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Abstract. Biogeochemical model behaviour for micronutri-
ents is typically hard to constrain because of the sparsity
of observational data, the difficulty of determining param-
eters in situ, and uncertainties in observations and models.
Here, we assess the influence of data distribution, model
uncertainty, and the misfit function on objective parameter
optimisation in a model of the oceanic cycle of zinc (Zn),
an essential micronutrient for marine phytoplankton with
a long whole-ocean residence time. We aim to investigate
whether observational constraints are sufficient for recon-
struction of biogeochemical model behaviour, given that the
Zn data coverage provided by the GEOTRACES Intermedi-
ate Data Product 2017 is sparse. Furthermore, we aim to as-
sess how optimisation results are affected by the choice of
the misfit function and by confounding factors such as ana-
lytical uncertainty in the data or biases in the model related
to either seasonal variability or the larger-scale circulation.
The model framework applied herein combines a marine Zn
cycling model with a state-of-the-art estimation of distribu-
tion algorithm (Covariance Matrix Adaption Evolution Strat-
egy, CMA-ES) to optimise the model towards synthetic data
in an ensemble of 26 optimisations. Provided with a target
field that can be perfectly reproduced by the model, optimi-
sation retrieves parameter values perfectly regardless of data
coverage. As differences between the model and the system
underlying the target field increase, the choice of the misfit
function can greatly impact optimisation results, while lim-
itation of data coverage is in most cases of subordinate sig-
nificance. In cases where optimisation to full or limited data
coverage produces relatively distinct model behaviours, we

find that applying a misfit metric that compensates for dif-
ferences in data coverage between ocean basins considerably
improves agreement between optimisation results obtained
with the two data situations.

1 Introduction

Marine phytoplankton account for almost 50 % of global pri-
mary production (Field et al., 1998), and their growth re-
quires a variety of micronutrients, particularly first-row tran-
sition metals (Morel et al., 2014). In this study, we focus on
zinc (Zn), which is physiologically important as a co-factor
in essential enzymes (e.g. Morel and Price, 2003; Shaked et
al., 2006; Morel et al., 2014) and has a high cellular abun-
dance in phytoplankton (Moore et al., 2013; Twining and
Baines, 2013).

Though Zn, like phosphorus (P), is associated with or-
ganic matter rather than with siliceous frustules (Ellwood
and Hunter, 2000; Twining et al., 2003; Twining and Baines,
2013), the global distribution of dissolved Zn correlates with
dissolved silicon (Si) rather than with phosphate (PO4; Bru-
land, 1980). Vance et al. (2017) revealed the key role of
enhanced Zn : P uptake by diatoms in the Southern Ocean,
which, when coupled to the three-dimensional ocean circu-
lation, causes the correlation between Zn and Si on a near-
global scale. Deviations from this large-scale pattern have
been observed in both the Atlantic (Conway and John, 2014;
Lemaitre et al., 2020) and the Pacific oceans (Janssen and
Cullen, 2015; Vance et al., 2019), and thus while the first-
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order significance of enhanced Southern Ocean Zn : P uptake
is uncontested (Ellwood, 2008; Roshan et al., 2018; Weber
et al., 2018; Middag et al., 2019), various processes have
been suggested to be important distally from the Southern
Ocean. Proposed water-column cycling processes include re-
versible scavenging (John and Conway, 2014; Weber et al.,
2018), local overprinting signals related to biology (Middag
et al., 2019; Vance et al., 2019), and authigenic sulfide pre-
cipitation in low-oxygen zones (Janssen and Cullen, 2015;
cf. Vance et al., 2019). Hypothesised inputs comprise sedi-
ment fluxes and atmospheric aerosol deposition in both the
Atlantic (Conway and John, 2014; Lemaitre et al., 2020) and
the Pacific (Conway and John, 2015; Liao et al., 2020), as
well as hydrothermal input (Conway and John, 2014; Roshan
et al., 2016; Lemaitre et al., 2020).

The emergence of these hypotheses is a consequence of the
GEOTRACES programme, which has increased the volume
of marine trace metal abundance data by orders of magnitude
(Conway et al., 2021). This increase in data availability has
catalysed modelling studies of marine micronutrient cycles.
The first global biogeochemical models have emerged for Zn
(Vance et al., 2017; de Souza et al., 2018; Roshan et al., 2018;
Weber et al., 2018) as well as for a range of other bioac-
tive metals (e.g. van Hulten et al., 2017; Richon and Tagli-
abue, 2019), and the understanding of the oceanic iron cycle
has evolved remarkably (e.g. Tagliabue et al., 2017, 2019;
Roshan et al., 2020).

However, compared with the data for macronutrients,
metal micronutrient observations remain sparsely dis-
tributed, posing one of the major difficulties faced when
constraining biogeochemical models. Additionally, measure-
ments of Zn uptake rates and cellular quotas (Zn : P) are
scarce (Sunda and Huntsman, 1992), posing a challenge to
modelling studies in which simulated Zn uptake must repre-
sent a variety of oceanic phytoplankton species. Further dif-
ficulties arise from commonly made assumptions regarding
the precision of observations and the accuracy of the model.
The combination of (i) analytical uncertainty, (ii) unresolved
seasonal variability, and (iii) errors due to systematic bias in
the circulation model results in a high level of parametric un-
certainty, which is ideally addressed by determining model
parameters through objective parameter estimation that min-
imises the misfit between model output and observations.

Developing a truly data-constrained view of the oceanic
Zn cycle thus requires a framework that enables quantitative
assessment of the explanatory skill of the above-mentioned
hypotheses regarding the marine Zn cycle. To this end, we
aim to assess the strengths and sensitivities of an evolution-
ary algorithm for constraining biogeochemical model be-
haviour with data, particularly given the data coverage of
the GEOTRACES Intermediate Data Product 2017 version
2 (IDP2017; Schlitzer et al., 2018; Fig. 1). We do so by opti-
mising a global ocean Zn model using a state-of-the-art opti-
misation algorithm, Covariance Matrix Adaptation Evolution

Strategy (CMA-ES; Hansen and Ostermeier, 2001; Hansen,
2006).

Using synthetic data that allow us full control over the “ob-
servations”, we perform a suite of 26 model optimisations in
order to separately assess the impact of the above-mentioned
uncertainties and biases, investigating how optimisation re-
sults are impacted by the relatively sparse data coverage for
Zn in the IDP2017 and by the choice of the misfit function.
Our results suggest that optimisation with the data cover-
age for Zn from IDP2017 can retrieve very similar biogeo-
chemical model behaviour as when the algorithm is provided
with perfect data coverage. However, with increasing uncer-
tainty, optimisation results become strongly dependent on the
choice of the misfit function. In such cases, misfit functions
that implicitly compensate for the uneven geographical dis-
tribution of observations in the data tend to reconstruct model
behaviour more accurately, while those that favour the deep
ocean are sensitive to systematic biases in the deep-ocean
ventilation timescale of the underlying circulation model.

2 Methods: models and optimisation ensemble

We use a model framework that combines an offline approach
for physical transport of dissolved Zn with an estimation of
distribution algorithm (EDA) for optimisation of four model
parameters affecting the biogeochemical cycling of Zn. Sim-
ulations were carried out on the high-performance computing
cluster Euler (Erweiterbarer, Umweltfreundlicher, Leistungs-
fähiger ETH-Rechner) at ETH Zurich and the Cray XC40 Piz
Daint at the Swiss National Supercomputing Centre (CSCS).
Our ensemble of 26 optimisations comprises 10 optimisation
experiment types (Sect. 2.3), each carried out with a subset
of six misfit functions (Sect. 2.3.2).

