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A B S T R A C T   

The response of soil carbon to global climate change remains one of the largest uncertainties for future climate 
projection. In this study, we re-sampled the soil in a long-term, field-scale, multi-factorial climate experiment, 
CLIMAITE (Free Air CO2 Enrichment (FACE), warming and drought in all combinations in a Danish heathland 
ecosystem) in 2020, seven years after the experiment was terminated. We aimed to study the dynamics of the soil 
carbon after the cessation of long-term multi-factorial climate manipulation, with special attention to the fate of 
the additional soil carbon (19% increase) that was sequestered in plots exposed to elevated CO2 concentrations 
(eCO2). Soil carbon pools in former eCO2 plots, as well as in drought and warming plots, had normalized again by 
2020. However, the difference in soil isotopic composition between ambient and former eCO2 plots remained, 
indicating similar loss fractions from older and newer soil carbon pools in the eCO2 plots as well as stimulation of 
the decomposition of old soil carbon via priming. Throughout the study period, soil nitrogen dynamics tracked 
the changes in soil carbon, suggesting that nitrogen from deeper soil layers was transported upwards to meet 
increasing plant demand during eCO2 but was lost again from the topsoil after termination of the FACE treat
ment. Our findings show that the soil carbon and nitrogen pools in this ecosystem are highly dynamic and may 
respond strongly and rapidly to changes in major ecosystem drivers, and that revisiting climate experiments after 
the cessation of treatments may provide valuable insights into the dynamics, stability and resilience of major 
element pools in ecosystems.   

1. Introduction 

Soil contains the largest organic carbon pool in terrestrial ecosystems 
(Raich & Potter, 1995; Davidson & Janssens, 2006) and plays an 
important role as carbon source or sink in response to global climate 
change (Schimel et al., 1994; Scharlemann et al., 2014; Köchy et al., 
2015). A growing number of investigations have addressed the influence 
of elevated atmospheric CO2 (eCO2) on soil carbon stocks by the 
application of the FACE (free-air CO2 enrichment) technique (Reich 
et al., 2001; Jastrow et al., 2005; Sulman et al., 2014; Meeran et al., 
2021), including combinations with other factors such as nitrogen 
availability, climate warming, or drought. However, there has been little 
attention to the soil carbon and nitrogen cycling and stock changes in 
these experiments after treatments have been terminated. Studying the 

post-experimental changes in ecosystems could be a cost-effective way 
to investigate the resistance and resilience of ecosystems to climate 
change and to provide additional insights into important ecosystem 
functions, such as soil carbon and nitrogen dynamics, recalcitrance of 
soil carbon under future eCO2 conditions and the overall, long-term 
ecosystem climate mitigation potential. 

Growing evidence suggests that eCO2 can lead to enhanced soil 
carbon input due to increased plant photosynthesis and growth (Dietzen 
et al., 2019; Briones et al., 2021) accompanied by increased below
ground biomass allocation (Adair et al., 2011; Arndal et al., 2018) aimed 
at acquiring additional nutrients (Terrer et al., 2021). In response to the 
additional labile soil carbon input, soil microbial activity may be 
accelerated resulting in higher levels of soil carbon decomposition, i.e. 
the ‘priming effect’ (Kuzyakova et al., 2000; Reinsch et al., 2013; Chen 
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et al., 2019). Due to high variability across ecosystem types, interactions 
between eCO2 and other climate drivers – as well as other potentially 
limiting factors for both plant growth and microbial decomposition, the 
combined net global effect of eCO2 on soil carbon stocks remains 
uncertain. 

