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Abstract: Mapping spatiotemporal changes in the distribution of blue ice regions (BIRs) in Antarctica
requires repeated, precise, and high-resolution baseline maps of the blue ice extent. This study demon-
strated the design and application of a newly-developed semi-automatic method to map BIRs in the
Antarctic environment using very high-resolution (VHR) WorldView-2 (WV-2) satellite images. We dis-
cussed the potential of VHR satellite data for the mapping of BIRs in the Antarctic environment using a
customized normalized-difference blue-ice index (NDBI) method devised using yellow, green, and near-
infrared spectral bands of WV-2 data. We compared the viability of the newly developed customized
NDBI approach against state-of-the-art target detection (TD), spectral processing (SP) and pixel-wise
supervised (PSC) feature extraction (FE) approaches. Four semi-automatic FE approaches (three existing
plus one newly developed) consisting of 16 standalone FE methods (12 existing + four customized) were
evaluated using an extensive quantitative and comparative assessment for mapping BIRs in the vicinity
of Schirmacher Oasis, on the continental Antarctic coastline. The results suggested that the customized
NDBI approach gave a superior performance and the highest statistical stability when compared with
existing FE techniques. The customized NDBI generally rendered the lowest level of misclassification
(average RMSE = 654.48± 58.26 m2), followed by TD (average RMSE = 987.81 ± 55.05 m2), SP (average
RMSE = 1327.09± 127.83 m2) and PSC (average RMSE = 2259.43± 115.36 m2) for mapping BIRs. Our
results indicated that the use of the customized NDBI approach can greatly improve the semi-automatic
mapping of BIRs in the Antarctic environment. This study presents the first refined map of distribution
of BIRs around the Schirmacher Oasis. The total area of blue ice in the study area was estimated to be
106.875 km2, approximately 61% of the study area. The WV-2 derived BIR map area presented in this
study locally refined the existing BIR map derived using Landsat Enhanced Thematic Mapper Plus
(ETM+) and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based mosaic of Antarctica
(MOA) dataset by ~31% (~33.40 km2). Finally, we discussed the practical challenges and future directions
in mapping BIRs across Antarctica.

Keywords: semi-automated classification; blue ice; WorldView-2; Antarctica; normalized spectral
index ratio; very high-resolution remote sensing; supraglacial features; blue ice index

Remote Sens. 2023, 15, 1287. https://doi.org/10.3390/rs15051287 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15051287
https://doi.org/10.3390/rs15051287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0648-3109
https://orcid.org/0000-0002-7991-2920
https://orcid.org/0000-0001-8497-9903
https://doi.org/10.3390/rs15051287
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15051287?type=check_update&version=2


Remote Sens. 2023, 15, 1287 2 of 40

1. Introduction

Blue ice regions (BIRs) are areas on ice sheets with negative surface mass balance,
where sublimation constitutes the major ablation process and surface albedo is relatively
low [1]. They account for around 1% of Antarctica’s surface area [2] and are widely scattered
over the continent, although they are generally located in coastal or mountainous regions.
In Antarctica, exceptionally dry and windy meteorological conditions favour the formation
of large areas of net ablation on the ice sheet, leading to the formation of BIRs [3]. Negative
surface mass balance causes fresh surface snow and old firn to be removed primarily
through the process of sublimation, resulting in the exposure of dense older ice beneath [1].
Albedo values of various BIRs in different geo-locations around Antarctica have been
reported to be in the range of 0.55–0.66 [4]. The lower albedo of BIRs could influence the
local surface energy balance and microclimate [5].

Antarctic BIRs are classified into two different types depending on the climate process
involved in their formation: (1) melt-induced; and (2) wind-induced [6]. Melt-induced BIRs
are located on slopes near coastal areas where surface melt occurs, while wind-induced
BIRs occur near mountains or on outlet glaciers where snow is removed by consistent wind
year-round. Although melt-induced BIRs constitute a small portion of blue ice, they are
an important source of water supply to any surrounding terrestrial habitats, as well as
to some Antarctic research stations. Melt-induced BIRs are also utilized as runways for
wheeled aircraft [7–10], such as the runway near the Novolazarevskaya research station
in Schirmacher Oasis, East Antarctica. Therefore, one of the main reasons to map BIRs is
to find suitable locations for field logistics, as BIRs can facilitate the use of wheeled rather
than ski-equipped aircraft.

BIRs have characteristics that make them compelling research locations for planetary
geologists, glaciologists, meteorologists, and climatologists. The first glaciological investi-
gations on BIRs were conducted in 1949–1952 by the Norwegian-British-Swedish Antarctic
Expedition in Dronning Maud Land (DML) [11], which provided the first description of
the surface characteristics of BIRs and discussed their genesis by horizontal compressive
forces combined with katabatic winds precluding snow accumulation. A detailed review of
the general characteristics of blue ice in Antarctica, the formation and age of BIRs, and their
glaciological, meteorological, and climatological features was provided by Bintanja [1].

BIRs are of great potential interest for paleoclimate studies [1,8], although very little
paleoclimatic data from BIRs have been published to date [8]. Concentrations of meteorites
in Antarctica have been consistently found on, or close to, BIRs [12,13]. Ablation, glacial
movement and direct infall are the key natural forces leading to the concentration of
meteorites in some BIRs [14]. Seasonal and interannual variations in the spatial extent of
BIRs are significantly related to seasonal weather changes [15]; therefore, it is essential to
remotely identify BIRs and spatially map their locations. The extent of BIRs is sensitive
to different climatic conditions although the details of these relationships are unclear, and
there is also feedback from climate change on the process of formation of BIRs. There may
be a systematic relationship between temporal variations in the extent of BIRs and their
surface elevation, especially those close to nunataks and those undergoing expansion [16].
Some studies have suggested that BIRs can influence the regional surface mass balance and
climate and, hence, BIRs could be climate-sensitive [17].

Mapping of the areal extent of BIRs relies heavily on satellite remote sensing data. It
is primarily based on multispectral data because of the unique spectral profile of blue ice
compared to background features such as snow/rock. The first attempt to map BIRs dates
to 1976 when the Japanese National Institute of Polar Research (NIPR) delineated blue ice
areas in the Yamato Mountains, Antarctica, using Landsat 1 data [18]. Based on their surface
properties, BIRs have been studied using satellite imagery and aerial photographs [19].
Most BIRs are relatively large, so they can be easily observed on satellite images, such
as from Satellite Pour l’Observation de la Terre (SPOT), Advanced Very High-Resolution
Radiometer (AVHRR), and Landsat. The concept of band (ratio) thresholding has proven
to be suitable for mapping BIRs [20,21] and it has, therefore, become a commonly used
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approach for mapping them in multispectral imagery [2,15,22,23]. Preliminary attempts to
map the spatial extent of BIRs have utilized differences in the visible and near infrared (NIR)
spectral reflectance of blue ice and snow to map them from medium- and coarse-resolution
satellite imagery [2]. Based on the different spectral characteristics (optical satellite imagery)
and coherence (SAR imagery) of snow, blue ice, and bare rock, BIRs have been extracted
from optical images and coherence maps [24]. Numerous researchers have investigated
spectral signatures of blue ice and other cryospheric features (e.g., [23]). BIR mapping has
also been attempted with radar imagery [25,26] at the local scale.

A variety of remote sensing (RS) datasets have been used to identify and map BIRs,
including aerial photographs and satellite images from Landsat multispectral scanner
system (MSS) and TM (e.g., [15]), AVHRR [2,15] and synthetic aperture radar (SAR) images
(e.g., [27]). McIntyre [28] mapped BIRs in the Lambert glacial basin by employing Landsat
MSS images and estimated their area to be 56,000 km2. Swithinbank [29] identified 15 BIRs
as potential airfield locations over the Lambert Glacier–Amery Ice Shelf (LGAIS) by utilizing
aerial photographs and satellite images. Winther et al. [2] used coarse AVHRR data (1.1 km
resolution) acquired in January 1987 and delineated the BIRs of the LGAIS, but the accuracy
of the extent estimate was low. Yu et al. [30] mapped spatial extent and geographical
distribution of BIRs for the entire LGAIS using Landsat ETM+ images with an accuracy of
92–97%. Brown and Scambos [15] used 56 Moderate-Resolution Imaging Spectroradiometer
(MODIS) satellite images to analyse seasonal and interannual variations in the extent of
BIRs over the period 1974–2002 near Byrd Glacier on the East Antarctic plateau. All these
studies suggest that RS data provided an effective and relatively inexpensive means of
detecting and mapping BIRs at various locations in Antarctica.

Nolin et al. [31] used Landsat TM data to map BIRs in the vicinity of the Darwin
and Byrd Glaciers, East Antarctica. They also studied surface roughness characterization
of blue ice near McMurdo research station using multi-angle imaging spectroradiometer
(MISR) data to demonstrate that the blue ice exhibits characteristic angular signatures,
which may be used in multispectral classification. Some attempts have been made to
map BIRs in Antarctica using Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), Landsat ETM+, and Ice, Cloud, and Land Elevation satellite (ICESat)
laser altimetry to study their different topographical features [30]. ETM+ and MODIS
data have been used to map the geographical distribution of BIRs, and supplementary
methods were used to study glaciology, meteorites, and surface characteristics of BIRs in
Antarctica. Scambos et al. [16] presented an algorithm for mapping snow grain size, which
they subsequently employed to estimate areas of selected BIRs in Antarctica using 250 m
resolution MODIS bands (band 1: red visible light at 620–670 nm; band 2: near-infrared
(NIR) at 841–876 nm). Algorithms implemented for the derivation of BIRs using MODIS
and Landsat were based on the increased infrared absorption of ice with grain size [21].
These authors used a normalized difference algorithm for deriving BIRs using Landsat-7
ETM+. The normalized difference snow index (NDSI) was implemented across the Landsat
sensor series for long-term analysis of blue ice extent changes. Their work suggested that
use of the blue band would potentially further improve the algorithm.

Various other RS methods have been used to discriminate BIRs from firn, snow or
exposed rock/nunataks using supervised and unsupervised classification [2], image seg-
mentation using texture [30], and threshold discrimination based on a band ratio [15,16].
The band ratio method has been widely used in studies of snow grain size [32]. Existing
normalized difference spectral index ratios (SIRs) utilized in the blue ice mapping applica-
tion are listed in Supplementary Table S1. Recently, Han et al. [33] developed a Normalized
Difference Blue Ice index (NDBI) to map BIRs in the McMurdo Dry Valleys, based on the
spectral reflectance characteristics of blue ice, snow, rocks and clouds, using MODIS images.
The NDBI, which is defined as (Blue − NIR)/(Blue + NIR), relies on the fact that snow and
clouds have a high reflectance in visible and NIR bands. Rivera et al. [34] implemented
both manual and automated approaches to map BIRs and crevasses in Patriot Hills, West
Antarctica, using ASTER images, GPS, and Radar measurements.
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Existing satellite-derived BIR products are either mono-temporal for the pan-Antarctic
scale, or multi-temporal on a regional scale. Multitemporal satellite images are necessary for
studying seasonal and inter-annual variations of BIRs. However, it is practically impossible
to obtain a single temporal satellite image to map BIRs over the entire Antarctic continent,
given its vast area (14 × 106 km2). To date, only two BIR mapping applications over
the entire Antarctic continent have been implemented. In all other studies, BIRs have
been mapped only in limited regional areas. The first map dataset depicting the entire
spatial extent of BIRs was generated using AVHRR data with 1.01 km spatial resolution [2].
The second Antarctic-wide study mapped the spatial extent of BIRs and geographical
distribution at the unprecedented spatial resolution of 125 m by using the band ratio of
Landsat-7 ETM+ images and a snow grain-size image of the MODIS-based Mosaic of
Antarctica (MOA) dataset [22] (Figure 1). They used the ratio of band 4 (760–900 nm)
and band 7 (2080–2350 nm) to obtain the thresholds for mapping BIRs in Antarctica and
estimated a total area of 234,549 km2 (1.67% of the area of the continent) during the data
acquisition period. Very recently, Hu et al. [35] developed a product of blue ice fraction
over Antarctica for the period 2000–2021 using spectral mixture analysis (SMA) performed
on moderate-resolution imaging spectroradiometer (MODIS) observations in Google Earth
Engine. This approach gives the potential to map BIRs across Antarctica annually.
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Figure 1. Location of the Schirmacher Oasis depicted on a Landsat image mosaic of Antarctica 
(LIMA) (https://lima.usgs.gov/, accessed on: 20 January 2022). Antarctic blue-ice regions (BIRs) 
(Hui et al., [22]) derived using ETM+ and MODIS data are depicted in blue on LIMA. WorldView-
2 PAN-sharpened imagery shows the spatial distribution of the 12 tiles considered in this study. 
Each tile is a small subset of around 200,000 m2 area on the satellite image. 
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normalized difference algorithm and pixel-based supervised machine learning methods. 
We performed semi-automatic extraction of BIRs by employing four types of feature ex-
traction approach: (a) a customized NDBI approach; (b) a spectral processing (SP) or 
matching approach; (c) pixel-wise supervised classifier (PSC); and (d) a target detection 
(TD) approach. The main goal of this study was to evaluate the potential of pixel-based 
band ratio and supervised machine learning methods for an effective mapping of BIRs 
using WV-2 data. Our study focused on the following objectives: (a) designing a custom-
ized NDBI approach to extract BIRs; (b) comparing the performance of supervised fea-
ture extraction algorithms with the newly developed customized NDBI approach using 
visual analysis and statistics; and (c) assessing the distinctive 8-band acquisition capabil-
ity of WV-2 data by using an array of semi-automatic mapping methods to compare 
their reliability in BIR extraction. The precise, high-resolution, and refined BIR map de-
rived from this research will provide the baseline information required for future cli-
mate change analysis of the BIRs in this region. 

2. Study Area and Geospatial Data 
2.1. Extent of the Study Area 

The Schirmacher Oasis (SO) is a ∼35 km long and up to ∼3 km wide ice-free plateau 
(Figure 1) between 70°43′50″ and 46′40″ S, and 11°22′40″ and 54′20″ E, with more than 
100 freshwater lakes. The SO is located on the Princess Astrid Coast of Dronning Maud 

Figure 1. Location of the Schirmacher Oasis depicted on a Landsat image mosaic of Antarctica
(LIMA) (https://lima.usgs.gov/, accessed on 20 January 2022). Antarctic blue-ice regions (BIRs)
(Hui et al. [22]) derived using ETM+ and MODIS data are depicted in blue on LIMA. WorldView-2
PAN-sharpened imagery shows the spatial distribution of the 12 tiles considered in this study. Each
tile is a small subset of around 200,000 m2 area on the satellite image.