2.1 Biogeochemical ocean model

2.1.1 Circulation framework

Coupled physical–biogeochemical ocean models typically
have a long equilibration time due to the timescales associ-
ated with global ocean circulation (Khatiwala, 2008; Wun-
sch and Heimbach, 2008). To efficiently simulate passive
tracer transport, we use the transport matrix method (TMM),
which calculates the transport of dissolved species as a se-
quence of sparse matrix-vector products (Khatiwala et al.,
2005; Khatiwala, 2007). For our optimisation experiments,
we use annual-mean transport matrices (TMs) derived from
MITgcm-2.8, a 2.8◦ global configuration of the MITgcm
ocean general circulation model (OGCM) with 15 vertical
levels (Massachusetts Institute of Technology General Circu-
lation Model; Marshall et al., 1997; Dutkiewicz et al., 2005).
This coarse-resolution model, which is forced by climato-
logical winds, heat, and freshwater fluxes, allows us to carry
out a broad suite of optimisation experiments. In order to
approach steady state in the global Zn field, each coupled

Biogeosciences, 19, 5079–5106, 2022 https://doi.org/10.5194/bg-19-5079-2022



C. Eisenring et al.: Influence of GEOTRACES data distribution 5081

Figure 1. (a) Overview of the experiments carried out in this study. For experiments in the first row (ALL), optimisation was carried out
using full data coverage. For experiments in the second and third row, modelled and target fields were interpolated to the three-dimensional
geographical coordinates of locations which have Zn data available in an extended version of the GEOTRACES IDP2017 (IDP+; red dots
in panel b) and in the original version of this data product (IDP, blue dots in panel b). (c) Distribution of IDP2017(+) observations in model
depth layers of MITgcm-2.8. (d) Taylor diagram comparing target fields of the simulations listed in panel (a) to the reference field; (e) same
as (d) but with data coverage limited to IDP2017 coordinates. RMSD: root mean square deviation.
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physical–biogeochemical simulation was integrated forward
in time using the TMM software (Khatiwala, 2018) for 3000
model years, using a time step of 12 h for both tracer trans-
port and biogeochemical interactions.

2.1.2 Biogeochemical model of zinc

The biogeochemical Zn model used in this study is described
in detail by de Souza et al. (2018). Briefly, the biological Zn
uptake term, J uptake

Zn , is directly tied to that of PO4 by the
stoichiometric parameter rZn :P:

J
uptake
Zn = rZn :P · J

uptake
PO4

. (1)

The biological PO4 uptake term, J uptake
PO4

, is diagnosed by a
biogeochemical P cycling model based on that described in
Najjar et al. (2007), in which the uptake of PO4 in the surface
ocean is driven by restoring surface PO4 concentrations to-
wards annually averaged observations from the World Ocean
Atlas 2018 (WOA2018; Garcia et al., 2019) with a restor-
ing timescale of 36 d. The stoichiometric parameter rZn :P
(mol mol−1) is a non-linear function of the concentration of
free Zn (Zn2+), arising from the phytoplankton culturing ex-
periments of Sunda and Huntsman (1992):

rZn :P =
aZn ·Zn2+

bZn+Zn2+ + cZn ·Zn2+. (2)

Following Ellwood and van den Berg (2000), concen-
trations of Zn2+ are calculated from total dissolved Zn
(the tracer carried in the model) in two steps: first, by as-
suming rapid equilibration of non-ligand-bound Zn (Zn′)
with an organic ligand with conditional stability constant
KL = 1010 M−1 and spatially constant concentration, which
allows for calculation of Zn′ by solving the quadratic equa-
tion of

KL ·
(
Zn′
)2
+ (KL ·L−KL ·Zn+ 1) ·Zn′−Zn= 0, (3)

and second, by calculating Zn2+ from Zn′ using the inorganic
side-reaction coefficient αZn = 2.1:

Zn2+
=

Zn′

αZn
. (4)

The Zn uptake term is restricted to the euphotic zone,
which comprises the uppermost two levels of MITgcm-2.8
(0–120 m). This uptake is exported downwards, where it is
regenerated from an implicit particulate flux that attenuates
with a power-law depth dependence, i.e. a “Martin curve”
with an exponent of −0.858 (Martin et al., 1987), identical
to that used for P (Twining et al., 2014). All simulations are
initialised with a constant Zn field corresponding to a global
ocean mean concentration of 5.4 nM (Chester and Jickells,
2012).

In our optimisation experiments, we estimate the values of
parameters aZn, bZn, and cZn in Eq. (2), which control differ-
ent aspects of the dependency of rZn :P. We also optimise the

organic ligand concentration L, which determines the con-
centration of Zn2+, and thus the dependency of rZn :P on to-
tal dissolved Zn. The influence of changes in each of these
parameters on rZn :P is illustrated in Fig. 2. All parameters
optimised are assumed to be globally and temporally con-
stant. Parameter boundaries for optimisation were chosen rel-
atively conservatively (i.e. broadly), since values are poorly
constrained for both the ligand concentration (Bruland, 1989;
Donat and Bruland, 1990; Ellwood and van den Berg, 2000;
Lohan et al., 2005; Baars and Croot, 2011; Kim et al., 2015;
Sinoir et al., 2016) and the parameters governing the up-
take curve (Sunda and Huntsman, 1992). For the parameters
aZn, bZn, and cZn, the lower and upper boundaries are de-
termined by subtracting 50 % from or adding 50 % to their
minimum and maximum values reported by Sunda and Hun-
stman (1992). The parameter boundaries for L were likewise
determined based on the range of observed values reported
in Ellwood and van den Berg (2000). Parameter boundaries
and reference values of each parameter are summarised in
Table 1. Based on the findings of de Souza et al. (2018), we
chose reference values to fit the uptake systematics obtained
from culturing experiments with Emiliania huxleyi BT6 in
Sunda and Huntsman (1992).

2.2 Optimisation algorithm

For parameter optimisation, our model framework relies
on the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES), more precisely the

(
µ
µw
,λ
)

-CMA-ES of
Hansen (2016), an estimation of distribution algorithm that
performs particularly well on multi-modal functions (Hansen
et al., 2010). While learning the covariance matrix in CMA-
ES is analogous to learning the inverse Hessian matrix in
a “classical” quasi-Newton method, CMA-ES outperforms
the latter if the search landscape is non-convex or rugged
(Hansen, 2016).

The CMA-ES algorithm provides a method for updat-
ing the mean and the covariance matrix of a multivari-
ate normal search distribution, with dimensions correspond-
ing to the number of parameters being optimised. In con-
trast to “conventional” evolutionary algorithms, CMA-ES
updates the mean and the covariance matrix by maximis-
ing the likelihood of previously successful candidate solu-
tions and search steps, respectively (Hansen, 2006). It thus
efficiently incorporates information from the entire popu-
lation, while also exploiting information between genera-
tions. The latter characteristic is particularly important here,
as we use a small population size of 10 individuals (λ=
10) so that step-size control is key in preventing the pop-
ulation from premature convergence. CMA-ES has been
shown to be a reliable and highly competitive evolution-
ary algorithm for both local (Hansen and Ostermeier, 2001)
and global optimisation (Hansen and Kern, 2004; Hansen,
2009). It has been tested on real-world problems includ-
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Figure 2. Zn : P stoichiometry of simulated uptake obtained with reference parameters (red) and by separately varying the parameters of
Eq. (2). The stoichiometries are calculated with one parameter being (a) decreased or (b) increased by 50 % (dashed lines) or set to the
boundary value in Table 1 (solid line).

Table 1. Reference parameter values and search intervals.

aZn bZn cZn L

(–) (µM) (µM−1) (µM)

Reference value 6× 10−3 3× 10−5 0.32 1.2× 10−3

Search range 6× 10−4–9× 10−3 4× 10−6–6× 10−5 0.16–7.05 2.5× 10−4–3.75× 10−3

ing parameter calibration in a biogeochemical ocean model
by Kriest et al. (2017), whose implementation of CMA-
ES in C++ we employ here, via the OptClimSO package
(https://doi.org/10.5281/zenodo.5517610; Tett et al., 2013;
Oliver et al., 2022). In order to apply CMA-ES to a con-
strained problem, we use the boundary handling described
in Hansen et al. (2009), in which boundaries are imposed by
adding a penalty function to the calculated misfit when a pa-
rameter’s distribution mean is out of bounds. As in Kriest et
al. (2017), optimisation is terminated if the relative deviation
of the misfits of seven individuals in a generation is smaller
than 10−5 or if a predefined maximum of 200 iterations is
reached. We also terminate optimisation when an individual
produces a numerically very small misfit, smaller than that
equivalent to a relative residual of 10−6 in each model cell.