Due to the close connection between eCO2, global warming, and 
changes in precipitation, as well as increasing frequency of extreme 
heat/drought events (IPCC, 2013) an increasing number of field-scale 
eCO2 experiments in managed and non-managed ecosystems has been 
carried out, including combinations of eCO2 with warming or drought 
treatments (Mikkelsen et al. 2008; Albert et al., 2011; Roy et al., 2016; 
Meeran et al., 2021). Warming has been demonstrated to stimulate 
photosynthesis directly by optimizing plant growth temperatures (Sage 
& Kubien, 2007; Coast et al., 2020) and indirectly via longer growing 
seasons or changing plant phenology (Walther et al., 2002; Penuelas et 
al, 2007; Piao et al., 2007). Meanwhile, warming can increase the fre
quency of heat waves and drought events, during which soil water 
availability can be reduced to a critically low level (Beier et al., 2004). 
Lower soil water availability limits both aboveground plant biomass 
production and belowground microbial processes (Emmett et al., 2004; 
Huxman et al., 2004; Blumenthal et al., 2018). However, Dieleman et al. 
(2012) found, that eCO2 responses often dominated over warming re
sponses in multi-factorial climate treatments, which is consistent with 
our previous findings at our experimental site (Dietzen et al., 2019) 
where a strong soil carbon response was found in the eCO2 plots only. 
Therefore, here we focus on the soil carbon variations after the termi
nation of eCO2 the experiment. 

In 2005–2013, the CLIMAITE experiment was conducted to explore 
the individual and combined effects of eCO2, warming and drought on a 
temperate heathland/grassland ecosystem in Denmark (Mikkelsen et al., 
2008). After eight years of experimental treatments, total soil carbon 
stocks in the top 30 cm had increased by ca. 19 % in the former eCO2 
plots compared to the ambient plots, while warming and drought 
showed no or minor effects on the soil carbon stocks (Dietzen et al., 
2019). Thaysen et al. (2017) found that the mean residence time of 
carbon was generally highest in the heavy fraction of soil organic matter 
and increased with soil depth, while the dynamics of the additional 
labile soil carbon stored in former eCO2 plots, as well as the older, more 
recalcitrant carbon, remained unclear. Previous eCO2 studies have 
provided contrasting evidence of the effects of the additional labile 
organic matter on the new and old carbon cycling (Van Kessel et al., 
2000; Cardon et al., 2001; Van Groenigen et al., 2014). Cardon et al. 
(2001) reported that soil microorganisms tended to shift their con
sumption from older soil organic carbon sources to more easily 
degradable rhizodeposits when available, which resulted in increased 
retention of the old soil carbon, while Van Kessel et al. (2000) reported 
that the additional new carbon input stimulated the microbial priming 
effects and resulted in more decomposition of older soil carbon. 
Although the above studies were performed during the eCO2 experi
mental period, these contrasting findings indirectly indicate that the 
long-term fate and dynamics of the ca. 19 % extra stored carbon at our 
experimental site is worth exploring further in the post-experimental 
period. 

The use of stable isotopes is a powerful tool for detecting changes in 
soil carbon pools and fluxes and the ratio of 13C to 12C has been widely 
applied in eCO2 experiments across a range of scales (Hungate et al., 
1995; Cardon et al., 2001; Thaysen et al., 2017). The soil carbon ratio of 
13C to 12C is influenced by the discrimination against the heavier 13C 
isotope by both plant photosynthesis and processes involved in respi
ratory CO2 production, i.e. root respiration and soil microbial decom
position activity (De Graaff et al., 2010; Lloyd et al., 1996). The 
distinctive isotopic signatures of different carbon sources provide the 
opportunity to use carbon isotopic tracers to detect the rate of incor
poration of newly fixed carbon into the soil carbon pool (De Graaff et al., 
2010; Ehleringer et al., 2000) as well as the dynamics of the new and old 
soil carbon pools. During the initial FACE experiment at the CLIMAITE 

site, the ecosystem was effectively labelled in-situ for eight years 
because the CO2 used for fumigation was depleted for 13C in eCO2 plots 
(-29 ‰ on long-term average) compared to ambient atmospheric air 
(-8‰) (Thaysen et al., 2017). The long-term stable isotopic labelling 
period provides an opportunity to use the changes in the 13C to 12C ratio 
over time to reveal information about the soil carbon dynamics in the 
ecosystem under different treatments. 