A comprehensive literature review suggests that the methods currently available for
mapping BIRs in cryospheric environments suffer from several important drawbacks. First,
most of these methods were developed, evaluated, and validated only for specific regions
of Antarctica (e.g., LGAIS, Grove Mountains, Darwin and Byrd Glaciers, McMurdo Dry Val-
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leys, etc.), with most not validated for mapping BIRs in other areas. Second, most of them
used either medium- or coarse-resolution (SPOT, AVHRR, MODIS, Landsat and ASTER)
optical satellite RS data. As the spatial resolution of an image increases, it is possible to
detect smaller blue ice patches and to improve mapping accuracy. Due to the coarser pixel
size of MODIS, ASTER and Landsat-7 data, BIR mapping is restricted to the larger BIRs.
Furthermore, most of the methods attempted have not been thoroughly compared to exist-
ing traditional image-processing methods. In this situation, snow patches of varying sizes
and shapes which are identified on the BIRs cannot be eliminated using coarse/medium res-
olution satellite imagery. Therefore, it is necessary to extract BIRs utilizing high-resolution
RS data to refine their spatial distribution. Third, to our knowledge, there is no automatic
or semi-automatic BIR extraction method that uses VHR satellite RS data for the Antarctic
environment. Hence, this is the first comprehensive study applying a semi-automatic BIR
mapping approach developed using VHR WV-2 data in the Antarctic environment.

Based on the literature review and the limitations of current geospatial methods
discussed above, we focused our study on mapping BIRs in the vicinity of the Schirmacher
Oasis, Princess Astrid Coast, Dronning Maud Land, East Antarctica, using a normalized
difference algorithm and pixel-based supervised machine learning methods. We performed
semi-automatic extraction of BIRs by employing four types of feature extraction approach:
(a) a customized NDBI approach; (b) a spectral processing (SP) or matching approach;
(c) pixel-wise supervised classifier (PSC); and (d) a target detection (TD) approach. The main
goal of this study was to evaluate the potential of pixel-based band ratio and supervised
machine learning methods for an effective mapping of BIRs using WV-2 data. Our study
focused on the following objectives: (a) designing a customized NDBI approach to extract
BIRs; (b) comparing the performance of supervised feature extraction algorithms with
the newly developed customized NDBI approach using visual analysis and statistics; and
(c) assessing the distinctive 8-band acquisition capability of WV-2 data by using an array
of semi-automatic mapping methods to compare their reliability in BIR extraction. The
precise, high-resolution, and refined BIR map derived from this research will provide the
baseline information required for future climate change analysis of the BIRs in this region.

2. Study Area and Geospatial Data
2.1. Extent of the Study Area

The Schirmacher Oasis (SO) is a ∼35 km long and up to ∼3 km wide ice-free plateau
(Figure 1) between 70◦43′50′′ and 46′40′′S, and 11◦22′40′′ and 54′20′′E, with more than
100 freshwater lakes. The SO is located on the Princess Astrid Coast of Dronning Maud
Land, East Antarctica. It has a low-lying hilly topography, with a maximum altitude of
228 m above sea level (asl) and an average altitude of ~100 m asl. The SO is located between
the edge of the East Antarctic Ice Sheet (EAIS) and the Novolazarevskaya Nivl iceshelf. The
plateau of the SO provides a barrier to the northwards running ice stream. South of the
SO, the EAIS reaches a height of 1500 m asl at a distance of 50 km from the oasis. Several
nunataks are exposed above the ice sheet in this slope area.

The general climate of the SO is relatively mild compared with the overall Antarctic
climate. Air temperature ranges from −7.7 to +8.2 ◦C during mid-summer (December–
February) resulting in abundant meltwater. January is the warmest month (monthly mean
air temperature +0.7 ◦C, maximum +8.2 ◦C) while August is the coldest (monthly mean
air temperature −16.3 ◦C, minimum −35.5 ◦C), with an average wind velocity of about
9.7 ms−1 and 264.5 mm annual precipitation, mostly as snow [36]. Atmospheric pressure,
air temperatures and air humidity are greatest in summer, with comparatively weak winds,
rare snowfall, and insignificant total precipitation. Typically, rapid melting of snow/ice
and drainage of meltwater from the SO to the iceshelf is observed. In general, katabatic
winds over the EAIS increase towards the coast and become more directed down the fall
line of the topography. This induces a divergence of drifting snow transport that serves as a
negative term in the surface mass balance (erosion). The blue ice extent has been relatively
stable near exposed nunataks in Dronning Maud Land [37].
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2.2. Spatial Data Used in This Study

A list of satellite and ground reference datasets and their usage in present study is
given in Table 1.

Table 1. Satellite and ground reference datasets and their specific usage in this study. A variety of
spatial datasets (both satellite data and ground reference data) were utilized at different stages of the
study. The potential usage of these datasets includes: (1) SE (semi-automatic feature extraction): The
datasets are used as input for semi-automatic extraction methods; (2) VI (visual interpretation): The
datasets are used for visual interpretation to support digitization, to interpret BIRs, and to ensure
spatial snow/ice cover changes are captured; (3) MD (manual digitization): The datasets are used in
an ArcGIS platform to carry out digitization; (4) SD (supplementing digitization): The datasets are
used to cross-check and verify the manual digitization against various ground reference and satellite
images; and (5) DEA (digitization error analysis). The datasets are used to test positional errors in
manual digitization. The notation 3(8) denotes used (not used) in this study.

Dataset Source
Temporal Range

(dd/mm/yy)
Utilization of Datasets in the Present Study

SE VI MD SD DEA

Worldview-2
MSI and PAN DigitalGlobe 5 February 2012 8 3 8 3 8

Worldview-2
PAN-sharpened

image (0.5 m)
Processed 5 February 2012 3 3 3 3 3

Google Earth
Images (GE) Google

31 December 1999
to

26 November 2013
8 3 8 3 8

BIR map derived
from MODIS and
Landsat ETM+

Hui et al. [22] 1999–2004 8 3 8 3 8

DGPS Surveying InSEA 2008–2015
(September–March) 8 3 3 3 3

2.2.1. Usage of Satellite Data

We employed radiometrically corrected, georeferenced, ortho-rectified 16-bit standard
level 2 (LV2A) WV-2 multi-sequence data, acquired on 5 February 2012, at an off-nadir
angle of 17.02◦ over the SO. Based on the results of MODIS-based BIR mapping [15], we
selected the image as close to mid-summer as possible. The data consists of four tiles
of 8-band multispectral (MS) data acquired by visible-infrared (V-NIR) WorldView-110
camera and a panchromatic (PAN) image. These tiles were spatially mosaicked to generate
a single continuous image. The projection and datum of the SO images were geo-registered
with UTM zone 32S and WGS 1984, respectively. The WV-2 image covers an area of
~172 km2 including various land-cover features (snow, ice, blue ice, rocks, lakes, permafrost,
vegetation, etc.), and terrain consisting of flat areas up to mountains of 600 m altitude.
Since the satellite image was acquired at the height of the austral summer, solar radiation
could melt surface snow and ice on clear days. Every spectral band is closely concentrated
on a specific range of EMR wavelengths sensitive to a specific target feature on the ground.
A WV-2 MS image (MSI) consists of four traditional bands: Band 2, Blue (450–510 nm),
Band 3, Green (510–580 nm), Band 5, Red (630–690 nm), and Band 7, NIR-1 (770–895 nm),
and four new bands: Band 1, Coastal (400–450 nm), Band 4, Yellow (585–625 nm), Band 6,
Red edge (705–745 nm), and Band 8, NIR-2 (860–1040 nm).
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2.2.2. Ground Truthing and Supplementary Data

The ground reference datasets utilized to support the semi-automatic extraction of BIRs
were retrieved from the Indian scientific expeditions to Antarctica (InSEA), a continent-
wide BIR map derived from MODIS and Landsat-7 ETM+ [22], historical GE images
(Supplementary Figure S1), and PAN-sharpened WV-2 images. Historical GE images
acquired during the austral summer were used to cross-check the spatiotemporal variation
of blue ice extent in the study area.

Extensive field surveys have already been carried out by teams participating in the
InSEA since 2005. A database consisting of BIRs in the SO region was generated by manual
digitization. PAN-sharpened images (0.5 m) were visualized in ArcGIS 10 at several scales
using various band combinations of WV-2 data: 7-4-2, 8-7-2, 6-3-2, 5-3-2 and 7-3-2. However,
we could easily recognize the pattern, texture, shape, and size (dimension) of BIRs and discrim-
inate them against background features using a 5 (red)-3 (green)-2 (blue) band combination
and 1:500 scale, so this combination was used for digitization of BIRs. Each BIR polygon was
then edited to eliminate digitization errors. Quality control involved cross-checking the BIR
polygon boundaries to ensure accurate and consistent interpretation and digitization. Then,
the positional accuracy of the digitized BIR database was calculated using an independent
source of 20 accurate differential global positioning system (DGPS) point locations [38]. The
RMSE of digitization yielded ~30 cm (less than 1 pixel) when compared with the DGPS
source. The final manually digitized reference map depicting distribution of BIRs is shown in
Figure 2. The manually digitized 14 BIR tiles were extensively ground-surveyed, confirmed
and cross-checked using DGPS ground reference data obtained from field campaigns, the
MODIS and ETM+ derived BIR map and multitemporal GE images.

A field survey of 14 tiles was carried out in the Real-time kinematic (RTK) mode using
a Leica Viva DGPS surveying unit. Since these field datasets were collected from 2011
to 2015 (September–February), they were processed to conform to the 2012 (February)
images. Visual examination was conducted to eliminate those BIR patches that were visible
in the existing WV-2 imagery because they may have been covered by seasonal snow or
supraglacial debris. Therefore, only 12 tiles (Figure 1) mapped using the WV-2 image
acquired on 5 February 2012 were considered in the present analysis to reduce the errors
associated with temporal changes in BIRs. Those 12 tiles mapped using DGPS recorded
during January-February were overlaid on the WV-2 PAN-sharpened image and checked
against the digitized reference database. After a careful visual analysis, very few (~8%)
manually digitized BIRs that had higher boundary variations (typically > 1 pixel, i.e.,
~50 cm) compared with the ground-surveyed BIR boundaries were corrected manually.

A GIS–compatible shapefile of the BIRs was generated using ArcGIS 10. The surface
area of BIRs and Non-BIRs (snow/supraglacial debris/streams) for all 12 tiles was calcu-
lated using GIS routines. A list of the 12 tiles and their reference areas is given in Table 2.
Sample reference data for Tiles 1 and 2 are depicted in Figure 2. In the present analysis, the
12 tiles were selected on the basis of the following criteria (Figure 1 and Supplementary
Figure S2): (a) geographical regions represented by the selected 12 tiles were accessible for
conducting field surveys; (b) to ensure inclusion of BIRs of varying spatial extent across
these tiles to support the robustness of the analysis; (c) the 12 tiles were spatially well-
distributed to ensure unbiased accuracy analysis; (d) the 12 tiles were selected to include
various elevations to ensure the robustness of the analysis against topographical errors;
and (e) varying spatial extents of the confounding spectral signatures from non-target areas
(non-BIRs) were included over the 12 tiles to test the robustness of the analysis against
various non-BIR features.
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Figure 2. (a) A reference manually digitized land cover map showing the spatial distribution of 
BIRs over the entire study region; and (b) sample WV-2 imagery and reference digitized datasets 
for two tiles (Tile 1 and 2). 

A field survey of 14 tiles was carried out in the Real-time kinematic (RTK) mode us-
ing a Leica Viva DGPS surveying unit. Since these field datasets were collected from 
2011 to 2015 (September–February), they were processed to conform to the 2012 (Febru-
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visible in the existing WV-2 imagery because they may have been covered by seasonal 
snow or supraglacial debris. Therefore, only 12 tiles (Figure 1) mapped using the WV-2 
image acquired on 5 February 2012 were considered in the present analysis to reduce the 
errors associated with temporal changes in BIRs. Those 12 tiles mapped using DGPS 
recorded during January-February were overlaid on the WV-2 PAN-sharpened image 
and checked against the digitized reference database. After a careful visual analysis, 
very few (~8%) manually digitized BIRs that had higher boundary variations (typically > 
1 pixel, i.e., ~50 cm) compared with the ground-surveyed BIR boundaries were corrected 
manually. 

A GIS–compatible shapefile of the BIRs was generated using ArcGIS 10. The surface 
area of BIRs and Non-BIRs (snow/supraglacial debris/streams) for all 12 tiles was calcu-
lated using GIS routines. A list of the 12 tiles and their reference areas is given in Table 2. 
Sample reference data for Tiles 1 and 2 are depicted in Figure 2. In the present analysis, 
the 12 tiles were selected on the basis of the following criteria (Figure 1 and Supplemen-

Figure 2. (a) A reference manually digitized land cover map showing the spatial distribution of BIRs
over the entire study region; and (b) sample WV-2 imagery and reference digitized datasets for two
tiles (Tile 1 and 2).

Table 2. Sample data summarizing the reference BIRs (manually digitized and cross-verified with
ground surveying) for the 12 tiles and their respective non-BIR areas (snow/ice/supraglacial debris,
streams etc.). Topographic distribution of tiles is highlighted with coloured text and background;
(i) tiles on comparatively lower elevation areas are highlighted in violet text (Tiles 8, 9, 12), (ii) tiles
on comparatively higher elevation areas are highlighted with green text (Tiles 2, 4, 6), (iii) tiles on
intermediate elevation areas are highlighted with red text (Tiles 1, 3, 5, 7, 10, 11), (iv) tiles including
shadow-prone areas are highlighted with underlined text (Tiles 8, 9), and (v) Tiles including non-
shadowed areas are highlighted with blue background (Tiles 1, 2, 3, 4, 5, 6, 7, 10, 11, 12). Spatial
distribution of tiles based on surface area of BIRs is highlighted with bold italics underlined (<65%
blue ice, comparatively low blue ice, Tiles 6, 8, 9), bold underlined (>80% blue ice, relatively high
blue ice, Tiles 1, 3, 4, 5, 7), and bold italics (65–80% blue ice, Tiles 2, 10, 11, 12).

Reference BIRs Reference Non-BIRs
Tile No.