2.3 Experiment setups and nomenclature

In all experiments, the Zn cycling model was optimised to-
ward synthetic observations (the target field) obtained from a
previous model run. While we always apply the same model
setup to carry out optimisation, the experiment types differ

with respect to their target field. In the simplest test case,
the target field is created with a physical and biogeochemi-
cal model setup that is identical to that being optimised. We
refer to this test case as a “TWIN” experiment, since the
target field can be perfectly reproduced by the model. The
parameter values and the resulting target field of the TWIN
experiment are hereafter referred to as reference parameters
(Table 1) and reference field, respectively. We refer to our
second type of experiment as “synObs” (for “synthetic ob-
servations”). Target fields for the synObs experiments were
created using the same reference parameter values, but ei-
ther different model setups were applied to produce the target
field, or it was modified a posteriori, as detailed in Sect. 2.3.1.

Figure 1a arranges our optimisation experiments in a con-
ceptual raster of the degree of data limitation versus degree
of complexity of uncertainties. The simplest case is given
by experiment “TWIN_ALL”, in which the model is opti-
mised towards the entire Zn field produced by a previous
simulation with the same model, i.e. the reference field. Ex-
periment “TWIN_IDP” uses this same Zn field but limits
the data available for model optimisation by subsampling
it only at those spatial locations where actual Zn observa-
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tions are available in the IDP2017 (Schlitzer et al., 2018;
Fig. 1b, c). The subscript “IDP+” refers to those experiments
in which data coverage was expanded to include the loca-
tions of high-latitude observations published more recently
than the IDP2017 (Sect. 2.3.3; Fig. 1b, c). The remaining
experiments extend our optimisation array along the axis of
increasing complexity of uncertainty, as detailed below.

2.3.1 Types of uncertainty in synObs experiments

In order to assess the effect of various kinds of uncertainty
on optimisation with full data coverage (“synObs_ALL”) and
the extent to which optimisation results are affected when we
additionally account for the real, imperfect data coverage of
the IDP2017 (“synObs_IDP”), we separately consider three
sources of uncertainty:

i. analytical errors in the observations (syn-
Obs_[ALL/IDP]_noise, abbreviated as “syn-
Obs_noise”),

ii. lack of seasonal variability in the model (syn-
Obs_[ALL/IDP]_seas, abbreviated as “synObs_seas”),

iii. systematic biases in the physical ocean model (syn-
Obs_[ALL/IDP]_circ, abbreviated as “synObs_circ”).

In order to assess the effect of observational analytical
uncertainty in the optimisation results, the target fields in
synObs_noise were created by perturbing the reference field
with normally distributed random noise having zero mean
and variance ε :

ε =
(

0.0719 · [Zn]0.7269
)2
, (5)

which is an empirical estimate of the variance of Zn con-
centration analyses from GEOTRACES Zn intercomparison
statistics (Moffett, 2019) and assumes that the analytical er-
rors are laboratory-independent. Any negative concentrations
resulting from this perturbation were set to zero.

To investigate the influence of the lack of seasonal vari-
ability in our Zn cycling model, synObs_seas experiments
comprise optimisation towards an annual-mean target field
produced by a simulation with the same physical model
but with a seasonal cycle in both physical transport and
biogeochemistry (Khatiwala, 2007). Our last set of experi-
ments, synObs_circ, assesses the sensitivity of the optimi-
sation to systematic biases in the circulation of the physical
model. In these experiments, the target field was produced
with MITgcm-ECCO, a higher-resolution version of MIT-
gcm from the Estimating the Circulation and Climate of the
Ocean (ECCO) project (Stammer et al., 2004), i.e. a different
physical model than that used during optimisation (MITgcm-
2.8). In ECCO, an adjoint approach was used to adjust heat,
momentum, and freshwater fluxes so as to minimise the mis-
fit between the model and a suite of observations (Wunsch

and Heimbach, 2007). Climatological monthly-mean trans-
port matrices covering the 1992–2004 estimation period were
extracted by Khatiwala (2007) and are annually averaged for
use here. Our synObs_circ experiments aim to assess the ef-
fect of a reduction in data coverage on the optimisation re-
sults in the presence of systematic bias in the OGCM, rather
than the effect of the OGCM itself, which is known to be
large (Doney, 1999; Doney et al., 2004; Najjar et al., 2007;
Sinha et al., 2010; Dietze and Löptien, 2013; Löptien and
Dietze, 2019; Kriest et al., 2020).

Metrics summarising similarities between the target fields
of the synObs experiments and the target fields of TWIN ex-
periments (i.e. the (reduced) reference field) are illustrated in
Taylor diagrams (Taylor, 2001; Fig. 1d, e). This comparison
shows that the synObs_circ target field, obtained with a dif-
ferent circulation model, is most distinct from the reference
field with respect to all metrics illustrated. With regard to in-
tegrated Zn export flux, the impact of simulating seasonal
variability is higher: while the simulation with MITgcm-
ECCO produces an export flux that is 7 % higher than the
reference simulation, the seasonal MITgcm-2.8 simulation
has an export flux 9 % lower. Spatial differences between
target fields and the associated export fluxes are visualised
in Fig. S1.

2.3.2 Misfit functions

The difference between the data and model is referred to as
misfit (Lynch et al., 2009), which in this study is equivalent
to the model error, since the data error of synthetic observa-
tions is zero. We calculate misfit at the location of our syn-
thetic observations. Thus, for experiments with reduced data
coverage (IDP and IDP+), the model output is interpolated
to the target grid before calculating misfit. In this study, we
assess the applicability of six misfit metrics, which can be
described using one of the following equations:

M =
∑Nreg

j=1

√√√√∑Nobs,j

i=1

(
mi,j − oi,j

)2
Nobs,j

·wi,j , (6)

M =
∑Nreg

j=1

√∑Nobs,j

i=1

∣∣mi,j − oi,j ∣∣
Nobs,j

·wi,j , (7)

where Nreg is the number of regions; Nobs,j the number of
observations in region j ; and mi,j and oi,j are the mod-
elled and the “observed” (i.e. target) Zn concentrations, re-
spectively, at each observational point ij . The local model–
observation difference mi,j − oi,j is referred to as the resid-
ual, and its squared (Eq. 6) or absolute (Eq. 7) value is
weighted by wi,j . We use four misfit metrics based on
squared residuals (Eq. 6) and two based on absolute resid-
uals (Eq. 7). An overview of the misfit metric applied in each
of our experiment types is provided in Table S1.

The four misfit metrics using squared residuals are (i) root
mean square error (RMSE), (ii) volume-weighted RMSE
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(VolRMSE), (iii) variance-weighted RMSE (VarRMSE), and
(iv) sum of regional RMSEs (BasinRMSE). For (i) to (iii),
Nreg equals one. In the case of RMSE, the weighting fac-
tor wi,j is unity for each squared residual. For VolRMSE,
squared residuals are weighted by the fractional volume of
the corresponding model cell. As the vertical grid spacing
of MITgcm-2.8 increases with depth and model cell volume
decreases towards the poles, VolRMSE weights the deep and
low-latitude ocean more strongly. Volume weighting is fre-
quently applied in ocean modelling studies when constrain-
ing towards observations of dissolved quantities (e.g. Kriest
et al., 2017; Kwon et al., 2022).

