obtained by multiplying 
the active leaf carbon pools to the SLA, which is simu-
lated with crop development in JULES-crop and consid-
ered a fixed value in JULES-BE. Four SLA observations 
from different sites at the early stages of sugarcane devel-
opment (DVI < 0.2) are below 5 m2 kg−1, suggesting that 
SLA can be influenced by the tillering process that drives 
plant population at early canopy formation. After canopy 
closure, SLA in sugarcane is almost constant, which was 
replicated by JULES-crop (Figure S12a) or represented by 
the sigl_io parameter of JULES-BE.

A per-site comparison reveals that the level of perfor-
mance is similar between the calibration and evaluation 
sites. Although our simulations performed best for some spe-
cific variables and sites, we did not identify any particular site 
where the parametrizations were best fitted to all variables 
together (CANH, LAI and SDM) to characterize overfitting 
(Figure S17; Figure 6). The adjusted allometric relationships 
also do not show evidence of overfitting to a single condition, 
as it clearly represents the overall pattern across the field tri-
als (Figures S12 and S13). This was also verified in the rep-
resentation of carbon partitioning and leaf senescence for 
JULES-crop (Figures S9 and S10). However, only two sites 
had sufficient data to adjust these processes (EQ and PF  
[4 trials]), requiring more information to investigate any pos-
sible overfitting for these processes in future studies.

Both parametrizations, but mainly JULES-BE, rely on 
allometric relationships to derive canopy information. We 
found that these allometric relationships hold for explain-
ing the overall growth pattern of sugarcane growth; how-
ever, a large deviation is found across the field trials used 
in this study (Figures S12 and S13). This may suggest these 
relationships can be refined with genotype-specific data or 
improved to account for the response of plant expansion 
to drought stress and temperature (Jones & Singels, 2018; 
Vianna et al., 2020). This study aim was to provide a gen-
eral parametrization for sugarcane in JULES and thereby 
we did not generate genotype-specific sets of parameters, 
which would require a substantially higher amount of 
data across genotype x environment interactions.

Crop-specific models are generally expected to have 
better performance than crop-generic models such as 
JULES-crop and JULES-BE, as they account for specific 
processes such as tillering, sucrose accumulation and 
source–sink dynamics (Marin et al., 2015). This can im-
prove not only the overall performance of the models, but 
also the ability to represent other crop components that are 
relevant for growers (e.g. sucrose content). On the other 
hand, those models generally represent the crops physi-
ology in a simplistic way, such as relaying on Radiation 
Use Efficiency and crop ET coefficients. Although JULES-
crop and JULES-BE were not developed to simulate crop 
growth in such detail, still, our results showed that both 
parametrizations have comparable performance indexes 
to sugarcane models (Figure S16) and were able to sim-
ulate stalk dry yields with good precision (r2 > 0.70) and 
accuracy (d > 0.90; Table 3).

Despite showing better statistical performance in LAI 
simulations than JULES-crop (Table 3), a systematic over-
prediction of LAI at the early developmental stage was no-
ticed in JULES-BE simulations (Figure 6e). This was also 
verified in the Littleton et al. (2020) results for Miscanthus 
and had a substantial impact on our ET and GPP simu-
lations using JULES-BE in comparison with JULES-crop 
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      |  1113VIANNA et al.

(Figures S5 and S6; Table 3). However, the performance of 
simulating sugarcane stalk dry yields and canopy forma-
tion (LAI) had good agreement with observations while 
preserving the overall pattern of fluxes of soil moisture, 
ET and GPP.

4.3  |  Assessing model ability in  
simulating the spatiotemporal variability  
of sugarcane yields and the effect of 
climate change

The highest yield simulations were found for Recife, 
where solar radiation and rainfall are high enough to 
sustain vigorous vegetative growth. In contrast, the 
Petrolina region located at similar latitude but in the 
Brazilian semi-arid region presented the lowest yields 
which are mainly explained by severe drought condi-
tions. The other regions presented small differences 
among average yield values, being Jatai, Presidente 
Prudente and Piracicaba ranked from the high to low 
yields. These patterns agree with modelling studies of 
sugarcane under water-limited conditions at the same 
locations (Dias & Sentelhas,  2018; Marin et al.,  2016; 
Vianna & Sentelhas,  2016). After considering the cor-
responding yield gaps factors (Ya/Yw), both parametri-
zations were able to replicate the average yield patterns 
reported by IBGE across the studied regions (Table  4; 
Figure S18). Pest and diseases, weed pressure, soil degra-
dation due to long-term monoculture and inappropriate 
traffic of heavy machinery are generally associated with 
a decreased longevity of sugarcane ratooning system and 
yield gaps (Dias & Sentelhas, 2018; Marin et al., 2019).