Total Area
(m2) (m2) % (m2) %

1 202,392.18 189,504.78 93.63 12,887.40 06.37
2 202,119.31 133,320.08 65.96 68,799.23 34.04
3 202,257.09 164,433.85 81.30 37,823.24 18.70
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Table 2. Cont.

Reference BIRs Reference Non-BIRs
Tile No.

Total Area
(m2) (m2) % (m2) %

4 201,547.57 170,673.36 84.68 30,874.21 15.32
5 201,630.23 169,468.74 84.05 32,161.49 15.95
6 201,608.05 127,106.45 63.05 74,501.60 36.95
7 201,750.89 190,304.24 94.33 11,446.65 05.67
8 202,171.24 104,841.94 51.86 97,329.30 48.14
9 201,947.31 104,285.23 51.64 97,662.08 48.36
10 201,588.89 146,478.47 72.66 55,110.42 27.34
11 201,444.93 137,480.92 68.25 63,964.01 31.75
12 201,520.04 137,752.88 68.36 63,767.16 31.64

3. Methods and Analyses

The data processing protocol is shown in Figure 3. The steps consisted of three blocks
as described below: (a) data pre-processing; (b) blue ice mapping using feature extraction
(FE); and (c) quantitative evaluation of accuracy.
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3.1. Pre-Processing of Satellite Data

Two procedures were implemented for data pre-processing: (a) WV-2 satellite data
calibration; and (b) atmospheric corrections. The conversion of DN to at-sensor radiance
and subsequently to top-of-atmosphere (TOA) reflectance images was conducted using
spectral transmission of the telescope, the spectral quantum efficiency of the detectors,
and other calibration parameters provided in the metadata file by using ENVI 5.x. The
top-of-atmosphere (TOA) reflectance images were converted to at-surface reflectance using
ATmospheric and Topographic CORrection version 3 (ATCOR-3 algorithm) (Supplementary
Figure S3) [39] coupled with a digital elevation model (DEM) constructed using synergetic
merging of ICESat-1 and DGPS data for the SO [40]. Parameters used for ATCOR-3
processing are summarized in Supplementary Table S2. Finally, to create a sharpened
image at 0.50 m resolution, the multiband MS image was PAN-sharpened using the Gram-
Schmidt (GS) method, which has been tested and proved to be comparatively superior and
consistent for sharpening WV-2 data [41].

3.2. Blue Ice Detection and Mapping Using Feature Extraction

This step was conducted using four semi-automatic FE approaches: (a) a customized
NDBI approach (cNDBI); (b) a spectral processing or matching (SP) approach; (c) a target
detection (TD) approach; and (d) pixel-wise supervised classification (PSC). All satellite
data were processed using a procedure developed in ENVI software (L3Harris Geospa-
tial, Colorado, Boulder) and Interactive Data Language (IDL; L3Harris Geospatial, Col-
orado, Boulder).

3.2.1. Customized NDBI Approach

The physical basis for most of the RS methods developed for mapping BIRs can be
summarized as follows. (1) A lower surface albedo of blue ice (0.5–0.6) compared to snow
(0.8–0.9) causes BIRs to exhibit a darker surface in contrast to the surrounding snow [1,42];
(2) blue ice has minimum absorption at 470 nm. BIRs can also be mapped by comparing
visible bands with a near- or middle-infrared channel [16]. The band ratio method is
principally based on the characteristic differences in spectral reflectance rendered by the
blue ice, which can be used for distinguishing blue ice from non-target classes (snow,
frozen lakes, supraglacial lakes, moraines, or exposed rock). As shown by its spectral
curve (Supplementary Figure S4), blue ice strongly absorbs solar radiation in the red and
infrared wavelengths and reflects in the blue portion of the spectrum, which explains its
bluish appearance. In comparison with blue ice, fresh snow has much higher reflectivity
(and hence reduced solar radiation absorption), particularly at red and near-infrared (NIR)
wavelengths of the spectrum permitting easier discrimination of blue ice from snow [23]. A
comparison of spectral curves of blue ice and snow indicates that the red and NIR bands
have the optimal spectral separability to discriminate them. Due to their apparent spectral
differences (strong absorption in the visible and NIR), blue ice and exposed rocks can
be visually separated from snow background on the colour composite of WV-2 bands,
particularly on the false colour composite of green, red and NIR bands.

The existing band ratios make use of the shortwave infrared (SWIR), red, blue and NIR
bands to extract BIRs [16,33]. However, for WV-2 data, the blue ice indices (e.g., NDBIs)
were revisited to incorporate the new bands and design customized NDBIs for blue ice
mapping and to provide a wider context to the analysis. Hence, in addition to existing band
ratios, we proposed various customized NDBIs in this study to fully utilize the add-on
WV-2 bands. Our unique set of customized NDBIs was designed based on the minimum
redundancy maximum relevance (mRMR)-based band scoring/ranking (Supplementary
Figure S5) and visual analysis (Supplementary Figure S4) of the spectral responses of
various BIRs present on the WV-2 image. It is a time consuming-process for WV-2 data,
because of its high spatial and spectral resolution compared with other datasets.
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In this study, the new spectral bands (Coastal, Yellow, Red Edge, NIR1, and NIR2) and
traditional bands (Blue, Green, Red) were ranked for maximum and minimum response
values relevant to a classification; bands were also ranked using the mRMR criterion. We
selected target blue ice regions in MSI and then found the combination of spectral bands
that differentiated the target class. Spectral bands were ranked based on their ability to
represent the target class (mRMR criterion), which was visually cross-verified. The bands
ranked according to mRMR were empirically evaluated by observing the spectral profiles
for BIRs. We evaluated nearly 1000 spectral profiles from the blue ice class to ensure
the maximum and minimum response band. These bands were normalized to yield the
normalized difference target class index (NDCI), in this case, NDBI. The detailed procedure
of customizing NDBIs is described in Figure 4. The spectral profile analysis and mRMR-
based scoring depicted in Supplementary Figure S4 show that the reflectance values range
from 40–100% for blue ice and 95–100% for snow.
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The reflectance values for blue, coastal, green, and yellow bands are comparable for
most of the profiles. The maximum reflectance rendered by these four bands can be used
to identify the blue ice on the image. The customized NDBIs proposed for establishing
effective blue ice mapping methods using WV-2 images are listed in Table 3. Sample spectral
profiles (Supplementary Figure S4) of blue ice reveal that coastal, blue, yellow, and green
bands have maximum mRMR score for blue ice and can be explored for customizing NDBI.
Following this criterion, NDBIs were designed using the relative responses of blue ice in
the spectral space (Supplementary Figure S4). The NDBI is used to identify areas where
BIRs are the dominant background or foreground material. Based on the spectral signature
analysis, SWIR and NIR spectral channels can be most effectively used to characterize
the difference in reflection for BIRs. The existing shortwave infrared (SWIR) band-based
NDSI is analogous to the traditional NDVI (NIR-Red normalization) [43] which is useful
for discriminating and mapping snow/ice from cumulus clouds. The NDSI is usually used
for mapping snow cover [44], based on the high and low reflectance of snow in the visible
(Green) and SWIR regions, respectively, yielding the ratio (Green− SWIR)/(Green + SWIR).
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Brown and Scambos [15] implemented a NDSI based on NIR and green bands of Landsat-7
ETM+ to map blue ice. Since there is no SWIR band available on WV-2, it was necessary
to customize the traditional NDSI to generate a blue ice index for this study. However,
there are characteristic differences in the response values for BIRs in the Yellow–NIR-1,
Yellow–NIR-2, Green–NIR-1 and Green–NIR-2 bands, which have been exploited to identify
blue ice (Table 3). This modification in traditional NDSI and NDVI increases the sensitivity
of the NDBI algorithm relative to NDVI because of the higher, more uniform reflectivity
for snow and ice in the green and yellow channels. Using the blue or coastal band would
potentially improve the algorithm still further, but scattered light from the atmosphere is a
significant problem in the blue channel; therefore, green and yellow bands were selected to
design the NDBI. We note that the NDBI does not maximize the response of blue ice, but
best discriminates the target blue ice class from other regions in the image.

Table 3. Customized NDBI devised as an effective semi-automatic extraction tool for blue ice mapping
application. A list of threshold ranges defined for the customized NDBIs to effectively extract blue
ice areas is also given.

NDBI NDBI Model Mathematical Expression Threshold Range

NDBI-1 NDBI(3−7/3+7)
Green−NIR1
Green+NIR1 0.83−0.95

NDBI-2 NDBI(3−8/3+8)
Green−NIR2
Green+NIR2 0.87−0.92

NDBI-3 NDBI(4−7/4+7)
Yellow−NIR1
Yellow+NIR1 0.84−0.93

NDBI-4 NDBI(4−8/4+8)
Yellow−NIR2
Yellow+NIR2 0.85−0.96

Drawing from a sample of the blue ice within the scene, a consistent and unique
difference between the customized NDBI bands was observed, which was constant for
all BIRs (Supplementary Figure S4). All detections were validated by cross-referencing
the signatures in corresponding regions in the true and false colour composites with the
detections in the NDBI. This is a novel method for determining BIRs without using a SWIR
band. NDBI produces a single grayscale image, where blue ice appears bright. Some other
features, such as frozen lakes, epishelf lakes and meltwater on the surface of ice also appear
bright. The possibility of supraglacial lakes having a spectral response like that of blue ice
in the study area is remote because there are no supraglacial lakes on the WV-2 imagery
of the study region that have an analogous spectral response to blue ice. Moreover, the
satellite data were captured with minimum cloud cover, and blue ice was the only target
that appeared bright on the NDBI image.

Thereafter, the customized NDBIs were calculated against the values in the reflectance
cube, and an output image was generated for each customized NDBI. Because of increased
solar radiation meltwater accumulated on the surface of white ice, on the surface of frozen
or semi-frozen lakes and on epishelf lakes, which produced a spectral response similar
to NDBI. To discriminate between blue ice and meltwater on the surface of snow/lakes,
it was essential to threshold the NDBI value so that the entire region was classified as
the target class (blue ice) or a non-target class (snow, white ice, meltwater, frozen lake,
epishelf lake). Since the BIRs exhibited NDBI values ranging from 0.84 to 0.96, a scene-
dependent threshold was defined and used to discriminate between blue ice and non-blue
ice pixels. Threshold values used in this study were empirically evaluated by manually
scrutinizing the most obvious 1000 blue ice pixels from the NDBI images obtained from
the PAN-sharpened images. Analyses were performed at the same pixel locations for all
NDBI images derived from PAN-sharpened images to verify unbiased accuracy analysis.
Table 3 summarizes the thresholds defined for the customized NDBI methods. A detailed
description of the thresholding process is given in Supplementary Material S1. Pixels with
higher NDBI values than the local threshold were coded as 1 (target blue ice class pixels),
while pixels with a lower NDBI value were coded as 0 (non-target class pixels). After
classifying the image based on each customized NDBI, semi-automatically extracted BIRs
were vectorized to compute the area. Customized NDBI-based extracted blue ice area (m2)
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and the bias (m2) with respect to the reference digitized blue ice area (m2) for all 12 tiles are
summarized in Table 4.

Table 4. Sample data summarizing the reference blue ice area (manually digitized and cross-verified
with ground survey) for the 12 tiles containing blue ice and their respective blue ice areas extracted
by the customized NDBI approach using GS-sharpened images. Negative bias values representing
overall overestimation of blue ice are highlighted with bold italics and underlined text. Outliers are
highlighted with *.

NDBI-1 NDBI-2 NDBI-3 NDBI-4

Tile
No.

Extracted
Area (m2)

Bias in
Area (m2)

Extracted
Area (m2)

Bias in
Area (m2)

Extracted
Area (m2)

Bias in
Area (m2)

Extracted
Area (m2)

Bias in
Area (m2)

1 189,540.73 −35.95 189,741.59 −236.81 189,913.57 −408.79 189,969.43 −464.65
2 132,971.17 348.91 133,071.89 248.19 133,193.03 127.05 133,293.27 26.81
3 164,849.04 −415.19 164,901.71 −467.86 164,831.11 −397.26 164,801.11 −367.26
4 170,279.86 393.50 170,079.25 594.11 170,411.25 262.11 170,411.25 262.11
5 169,810.47 −341.73 169,972.57 −503.83 170,802.57 −1333.83 170,831.73 −1362.99
6 126,907.83 198.62 126,986.98 119.47 127,031.04 75.41 126,931.04 175.41
7 189,928.71 375.53 190,011.38 292.86 189,901.83 402.41 190,621.57 −317.33
8 103,984.90 857.04 103,289.61 1552.33 103,937.55 904.39 103,326.68 1515.26 *
9 103,257.66 1027.57 103,097.47 1187.76 103,203.41 1081.82 103,089.41 1195.82

10 146,967.39 −488.92 147,167.39 −688.92 145,716.82 761.65 146,599.38 −120.91
11 137,598.07 −117.15 137,971.44 −490.52 137,991.03 −510.11 138,381.74 −900.82
12 137,421.31 331.57 137,861.83 −108.95 138,287.58 −534.70 137,399.43 353.45

|Avg.| 147,793.10 410.97 147,846.09 540.97 147,935.07 566.63 147,971.34 588.57
RMSE 491.65 682.58 675.21 768.46

3.2.2. Spectral Processing (SP) or Matching–Based Extraction Approach

Spectral processing/matching methods extract the target features from MS imagery
based on the target feature’s spectral characteristics. The supervised workflows were used
with an initial approximation in terms of Regions of Interest (ROIs) as reference spectra
that include representative pixels of BIRs. Spectral processing methods determine the
inherent spectral similarity between input spectral bands and reference spectra to generate
an output product showing pixels with similar spectral properties clumped into target and
non-target classes. A set of four SP methods were conducted using Spectral Processing
Exploitation and Analysis Resource (SPEAR) workflow tools and mapping methods (ENVI
5.x), which streamline methods [matched filtering (MF), mixture tuned matched filtering
(MTMF), mixed filtering/spectral angle mapper (MF/SAM) and principal component
analysis (PCA)] for mapping BIRs using WV-2 PAN-sharpened data. BIRs covered with
varying extents of snow showed a wide range of shades of blue colouration, ranging from
light blue to dark blue. The major influences came from topography of the study region
and varying amounts of snow sporadically scattered in many regions. Because of this
difference in spectral information, unsupervised information extraction methods were not
used for automated BIR mapping. Since one of our objectives was to extract BIRs semi-
automatically, we processed the imagery using supervised workflows based on knowledge
of BIR locations within the landscape.