The misfit function of VarRMSE is only applied for our
synObs_noise experiment, in which synthetic observations
were perturbed with heteroscedastic noise. In VarRMSE,
wi,j equals the reciprocal of the variance of the synthetic ob-
servations, i.e. ε−1 (Eq. 5). Weighting the squared residuals
by ε−1 is identical to the chi-squared statistic (e.g. Beving-
ton and Robinson, 2003) and is frequently applied for mul-
tivariate comparison of predictions and observations, where
the covariance between observational errors is assumed to be
zero (e.g. Stow et al., 2009). In our calculation of variance-
derived weights, residuals are calculated for synthetic obser-
vations larger than zero only.

The misfit metric of BasinRMSE, which sums regional
RMSEs, was only applied in experiments with reduced data
coverage. Distinction between ocean regions is frequently
applied when optimisations are carried out on irregularly and
sparsely sampled trace metal data (e.g. Frants et al., 2016;
Weber et al., 2018). For BasinRMSE, we distinguish between
five ocean basins (Nreg = 5): Atlantic, Pacific, Indian Ocean,
and two latitudinal sections of the Southern Ocean (40–50◦ S
and >50◦ S). The resulting misfit corresponds to the sum of
each region’s RMSE (i.e. wi,j = 1). This misfit function mit-
igates any over- or underweighting of particular ocean re-
gions that may arise from the irregular basinal distribution
of observations (Fig. 1b). We refer to this implicit weighting
that arises from summing RMSEs with different numbers of
observations in each ocean region as basin weighting. Our
definition of regional constraints differs from that applied by
Weber et al. (2018), since they defined nine discrete regions
and incorporated only a portion of the observations provided
in the GEOTRACES IDP2017.

The misfit functions based on absolute residuals are re-
ferred to as RMAE (root mean absolute error) and BasinR-
MAE. The weights or number of regions applied are equiv-
alent to those in the corresponding misfit functions based on
squared residuals described above.

2.3.3 Synthetic-observational constraints

For experiments listed in the first row of Fig. 1a
(TWIN_ALL and synObs_ALL), the model is optimised to-
wards synthetic-observational fields at the resolution of the
model; i.e. residuals are calculated at all model grid points. In

all other experiments, in the second and third rows of Fig. 1a
(synObs_IDP+, TWIN_IDP, and synObs_IDP), model out-
put and observations are compared at the three-dimensional
coordinates of the Zn observations in the IDP2017 (IDP ex-
periments) or the extended version thereof (IDP+ experi-
ments; Fig. 1b) that includes data from recent high-latitude
studies not included in the IDP2017 (Sieber et al., 2019;
Vance et al., 2019; Wang et al., 2019; Lemaitre et al., 2020).
We only consider locations of IDP2017 data that were as-
signed quality flags 1 or 2, indicating (probably) good qual-
ity and to which it is possible to interpolate. This results
in ∼ 4700 data points at 295 geographic locations to con-
strain the model in the IDP experiments. Relative to its frac-
tional volume, the Atlantic is clearly overrepresented in the
IDP2017 relative to the other ocean basins (Fig. 1b), while
the Indian Ocean and the Southern Ocean south of 50◦ S are
underrepresented. In the vertical, intermediate water depths
are underrepresented relative to the model’s grid spacing.

3 Results and discussion

Our ensemble of optimisations towards synthetic observa-
tions allows us to assess the influence of the (i) uncertainty in
data or biases in the model, (ii) data coverage, and (iii) mis-
fit function on the ability of CMA-ES to reproduce biogeo-
chemical model behaviour and parameter values. In the fol-
lowing, we first discuss the degree to which model param-
eter values could be constrained overall in our optimisation
experiments, before discussing the influence of each of the
above-mentioned aspects in turn.

3.1 Parameter value retrieval and its sensitivities

Our TWIN experiments are a test case in which the model
can exactly reproduce the synthetic observations. In these ex-
periments, all parameter values were perfectly retrieved re-
gardless of data coverage, even though calculating misfits in
TWIN_IDP (i.e. with the data coverage of IDP2017) only in-
volves 12 % of the data from the target field of TWIN_ALL
(perfect data coverage). Thus, the reduced and inhomoge-
neous spatial coverage of the GEOTRACES IDP2017 will
not prevent the optimisation algorithm from converging to
the correct parameter values if the observations can be per-
fectly matched by the model equations. Figure 3 shows the
evolution of the parameter values and the logarithmic misfit
during the TWIN_ALL experiment. High variances reflect
a wide range of parameter values in a single generation of
10 individual simulations and occur mainly at the beginning
of the optimisation. For parameter aZn, which determines the
asymptotic Zn : P value of the non-linear portion of the Zn
uptake equation (Eq. 2; Fig. 2), the average parameter value
approaches the reference value earlier than for the other pa-
rameters.
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Figure 3. Evolution of parameter values and misfit (RMSE) in experiment TWIN_ALL. Red lines indicate the target parameter values. Black
trajectories show the mean parameter value over all individuals in each generation of 10 individuals, while blue lines mark maximum and
minimum parameter values in the generation.

In synObs experiments, i.e. when target fields cannot be
perfectly reproduced by the model, CMA-ES does not ex-
actly retrieve reference parameter values. However, optimisa-
tion almost always identifies a parameter set that gives a bet-
ter fit to the target field than would have been produced with
reference parameter values (Table S2). Figure 4 provides an
overview of the range of values determined for each of the
four biogeochemical parameters optimised in our optimisa-
tion ensemble. This overview shows that the various types of
complexity we introduce into our synObs experiments lead
to a range of optimised values for each parameter. While the
optimised values for parameter bZn and cZn span (almost) the
entire range of allowed values, those for parameter aZn and –
to a lesser extent – L span a relatively limited range (Fig. 4).
Also, the median values for aZn and L lie close to the ref-
erence values, whereas the median value for bZn is clearly
higher than the reference value and that for cZn coincides
with the lower boundary. The fact that the optimised value
for cZn was found at its lower boundary in 70 % of synObs
experiments leads to an interquartile range in Fig. 4 that ap-
pears relatively narrow, although its optimised values range
over the entire allowed parameter space, indicating the diffi-
culty of constraining this parameter.

Figure 4. Boxplots of optimised parameter values obtained in all
synObs_experiments, presented in parameter space rescaled to the
interval [0, 1], i.e. turquoise lines at 0 and 1 correspond to boundary
values for each parameter. Red stars indicate the reference parame-
ter values.
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Interrelationship between parameter retrieval and
model sensitivity

The differing extent to which uptake parameters can be re-
trieved by optimisation may be understood in light of their
influence on simulated Zn uptake systematics. Figure 2 il-
lustrates the influence of each parameter on the systemat-
ics of the stoichiometric uptake ratio rZn :P when parame-
ters are changed by ± 50 % of the reference values or when
they are set to the minimum or maximum boundary value.
While 50 % changes in the value of aZn have a relatively high
impact on rZn :P, changing any of the other parameters by
± 50 % affects the shape of the curve to a much smaller ex-
tent. Changes in cZn mainly affect rZn :P at high Zn2+, while
changes in the parameters bZn and L have a similar effect on
the shape of the rZn :P curve, suggesting that they might be
able to compensate for each other.

The sensitivity of the system response to parameter aZn
has already been reported by de Souza et al. (2018). In-
deed, our optimisation ensemble reveals that aZn has the
strongest influence on simulated Zn export flux, especially
in the Southern Ocean (Fig. S2), where the Zn : P ratio of ex-
port plays an important role in determining the large-scale
Zn distribution (Vance et al., 2017; Roshan et al., 2018; We-
ber et al., 2018). The sensitivity to aZn is also manifested in
our optimisations by the fact that this parameter generally
converges first towards its optimised value (e.g. Fig. 3). Fig-
ure 5 and Table S2 show the optimised parameters for each
synObs experiment, i.e. parameter values that produce the
minimum misfit in the last iteration. As illustrated clearly in
Fig. 5, the reference value of aZn is generally well retrieved
(to within±∼ 30 %; Table S2), with the important exception
of VolRMSE-optimised synObs_circ solutions, where aZn
was found at its lower boundary, producing uptake system-
atics and global export fluxes that are clearly distinct from
all others (Sect. 3.2.2).