It is well-known that the cycling of various elements in ecosystems, 
such as carbon and nitrogen in particular, are tightly coupled (Gruber & 
Galloway, 2008; Soussana and Lemaire, 2014). A range of previous 
experimental studies have shown the increased nitrogen uptake in 
response to FACE application (Finzi et al., 2007; Jiang et al., 2020) as 
well as reduced available soil nitrogen levels (Hu et al., 2001; Yao et al., 
2021). As previously stated, the nitrogen cycle in ecosystems may track 
the carbon cycle (Cannell and Thornley, 1998). However, as long as the 
eCO2 levels are not saturating and keep rising there will be a time lag 
between soil carbon enrichment and nitrogen increase (Thornley and 
Cannell, 2000). In addition, the increased soil carbon input may stim
ulate the sequestration and retention of nitrogen by perturbing the 
balance between immobilization and mineralization to very slowly 
reach a higher fertility equilibrium (Thornley and Cannell, 2000). At our 
experimental site, Larsen et al. (2011) reported decreased nitrogen 
leaching in response to eCO2 after two years of treatments, indicating 
increased plant or microbial nitrogen demand, while Dietzen et al. 
(2019) reported changes for soil carbon only after six years of experi
mental treatment. 

In the current study, we re-sampled the soil at the CLIMAITE field site 
during the growing season of 2020, i.e. seven years after the termination 
of the long-term multifactorial experiment. We measured the soil carbon 
and nitrogen stocks at three different depths (0–10 cm, 10–30 cm, 
30–50 cm), but in order to compare with the previous soil carbon and 
nitrogen datasets, here we pooled the first and second layers and report 
the results for 0–30 cm soil depths. Again to compare with previously 
reported data, we analyzed the δ13C values of the soil and roots in the 
top 0–10 cm soil depth to investigate the dynamics of the topsoil carbon 
and nitrogen pools after the FACE manipulation had ended. Additional 
data on soil carbon and nitrogen stocks and their stable isotopic signal in 
deeper soil layer (30–50 cm) are provided in the supplementary 
information. 

Based on results reported by Dietzen et al. (2019), we hypothesized 
that soil nitrogen tracked soil carbon changes closely in this ecosystem, 
but that most of the extra stored soil carbon and nitrogen during the 
FACE experiment was labile and that pools have decreased back towards 
the initial ambient level in the post-experimental period. We further 
hypothesized that these changes would be confirmed by a similar return 
towards ambient levels of the stable isotopic δ13C signal in the former 
eCO2 plots. 

2. Materials and methods 

2.1. Site description and experimental design 

The CLIMAITE site is situated at Brandbjerg around 50 km northwest 
of Copenhagen, Denmark (55◦53′N, 11◦58′E). The site is a temperate 
heathland/grassland ecosystem dominated by wavy hair grass 
(Deschampsia flexuosa, leaf coverage ca. 80 %) and the evergreen dwarf 
shrub common heather (Calluna vulgaris, leaf coverage ca. 40 %) 
(Kongstad et al. 2012; Tiiva et al., 2017). The annual mean precipitation 
is 583 mm, and the annual mean air temperature is 10.1 ℃ (www.DMI. 
dk), the mean wind speed of 4.2 m s− 1. 