3.2.3. Target Detection (TD) Approach

TD methods work on the principle of extracting target objects based on spectral char-
acteristics of reference training spectra (seed points) of target features and suppressing
background noise using spectra of non-target features. These methods provide a rapid
means to maximize the response of the known target spectra and suppress the response
of the composite unknown background targets. The initial approximations or spectral
signatures for supervised workflows are provided in terms of target ROIs and non-target
ROIs. Target detection tools (ENVI 5.x) were used to perform supervised image processing
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tasks into workflows [constrained energy minimization (CEM), adaptive coherence esti-
mator (ACE), orthogonal subspace projection (OSP), and mixed tuned target-constrained
interference-minimized filter (MT-TCIMF)] to extract blue ice features. We used the TD
workflow that couples a minimum noise fraction (MNF) transformation for improved TD
for multispectral data [45]. Additionally, for MT-TCIMF, the MNF-transformed image fuses
the mixture-tuned method with the TCIMF method. Hence, the MNF was used to resolve
the intrinsic spectral dimensionality of the WV-2 image to support subsequent processing.
The MNF transformation served two purposes: (a) MNF was used to extract target features
and/or reduce dimensions for the generic TD methods, such as ACE, CEM, and OSP; and
(b) for the mixture-tuned method (MT-TCIMF), applying the MNF transformation resulted
in the isotropic variance noise, which was used to compute infeasibility value. By adding
an additional infeasibility band, mixture-tuned techniques improved the detection results
by reducing the number of false spectral signals.

3.2.4. Pixel-Wise Supervised Classification Approach

We used four popular and distinctly different pixel-based classification methods to
classify the WV-2 PAN-sharpened data: maximum likelihood classifier (MXL), support
vector machine (SVM); neural network classification (NNC); and SAM in ENVI 5.2. The
robustness of these classifiers in mapping land-cover features using VHR image is discussed
elsewhere [46]. The Gram Schmidt (GS)-sharpened WV-2 image was classified into target
(BIRs) and non-target (meltwater, snow, landmass, lakes) areas. We limited our analysis to
these two classes (BIRs and non-BIRs) to reduce the time needed to produce the final map
of BIRs.

3.2.5. Practical Execution of Image Processing Routines and Post Processing Corrections

The FE methods described in this section are based on different underlying principles.
To compare these methods objectively, we kept the input ROIs (training samples) constant
for all methods. For the sharpened image, we selected 1000 regions of interest (ROIs) for
non-target and target (BIRs) classes as training pixels using spectral signature observations.
The training datasets were randomly selected based on manual interpretation with the
GS-sharpened image, field checking and using multi-date VHR historical images from GE.
Individual reference spectra (end members) for the blue ice class were collected as ROIs
over spatially and spectrally homogeneous targets on WV-2 PAN-sharpened images. End
member or ROI determination was done by carefully considering the blue ice unit size to
be identified and sampled on the image. By selecting such separable samples with the ROI
tool, we reduced the problem of mixed pixels. Spectral signatures or reference spectra for
each training class were defined by calculating image statistics of ROIs. Finally, FE methods
were executed using the common input ROIs (training samples) for all three approaches,
i.e., SP, TD and PSC.

BIRs were identified using 16 pixel-based methods and the resulting classified binary
images (0: non-BIRs, 1: BIRs). To correct possible classification errors and to suppress
or reduce the random noise, a number of post-classification operations were performed,
including majority filtering and mathematical morphology operations (dilation, erosion,
fill, trim) [47]. To reduce a ‘salt-and-pepper’ effect and produce more realistic maps, a
median filter with 3 × 3-pixel windows was applied. This filter is less sensitive to extreme
changes in pixel values as compared to linear techniques; it can remove salt-and-pepper
noise and preserve useful details in images without significantly reducing the sharpness
of an image. Finally, after classifying the image into the target class, i.e., blue ice, using
the SP, PSC or TD approaches, the semi-automatically extracted BIRs were vectorized to
calculate the blue-ice area derived from the individual method. Thereafter, we compared
these calculated areas with manually digitized reference blue ice areas, and we evaluated
the statistical significance based on the accuracy assessment.
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3.3. Accuracy Assessment

The results of the extraction methods were assessed using visual and statistical analy-
ses. We simultaneously overlaid blue ice portions of the original PAN-sharpened image,
the resulting semi-automated extracted BIRs, and the manually digitized reference BIR
shapefile, to perform identical operations on these images within a single image window.
We randomly picked a blue-ice polygon feature from the image to check the accuracy of
the semi-automatic extraction method by observing the variation in compactness and com-
pleteness of the outline of the extracted blue ice polygon compared with the outline of the
manually digitized reference blue ice polygon. Statistical analyses were conducted in three
different steps: (i) comparing tile-wise accuracy analysis for 12 manually digitized and
ground surveyed tiles; (ii) comparing areas of extracted BIRs against manually digitized
BIRs for the entire study region; and (iii) comparing the extracted BIRs against the existing
BIR map. Root mean square error (RMSE) and bias values between manually digitized
(reference) and semi-automatically extracted blue ice extent were estimated. Outliers in
bias and RMSE were calculated based on interquartile range (IQR) (i.e., Tukey’s fences) in
which Q1 and Q3 are the lower and upper quartiles respectively, and outlier was defined as
any value outside the range: [Q1 − k (Q3 − Q1), Q3 + k(Q3 − Q1)], where k = 1.5. To test
the robustness of the customized NDBI approach in extracting BIRs from topographically
varied areas, we organized the 12 tiles in three groups: (i) tiles on low elevation areas (tiles
8, 9 12) (LET); (ii) tiles on high elevation areas (HET) (tiles 2, 4, 6); and (iii) tiles on mod-
erate elevation areas (MET) (tiles 1, 3, 5, 7, 10, 11). Statistical parameters were calculated
separately for these three groups of tiles to compare the results of blue ice extraction.

4. Results

The performance of the customized NDBI-based semi-automatic extraction approach
was compared with the supervised semi-automatic FE approaches by computing RMSE and
bias of the extracted blue ice areas. The performance of the 16 feature extraction algorithms
(grouped into four approaches) was also compared for their applicability to extract BIRs.

4.1. Comparing Tile-Wise Accuracy for 12 Manually-Digitized and Ground-Surveyed Tiles

A pre-digitized database of BIRs of the 12 extracted tiles in the form of shapefiles was
utilized as a reference for assessing the accuracy of the semi-automatic extraction methods
(Table 2). The vectorized area of BIRS from the automated extraction procedures was
compared with BIRs in the manually digitized database. For quantifying the uncertainty
of our analysis, we used the RMSE because it is a consistent and statistically significant
indicator of accuracy. The RMSE statistics were calculated to evaluate the accuracy of
extraction and misclassification based on false signals. As the resolution of the WV-2 PAN-
sharpened image is 0.5 m, each misclassified pixel or false signal can introduce a RMSE
of 0.25 m2 in the semi-automatically extracted blue ice area. Mathematical expressions
for calculating various parameters of accuracy analyses are shown in Supplementary
Material S1.

4.1.1. Approaches for Semi-Automatic Extraction of BIRs

The average and total RMSE values for each FE approach (column) were calculated to
judge the overall stability and consistency of each approach (Table 5). In addition, RMSE
(m2), bias (% and m2), positive bias or total underestimated blue ice area (% and m2), negative
bias or total overestimated blue-ice area (% and m2) values for each extraction method were
calculated to assess the performance of each method within a respective extraction approach
(Tables 5 and 6). Sample data used in statistical calculations for the customized NDBI approach
are shown in Table 4. Average error or average bias and percent bias were calculated to
produce a chart of average bias (Table 5) values. We analysed semi-automatic FE approaches
for mapping of BIRs, which were categorized as [a] the customized NDBI approach (total
RMSE = 2617.90 ± 58.26 m2, average RMSE = 654.48 ± 58.26 m2), [b] the TD approach (total
RMSE = 3951.25 ± 55.05 m2, average RMSE = 987.81 ± 55.05 m2), [c] the SP approach (total
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RMSE = 5308.37 ± 127.83 m2, average, RMSE = 1327.09 ± 127.83 m2), and [d] the PSC
approach (total RMSE = 9037.70 ± 115.36 m2, average RMSE = 2259.43 ± 115.36 m2). Our
experiment revealed that the new customized NDBI approach outperformed the other three
existing approaches for extraction of BIRs. The performance of the TD and SP approaches
were comparable. The overall reliability of all the extraction methods within the respective
approaches is based on various statistical parameters and is discussed below. The variation in
statistical indicators of accuracy between the four approaches is summarized in Tables 5 and 6,
and Figure 5. A sample visual analysis/comparison of the blue-ice extraction results achieved
by the four feature extraction approaches is given in Figures 6 and 7.
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(i) Performance of the customized NDBI approach

The NDBI-1 (RMSE = 491.65 ± 58.26 m2) combination yielded superior results, while
NDBI-4 (RMSE = 768.46 ± 58.26 m2) produced inferior results compared to the remaining
two combinations in the four analysed NDBIs (Table 5, RMSE). Conversely, the differences
in average RMSE for NDBI-2 (682.58 ± 58.26 m2) and NDBI-3 (675.21 ± 58.26 m2) were
comparatively negligible in a given group. The customized NDBI approach was superior
to the existing three FE approaches. It is also evident that the NDBIs (NDBI-1 and NDBI-2)
designed using the green band performed slightly better than those using the yellow band
(NDBI-3 and NDBI-4) (Figure 6). Similarly, NDBIs designed using the NIR-1 (NDBI-1 and
NDBI-3) band performed better than those designed using the NIR-2 (NDBI-2 and NDBI-4)
band. This implies that the normalization of green and yellow bands against NIR-1 yielded
superior results than normalizing these spectral bands against NIR-2. Interestingly, the
underestimation represented by positive bias (average 0.21± 0.01%, total 0.83± 0.01%) has
contributed more in comparison to overestimation represented by negative bias (average
0.15 ± 0.03%, total 0.60 ± 0.03%) for misclassification of blue ice area (total bias) caused
by all the four NDBI methods. In terms of misclassified number of pixels, the NDBI
approach rendered a total of 58.02 ± 4.85% (average 59.07 ± 4.85%) overestimated versus
41.98 ± 4.85% (average 40.93 ± 4.85%) underestimated pixels out of the total misclassified
number of pixels. Overall, the customized NDBI approach surpassed the accuracy of the
existing three approaches.
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Table 5. Quantitative evaluation (bias, % and m2) of various feature extraction methods for extracting
blue ice from the 12 tiles analysed. The lowest (italics) and highest (bold) values in each local column
are highlighted. The column-wise total and average values are bolded and underlined. Total bias
represents the total misclassified blue ice area, positive bias represents the underestimated area of
the total misclassified blue ice area and negative bias represents the overestimated area of the total
misclassified blue ice area. Local outliers (w.r.t. four methods of the respective feature extraction
approach) are highlighted with *. RMSEt refers to the error values pertaining to the 12 tiles while
RMSEm refers to error values pertaining to the four methods in each respective approach.

Total Bias
(m2)

Total Bias
(%)

Positive
Bias (m2)

Positive
Bias (%)

Negative
Bias (m2)

Negative
Bias (%)

RMSEt
(m2)

NDBI-1 Present
work 4931.68 * 0.28 * 3532.74 0.20 −1398.94 0.08 491.65 *

NDBI-2 Present
work 6491.61 0.37 3994.72 * 0.22 * −2496.89 0.14 682.58

NDBI-3 Present
work 6799.53 0.38 3614.84 0.20 −3184.69 0.18 675.21

NDBI-4 Present
work 7062.82 0.40 3528.86 0.20 −3533.96 0.20 768.46

Average 6321.41 0.36 3667.79 0.21 −2653.62 0.15 654.48

RMSEm 6375.33 0.36 3672.80 0.21 2775.91 0.16 662.21

MT-
TCIMF [48] 9286.29 0.52 4423.17 0.25 −4863.12 0.27 860.71

OSP [49] 11,063.73 0.62 5462.31 0.31 −5601.42 0.32 1035.55

ACE [50] 10,167.08 0.57 5872.27 0.33 −4294.81 0.24 941.54

CEM [51] 12,551.57 0.71 6837.42 0.39 −5714.15 0.32 1113.45

Average 10,767.17 0.61 5648.79 0.32 −5118.38 0.29 987.81

RMSEm 10,834.58 0.61 5714.79 0.32 5150.79 0.29 992.40

MTMF [52] 12,556.91 0.71 6064.41 0.34 −6492.50 0.37 1119.16

MF/SAM [53] 12,899.18 0.73 6822.03 0.38 −6077.15 0.34 1152.36

MF [54] 15,410.72 0.87 8701.81 0.49 −6708.91 0.38 1361.74

PCA [55] 19,144.35 1.08 10,500.32 0.59 −8644.03 * 0.49 * 1675.11

Average 15,002.79 0.84 8022.14 0.45 −6980.65 0.39 1327.09

RMSEm 15,232.05 0.86 8205.11 0.46 7050.05 0.40 1345.44

SVM [56] 22,520.21 1.27 12,598.20 0.71 −9922.01 0.56 1976.81

SAM [57] 25,156.87 1.42 12,910.34 0.73 −12,246.53 0.69 2179.90

NNC [46] 27,370.25 1.54 17,488.27 * 0.98 * −9881.98 0.56 2503.42

MXL [58] 26,526.68 1.49 11,605.36 0.65 −14,921.32 0.84 2377.57

Average 25,393.50 1.43 13,650.54 0.77 −11,742.96 0.66 2259.43

RMSEm 25,459.89 1.43 13,837.59 0.78 11,923.96 0.67 2268.24

Total Avg. 14,371.22 0.81 7747.32 0.44 −6623.90 0.37 1307.20

Total RMSEm 16,110.98 0.91 8731.42 0.49 7518.65 0.42 1447.28
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(ii) Performance of the target detection (TD) approach

Amongst the four TD methods applied to the WV-2 images, the MT-TCIMF (RMSE =
860.71± 55.05 m2) outperformed the other methods, while CEM (RMSE = 1113.45± 55.05 m2)
performed the worst in this cohort of methods for extracting BIRs (Table 5, RMSE). ACE (RMSE =
941.54± 55.05 m2) delivered better results than OSP (RMSE = 1035.35± 55.05 m2). The under-
estimation represented by positive bias (average 0.32± 0.03%, total 1.27± 0.03%) contributed
more in comparison to overestimation represented by negative bias (average 0.29± 0.02%, total
1.15± 0.02%) for misclassification of the blue-ice area (total bias) caused by all four TD methods.