Parameter cZn represents the opposite case in terms of sen-
sitivity. Coming into play only at high Zn2+, its role in deter-
mining Zn uptake is minimal at the global scale, especially
when high values of aZn, as in our reference parameter set,
allow for elevated rZn :P at high latitudes. Thus, high val-
ues of aZn decrease the importance of the linear portion of
the uptake curve governed by parameter cZn (Eq. 2) and the
degree to which it is constrainable. The interaction between
these two model parameters is exemplified by the VolRMSE-
optimised experiments in which aZn is found at its lower
boundary: here, optimisation finds elevated L and extremely
high values of cZn (Fig. 5), coinciding with the upper bound-
ary for this parameter. This results from the fact that high
values of cZn are needed to produce elevated Zn uptake at
high latitudes when aZn is low, especially when high ligand
concentrations L depress Zn2+. In our ensemble of optimi-
sations, high values of cZn are always concomitant with ele-
vated ligand concentrations (Figs. 5, S3).

Interdependence of parameter sensitivity can also be ob-
served between the parameters bZn and L. Although changes
of opposite sign to these parameters produce similar changes
in Zn uptake systematics (Fig. 2), both were accurately re-
trieved in our TWIN experiments (Table S2). In synObs ex-
periments, underestimation of one of these parameters did
not necessarily result in overestimation of the other. Ex-
ceptions to this are found when L is greatly overestimated
(>100 %); in all these cases, bZn is always clearly under-
estimated (<− 26 %; Fig. S3). Higher values of the ligand
concentration L buffer Zn2+ to concentrations below typical
values of bZn over a large range of total Zn concentrations
(Fig. S4), increasing the sensitivity of the uptake systemat-
ics to bZn. Conversely, low values of L result in a sharper
rise in Zn2+ with total Zn (Fig. S4), reducing the scope for
bZn to influence the Michaelis–Menten term in Eq. (2). In the
vicinity of the reference value of L, the sensitivity to bZn is
relatively low (Figs. 2, S4). In our optimisations, this lack
of sensitivity is manifested by the fact that bZn is found at a
boundary more frequently (>30 % of synObs experiments)
than L (<10 %). In our optimisations, if parameters were
found at one of their boundary values, we frequently ob-
served that misfits lower than that produced with optimised
parameters would have been achieved with parameter values
outside of the prescribed boundaries. This finding supports
previous studies suggesting that identification of optimised
parameter values at prescribed boundaries, as well as the
occurrence of lower misfits outside the prescribed and sup-
posedly realistic parameter space, may point to deficiencies
in biogeochemical model structure, a wrong choice of pa-
rameters to be optimised, or bias in the physical circulation
(e.g. Kriest et al., 2017; Falls et al., 2022) and highlights the
importance of well-considered boundaries for interpretabil-
ity of results.

In summary, our results show that parameters with a
stronger influence on the (reference) biogeochemical model
behaviour are better constrained over the range of uncertain-
ties and data coverage limitations represented by our syn-
Obs experiments. Given our choice of reference parameters,
which emphasises the high-affinity Zn uptake system (non-
linear term of Eq. 2), parameter aZn is the best-constrained
parameter, and cZn is the most difficult to constrain, with its
optimised value frequently found at a boundary.

3.2 Retrieval of biogeochemical model behaviour

Figure 6 illustrates how the optimised parameter sets influ-
ence a key aspect of the Zn cycling model: the dependence
of the stoichiometric uptake parameter rZn :P on dissolved
Zn (hereafter uptake curve or uptake systematics). We use
this emergent relationship as a measure of model similarity
since it controls the geographical systematics of Zn uptake
and export (de Souza et al., 2018), although of course the
stoichiometry of Zn : P uptake in the real ocean is not likely
to follow a single dependence on Zn concentration. In sub-
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Figure 5. Results from the last generation of all synObs experiments. Error bars represent 2 standard deviations calculated using the 10 indi-
viduals of the last generation. Dots represent parameter values resulting in minimum misfit within the prescribed boundaries during optimi-
sation, coloured according to misfit metric.

sequent subsections, we describe the retrieval of reference
biogeochemical model behaviour for three optimisation ex-
periments with varying degrees of dissimilarity between op-
timised and reference uptake systematics.

3.2.1 RMSE-optimised synObs_ALL_seas

The experiment synObs_ALL_seas optimises our annual-
mean model towards a target field produced when seasonal
variability is simulated, with perfect data coverage. The
RMSE-optimised parameter values in this experiment dif-
fer by 12 %–60 % from the reference values used to pro-
duce the target field (Table S2). These values result in Zn up-
take systematics that are broadly similar to the reference up-
take systematics (Fig. 6b), although rZn :P underestimates the
reference rZn :P at low concentrations and exceeds it above
∼ 1 nM. As a consequence, the RMSE-optimised Zn export
flux is increased in the Zn-rich Antarctic Zone but decreased
in the Subantarctic Zone and at lower latitudes, relative to

the reference Zn export flux distribution (Fig. S5b). These
systematic changes reflect the trends observed when com-
paring Zn export flux distributions in the target and reference
simulations (Fig. S5d), although differences between the ref-
erence and the RMSE-optimised Zn export fluxes are smaller
than those between the reference and the target. Similarly, a
comparison of residuals in the dissolved Zn distribution of
the RMSE-optimised model (Fig. 7b, e, h) to those between
the reference and target field (Fig. S1e, h, k) reveals that
optimisation has reduced the magnitude of residuals by up
to ∼ 50 %, while the patterns of the residuals remain near-
identical. In both cases, the surface ocean simulated with
annual-mean TMs is generally biased to higher Zn concen-
trations (Figs. 7b, S1e). High positive residuals in the surface
Southern Ocean and North Pacific are associated with nega-
tive residuals below the euphotic zone (e.g. Fig. 7e, h).

Although there are several optimisations that result
in a similar uptake curve as the RMSE-optimised syn-
Obs_ALL_seas experiment (Fig. 6), we would like to note
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Figure 6. Zn uptake systematics resulting from optimised parameter sets obtained in synObs experiments. Dashed lines in panels (e) and (f)
are results obtained with the IDP+ data coverage (see text).

that both distribution and magnitude of residuals can be quite
different (cf. second columns of Figs. 7, 8) between experi-
ments.

3.2.2 VolRMSE-optimised synObs_ALL_circ

In synObs_circ experiments, the target field was produced
using a different physical model than that used during op-
timisation. The VolRMSE-optimised parameter values in
synObs_ALL_circ, as well as those obtained in the cor-
responding optimisation with reduced data coverage (syn-
Obs_IDP_circ), coincide with boundary values for three of
four parameters (Table S2, Fig. 5). The resulting convex up-
take curve (Fig. 6c) is strikingly different from the refer-
ence curve, as a consequence of a low value of aZn and high
value of cZn. The VolRMSE-optimised parameter set results
in extremely low global Zn export fluxes (Table S2), reduc-

ing Zn uptake to the extent that surface concentrations are
not drawn down to low values. This produces a positive bias
throughout the surface ocean and especially high concentra-
tions in the subantarctic Southern Ocean, relative to both the
RMSE-optimised Zn (Fig. 8c) and the reference field. As a
consequence, the VolRMSE-optimised model produces high
Zn concentrations in the deep North Atlantic (Fig. 8f) and
lower concentrations in the entire mid-depth to abyssal Pa-
cific (Fig. 8i), i.e. a reduced deep-ocean Zn gradient. The low
Zn export fluxes of this optimised solution reduce the nor-
malised standard deviation of the VolRMSE-optimised field
to a value similar to that in the target field (Fig. S6); i.e. Vol-
RMSE optimisation uses biogeochemical parameters to pro-
duce a statistical distribution of Zn similar to that simulated
with MITgcm-ECCO due to its differing deep-ocean circu-
lation. The clearly distinct optimisation results are mainly
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Figure 7. Maps of (a–c) surface Zn concentration and (d–f) Atlantic and (g–i) Pacific zonal-mean Zn concentration, showing the RMSE-
optimised Zn field obtained in synObs_ALL_seas (first column), the difference between this field and the target field (second column), and
the difference between this field and the VolRMSE-optimised model Zn field from the same experiment (third column). Note the different
colour scales between the second and third columns. Values are in nanomolars (nM).

related to volume weighting, which is further discussed in
Sect. 3.5.2.