The CLIMAITE experiment was originally designed to simulate a 
potential climate scenario of Denmark in the year 2075, and these 
treatments were active from 2005 to 2013. Twelve pair-wise octagons 
were laid out in six blocks, where one of the paired octagons was 
ambient CO2 (A) and the other was eCO2 (CO2) in a FACE setup with a 
target concentration of 510 ppm. All octagons were divided into four 
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equal-size plots, where the different plots acted as either controls or 
were exposed to warming (T), extended summer drought (D) or their 
combination. This setup allowed for six replicates of 8 different treat
ment combinations (A, D, T, TD, CO2, DCO2, TCO2, TDCO2) in a fully 
factorial experimental design (n = 48). Warming was achieved by pas
sive nighttime warming using automatic curtains that increased the 
nighttime air temperatures by 0.6 to 1.3 ℃ during winter and summer, 
respectively. Summer drought periods of 4 to 8 weeks were manipulated 
by other automatic curtains that removed on average, 8 % of the annual 
precipitation. Refer to Beier et al. (2004), Mikkelsen et al. (2008) and 
Dietzen et al. (2019) for further experimental details. At the end of the 
experiment in September 2013, an attempt was made to create an 
extreme drought event by covering all octagons with a raised plastic 
cover. However, due to high precipitation levels prior to initiating the 
drought and low temperatures during the fall of 2013, the experiment 
failed and was stopped after two months with no observable effects on 
the ecosystem. No climate treatments were active until June 2016, when 
half of the original drought plots (i.e. D, TD, DCO2 and TDCO2 plots in 
three of the original six blocks) were covered by permanent DroughtNet- 
style (see https://drought-net.colostate.edu/) rainout shelters removing 
40–66 % of annual precipitation to investigate potential thresholds for 
structural and functional changes in the ecosystem in response to water 
availability. The new treatments are not the focus of the analysis pre
sented here but the results have been carefully analyzed with respect to 
potential biases caused by the new drought treatments. 

2.2. Soil sampling 

In the middle of June and August 2020, soil cores were resampled 
using the same sampling scheme as in 2013 (Dietzen et al., 2019). Soil 
cores were collected at random positions in previously unsampled areas 
within each plot using a soil column cylinder auger (Eijkelkamp Agri
search Equipment BV, Giesbeek, The Netherlands) with an inner diam
eter of 87 mm attached to a gasoline-powered percussion hammer 
(Cobra Combi; Atlas Copco AB, Nacka, Sweden). All 48 original plots 
were sampled and the soil cores were separated in three depth intervals 
(0–10 cm, 10–30 cm and 30–50 cm). The 0–10 cm and 10–30 cm soil 
layer data were pooled into a single value for the 0–30 cm soil layer in 
order to compare these results with previously reported soil carbon and 
nitrogen datasets (Dietzen et al., 2019). 

Soil samples were temporarily stored in a cooling room (4 ℃) until 
further analysis. Soil samples were sieved through a 2 mm sieve. All the 
visible roots were then removed and handled separately. Soil samples 
were oven-dried at 55 ℃ to obtain dry weight and then homogenized by 
ball-milling (Dietzen et al., 2019). 

The root samples were flushed with milli-Q water and separated from 
the litter in the surface layer. Then root samples were oven-dried at 55 
℃ for dry weight estimation and then homogenized by ball-milling 
similarly to the soil samples. 

2.3. Sample analyses 

The dry matter carbon and nitrogen concentrations (% C and % N) as 
well as the isotope ratios of 13C/12C of soil and root samples were 
analyzed on an elemental analyzer (CE 1110, Thermo Electron, Milan, 
Italy) combined in continuous flow mode to a Finnigan MAT Delta PLUS 
isotope ratio mass spectrometer (Thermo Scientific, Bremen, Germany) 
in 2020. The carbon isotope compositions of soil and root samples were 
expressed in δ units (‰) (Van Kessel et al., 2000): 

δ13C (‱) = (
Rsample

Rstandard
− 1) × 1000 (1) 

where R = 13C/12C. The δ13C values are expressed relative to the 
Vienna Pee Dee Belemnite standard (Rstandard =

13C/12C = 0.0112372) 
and peach leaves (NIST 1547) were used as internal standards for %C, % 
N, and δ 13C. 