Table 6. Quantitative evaluation (misclassified number of pixels, % and #) of various feature extraction
methods for extracting blue ice from the 12 analysed tiles. The lowest (italics) and highest (bold)
values in each local column are highlighted. The column-wise total and average values are bolded
and underlined. [MP: Misclassified Pixels, OP: Overestimated pixels, UP: Underestimated pixels].
Global outliers (w.r.t. the 16 methods) are highlighted with (′) and local outliers (w.r.t. the four
methods in each respective approach) are highlighted with *.

MP (#) OP (#) UP (#) OP (%) UP (%)

NDBI-1 Present work 19,727 * 14,131 5596 71.63 ′ 28.37 ′

NDBI-2 Present work 25,966 15,979 * 9988 61.54 38.47

NDBI-3 Present work 27,198 14,459 12,739 53.16 46.84

NDBI-4 Present work 28,251 14,115 14,136 49.96 50.04

Average 25,286 14,671 10,615 59.07 40.93

RMSEm 25,501.17 14,691.06 11,103.87 59.67 41.78

MT-TCIMF [48] 37,145 17,693 19,452 47.63 52.37

OSP [49] 44,255 21,849 22,406 49.37 50.63

ACE [50] 40,668 23,489 17,179 57.76 42.24 *

CEM [51] 50,206 27,350 22,857 54.48 45.53

Average 43,069 22,595 20,474 52.31 47.69

RMSEm 43,338.16 22,859.23 20,603.21 52.46 47.86

MTMF [52] 50,228 24,258 25,970 48.3 51.70

MF/SAM [53] 51,597 27,288 24,309 52.89 47.11

MF [54] 61,643 * 34,807 26,836 56.47 43.53

PCA [55] 76,577 * 42,001 34,576 54.85 45.15

Average 60,011 32,089 27,923 53.12 46.88

RMSEm 60,928.23 32,820.33 28,200.35 53.22 46.97

SVM [56] 90,081 50,393 39,688 55.94 44.06

SAM [57] 100,627 51,641 48,986 51.32 48.68

NNC [46] 109,481 69,953 39,528 63.90 36.10

MXL [58] 106,107 46,421 59,685 43.75 56.25

Average 101,574 54,602 46,972 53.73 46.27

RMSEm 101,839.54 55,350.20 47,695.72 54.22 46.85

Total Average 57,484.81 30,989.19 26,495.69 54.56 45.44

Total RMSEm 64,443.86 34,925.60 30,074.62 54.96 45.93
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Figure 6. A visual image analysis of extracted BIRs from the sample Tile-1 using four NDBI meth-
ods under the customized NDBI approach and four supervised target detection methods under 
TD approach. Extracted BIR patches are appended on the WorldView-2 image (RGB: 8,5,1 band 
combination). The dark blue patches visible on images are non-BIRs. 

Figure 6. A visual image analysis of extracted BIRs from the sample Tile-1 using four NDBI meth-
ods under the customized NDBI approach and four supervised target detection methods under
TD approach. Extracted BIR patches are appended on the WorldView-2 image (RGB: 8,5,1 band
combination). The dark blue patches visible on images are non-BIRs.
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cessing methods under the SP approach and four supervised pixel-wise classification methods 
under the PSC approach. Extracted BIR patches are appended on the WorldView-2 image (RGB: 
8,5,1 band combination). The dark blue patches visible on images are non-BIRs. 

Figure 7. A visual image analysis of extracted BIRs from the sample Tile-1 using four spectral
processing methods under the SP approach and four supervised pixel-wise classification methods
under the PSC approach. Extracted BIR patches are appended on the WorldView-2 image (RGB: 8,5,1
band combination). The dark blue patches visible on images are non-BIRs.
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MT-TCIMF (positive bias 0.25 ± 0.03%, negative bias 0.27 ± 0.02%) and OSP (positive
bias 0.31 ± 0.03%, negative bias 0.32 ± 0.02%) caused more overestimation compared
to underestimation, while ACE (positive bias 0.33 ± 0.03%, negative bias 0.24 ± 0.02%)
and CEM (positive bias 0.39 ± 0.03%, negative bias 0.32 ± 0.02%) caused more underes-
timation compared to overestimation. In terms of misclassified number of pixels, the TD
approach rendered a total of 52.46 ± 2.33% (average 52.31 ± 2.33%) overestimated versus
47.54 ± 2.33% (average 47.69 ± 2.33%) underestimated pixels out of the total misclassified
number of pixels (Figure 6). In general, the performance of the TD approach in terms of
average RMSE was superior in comparison to the SP and PSC approaches, and inferior to
the NDBI approach.

(iii) Performance of the spectral processing (SP) approach

The MTMF spectral processing method (RMSE = 1119.16 ± 127.83 m2) produced the
best results when compared with the other methods within this approach. The MF/SAM
(RMSE = 1152.36 ± 127.83 m2) ratio method performed better than its individual com-
ponents, i.e., SAM (RMSE = 2179.90 ± 127.83 m2) and MF (RMSE = 1361.74 ± 127.83 m2),
as expected (Table 5, RMSE). The difference in RMSE between MF/SAM and MF was
comparable to the difference in RMSE between MF/SAM and SAM, which suggests that
the poor performance of MF/SAM may be attributed to the overall poor performance of the
SAM component. The underestimation represented by positive bias (average 0.45 ± 0.06%,
total 1.81 ± 0.06%) has contributed more in comparison to overestimation represented
by negative bias (average 0.39 ± 0.03%, total 1.57 ± 0.03%) for misclassification of blue
ice area (total bias) caused by all four SP methods (Figure 7). It is pertinent to note
that the differences in average RMSE for MTMF (1119.16 ± 127.83 m2) and MF/SAM
(1152.36 ± 127.83 m2) were negligible in this group of methods. Interestingly, PCA per-
formed significantly less well than MF/SAM, MF and MTMF. Notably, the MTMF (positive
bias 0.34 ± 0.06%, negative bias 0.37 ± 0.03%) caused more overestimation compared
to underestimation, while other three methods in the cohort (MF/SAM, MF and PCA)
caused more underestimation in comparison to overestimation. In terms of misclassified
number of pixels, the SP approach resulted in a total 53.47 ± 1.77% (average 53.12 ± 1.77%)
overestimated versus 46.53 ± 1.77% (average 46.88 ± 1.77%) underestimated pixels out of
the total misclassified number of pixels. In general, the performance of the SP approach in
terms of average RMSE was superior in comparison to the PSC approach and inferior to
the TD and NDBI approaches.

(iv) Performance of the pixel-wise supervised classification (PSC) approach

The SVM (RMSE = 1976.81 ± 115.36 m2) combination yielded superior results, while
NNC (RMSE = 2503.42 ± 115.36 m2) performed least well, compared to the remaining
two combinations in this group of four pixel-based classification methods (Table 5, RMSE).
Conversely, the differences in average RMSE for SAM (2179.90 ± 115.36 m2) and MXL
(2377.57 ± 115.36 m2) were negligible in this group. The underestimation represented by
positive bias (average 0.77 ± 0.07%, total 3.08 ± 0.07%) contributed more in comparison to
overestimation represented by negative bias (average 0.66 ± 0.07%, total 2.65 ± 0.07%) for
misclassification of blue ice area (total bias) of all four PSC methods (Figure 7). Notably, the
MXL (positive bias 0.65 ± 0.07%, negative bias 0.84 ± 0.07%) caused more overestimation
compared to underestimation, while the other three methods in the cohort (SVM, SAM,
NNC) caused more underestimation in comparison to overestimation. In terms of mis-
classified number of pixels, the PSC approach resulted in a total of 53.76 ± 4.22% (average
53.73 ± 4.22%) overestimated versus 46.24 ± 4.22% (average 46.27 ± 4.22%) underesti-
mated pixels out of the total misclassified number of pixels. The PSC approach was inferior
to the other three FE approaches (SP, TD, NDBI) analysed here.

(v) Overall performance of semi-automatic extraction methods

The overall performance for all the blue ice extraction methods, based on RMSE and
bias, is summarized in Tables 5 and 6, and Figure 5 and was ranked as follows: NDBI-1



Remote Sens. 2023, 15, 1287 22 of 40

> NDBI-3 > NDBI-2 > NDBI-4 > MT-TCIMF > ACE > OSP > CEM > MTMF > MF/SAM
> MF > PCA > SVM > SAM > MXL > NNC. This order suggests that the methods can
be grouped by approach and ranked as follows: NDBI approach > TD approach > SP
approach > PSC approach. The RMSE values for the customized NDBI approach ranged
from ~491 ± 58 to ~769 ± 58 m2, and for the TD, SP and PSC approaches, RMSE values
varied from ~860 ± 55 to 1114 ± 55 m2, ~1119 ± 128 to ~1675 ± 128 m2, and ~1976 ± 115
to ~2503 ± 115 m2, respectively (Table 5, Figure 5). The percentage bias values for the
customized NDBI approach ranged from ~0.28 ± 0.03 to ~0.40 ± 0.03%, and for the TD, SP
and PSC approaches, from ~0.52 ± 0.04 to ~0.71 ± 0.04%, ~0.71 ± 0.09 to ~1.08 ± 0.09%,
and ~1.27 ± 0.06 to ~1.54 ± 0.06%, respectively. The smallest variation in RMSE and bias
was found in the customized NDBI approach, which suggests that it is a more stable and
consistent approach than the other three blue ice extraction approaches. In terms of the
internal stability associated with each approach, they ranked as follows: customized NDBI >
TD > SP > PSC. Along with the NDBI methods, the MTMF methods (MTMF of SP approach
and MT-TCIMF of TD approach) outperformed the other extraction methods in their
respective cohorts, while the CEM, PCA and NNC methods had the poorest performance
of the 16 extraction methods. In general, NDBI methods consistently achieved a minimum
number of false positives for all 12 tiles.

Our results support the strong potential of the NDBI approach for extracting BIRs.
Among all the TD, SP, and PSC methods, excluding MTMF methods, results of the ACE
method showed great target visibility and the capability to suppress false signals, resulting in a
low RMSE (941.54± 55.05 m2) when compared with other methods. The comparative analysis
of RMSEs (Table 5) suggests that MT-TCIMF (TD approach) (RMSE = 860.71 ± 55.05 m2) was
able to greatly reduce the number of false signals when compared with MTMF (SP approach)
(RMSE = 1119.16 ± 127.83 m2). Our results are consistent with earlier studies, which revealed
that if the spectral angle between the target and the non-target is significant, MT-TCIMF may
reduce the number of false positives when compared with the CEM method. Based on the
RMSEs computed from the number of false assignments, ACE and MT-TCIMF achieved better
performance than the SP and PSC approaches. We also found that the TD and SP methods
were suitable for blue ice detection, even though their performance was poorer than that of
NDBI methods. The MF/SAM ratio suppressed the false positives that were present when
using only one of the methods (MF or SAM) but not when using the other, while enhancing
the true positives. For example, if a pixel representing blue ice had a high MF and low SAM
value, the ratio (MF/SAM) would produce a high true positive. Conversely, if the MF product
had a high value for a false positive, but the SAM correctly mapped it as a non-blue ice pixel
(high value), the ratio of these high values led to a smaller value, which suppressed the false
positive. Hence, MF/SAM (RMSE = 1152.36 ± 127.83 m2) performed considerably better than
MF (RMSE = 1361.74 ± 127.83 m2) and SAM (RMSE = 2179.90 ± 115.36 m2) individually.

4.1.2. Topographical Influences on the Extraction of BIRs

It is assumed that the use of normalised band ratios considerably reduces the topograph-
ical effect in comparison to the use of single spectral bands [59]. However, a few studies have
shown that the topography significantly affects band ratios in hilly areas [60–62] and image
classification [63]. Therefore, it is pertinent to demonstrate the robustness and validity of the
analysis by testing the effect of topography. We quantitatively analysed the effects of the to-
pography of the study area on the extraction of BIRs using four feature extraction approaches.
The topographic distribution of the 12 tiles analysed is highlighted in Table 2. To test the
robustness of the analysis, we describe the effect of topography based on three parameters.

(i) Comparative analysis of errors for various tiles in different elevation settings

RMSE values for three types (LET, MET, and HET) of tiles (based on elevation) and
local statistics for four semi-automatic FE approaches are given in Supplementary Table S3.
Variation of the percent bias, including overestimated area (negative bias) and underesti-
mated area (positive bias), was estimated. The contribution of overestimated pixels and
underestimated pixels (%) to the total bias in the extracted blue-ice area is shown in Figure 8.
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To test the performance of the four FE approaches in blue ice extraction in terms of overall
stability and consistency, box plots were constructed (Supplementary Figure S6).
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Figure 8. The overall performance of the extraction methods for extracting all the 12 tiles and effect
of topographic variation on the accuracy of extracting BIRs, based on misclassified (underestimated
or overestimated) area (%). The statistic is depicted for varying topographic tiles separately, i.e.,
moderate elevation tiles, low elevation tiles and high elevation tiles. The figure also depicts variations
of positive bias (m2), negative bias (m2), RMSE (m2) and total bias (m2) for the four feature extraction
approaches implemented for blue ice extraction.

The average and total RMSE values for each FE approach (column) were calcu-
lated to assess their overall stability and consistency (Supplementary Table S3). The
16 individual FE methods were categorized into four approaches as (a) the customized
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NDBI approach (average RMSE, MET = 562.72 ± 95.45 m2, HET = 264.78 ± 51.18 m2,
LET = 1015.23 ± 85.83 m2), (b) the TD approach (average RMSE, MET = 868.66 ± 73.38 m2,
HET = 666.49 ± 128.57 m2, LET = 1441.51 ± 57.84 m2), (c) the SP approach (average RMSE,
MET = 1182.64 ± 67.32 m2, HET = 1048.44± 229.17 m2, LET = 1807.61± 124.62 m2), and (d)
the PSC approach (average RMSE, MET = 1978.97± 187.32 m2, HET = 1881.32 ± 224.80 m2,
LET = 2978.58 ± 222.60 m2). Our analyses revealed that the new customized NDBI ap-
proach outperformed the three existing approaches for extraction of blue ice areas from
various types of elevated areas. This implies that the NDBI approach is least prone to
topographic and illumination-based errors in classifying blue ice areas. The TD and SP
approaches showed comparable though less effective performance. It was also evident that
the NDBI approach led to the least errors for HET (average RMSE = 264.78 ± 51.18) as com-
pared to MET (average RMSE = 562.72 ± 95.45) and LET (average RMSE = 1015.23 ± 85.83),
indicating that the NDBI approach is relatively less precise in extracting blue ice from LET
compared to MET and HET.