3.2.3 RMAE-optimised synObs_IDP_circ

In the RMAE-optimised synObs_circ experiments, Zn up-
take at high Zn concentrations is strongly reduced in syn-
Obs_IDP_circ relative to both the corresponding simu-
lation with full data coverage and the reference uptake
curve (Fig. 6c, f), resulting in globally higher surface-ocean
Zn concentrations. Additionally, reduced surface Southern
Ocean nutrient uptake and export decrease concentrations in
deep waters of the Southern Ocean through reduced nutri-
ent trapping (Sarmiento et al., 2004; Marinov et al., 2006;

Primeau et al., 2013), and, because reduced Zn uptake is a
consequence of a decrease in the uptake stoichiometry pa-
rameter rZn :P, it leads to a strengthening of the global Zn–
PO4 correlation, while the Zn–Si correlation is weakened
(Vance et al., 2017; de Souza et al., 2018). The shape of
the RMAE-optimised uptake curve in synObs_IDP_circ is
unique in our optimisation ensemble (Fig. 6) and is a conse-
quence of the joint effect of reduced data coverage and choice
of the misfit function, as we discuss in Sect. 3.6.
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Figure 8. Maps of (a–c) surface Zn concentration and (d–f) Atlantic and (g–i) Pacific zonal-mean Zn concentration, showing the RMSE-
optimised Zn field obtained in synObs_ALL_circ (first column), the difference between this field and the target field (second column), and
the difference between this field and the VolRMSE-optimised model Zn field from the same experiment (third column). Note the different
colour scales in the second and third columns. All results are interpolated to the grid of MITgcm-ECCO. Values are in nanomolars (nM).

3.3 Influence of uncertainty in the target field on
parameter retrieval

In our synObs experiments, the model cannot exactly re-
produce the target field, and optimisation finds parameter
sets that differ from the reference parameters to varying de-
grees, as shown by the examples discussed in Sect. 3.2. With
increasing dissimilarity between the target field and refer-
ence field, the reconstruction of model behaviour becomes
increasingly difficult, and the sensitivity of optimisation re-
sults to the applied misfit metric increases (Fig. 6; Sect. 3.5).
In all synObs experiments except one (Sect. 3.5.1), CMA-
ES found a parameter set that produces a lower misfit to the

target field than would have been achieved using the refer-
ence parameter values. This can be seen as “reciprocal bias
compensation”, a term coined by Löptien and Dietze (2019)
to describe the phenomenon that part of the bias induced
by flaws in circulation models can be compensated for by
changes to biogeochemical parameters. We find such error-
compensating effects induced by biogeochemical parameter
optimisation in all our synObs experiments. Relative to the
misfit obtained with the reference parameters, the propor-
tionally highest reductions in misfits are seen in synObs_seas
experiments (up to 3.5 %, excluding VolRMSE; Table S2).
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3.3.1 Analytical uncertainty

In synObs_noise experiments, which aim to assess how
CMA-ES is affected by analytical uncertainty inherent in any
true observational field, model Zn uptake behaviour is well
reconstructed regardless of data coverage (Fig. 6a, d), except
for VarRMSE-optimised synObs_IDP_noise, discussed fur-
ther in Sect. 3.5.1. This result suggests that analytical un-
certainty in GEOTRACES Zn data should not prevent op-
timisation from accurately retrieving biogeochemical model
behaviour. However, in contrast to the TWIN experiments,
in which parameter values were perfectly retrieved, the op-
timised parameters in synObs_noise experiments are distinct
from the reference parameters (Fig. 5): while parameters aZn,
bZn, and L are relatively well constrained to within ∼ 5 %,
∼ 30 %, and∼ 15 %, respectively (excluding VarRMSE), pa-
rameter cZn is consistently found at its lower boundary. The
poorer constraints on bZn and L than on aZn may be ex-
plained by reciprocal effects of these parameters on the up-
take curve (Fig. 2), while model sensitivity to cZn is gener-
ally low when aZn is properly reproduced (Sect. 3.1.1). More
broadly, despite the difference in the type of data used for op-
timisation, the imperfect parameter retrieval in these experi-
ments is consistent with the observation in data-assimilating
ecosystem model studies that Michaelis–Menten constants
are hard to constrain in optimisations against synthetic data
disturbed with noise (Friedrichs et al., 2006; Löptien and Di-
etze, 2015).

3.3.2 Lack of seasonal variability

In synObs_seas experiments, which aim to assess the im-
pact of our model’s lack of seasonality, differences between
optimised uptake curves are more pronounced for different
misfit functions than for different data coverage (Fig. 6b, e),
with the VolRMSE-optimised uptake curve most obviously
different from the reference curve. Nonetheless, in experi-
ments with reduced data coverage, both the RMSE- and the
VolRMSE-optimised uptake curves, are less similar to the
reference uptake curve than in corresponding experiments
with full data coverage. In all synObs_ALL_seas experi-
ments, the surface ocean of the optimised model is gener-
ally biased to higher Zn concentrations (e.g. Fig. 7b, c), ac-
companied by negative residuals below the euphotic zone
(e.g. Fig. 7e, h; Sect. 3.2). The integrated Zn export fluxes ob-
tained in our synObs_seas experiments are generally slightly
lower than the reference flux but always overestimate the ex-
port flux of the target simulation (Table S2; Fig. S9), which is
9 % lower than the reference. The VolRMSE-optimised syn-
Obs_ALL_seas experiment produces the lowest export flux,
i.e. closest to the flux of the target simulation, but this op-
timisation in fact leads to residuals that tend to amplify the
RMSE-optimised residuals (cf. second and third column in
Fig. 7), thus demonstrating the importance of the spatial pat-
terns in the Zn export flux. Figure S7 shows that it is the dif-

ferences in both circulation and biogeochemistry that limit
the ability of CMA-ES to reconstruct exact parameter values
and the integrated Zn export flux underlying the target field
(Table S2). Instead, optimisation finds a compromise solu-
tion that alters biogeochemical parameter values to compen-
sate for systematic differences between the target and refer-
ence fields, i.e. reciprocal bias compensation sensu Löptien
and Dietze (2019).

3.3.3 Differences in underlying circulation

In synObs_circ experiments, our model is optimised towards
a target field which was created using the reference bio-
geochemical parameters in a different circulation model,
MITgcm-ECCO (Sect. 2.3.1). Among the target fields used
in this study, the target field produced with MITgcm-ECCO
is most clearly distinct from the reference field (Figs. 1d,
e, S1). Differences between the reference field and the syn-
Obs_circ target field are larger than any differences result-
ing from relatively large changes to Zn uptake systematics
within the MITgcm-2.8 framework used during optimisation
(Fig. S6). Despite clearly different optimised uptake curves
(Fig. 6c), it remains the case that differences between the op-
timised Zn fields and the target are larger than differences be-
tween optimised models resulting from different misfit func-
tions (second column and third column in Fig. 8). Further-
more, differences between RMSE-optimised and VolRMSE-
optimised fields, which are of a purely biogeochemical ori-
gin within the same circulation framework (MITgcm-2.8),
are much more systematic than the distribution of residuals
to the target field, which compares results from two differ-
ent circulation frameworks (MITgcm-2.8 for the optimised
model, MITgcm-ECCO for the target field). A major differ-
ence between the circulation simulated by the two MITgcm
configurations relates to timescales of deep-ocean circula-
tion, especially in the voluminous deep Pacific (Fig. S8).