Because Thaysen et al. (2017) collected and analyzed soil samples at 
0–5.1 cm and 5.1–12.3 cm, we transformed and unified the atom% of the 
different soil layers datasets to 0–10 cm by a mass balance approach 
together with the linear regression at midpoint of each depth in every 
plot in 2013 soil sample dataset: 

Atom% =
[13CCO2]

[13CCO2] + [12CCO2]
× 100 =

[13CCO2]
[CCO2]

× 100

=
Rsample

1 + Rsample
× 100 (2)  

2.4. Statistical analyses 

Statistical analysis and models were applied by following the same 
approach as (Dietzen et al., 2019) using R (Version 4.0.2). Linear mixed 
effects models (‘lme’ in the ‘nlme’ package) were applied to explore the 
effects of climate manipulations on soil carbon (Suppl. Table S1, S1.1, 
S1.2) and nitrogen stocks (Suppl. Table S2, S2.1, S2.2) and C:N ratios 
(Suppl. Table S3, S3.1, S3.2) of the top 30 cm soil profile. The main 
climate factors eCO2, T, D and time were included as fixed effects, while 
Plot was nested within Block as a random intercept term to account for 
the design of the experiment and repeated measures. Time was repre
sented by month number since the start of the experiment and included 
as a categorical variable in the model. Pretreatment soil carbon stocks 
for each plot were included in the model as a covariate. A t-test was 
applied for the deeper soil layer (30–50 cm) to explore the legacy effects 
of eCO2 on soil carbon and nitrogen stocks as well as stable isotopic 
values (Suppl. Table S4–6). As the period 2005–2013 was already re
ported (Dietzen et al., 2019), here we focus on the changes observed 
since the experimental manipulations were stopped in 2013. Soil ni
trogen stocks and C:N ratios were likewise analyzed with pretreatment 
soil nitrogen stocks and C:N ratios included as covariates in their 
respective models (Suppl. Fig. S1-2 and Table S2–3). 

Post-hoc comparisons to interpret significant (α = 0.05) interactions 
and inspect treatment effects at specific time points were conducted 
using differences in estimated marginal means (‘emmeans’ in R). Results 
are presented as mean ± standard error of the mean (SEM). 

3. Results 

3.1. Responses of soil carbon stock to climate manipulations 

Soil carbon stocks in the 0–30 cm soil layer increased in the former 
eCO2 plots especially during year six to eight of the experiment ending at 
5.87 ± 0.31 kg C m− 2 in 2013 compared to 4.94 ± 0.14 kg C m− 2 in the 
ambient CO2 plots (Dietzen et al., 2019). However, when revisiting the 
same plots in 2020, seven years after the termination of the FACE 
treatment, the former eCO2 plots no longer showed higher C stocks 
(Fig. 1a; Suppl. Table S1.1, P = 0.58). In fact, by 2020, the soil carbon in 
the former eCO2 plots (4.09 ± 0.17 kg C m− 2) tended to be slightly lower 
than the ambient CO2 plots (4.63 ± 0.28 kg C m− 2), i.e. similar to the 
tendency observed in 2007. Although the soil carbon stock in the 
drought plots was significantly higher than the non-drought plots during 
the experimental period, likely due to pretreatment differences as sug
gested by Dietzen et al. (2019), soil carbon stocks in drought and non- 
drought plots had converged by 2020 (Fig. 1b). Similarly, and as also 
observed in 2013, there was no significant difference in soil carbon stock 
in the warmed plots when re-sampled in 2020 (Fig. 1c and Suppl. 
Table S1). Finally, no differences in soil carbon stocks between ambient 
and eCO2 treatments were found for the 30–50 cm soil layer in 2020 
(Suppl. Fig. S3 and Table S5) and since this layer was not adequately 
sampled in the previous period no analysis of changes over time for this 
layer was possible. 
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3.2. Stable isotopic values of the soil and roots samples 