The interannual yield simulations consistently cap-
tured the patterns of yield variability across regions 
and some strong oscillations observed in the time se-
ries. We found higher interannual yield variability for 
Petrolina, with lowest dips in the years 1993, 1997 and 
1998. These periods coincide with two strong droughts 
that affected over 80% of the Brazilian Northeast re-
gion in the 1990s (Cunha et al., 2018). This also over-
laps with the lower yields simulated in 1998 for Recife 
(Northeast), but was not captured in 1993 possibly due 
to a mismatch of regional planting/ratooning date ad-
opted by farmers in that year (Figure S24). The other 
regions showed lower interannual yield variability, 
except for the beginning of the 1980s which was also 
marked by a period of strong droughts in Southeast 
Brazil (Gozzo et al., 2019).

Yet, we did not find high correlation indexes (r) for 
our interannual yield variability simulations, ranging 
from 0.33 to 0.56 (Figure 7). However, our results agree 

to other studies that compared simulations of interan-
nual yield variability for sugarcane with the IBGE time 
series. Cuadra et al. (2012) obtained a correlation index 
of 0.44 for the Agro-IBIS model in mesoregions located 
in Southeast Brazil, while Black et al.  (2012) found an 
average correlation index of 0.51 in the same regions. 
In addition, Müller et al.  (2017) showed that the inter-
annual yield variability simulated at subnational level 
usually do not show high correlation for process-based 
models, which can be largely attributed to the fact that 
models do not capture all the driving factors for crop 
yields, but also to the assumptions made to approximate 
the real cropping system conditions.

In our simulations, we considered the soil, weather 
and ratooning dates to represent the prevalent conditions 
for each region following recent modelling studies for 
sugarcane (Dias & Sentelhas, 2018; Vianna et al., 2020). 
We also investigated how much the model parameters, 
ratooning dates and climate input can affect our results 
(Supporting Information); however, a global sensitivity 
analysis may still be required to fully understand the 
interaction between these elements and the realized 
model responses under plausible ranges of parameters 
and conditions (Pereira et al., 2021). While the introduc-
tion of yield gap factors helped explaining the spatial 
differences between simulated and observed yields, the 
effects of biotic factors or suboptimal managements on 
the interannual variability of yields still remain difficult 
to be determined. In this context, new techniques for the 
reconstruction of past events in cropping systems are in-
creasingly important not only to identify yield anoma-
lies, but also to reduce the uncertainties about land-use 
and management conditions for crop growth simula-
tions (Zheng et al., 2022).

Climate change impact studies in sugarcane gen-
erally find a positive or neutral trend on stalks yields 
(Dias & Inman-Bamber, 2020). Nevertheless, we found 
that if temperatures above 35°C become more fre-
quent in the future, a decline in net carbon uptake is 
expected to affect sugarcane yields if the crop does not 
adapt (Figures  3a and 9). This agrees with the recent 
findings of Flack-Prain et al.  (2021), where tempera-
ture is the main driver for sugarcane yield decline in 
future projections for São Paulo, Brazil. In their study, 
the Soil–Plant–Atmosphere model was employed which 
simulates photosynthesis at sub-daily timestep. JULES 
also operates at sub-daily timesteps, allowing to account 
for the effect of maximum temperatures that generally 
occur when solar radiation is abundant and photosyn-
thesis rates are high.

Uncertainties of crop growth projections can be sub-
stantially reduced by improving the representation of 
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temperature response in crop models (Wang et al., 2017). 
Models that use the daily average temperature (Tavg) may 
not be able to capture this effect unless the photosyn-
thesis response to temperature is modified to account 
for the daily temperature amplitude (Marin et al., 2015). 
Crop respiration was also a source of uncertainty in 
JULES simulations, which could reduce even further the 
net carbon uptake of sugarcane under high temperatures 
(Figure 3b). While yield gaps are generally attributed to 
suboptimal crop management, worth noting that some 
abiotic effects are still not included nor systematically 
tested in sugarcane models, such as ozone damage, wa-
terlogging, heat stress and lodging (Gomathi et al., 2015; 
Moura et al.,  2018). Quantifying the effects of extreme 
weather in sugarcane growth remains a challenge, as the 
appropriate field data to model the crop response under 
extreme conditions are rare and difficult to be obtained.

Our results were used to understand model capabilities 
and identify opportunities for improvement in future ver-
sions. While input parameters and observed data are lack-
ing for the development of bioenergy models, we provide 
crop-related parameters that can support modelling stud-
ies for sugarcane. The newly calibrated version of JULES 
can be applied to help understanding of interactions be-
tween climate and bioenergy production in the present 
and under climate change scenarios.
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org/getti​ngsta​rted/data-acces​s/.
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