The focus of our synObs_circ experiments is mainly to as-
sess the effect of data coverage on optimisation results when
a systematic circulation bias exists, as we discuss in Sect. 3.4.
However, it is worth noting that (i) parameter retrieval ap-
pears most challenging in these experiments, with parame-
ters bZn and cZn each converging to a boundary in 8 of the 11
experiments conducted (Fig. 5); (ii) the synObs_circ experi-
ments are the only experiments in which parameter aZn, the
best-constrained parameter (Sect. 3.1), converged to its lower
boundary as a consequence of volume weighting (Sect. 3.2.2,
3.5); and (iii) all synObs_circ optimisations result in global
Zn export lower than that of the reference simulation, while
export in the target simulation is 7 % higher than in the ref-
erence simulation (Table S2, Fig. S9). We note that these re-
sults and their severity may be specific to the two circulation
models chosen for our synObs_circ experiments and/or to the
choice of reference parameters. On the other hand, the fact
that retrieval of parameter values and biogeochemical model
behaviour is difficult in the face of systematic differences in
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whole-ocean ventilation timescales is not unexpected. The
strong influence of the physical circulation framework on
biogeochemical ocean model output was emphasised rela-
tively early by Doney (1999). More recently, by comparing
optimisation results obtained using CMA-ES with TMs de-
rived from three different ocean models, Kriest et al. (2020)
found that some of their optimised biogeochemical parame-
ters depended strongly on the circulation.

In summary, we find that optimisation of biogeochemi-
cal parameter values introduces some error-compensating ef-
fects in all synObs experiments. This tendency is most sim-
ply illustrated by the synObs_noise experiments, where op-
timisation to noise-perturbed data produces parameter sets
slightly different from the reference set. However, relative to
the misfit obtained with the reference parameters, the highest
misfit reductions are seen in synObs_seas experiments (up
to 3.5 %, excluding VolRMSE; Table S2). This may reflect
that fact that the target field of these experiments differs most
strongly from the reference field in the high latitudes (Fig. 7),
where changes to parameter values have a relatively high im-
pact.

3.4 Influence of reduced data coverage on parameter
retrieval

In order to isolate the effect of reduced data coverage on op-
timisation, we compare the results of synObs_IDP(+) exper-
iments, in which data coverage is limited to the locations of
existing observations, with the corresponding synObs_ALL
experiment in which the entire Zn field is used to quantify
misfit.

3.4.1 Effects of reducing data coverage

Limiting simulated data coverage to that of the IDP2017
means that approximately 88 % of the model cells are not
used for comparison to synthetic observations. Nonetheless,
this does not lead to a significant increase in the total num-
ber of iterations needed until the internal convergence cri-
terion is reached (Table S2). We also found no evidence
that the reduction in data coverage causes CMA-ES to ter-
minate in a local minimum: calculating the misfit with the
optimised model output from synObs_ALL experiments at
IDP2017 coordinates results in a higher misfit than the min-
imum misfit achieved in the corresponding synObs_IDP ex-
periment. Conversely, misfits calculated using all model cells
with optimal parameters from the synObs_IDP experiments
were higher than the corresponding minimum misfits in syn-
Obs_ALL. Thus, the objectively optimal parameters indeed
depend on the data coverage of the target field.

Figure 6 shows that Zn uptake behaviour obtained with
a particular misfit function in synObs_IDP often did not
greatly differ from that obtained in the corresponding syn-
Obs_ALL experiment – with the exception of the RMSE op-
timisation with the seasonal target field (synObs_seas) and

the RMAE optimisation with the target field obtained from
ECCO (synObs_circ), introduced in Sect. 3.2.3. However,
Fig. 9 shows that the degree of difference in parameter val-
ues varies: while for parameter bZn optimal solutions scatter
widely around the 1 : 1 line, differences for the other param-
eters are much less pronounced, with only a few major off-
sets. The similarity for parameter cZn is a consequence of its
frequent coincidence with a boundary (Fig. 5), regardless of
data coverage. In contrast, the smaller scatter of parameters
L and especially aZn around the 1 : 1 line reiterates our find-
ing in Sect. 3.1 that these parameters are better constrained
by optimisation (Fig. 4). While the scatter for parameter L
is about equally distributed around the 1 : 1 line, parameter
aZn, which has the strongest effect on Zn uptake systemat-
ics and export flux (Figs. 2, S2), is always underestimated
in synObs_IDP experiments relative to the value obtained in
synObs_ALL. Limiting data coverage reduces the optimised
parameter value of aZn by 7± 5 % (1 standard deviation), ex-
cluding two cases for which aZn is underestimated by>30 %:
(i) VolRMSE-optimised synObs_IDP_seas and (ii) RMAE-
optimised synObs_IDP_circ (Fig. 9a, Table S2). In the first
case, underestimation of aZn is partly compensated by un-
derestimation of parameters bZn and L, producing an up-
take curve not very different from that obtained in the cor-
responding synObs_ALL (Fig. 6b, e) and similar integrated
Zn export (Fig. S9). In contrast, for RMAE-optimised syn-
Obs_IDP_circ, underestimation of parameter aZn is not com-
pensated by other parameter values, leading to very different
Zn uptake systematics from the corresponding synObs_ALL
experiment (Fig. 6c, f) and strongly reduced integrated Zn
export (Fig. S9). A similar but less extreme example leading
to different Zn uptake systematics from the corresponding
synObs_ALL experiment is found in the RMSE-optimised
synObs_IDP_seas experiment, in which underestimation of
aZn is compounded by overestimation of L and cZn (Fig. 6b,
e).

It is apparent from Figs. 6 and 9 that the extent to which
data coverage reduction affects parameter retrieval depends
on the misfit function; we discuss this in detail in Sect. 3.6.
Given the appropriate choice of the misfit function, however,
our set of experiments indicates that the spatial coverage of
the GEOTRACES IDP2017 is sufficiently representative of
the large-scale patterns of the Zn distribution to allow for
retrieval of biogeochemical model behaviour through opti-
misation. With regard to parameter retrieval, this finding is
limited to those parameters that dominate model behaviour,
i.e. L and especially aZn, although the latter is consistently
slightly underestimated relative to the value obtained in the
corresponding synObs_ALL experiment. The fact that the
generally well-constrained parameter aZn is underestimated
when data coverage is reduced, even though this parameter
sensitively controls Zn export from the biogeochemically im-
portant Southern Ocean (Fig. S2b), motivates an assessment
of whether increasing the observational density in some re-
gions, particularly the Southern Ocean, may improve param-
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Figure 9. Comparison of parameter values obtained in synObs_IDP (empty symbols) or synObs_IDP+ (filled symbols) with those from the
corresponding synObs_ALL experiment. Symbols indicate the experiment type.

eter retrieval. We thus subsequently assess potential benefits
associated with the addition of high-latitude data by consid-
ering our synObs_IDP+ experiments in more detail.

3.4.2 Effect of including high-latitude data

The synthetic target fields of our synObs_IDP+ experi-
ments complement the IDP2017 coordinates with the loca-
tions of high-latitude Zn observations published more re-
cently (Fig. 1b). For the two optimisation experiments dis-
cussed above (RMSE-optimised synObs_seas and RMAE-
optimised synObs_circ), including these additional con-
straints leads to an improvement in parameter retrieval, as the
underestimation in aZn is considerably reduced (by ∼ 50 %;
Fig. 9), and the optimised uptake systematics become more
similar to those obtained in the corresponding synObs_ALL
experiments (Fig. 6). In order to investigate whether the
alignment in systematics of the synObs_IDP+ experiments
with those of the corresponding synObs_ALL experiments
comes about due to additional Zn concentration informa-

tion or due to the implicit change in the weights of different
oceanic regions resulting from these additional data, we car-
ried out an additional RMAE-optimised synObs_IDP_circ
optimisation in which each data point was weighted by the
implicit basin weights derived from the IDP+ data situa-
tion (Table S3). This optimisation, which only includes the
Zn information resulting from IDP2017 data coverage, re-
sulted in uptake systematics that are quite distinct from those
obtained in the corresponding synObs_IDP+ experiment. In
fact, the uptake curve is very similar to that obtained in syn-
Obs_IDP_circ (Fig. S10) but produces consistently higher
values of rZn :P. This similarity implies that rather than the
changed weighting of oceanic regions, it is the additional Zn
concentration information in the IDP+ data that is mainly
responsible for altering optimisation results.