As a result of the fumigation with 13C depleted CO2 from 2005 to 
2013, the mean δ13C value of the soil layer 0–10 cm in eCO2 plots was 
0.78 ± 0.07 δ units lower than that of ambient plots in 2013. This dif
ference remained almost unchanged at 0.76 ± 0.16 δ units difference in 
2020 (Fig. 2). In contrast, the root δ13C value in former eCO2 plots, 
which was 7.6 δ units lower than ambient in 2013, converged toward the 
value observed in ambient plots in the period, although still being 2.5 δ 
units lower in 2020 (Fig. 2). Except for the roots in the former eCO2 
plots, we observed a downward trend in δ13C value from 2013 to 2020, 
likely in response to the continuously decreasing atmospheric back
ground signal. For the deepest soil layer (30–50 cm), following the trend 
from the upper soil layer, we found significant differences of both soil 
and root δ13C values between former eCO2 and ambient plots in 2020 
although the differences were smaller in magnitude (Suppl. Table S4 and 
Table S6). 

3.3. Responses of soil nitrogen stock to climate manipulations 

Compared to the ambient plots, soil nitrogen stocks in 0–30 cm depth 
increased significantly in the former eCO2 plots throughout the CO2 
fumigation experiment from 0.26 ± 0.011 kg m− 2 in 2007 to 0.34 ±
0.014 kg m− 2 (Fig. 3a) in 2013. However, after the CO2 fumigation was 
terminated, the nitrogen stocks decreased again in the former eCO2 plots 
to a level of 0.26 ± 0.011 kg m− 2 in 2020, which is similar to the soil 
nitrogen content of ambient plots: 0.29 ± 0.018 kg m− 2 (Suppl. 
Table S2.1, P = 0.4326). For the drought treatments, the pretreatment 
bias as reported by Dietzen et al. (2019) was still evident, which could 
explain the higher values of nitrogen stocks in the drought treatments 

than in the ambient plots (Fig. 3b). In both the ambient and drought 
plots, the nitrogen stocks increased about 0.06 kg m− 2 and 0.04 kg m− 2 

respectively, from 2007 to 2013. However, seven years after the 
experiment terminated, the nitrogen stocks were back to the initial level 
in 2007. For the warming and non-warming treatments, the soil nitrogen 
stocks changed from around 0.27 kg m− 2 to 0.32 kg m− 2 during 
2007–2013 (Fig. 3c). After that, the nitrogen stock returned to 0.26 ±
0.01 kg m− 2 in the non-warming plots, while in the warming plots the 
values decreased to 0.29 ± 0.02 kg m− 2. Compared to soil carbon, the 
soil nitrogen stocks in the 30–50 cm layer (Suppl. Fig. S3 and Table S5) 
did not differ significantly in 2020. 

3.4. Responses of C:N ratio to climate manipulations 

Despite the tight C–N coupling observed, there was a significant 
decrease in the C:N ratio (Suppl. Fig. S1 and Table S3, P < 0.01) over the 
course of the study, from 17.0 in the second year of the experiment 
(2007) to 15.7 after 15 years (2020) across all plots. Significant differ
ences were observed between ambient and eCO2 plots in 2013 (Suppl. 
Fig. S2 and Table S3.1, P < 0.05). 