The overall trends of performance for all the blue ice extraction methods, based on
RMSE and bias, are summarized in Figures 8 and S6. It is notable that the accuracy trend for
extracting blue ice from topographically varying tiles is consistent for all four approaches,
in the order HET > MET > LET. This implies that the 16 pixel-based methods were more
suitable to extract BIRs from HET compared to LET and MET, which can be attributed
to the sun position and surface illumination at the time of WV-2 image acquisition. It
is also evident that the different topographical tiles rendered varying blue ice mapping
accuracies for the different methods. The average RMSE values for the customized NDBI
approach for all three topographical categories (LET, MET, HET) ranged from ~264 ± 77
to ~1015 ± 77 m2, and for the TD, SP and PSC approaches, average RMSE values varied
from 666 ± 87 to 1441 ± 87 m2, from ~1048 ± 140 to ~1807 ± 140 m2, and from ~1881 ± 22
to ~2978 ± 21 m2, respectively (Supplementary Table S3). The smallest variation in RMSE
and bias was found in the customized NDBI approach, which suggests that it is the
most stable and consistent approach. In terms of the internal stability associated with
each approach, we rank these as follows: customized NDBI > TD > SP > PSC. Figure 8
shows the variation of percent bias values including positive bias and negative bias for
extracting blue ice from topographically varying tiles (LET, HET, MET) using the 16 pixel-
based methods categorized in four FE approaches. Having concluded above that HET
yielded comparatively higher accuracy for all the 16 methods, it is interesting to note that
misclassification in all the 16 methods was almost completely because of overestimation
(negative bias) rather than underestimation (accounting for almost 0%). Misclassification in
MET was mostly caused by underestimated pixels (positive bias), while that in LET was
mostly caused by overestimated pixels (negative bias).

(ii) Comparative analysis of errors for shadow-covered against non-shadow covered tiles.

Of the 12 tiles under consideration, two (tiles 8, 9) were in shadow-prone regions
as identified by digital elevation model (DEM)-based hill shade (shaded relief) analysis.
Supplementary Figure S7 presents the RMSE results pertaining to those two shadowed
tiles (ST) and 10 non-shadowed tiles (NST) (tiles 1, 2, 3, 4, 5, 6, 7, 10, 11, 12). The overall
trend of accuracy for the blue ice extraction methods as they pertain to shadow cover,
based on RMSE, was: NDBI-1 > NDBI-3 > NDBI-4 > NDBI-2 > MT-TCIMF > ACE > OSP
> CEM > MTMF > MF/SAM > MF > PCA > SVM > SAM > MXL > NNC. This ranking
suggests that the methods can be grouped by approach and ranked based on their ability
to extract shadow-covered blue ice is as follows: NDBI > TD > SP > PSC (Supplementary
Figure S7). For shadowed tiles, the average RMSE for the customized NDBI approach
varied from ~946 ± 117 to ~1382 ± 117 m2. The RMSE of the TD, SP and PSC approaches
varied from ~1418 ± 61 to ~1715 ± 61 m2, ~1691 ± 155 to ~2394 ± 155 m2, and 2866 ± 323
to ~4250 ± 323 m2, respectively. The overall trend of accuracy for the blue ice extraction
methods for non-shadowed tiles, based on RMSE, was: NDBI-1 > NDBI-2 > NDBI-3 >
NDBI-4 > MT-TCIMF > ACE > OSP > CEM > MTMF > MF/SAM > MF > PCA > SVM >
NNC > SAM > MXL. This ranking suggests that the methods can be grouped by approach
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based on their ability to extract blue ice from NST as follows: NDBI > TD > SP > PSC
approach (Supplementary Figure S7). For non-shadowed tiles, the average RMSE for the
customized NDBI approach varied from ~333± 100 to ~784± 100 m2, which is significantly
lower than that for the shadowed tiles (~946 ± 117 to ~1382 ± 117 m2). The RMSE of
the TD, SP and PSC approaches varied from ~697 ± 58 to ~948 ± 58 m2, ~964 ± 124 to
~1489 ± 124 m2, and ~1745 ± 83 to ~2144 ± 83 m2, respectively. These observations clearly
confirm that the shadowed regions cause more misclassification than the non-shadowed
regions in the extraction of blue ice areas.

(iii) Comparative analysis of errors based on amount of blue ice area present in various tiles

The spatial distribution of tiles based on surface area of BIRs is described in Table 2,
categorized into three groups: LBT (comparatively low blue ice, tiles 6, 8, 9), HBT (relatively
high blue ice, tiles 1, 3, 4, 5, 7), MBT (intermediate blue ice, tiles 2, 10, 11, 12). Statistics were
calculated separately for these three categories to compare the influence of amount of blue
ice in different tiles (Supplementary Table S4). Supplementary Figure S8 shows the variation
of RMSE rendered by 16 FE methods categorized into four approaches for extraction of
blue ice from various tiles based on their classification as LBT, MBT or HBT). The average
and total RMSE values for each FE approach (column) was calculated to assess their overall
stability and consistency (Supplementary Table S4). Our analyses revealed that the new
customized NDBI approach outperformed the three existing approaches for extraction
of blue-ice areas from tiles varying in the amount of blue ice included. Supplementary
Figure S8 shows that tiles with moderate or high blue-ice percentages give comparable
accuracy for all 16 extraction methods, while tiles with low blue ice percentage are prone to
misclassification, achieving lower accuracy in terms of RMSE. These observations clearly
confirm that the accuracy of pixel-based methods is critically dependent on the amount of
the target feature and confounding non-target features present in the study area.

4.2. Comparing Areas of Extracted BIRs against Reference BIRs for the Entire Study Region

In the previous section, we demonstrated the robustness of the analysis using the
data collected on the field using differential GPS supported by manual digitization. In
order to compare the blue ice extraction results with existing blue ice maps and to test
the validity against solely manually digitised reference map, we compared our extraction
results against the entire extent of the study. A pre-digitized database of the blue ice areas
in the entire study region, in the form of shapefiles, was utilized as a reference for assessing
the accuracy of the semi-automatic extraction methods. Using the vectorized outputs from
the extraction procedures, the areas of the extracted blue ice areas were estimated, and
area statistics were compared with blue ice areas in the manually digitized database. The
reference data used for this analysis are given in Table 7.

Table 7. Manually digitized data summarizing the reference blue ice regions (BIRs) and non-BIRs
(snow/supraglacial debris, streams, etc.) for entire study area. The reference blue-ice area derived
from existing MODIS/Landsat ETM+ [22] data is also described.

Reference Data Reference Blue Ice Data

Reference Map Total Area (m2) BIRs (m2) Non-BIRs (m2) % BIRs % Non-BIRs

Manually digitized BIRs 173,530,259.00 106,875,250.60 66,655,008.40 61.59 38.41
MODIS–ETM+ BIRs 173,530,259.00 140,281,789.02 33,248,469.98 80.84 19.16

The extracted BIR map was compared with manually-digitized reference data to
produce a chart of total bias (m2 and %) (Table 8). Considering the customized NDBI
approach, NDBI-1 (total bias = 0.58 ± 0.02%) and NDBI-3 (total bias = −0.58 ± 0.02%)
yielded superior results, while NDBI-2 (total bias = −0.59 ± 0.02%) and NDBI-4 (total bias
= −0.65 ± 0.02%) produced inferior results in the group of four analysed NDBIs (Table 8,
Total bias). The differences in total bias for NDBI-1 (0.58 ± 0.02%), NDBI-2 (−0.59 ± 0.02%)
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and NDBI-3 (−0.58± 0.02) were comparatively negligible in a this group. However, NDBI-1
resulted in underestimation of blue ice, while the remaining three NDBI models resulted in
overestimation. The NDBIs (NDBI-1 and NDBI-2) designed using the green band performed
slightly better than those designed using the yellow band (NDBI-3 and NDBI-4). Similarly,
NDBIs designed using the NIR-1 band (NDBI-1 and NDBI-3) performed better than those
designed using the NIR-2 band (NDBI-2 and NDBI-4). Overall, the customized NDBI
approach surpassed the accuracy associated with the existing three approaches, suggesting
that customized NDBI resulted in fewer false assignments. Considering the TD approach,
MT-TCIMF (total bias = −1.10 ± 0.03%) and OSP (total bias = −1.12 ± 0.03%) yielded
superior results, while ACE (total bias = 1.19 ± 0.03%) and CEM (total bias = 1.21 ± 0.03%)
produced inferior results, in this group of four analysed methods (Table 8, Total bias). The
differences in total bias for MT-TCIMF/OSP and ACE/CEM pairs were also comparatively
negligible in this group. It is notable that MT-TCIMF and OSP resulted in overestimation of
blue ice, while ACE and CEM resulted in underestimation. Considering the SP approach,
MTMF (total bias = −1.61 ± 0.03%) and MF/SAM (total bias = −1.65 ± 0.03%) yielded
superior results, while MF (total bias = 1.68 ± 0.03%) and PCA (total bias = 1.74 ± 0.03%)
produced inferior results, in this group of four analysed methods (Table 8, Total bias). The
differences in total bias for MTMF/MF/SAM pair were again comparatively negligible in
this group. In this group, MTMF and MF/SAM resulted in overestimation of blue ice, while
MF and PCA resulted in underestimation. Finally, considering the PSC approach, SVM
(total bias = 2.59 ± 0.05%) and SAM (total bias = 2.65 ± 0.05%) yielded superior results,
while MXL (total bias = −2.77 ± 0.05%) and NNC (total bias = 2.78 ± 0.05%) produced
inferior results, in this group of four analysed methods (Table 8, Total bias). The differences
in total bias for the NNC/MXL pair were also comparatively negligible in this group. In
this group, MXL resulted in overestimation of blue ice, while the other three methods in
this cohort resulted in underestimation.

The overall trend of accuracy for the blue ice extraction methods, based on total bias
(%), was: (NDBI-1 = NDBI-3) > NDBI-2 > NDBI-4 > MT-TCIMF > OSP > ACE > CEM
> MTMF > MF/SAM > MF > PCA > SVM > SAM > MXL > NNC. This analysis is very
consistent with the tile-wise analysis described in the previous section. A visual image
analysis of extracted BIRs from the entire study area using the NDBI approach is shown
in Figure 9 (TD approach on Supplementary Figure S9, SP approach on Supplementary
Figure S10 and PSC approach on Supplementary Figure S11). The visual analysis reveals
that most instances of misclassification occurred at low elevation or in shadow prone
areas. Most of the feature extraction methods failed to recognize shadowed blue ice pixels.
However, it was notable that the NDBI-derived shadowed blue ice pixels were relatively
less misclassified, exemplifying the robustness of the NDBI approach for extraction of
blue ice in shadowed areas. In addition, most misclassification was constrained to areas
of dense sastrugi, which are sharp irregular grooves/ridges formed on a snow surface
by wind erosion, saltation of snow particles and deposition. These regular ridges cause
local shadowing because of rough topography. These local patches of sastrugi hamper the
detection of blue ice pixels. The blue ice area related to seasonal melting and ice flows
(“rough BIRs”) has a relatively rough surface, with troughs and ridges caused by melting
and water flows, and crevassing caused by high strain in the ice. The troughs and crevasses
trap snow and lead to mixed pixels that contain both blue ice and snow. The ridges also
induce a solar shadow effect on the WV-2 imagery. In addition, wind crusts present micro-
relief with relatively smaller patches mixed with snow, again forming a rough surface
texture, which was the major source of misclassification in the present study.
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Table 8. Quantitative evaluation (bias, % and m2) of various feature extraction methods for extracting
blue ice from the entire study area. The lowest (italics) and highest (bold) values in each local column
are highlighted. The column-wise average values are bolded and underlined. Total bias represents
the total misclassified blue ice area in % and m2. Local outliers are highlighted using *.

Extracted Blue
Ice Area Total Bias (m2) Total Bias (%) Remark

NDBI-1 Present work 106,253,876.47 * 621,374.13 * 0.58 * Underestimation

NDBI-2 Present work 107,510,771.62 −635,521.02 −0.59 Overestimation

NDBI-3 Present work 107,493,642.98 −618,392.38 −0.58 Overestimation

NDBI-4 Present work 107,572,503.29 −697,252.69 −0.65 Overestimation

Average 107,207,698.59 643,135.06 0.60

RMSEm 107,209,116.94 643,926.09 0.60

MT-TCIMF [48] 108,050,194.52 −1,174,943.92 −1.10 Overestimation

OSP [49] 108,069,168.73 −1,193,918.13 −1.12 Overestimation

ACE [50] 105,606,034.11 1,269,216.49 1.19 Underestimation

CEM [51] 105,584,361.53 1,290,889.07 1.21 Underestimation

Average 106,827,439.72 1,232,241.90 1.15

RMSEm 106,834,546.85 1,233,211.13 1.16

MTMF [52] 108,595,298.82 −1,720,048.22 −1.61 Overestimation

MF/SAM [53] 108,639,032.38 −1,763,781.78 −1.65 Overestimation

MF [54] 105,082,210.18 1,793,040.42 1.68 Underestimation

PCA [55] 105,013,550.34 1,861,700.26 1.74 Underestimation

Average 106,832,522.93 1,784,642.67 1.67

RMSEm 106,847,432.04 1,785,386.08 1.67

SVM [56] 104,108,595.61 2,766,654.99 2.59 Underestimation

SAM [57] 104,041,038.89 2,834,211.71 2.65 Underestimation

NNC [46] 103,906,014.77 2,969,235.83 2.78 Underestimation

MXL [58] 109,840,008.48 * −2,964,757.88 * −2.77 * Overestimation

Average 105,473,914.44 2,883,715.10 2.70

RMSEm 105,504,057.77 2,885,016.75 2.70

Total Average 106,585,393.92 1,635,933.68 1.53

Total RMSEm 106,600,768.17 1,833,465.00 1.72

4.3. Comparison of the Extracted BIRs with Existing BIR Map

In the final step, semi-automatically extracted blue ice areas from WV-2 were compared
with the existing blue ice map derived from MODIS and ETM+ satellite data [22] (Figure 10).
It is evident that the MODIS and ETM+ derived BIR map overestimated the blue ice in the
study area. Considering the coarse resolution of MODIS and medium resolution of ETM+, the
undersized snow cover patches were misclassified as blue ice. This necessitated refinement of
the existing BIR map derived from medium resolution satellite data by VHR satellite data. The
present study aimed to refine the existing local BIR map using VHR satellite data to exclude
the local snow cover. It is also evident that the MODIS and ETM+ derived BIR map includes
some of the lakes of Schirmacher oasis as blue ice, which needs to be rectified. Epishelf lakes
and frozen lakes, in particular, confound the spectral signature of blue ice leading to their
misclassification as blue ice. The WV-2 derived map clearly excludes the local snow cover
and lakes of the Schirmacher Oasis, and hence leads to improvement in the local BIR map. In
Figure 10, regions of overestimation of BIRs (by snow cover) derived from MODIS and ETM+
are clearly visible. These regions of overestimation are refined in the BIR map derived from
WV-2 data and quantitatively, the WV-2 derived BIR map refined the existing MODIS/ETM+
derived BIR map by around 31% (~33,406,538 m2).
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Figure 9. Visual image analysis of extracted blue ice regions from the entire study area using four 
NDBI methods under a customized NDBI approach: (a–d) represent reference manually-digitized 
blue ice over the semi-automatically extracted blue ice to infer the spatial distribution of overesti-
mated blue ice pixels; (e–h) represent the semi-automatically extracted blue ice over reference 
manually-digitized blue ice to infer the spatial distribution of underestimated blue ice pixels. 