4. Discussion 

As previously reported, soil carbon stocks increased by ca. 19 % in 
the upper 30 cm of the soil profile during the eight years of free-air 
carbon dioxide enrichment (Dietzen et al., 2019). The effects of eCO2 
were independent of combined treatments with warming and/or 
drought. The individual or combined effects of eCO2, warming, and 
drought on a variety of ecosystem types, including forests (Rasmussen 
et al., 2002), grasslands (Adair et al., 2011; Roy et al., 2016; Blumenthal 
et al., 2018; Meeran et al., 2021), agricultural (Wu et al., 2020) or 
multiple ecosystems (Terrer et al., 2021), have been explored over 
various time scales by a number of studies. Similar to our observations, 
other long-term studies have also shown an increase of soil carbon with 
eCO2 (Hebeisen et al., 1997; Jastrow et al., 2005; Dieleman et al., 2012). 
However, the stability of the accumulated soil carbon under eCO2 is 
highly uncertain. To our knowledge, it has never previously been re
ported how soil carbon dynamics changes after the long-term climate 
change manipulations have been terminated. Here, we report that seven 
years after the long-term FACE treatment was terminated, there were no 
significant differences between eCO2 plots and ambient plots in either 
topsoil or deeper soil layer carbon stocks. The soil carbon stock in the 
former eCO2 plots had declined again to a level similar to the ambient 
plots, revealing a highly dynamic soil carbon pool capable of responding 
strongly and quickly to changes in atmospheric CO2 concentration. It 
must be noted that in the original experiment, we observed a dominant 
and strong effect of eCO2 but limited effects of warming and drought, 
which may be because these treatments were applied at a moderate level 
(Larsen et al, 2011; Selsted et al., 2012; Dietzen et al., 2019). 

Fig. 1. Mean soil C stocks in 0–30 cm soil depth averaged across all treatment combinations with (n = 24) and without (n = 24) elevated CO2 (a), extended summer 
drought (b), and warming (c) treatments (i.e., main factor effects). Year 2 is 2007, year 6 is 2011, year 8 is 2013, and year 15 is 2020. Error bars indicate standard 
error of the mean. Significant main factor effects (p < 0.05) are indicated by an asterisk at that time point. 

Fig. 2. δ13C values of soil and roots in 0–10 cm soil depth across the treatments 
with (n = 24) and without (n = 24) elevated CO2. Year 8 is 2013 and year 15 is 
2020. Error bars indicate standard error of the mean. 
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While the soil carbon pool in former eCO2 plots had fallen again in 
2020, the differences of soil δ13C observed between ambient and former 
eCO2 plots were quite stable and consistent from 2013 to 2020 and was 
even still significantly different in the 30–50 cm soil depth in 2020, 
indicating that a substantial fraction of the extra new soil carbon 
sequestered still remained in the soil carbon pool. As the total soil car
bon pool declined from 2013 to 2020, a simultaneous priming effect by 
the newly added carbon on the decomposition of older soil carbon 
fractions must have taken place (Fontaine et al., 2007; Finzi et al., 2015; 
Murphy et al., 2015; Bernal et al., 2016). Our finding of stabilized new 
carbon is supported by Jastrow et al. (2005), who found that 55 % of the 
accrued carbon in prairie soil was incorporated into microaggregates to 
be stabilized in longer-lived pools. Our results also support the concept 
of a complex and interwoven, flow-based soil carbon cycle as proposed 
by Dynarski et al. (2020), who suggested that soil organic matter is 
simultaneously cycled through microbial activities and stored via in
teractions with soil minerals that effectively introduce friction into the 
flow of carbon through the soil profile. The interwoven, complex, flow- 
based soil carbon cycle, where many different pools are more or less 
affected by addition of extra carbon during the eCO2 experiment may 
also explain why a significant amount of older soil carbon fractions may 
be lost upon the termination of eCO2 as indicated by the isotopic data in 
our experiment. Dynarski et al. (2020) further pointed out that the 
translocation of plant-derived carbon from topsoil into deeper soil layers 
likely helps facilitate long-term carbon sequestration. Arndal et al. 
(2013, 2018) found significantly increased root length in deeper soil 
layers under eCO2 at our experimental site, indicating that the extra 
photosynthetically fixed carbon from 2005 to 2013 was at least partially 
transported to deeper soil layers. 

It is remarkable to observe how the soil carbon pools in 2020 had 
returned to levels very close to the initial values at the beginning of the 
original experiment indicating a “normalization” of carbon fluxes and an 
“equilibrium” carbon pool size for the ecosystem. This high plasticity 
indicates that if climate drivers, such as eCO2, warming and drought, are 
changed, soil carbon pools in ecosystem types like heathlands may in
crease or decrease significantly within time scales of years to decades. 
Our results show that this ecosystem has a highly dynamic carbon 
cycling, yet still is also a highly resilient system that buffers both inter- 
and intra-annual variation in major drivers to maintain an equilibrium 
of the soil carbon pool. 