Figure 9. Visual image analysis of extracted blue ice regions from the entire study area using four
NDBI methods under a customized NDBI approach: (a–d) represent reference manually-digitized
blue ice over the semi-automatically extracted blue ice to infer the spatial distribution of overestimated
blue ice pixels; (e–h) represent the semi-automatically extracted blue ice over reference manually-
digitized blue ice to infer the spatial distribution of underestimated blue ice pixels.
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Figure 10. Visual image analysis of extracted blue ice regions from the entire study area using 
WV-2: (a) WV-2 imagery showing the spatial extent of the study area; (b) extent of the present 
study on LIMA mosaic; (c) BIRs derived using WV-2 appended on PAN-sharpened WV-2 satellite 
imagery; (d) BIRs derived from MODIS/ETM+ appended on WV-2 satellite imagery; (e) BIRs de-
rived from WV-2 appended on LIMA mosaic, (f) BIRs derived from MODIS/ETM+ appended on 
LIMA mosaic, (g) BIRs extracted using WV-2 appended on BIRs derived from MODIS/ETM+ to in-
fer the spatial distribution of errors in existing MODIS/ETM+ BIR dataset, as depicted on back-
ground WV-2 imagery, (h) BIRs extracted using WV-2 appended on BIRs derived from 
MODIS/ETM+ to infer the spatial distribution of errors in existing MODIS/ETM+ BIR dataset, as 

Figure 10. Visual image analysis of extracted blue ice regions from the entire study area using
WV-2: (a) WV-2 imagery showing the spatial extent of the study area; (b) extent of the present
study on LIMA mosaic; (c) BIRs derived using WV-2 appended on PAN-sharpened WV-2 satellite
imagery; (d) BIRs derived from MODIS/ETM+ appended on WV-2 satellite imagery; (e) BIRs derived
from WV-2 appended on LIMA mosaic, (f) BIRs derived from MODIS/ETM+ appended on LIMA
mosaic, (g) BIRs extracted using WV-2 appended on BIRs derived from MODIS/ETM+ to infer the
spatial distribution of errors in existing MODIS/ETM+ BIR dataset, as depicted on background WV-2
imagery, (h) BIRs extracted using WV-2 appended on BIRs derived from MODIS/ETM+ to infer the
spatial distribution of errors in existing MODIS/ETM+ BIR dataset, as depicted on background LIMA
imagery. White patches distributed within the study area extent represent snow.
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4.4. Errors Associated with Manually Digitized Reference Data

Assessment of the accuracy of the digitized vector data was necessary as this is
the most crucial reference data used in this study. A perpendicular error distance from
the digitized shoreline vertex to the DGPS reference shoreline vertex was calculated for
10 random points per blue ice tile, i.e., 120 points from 12 tiles. The perpendicular distance
errors varied from ~3 mm to ~11 mm (RMSE ~9 mm). Additionally, to check the effect of
digitization errors on overall blue ice area, each digitized blue ice polygon area value was
compared with the original reference DGPS-based blue ice area value. The difference in blue
ice area values varied from ~4 m2 to ~7 m2 with RMSE of ~8.5 m2. These quantitative errors
in digitization are insignificant in comparison to the errors resulting from the different
extraction methods (~200 m2 to ~3000 m2) for the extraction of BIRs. Furthermore, the
digitization error would be constant across all 16 methods and, hence, comparison of these
methods would be unbiased and valid.

5. Discussion
5.1. Testing the Performance of Supervised Information Extraction Methods in the
Antarctic Environment

Overall, the visual images of the extracted BIRs obtained using four general feature
extraction approaches indicated that most misclassification occurred in shadow-prone
and topographically varying areas (Figure 8 and Figures S6–S11). We also noted positive
(representing exceptional accuracy in BIR mapping in this cohort) and negative (repre-
senting inferior performance in this cohort) outliers. These outliers are highlighted in
Tables 4–6, 8, S3 and S4, and related to all four approaches. Global outliers (w.r.t. the
16 individual methods) and local outliers (w.r.t. the four methods in each approach) are
highlighted in Table 6. The occurrence of outliers was related to excessive overestimation
or excessive underestimation of blue ice area. Outliers found in the present study are
significant as they represent the factors affecting the performance of different methods.
For instance, NDBI-4 yielded a significant underestimation (compared to all 12 tiles) for
deriving BIRs from shadow-prone tiles (tile 8 and tile 9), indicating its poor ability to map
BIRs with many shadows. NDBI-1 provided much superior performance in a cohort of
four models representing the positive outlier. The exceptional overestimations in MXL
appear to be caused by confounding signatures of background features. Poor performance
and misclassifications by MXL have been reported previously [64–66]. This supports the
view that non-parametric methods such as SVM are better suited to VHR compared to
parametric methods such as MXL [67]. The NDBI approach used in the present study did
not suffer from significant negative outliers and hence performed consistently throughout
the experiment. Our analyses also confirm previous studies [45] which have suggested
that MT-TCIMF can significantly reduce the number of false positives when compared
with CEM.

5.2. Effect of New Spectral Bands of the WV-2 Used in NDBI for Blue Ice Mapping

The NIR-2 and yellow band of WV-2 are the strategic bands used to design NDBIs,
and are not available through any other satellite platforms. This provides a significant
advance through the new spectral bands provided by WV-2. The four NDBIs trialled here
can potentially be differentiated into two traditional NDBIs using the conventional Green
and NIR-1 bands and two new NDBIs generated using the yellow and NIR-2 bands. Our
analyses show that the green and NIR-1 bands provide comparable results to the new spectral
bands. Therefore, contrary to several studies that have reported significant improvements in
mapping various targets using the new spectral bands of WV-2 (e.g., [68–72]), our study did
not identify any significant improvement in mapping blue ice using these new spectral bands.

5.3. Comparison with Previous Blue Ice Mapping in Antarctica

To date, there have been 16 dedicated studies [2,15,16,21–23,25,29–31,33–35,42,73,74]
published between 1990 and 2022 (seven before and nine after the launch of WV-2) which
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focus on blue ice mapping applications. Of these, only five [2,22,24,35,73] attempted a
continent-wide approach. All other studies mapped BIRs in limited local areas. None of
these studies used VHR data. Of the 16 studies, only one [34] was thoroughly validated
using ground-truth data while the remainder included qualitative analysis of results based
on limited ground survey observations and visual interpretations. The present study’s
results were validated using qualitative (visual interpretation) and thorough quantitative
(ground-truthing) analyses. Most of the previous studies were based on use of one or a
combination of two methods, including optical grain-size thresholding, SIRs, unsupervised
classification, object-oriented classification, thresholding albedo values and MXL super-
vised classification. The current study is the first systematic study to test the performance
of 16 BIR mapping methods quantitatively and qualitatively in a significant region in
Antarctica. Previous case studies using MODIS and Landsat yielded errors ranging from
2–4 km2 [15], while an ASTER-based study yielded errors ranging from 0.3–0.7 km2 [34].
In contrast, our study yielded errors of 0.0049 km2 to 0.0274 km2. This is consistent with
the study of Yu et. al. [30], who reported the improved lower estimates of BIR extent in
the Lambert Glacier–Amery Iceshelf system using Landsat ETM+ as compared to those
derived by using AVHRR.

During the summer season, daily BIR maps can be generated using a coarse-resolution
MODIS images, while weekly or monthly maps can be generated using Landsat and Sen-
tinel. However, precise and refined mapping of BIRs can only be achieved by using high
spatial-spectral resolution satellite imageries, as demonstrated in the present study. An al-
ternative strategy could involve mapping larger BIR patches using MODIS, moderate-sized
patches using Landsat/Sentinel and small-sized patches using VHR data. For a continent-
wide mapping, Landsat and MODIS provide a good choice. However, to study regional
and sub-regional dynamics with high accuracy, WV-2 based mapping is appropriate. The
maximum summer extent of BIRs should be estimated using WV-2 across Antarctica.

5.4. Statistical Significance and Generalization of Performance of Methods

The extent of misclassification arising from the 16 methods in terms of bias in the
extracted blue-ice areas varied from 4,931 m2 to 27,370 m2, with differences in bias ranging
from 0.1% to 1.26%. Noting that a 1% bias (~1652 m2) in area caused a misclassification
of ~17,734.2 m2 (~70,937 pixels) blue ice, even small changes in bias values represent
considerable errors in misclassification. The use of high spatial resolution WV-2 data
inherently leads to an expectation of improved accuracy in the mapping of blue ice. In
our analyses, the small changes in bias values (0.1 to 0.9%) are therefore significant in the
mapping of BIRs. The mathematical ranking of methods based on small variations in bias
values is statistically stable and practically robust. Considering the most recent estimate
of the total area of BIRs in Antarctica of 234,549 km2 (derived by Hui et al. [22] using
LIMA), if total BIR were to be derived across Antarctica using WV-2 and upscaling up our
methodology, the errors in blue-ice areas would vary between 234.5 km2 and 3612.0 km2

using the 16 methods.

5.5. Beyond Quantitative Analysis and Evaluation of Accuracies

A methodology that is robust, accurate and user-friendly can reduce time-consuming
and laborious manual digitization. However, a semi-automatic blue-ice FE can be applied
in a real operational environment only if it provides superior performance in terms of
quality measures. In addition to empirical superiority in terms of accuracy, our analy-
ses showed that the customized NDBI provides the following advantages over existing
extraction methods.

(1) Consistency: customized NDBI-based blue-ice mapping was less sensitive to the
background noise (topography, shadows, snow/ice cover) and could consistently
extract blue ice from the study area by optimizing the target against the noise using
green, yellow, NIR-1 and NIR-2 bands;
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(2) Flexibility: the slight variation of the input approximations (threshold values in the
case of customized NDBI and ROIs in cases of SP, PSC or TD approaches) should not
affect the extraction results significantly. The threshold values used for customized
NDBI can be adjusted to suppress the noise with no effect on the extraction of targeted
blue ice;

(3) Minimizing of manual editing: a semi-automatic method should eventually minimize
manual editing of the extracted BIRs. A visual interpretation of the extracted blue ice
showed that the dimensions of BIRs (shape, geometry and size) were well-preserved
and manual editing was effectively minimized;

(4) Efficiency: the extraction should be executed, and the results should be available
rapidly. The total time required for the extraction should be much less than that
by manual digitization. Efficiency is also dependent on reliability, accuracy, and
interactivity factors. The average time for extracting the blue ice was the lowest for
the customized NDBI, moderate for SP and PSC, and maximal for TD approaches;

(5) Interactivity: the semi-automatic extraction strategy should be an interactive process
between the machine learning algorithms and the human operator. This should allow
the operator to correct erroneous results immediately after extraction. The customized
NDBI approach is highly interactive in terms of threshold definition, and in band
selection to rectify wrongly classified pixels;

(6) Robustness: the semi-automatic blue ice mapping method should work well for
different types of BIRs in the cryospheric environment. Most of the BIRs in the study
area here were influenced by local topography. The customized NDBI method could
effectively identify BIRs in various topographical settings in this typical Antarctic
coastal oasis environment;

(7) Complexity: any semi-automatic method should ideally be simple to implement on
satellite images. The customized NDBI approach is simpler to implement than either
the TD or SP algorithms;

(8) Accuracy: extracted information should be correct and geometric errors should be
minimized, giving results that are at least comparable to those achieved by manual
digitization. The RMSE values obtained from the customized NDBI confirmed that
the approach could extract blue ice accurately w.r.t. the manually digitized reference;

(9) Visual comparison: the semi-automatic method should provide extraction results
which can be compared visually against the manual reference data. Visual comparison
here demonstrated that blue-ice polygons from all 12 tiles were detected in the NDBI
images, and that the boundaries of the extracted blue ice polygons matched the actual
boundaries of the blue ice in the images or reference digitized data closely;

(10) Error: variation in error should be minimized. A box plot (Supplementary Figures S6
and S7) shows that the customized NDBI had superior performance over the other
three approaches tested for extracting BIRs;

In summary, our objective of developing a consistently reliable customized NDBI ap-
proach to automate previous needs for manual digitization for blue-ice mapping was achieved.

5.6. Factors Affecting the Performance of NDBI

Owing to low reflectance in the blue band and extremely low reflectance of longer
wavelengths, ice present on lakes or ponds appears deep blue, with an at-satellite reflectance
of 40–60% for the blue band and 20–40% for the NIR band. In contrast, BIRs show as light
blue, with an at-satellite reflectance of 90–95% for the blue band and 30–40% for NIR band.
The reflectance values of frozen ice on lakes or ponds are significantly lower than BIRs for
all spectral bands, relatively in the NIR band, enabling the customized NDBI to differentiate
blue ice from ice cover on lakes. Additionally, errors arising from shadowing were minimal
in the final stage of extraction using the customized NDBI. Some manual correction was
still required at the final stage, specifically including some small, shadowed patches of BIRs
in mountainous and “rough BIRs” in crevassed/sastrugi/ripple areas.
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The range of threshold values for NDBIs was chosen to match visual interpretations
and spectral signatures of blue ice at different locations considering various confounding
factors. Because of robust choice of threshold values, the NDBI was relatively insensitive
to small shifts of the chosen threshold values. Overall, the NDBI method was more
conservative in discriminating darker blue ice from shaded or dimly lit snow or rock–snow
mixtures. However, it was somewhat sensitive to mixtures of snow over blue ice: patchy
snow cover at the edges of blue ice patches (typically more than 40%) yielded reflectance
values overlapping with the allowed range for blue ice. In this circumstance, our analysis
showed that the NDBI provided better results than the other methods trialled.