While there is a strong focus on changes in soil carbon in ecosystems 
because of its direct interaction with increasing atmospheric CO2 levels 
and climate, knowledge on long-term influence of climate drivers on 
nitrogen cycling and pools is also important because of the tight 
coupling between carbon and nitrogen cycling in most ecosystems 
(Gruber & Galloway, 2008). Changes in overall soil nitrogen pools from 
this experiment have only previously been reported for the short-term 
treatment period of two years (Larsen et al., 2011), when above- and 

belowground plant nitrogen pools remained unchanged under former 
eCO2 plots. However, a decrease in concentrations of organic and 
inorganic nitrogen in leachate water provided an early indicator of 
increased root nitrogen uptake under eCO2 (Larsen et al., 2011), which 
was confirmed later in the study by observations of increased root 
growth and root nitrogen uptake (Arndal et al., 2013; Arndal et al., 
2018). 

Over a total study period of 14 years in our experiment, soil nitrogen 
pools tracked soil carbon pools closely, both during the eCO2 period 
with increasing soil carbon and during the post-experimental period of 
decreasing soil carbon. These observations suggest a very tight coupling 
between ecosystem carbon and nitrogen dynamics as well as sufficient 
flexibility of soil nitrogen as also observed in other experiments reported 
by Jastrow et al. (2005). 

Thornley and Cannell (2000) suggested that eCO2 increased symbi
otic and non-symbiotic N2 fixation and that the extra carbon fixed under 
eCO2 is used to capture and retain more nitrogen. However, nitrogen 
fixation at rates high enough to explain the observed increase in soil 
nitrogen pools observed in the current study seems unlikely. As the soil 
C:N ratio over the study period was relatively stable and even tends to 
decrease slightly over the full study period, there is also no current 
indication of progressive nitrogen limitation in the ecosystem (Luo et al., 
2004). The increase in the soil nitrogen pool during the FACE period is 
therefore best explained by a combination of increased retention of the 
atmospheric deposition of nitrogen as reported by Larsen et al. (2011), 
combined with a large, upward transport of nitrogen from deeper soil 
layers as originally suggested by Dietzen et al. (2019) based on the 
observation of increased root growth in deeper soil layers (Arndal et al., 
2013; Arndal et al., 2018). 

Revisiting a climate experiment seven years after the termination of 
the FACE treatment provided several insights. The soil carbon and ni
trogen pools in the studied ecosystem were highly dynamic both in sit
uations of increasing and decreasing carbon input. In periods with 
increased carbon sequestration, substantial fractions of newly seques
tered carbon may be stabilized in the soil for longer time periods. 
However, when plant carbon inputs are weakened, the newly added 
carbon may cause priming of the decomposition of older soil carbon 
pools (e.g. Van Groenigen et al., 2014). We found a very tight coupling 
between carbon and nitrogen cycling and the strong response to eCO2 
observed was possible because plants were able to mobilize nitrogen 
resources from deeper soil layers to meet increasing plant demands. The 
results are overall supportive of a flow-based, interwoven soil carbon 
cycle as proposed by Dynarski et al. (2020). In conclusion, revisiting 
climate experiments after cessation of treatments may provide valuable 
insights into the dynamics, stability, and resilience of major element 
pools in ecosystems. 

Fig. 3. Mean soil N stocks in 0–30 cm soil depth averaged across all treatment combinations with (n = 24) and without (n = 24) elevated CO2 (a), extended summer 
drought (b), and warming (c) treatments (i.e., main factor effects). Year 2 is 2007, year 6 is 2011, year 8 is 2013, and year 15 is 2020. Error bars indicate standard 
error of the mean. Significant main factor effects (p < 0.05) are indicated by an asterisk at that time point. 
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