5.7. Factors Affecting Blue Ice Mapping in Cryospheric Environments

There were seven major surface land cover or topographical factors (Figure 11) in
the study area that contributed to misclassification in blue ice mapping (Supplementary
Figure S12). Water bodies, supraglacial debris and streams, crevasses, and ripples were
the major confounding factors causing misclassification using customized NDBI meth-
ods, while water bodies, meltwater on ice surface, and topography caused significant
misclassification using TD methods (Figure 11). Performance of the SP and PSC approaches
was strongly affected by all seven confounding features, making these methods more
vulnerable to misclassification. The NDBI and TD approaches were not affected by land-
mass/rocks/nunataks, while the PSC approach was moderately impacted by this factor.
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Figure 11. Percentage contribution of confounding surrounding features and/or topography in
misclassification of blue ice. The figure was prepared using repeated visual inspection of the final
output blue ice maps generated using the 16 different methods against PAN-sharpened WV-2 imagery
and the spectral signatures of confounding features. The factors contributing to the misclassification
are; (A) landmass/rocks/nunataks, (B) water bodies (supraglacial ponds/lakes, open/frozen/semi-
frozen lakes/melt-lakes/freezing epishelf lakes), (C) meltwater on ice surface, (D) supraglacial debris
and streams/crevasses/sastrugi/ripples (E) shadow (topography) (F) elevation (topography; low,
moderate, high) (G) background ice/sporadic snow/windswept firn. The colour bar shows the distri-
bution of contribution of land cover or topographical factors constituting the total misclassification
imparted by each method. Seven contributing factors caused varying amounts of misclassification for
different methods. These variations are depicted using approximate percentage values using colours.
Length of the colour bar shows the percentage while the colour shows the contributing factor.
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Seasonal changes in blue ice are challenging to monitor due to events such as enhanced
melting, formation of melt ponds, snow events, blizzards, and even cloud cover in satellite
images. The present study highlights the use of NDBI in a cloud-free satellite image
obtained on one specific date. In order to achieve seasonal monitoring of blue ice using
WorldView-2, repeated acquisition of satellite data will be required. Furthermore, in situ
data such as meteorological data on precipitation, blizzard or storm occurrence can be used
to interpret NDBI results and adjust thresholds accordingly. Such adjustments can be done
case by case basis. Images before and after an event such as storm/blizzard/excess melting
can be used to fill data gaps and understand the effects of such events on NDBI. Such data
can be used to establish robust threshold values to be used for seasonal change studies.

5.8. Accuracy Analysis and the Measures of Uncertainties

Logistic and practical limitations mean that exhaustive field surveys to assess the
accuracy of our remotely sensed BIR mapping are not possible. While manual delineation
of blue ice is possible, it is very labour-intensive and time-consuming. Therefore, we focused
on a 3-step accuracy analysis: (a) using 12 manually-digitized and ground-surveyed tiles;
(b) using manually-digitized BIRs from the entire study area; and (c) using results from
recently published literature as validation data. The BIRs derived from our study amounted
to 106,875,250.60 m2, which is around 20% less than the previous MODIS/ETM+-based
estimate (140,281,789.02 m2) for this study area. This difference may be related to temporal
changes in BIR extent, the use of different identification algorithms or the different spatial
and spectral resolutions of the sensors used. The areas and spatial distributions of BIRs
determined from satellite images at the same place but at different times could vary widely.
For instance, smaller areas of blue ice may be exposed if strong winds result in thin snow
cover while, conversely, melting of thin snow during periods of higher air temperatures
could expose larger BIRs. Such changes are also likely to vary seasonally and inter-annually,
although data are not available. The different spatial and spectral resolutions of the WV-2,
MODIS and ETM+ data are also likely to lead to differences in BIR estimations. Pixels
containing both blue ice and snow in the 250 m resolution MODIS data and the 15 m
resolution Landsat ETM+ data (as well as in the 125 m gridding-space MOA data) can
either be omitted or counted as BIRs, leading to under- or overestimation of BIRs. However,
these pixels are clearly recognized in the 0.5 m resolution WV-2 data. Previous studies
suggest that uncertainties such as mixed pixels, crevasses and shadows could account for
the difference between identified BIRs [2]. In the future, 16-bit images with an increased
number of spectral bands will play an important role in mapping BIRs.

5.9. Future Directions

The refined blue ice map can be used for linking science questions such as mass balance
and hydrological changes in the study area. However, for this to be achieved, improved
spatio-temporal datasets are required. Conducting a thorough temporal analysis of spatial
extent of BIRs by compiling time series of blue ice map datasets from the existing literature
was beyond the scope of this study. However, a simple comparison of our estimates of BIR
extents with previously published results may highlight the effects of spatial resolution,
type of sensor, and the seasonality of image acquisition. The extent of BIRs reported by
Hui et al. [22] based on MODIS/Landsat ETM+ images at 250 m/15 m spatial resolution
was noticeably greater than our estimate. The coarse spatial resolution of MODIS images
means that some small BIRs may have been missed and shapes of BIRs could have been
distorted. Although comparison with Hui et al. [22] may indicate temporal change in BIR
extent, comparison of temporal GE images suggested similar sizes, and further accurate
temporal studies are required to confirm the occurrence of physical changes. The above
discussion suggests that spatial resolution, type of sensor, image acquisition season and
classification algorithm may all contribute to differences obtained in blue ice estimates.
Future reliable analyses of long-term temporal changes in BIR extent should ideally be
based on image data acquired in the same season by similar sensors. At present, we



Remote Sens. 2023, 15, 1287 35 of 40

conclude that WV-2 imagery provides the best available spectral information to accurately
detect and map blue ice. Using the VHR WV-2 imagery, the present study was successful
in precisely mapping fuzzy boundaries of BIRs. Given that our approach was based on
physical principles of spectral remote sensing, it clearly has potential to be modified to
other regions of the cryosphere such as Greenland, Svalbard, Alaska, etc. Furthermore, the
method could be modified to map supraglacial lakes.

5.10. Transferability of Methods

NDBIs described in this study can be made fully transferable and can reproduce results
by using other sensors with similar spectral band combinations. There are many sensors
(Supplementary Table S6) with the availability of traditional Green and NIR-1 spectral
bands similar to WV-2. However, NIR-2 and Yellow bands are not currently available in any
other satellite sensor. Therefore, NDBIs generated using Green and NIR-1 are transferable
to other sensors while NDBIs generated using Yellow and NIR-2 will require new satellite
sensors to allow transferability.

6. Conclusions

The BIR dataset presented in this study is the first precise and refined map covering
the Schirmacher Oasis and its environs using WV-2 data. The complete high-resolution blue
ice distribution map derived from this study provides the baseline information required to
underpin future temporal change analysis of the BIRs in this region. The total area of blue
ice in the study area is estimated to be 106.875 km2, ~61% of the study area extent. The
WV-2 derived BIR map clearly excludes the local snow cover (windswept firn) and various
types of lakes present in the Schirmacher Oasis and gives a considerable improvement
in the local BIR map. Regions of overestimation of BIRs (by snow cover) derived from
MODIS and ETM+ are clearly visible. These regions of overestimation are refined in the
present BIR map derived from WV-2 data. Quantitatively, the WV-2 derived BIR map
refined the existing MODIS/ETM+ derived BIR map by ~31% (~33,406,538 m2). The use of
all customized NDBI combinations derived by using the duplet set of VNIR bands offers a
rapid and precise means for extracting BIRs as compared to existing pixel-based supervised
methods. Near-nadir, mid-summer viewing conditions for the WV-2 sensor should be
used in future for time series WV-2 image analysis of blue ice extent using a normalized
difference algorithm. The outcome of this study is an NDBI algorithm that can be used for
high precision long-term monitoring of blue-ice extent changes. The detailed and accurate
map of blue ice generated in this study will provide useful input to future studies of mass
balance, solar radiation budget and regional climate changes in the study region.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs15051287/s1: Supplementary Figure S1: Google Earth imageries showing the multitemporal
spatial extents of blue ice and snow-cover over the study area under consideration (Source: Google);
Supplementary Figure S2: All the 12 tiles of the study region are depicted on WV-2 imagery, DEM,
DEM based shaded relief map, and shadow map. The spatial distribution is maintained to ensure the
unbiased distribution of tiles w.r.t varying topography and snow cover. (a) WV-2 imagery showing
12 tiles under consideration; (b) Distribution of 12 tiles over digital elevation model; (c) Distribution
of 12 tiles over shaded relief (Hillshade) map derived from DEM; (d) Shadow map derived from
shaded relief. Two tiles out of the total of 12 tiles include BIRs under shadow (Tiles 8 and 9). Figure
shows the spatial distribution of 12 tiles of the study region over varying snow cover (a), elevations
(b), and shadowed pixels (c,d); Supplementary Figure S3: Overview of the major pre-processing
phases including ATCOR-3 and derived at-ground reflectance images over the Schirmacher oasis;
Supplementary Figure S4: A sample of the relative spectral response of blue ice and white ice/snow
features in the spectral space. The spectral profile of a typical blue ice feature from the study is repre-
sented as a plot of the spectral response of a sample blue ice pixel across eight spectral bands of WV-2.
The y-axis represents reflectance (%), and the x-axis represents the wavelength over eight spectral
bands; Supplementary Figure S5: mRMR scores and relative spectral responses of blue ice class in
the spectral space over eight spectral bands; Supplementary Figure S6: Box plot showing variations
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of positive bias (m2), negative bias (m2), and total bias (m2) for four feature extraction approaches
implemented for blue ice extraction. Statistics are separately depicted for three topographical groups
of tiles to interpret the robustness of the feature extraction approaches for extraction of blue ice from
varying topography; Supplementary Figure S7: (a) Box plot showing variations of positive bias (m2),
negative bias (m2), and total bias (m2) for four feature extraction approaches implemented for blue ice
extraction from shadowed and non-shadowed tiles. (b) Variations of positive bias (%), negative bias
(%), and total bias (m2) for four feature extraction approaches implemented for blue ice extraction
from shadowed and non-shadowed tiles. Statistics are depicted to infer the robustness of the feature
extraction approaches for extraction of blue ice from varying shadow conditions; Supplementary
Figure S8: The overall performance trend for all blue ice extraction methods, in terms of RMSE. To test
the robustness of feature extraction methods for extracting blue ice from various tiles with varying
amounts of blue ice, the performance (RMSE) is depicted as a function varying amount (percentage)
of blue ice in respective tiles; Supplementary Figure S9: Visual image analysis of extracted blue
ice regions from the entire study area using four supervised target detection methods under the
TD approach. (a–d) represent reference manually digitized blue ice over the semi-automatically
extracted blue ice to infer the spatial distribution of overestimated blue ice pixels. (e–h) represent the
semi-automatically extracted blue ice over reference manually digitized blue ice to infer the spatial
distribution of underestimated blue ice pixels; Supplementary Figure S10: Visual image analysis
of extracted blue ice regions from the entire study area using four supervised spectral processing
classification methods under the SP approach. (a–d) represent reference manually digitized blue
ice over the semi-automatically extracted blue ice to infer the spatial distribution of overestimated
blue ice pixels. (e–h) represent the semi-automatically extracted blue ice over reference manually
digitized blue ice to infer the spatial distribution of underestimated blue ice pixels.; Supplementary
Figure S11: Visual analysis images of extracted blue ice regions from the entire study area using four
pixel-wise traditional supervised classification methods under the PSC approach. (a–d) represent
reference manually digitized blue ice over the semi-automatically extracted blue ice to infer the
spatial distribution of overestimated blue ice pixels. (e–h) represent the semi-automatically extracted
blue ice over reference manually digitized blue ice to infer the spatial distribution of underestimated
blue ice pixels; Supplementary Figure S12: Major land cover or topographical factors in the study area
that contributed to misclassification in blue ice mapping; (A) landmass/rocks/nunataks, (B) water-
bodies (supraglacial ponds/lakes, open/frozen/semi-frozen lakes, melt-lake freezing, epishelf lakes),
(C) meltwater on ice, (D) supraglacial debris and streams/crevasses/sastrugi/ripples, (E) shadow
(topography) (F) elevation (topography) (low, moderate, high), (G) background ice or sporadic snow
or windswept firn,; Supplementary Table S1: List of existing normalized difference spectral index
ratios (SIRs) utilized in the blue ice mapping application; Supplementary Table S2: Geometry, satellite
sensor, astronomical and other model parameters; Supplementary Table S3: Quantitative evaluation
(RMSE, m2) of various feature extraction methods over 12 tiles of blue ice regions. Overall RMSE
represents the RMSE pertaining to all 12 tiles, MET represents the RMSE pertaining to the tiles on a
moderately elevated area as depicted on DEM, HET represents the RMSE over the tiles on relatively
high elevated areas, LET represents the comparatively lower elevated areas, ST represents the RMSE
over shadowed tiles, NST represents the RMSE over non-shadowed areas. Each local column’s
lowest (italics) and highest (bold) values are highlighted. The column-wise total and average values
are bold and underlined; Supplementary Table S4: Quantitative evaluation (RMSE, m2) of various
feature extraction methods over various tiles of blue ice regions. Overall RMSE represents the RMSE
pertaining to all the 12 tiles, MBT represents the RMSE pertaining to the tiles with a moderate amount
of blue ice, HBT represents the RMSE over the tiles with a relatively high amount of blue ice, LBT
represents a comparatively low amount of blue ice areas. Each local column’s lowest (italics) and
highest (bold) values are highlighted. The column-wise total and average values are bolded and
underlined. Local outliers are highlighted with * marks; Supplementary Table S5: Average processing
time needed to map BIRs using 16 semiautomatic methods. The processing time was recorded for all
12 tiles of the study region using an HP Z840 Workstation [RAM: 512 MB, Processor: Intel® Xeon®

CPU E5-2650 v3 @ 2.30 GHz, OS: Windows 10]; Supplementary Table S6: A list of potential past
and current satellite sensors with similar spectral bands of WV-2, which can be used for testing the
transferability of NDBIs to develop an operational component of the blue ice mapping application;
Supplementary material S1: WV-2 data pre-processing, mathematical expressions, and additional
discussion points [75–77].
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