Further evidence for the importance of the additional
high-latitude Zn data arises from the BasinRMAE-optimised
uptake systematics in synObs_IDP+_circ, which become
more similar to the RMAE-optimised synObs_ALL exper-
iment than that obtained for synObs_IDP_circ (Fig. S10).
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We suppose that in particular the additional data con-
straints at southern high latitudes – typically associated with
high surface Zn concentrations – can significantly improve
the ability to constrain biogeochemical model behaviour
because (i) the largest differences between the RMAE-
optimised uptake systematics obtained in synObs_IDP_circ
and synObs_IDP+_circ are observed for high Zn and
(ii) the BasinRMAE-optimised uptake curve obtained in
synObs_IDP+_circ improves the BasinRMAE-optimised
uptake curve obtained in synObs_IDP_circ, again exceeding
it especially at high Zn (Fig. S10).

In summary, our results suggest a benefit from additional
high-latitude data. Among the RMAE-based optimisation
results with reduced data coverage, BasinRMAE-optimised
uptake systematics in synObs_IDP+_circ best reproduce the
RMAE-optimised uptake systematics in the corresponding
experiment with full data coverage. This finding, together
with the smaller deviations from the 1 : 1 line achieved
with basin-weighting misfit metrics in Fig. 9, suggests that
basin weighting may be advantageous in reconstructing bio-
geochemical system behaviour from sparse and inhomoge-
neously sampled data. We discuss this further in Sect. 3.6.

3.5 Importance of the misfit function

A feature that emerges from the preceding discussion is that
both in the presence of inaccuracies in the physical model
(Sect. 3.3) or with a reduction in data coverage (Sect. 3.4),
optimisation results become increasingly dependent on the
misfit metric used. This is in agreement with previous stud-
ies that report a potentially large impact of the choice of
the misfit function on the best estimate of biogeochemical
fluxes and concentrations (e.g. Evans, 2003; Sauerland et al.,
2019). In particular, the subjective choice of weights may
have a strong influence on the optimisation results (Evans,
2003). While some studies apply RMSE-based misfit func-
tions (e.g. Friedrichs et al., 2007), others suggest to reduce
the effect of outliers by using a misfit function based on
the absolute differences between the model and observations
(Trudinger et al., 2007; Seegers et al., 2018).

Our ensemble of optimisations suggests that weighting
is more important than the choice of squaring the resid-
uals or not. Our optimisation results show that weighting
squared residuals by the fractional volume of the grid cell
(VolRMSE) results in large deviations from the reference
uptake systematics whenever systematic differences in the
underlying physical model are present (i.e. in synObs_seas
and synObs_circ experiments), even with perfect data cov-
erage; furthermore, weighting squared residuals by the in-
verse variance prevented CMA-ES from reaching its inter-
nal termination criterion. We discuss these two weighting
schemes below. Other examples of a misfit metric leading to
poorly retrieved biogeochemical model systematics emerge
only in the light of both underlying uncertainty and limited
data availability and will be further discussed in Sect. 3.6,

where we elucidate the joint effect of these two aspects and
the importance of basin weighting.

3.5.1 Influence of the misfit function: variance
weighting

The only synObs_noise experiment entirely unable to repro-
duce model Zn uptake behaviour is that optimised using Var-
RMSE (Fig. 6d). Reasons for CMA-ES being prevented from
finding the absolute minimum of the misfit function might be
a non-informative (“flat”) misfit distribution, a rough misfit
topography, too wide boundary constraints, or a small pop-
ulation size (e.g. Ward et al., 2010; Kriest et al., 2017). The
VarRMSE misfit metric is highly sensitive to changes in pa-
rameter bZn (Fig. S11), and its minimum in parameter space
is strongly offset from the reference value of this parameter.
This topography appears to be a consequence of the variance
weighting of residuals in this misfit function. Some of the
weighted residuals between the reference field and the noise-
perturbed target field are very high for small concentrations
(Fig. S12). This is because the variance used for weight-
ing the squared residuals is empirically estimated from the
noise-perturbed observations (as it would be from real obser-
vations), rather than from the reference field used to deter-
mine the added noise (Sect. 2.3.1). Since ε increases rapidly
at small concentrations (Eq. 5), the empirical variance deter-
mined for noise-perturbed observations that actually under-
estimate the true value is a gross underestimate, leading to
overweighting of these residuals in the misfit function (since
wi,j = ε

−1). As a consequence, this particular misfit func-
tion appears to be too sensitive to changes in parameter bZn,
which plays an important role at low concentrations (Fig. 2).
However, the sensitivity of the global Zn distribution to pa-
rameter bZn is virtually negligible (de Souza et al., 2018), and
thus an elevated sensitivity of the optimisation to this param-
eter is not desirable. It might be sensible to apply a minimum
absolute error when calculating weights for a misfit metric
that weights by its reciprocal (Schartau et al., 2001).

3.5.2 Influence of the misfit function: volume weighting

A striking result of our optimisation ensemble is the fact that,
in the presence of biases in the model, VolRMSE-optimised
solutions exhibit Zn uptake systematics that are most dis-
tinct from both the other experiments as well as the reference
uptake curve (Fig. 6), even when data coverage is perfect.
The VolRMSE misfit function compensates to some extent
for the unequal distribution of model cells, which are more
numerous in the upper ocean due to the higher vertical res-
olution there. On the other hand, all misfit metrics applied
in this study naturally emphasise the deep ocean for a nu-
trient element such as Zn, due to the order-of-magnitude in-
crease in Zn concentrations between the surface and the deep
ocean. Because of this expected concentration dependence of
the residuals, several studies suggest that log transformation
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might be appropriate if there is such a wide variability in con-
centrations (e.g. Stow et al., 2009; Seegers et al., 2018; Falls
et al., 2022); instead, VolRMSE exacerbates this concentra-
tion dependence for elements with a nutrient-like distribu-
tion. When there are differences in the underlying physical
model (synObs_seas and synObs_circ), VolRMSE optimisa-
tion consistently leads to the smallest globally integrated Zn
export flux (Table S2). This finding is most strongly mani-
fested in synObs_circ experiments, in which there are sys-
tematic differences between the large-scale circulation un-
derlying the synthetic observations (from MITgcm-ECCO)
and the model (MITgcm-2.8).

The biogeochemical model behaviour obtained with the
VolRMSE misfit metric in synObs_ALL circ was introduced
in Sect. 3.2.2. In this experiment, the optimised parameter set
results in integrated Zn export flux reduced by 15 % relative
to the reference simulation (Table S2) and by 20 % relative to
the MITgcm-ECCO simulation that produced the target field;
the reduction is even stronger for the corresponding experi-
ment with IDP2017 data coverage. The fact that VolRMSE-
optimised uptake curves strongly deviate from the refer-
ence uptake curve even with perfect data coverage (Fig. 6b,
c), while only limited deviations are seen with RMSE and
RMAE, supports the suspicion of Kriest (2017) and Kriest
et al. (2017) that volume weighting might impede determi-
nacy of parameters related to processes taking place in the
euphotic zone. Based on our results, we question the suitabil-
ity of volume weighting for optimisation of biological uptake
parameters towards basin-scale dissolved data because Vol-
RMSE leads to the fitting of large-scale patterns associated
with ventilation of the deep ocean, rather than fitting bio-
geochemical model behaviour associated with the parame-
ters to be optimised. This is shown particularly clearly by the
synObs_circ experiments: simulating ideal age (Thiele and
Sarmiento, 1990), the physical model used during optimi-
sation (MITgcm-2.8) produces deep waters that, especially
in the Pacific, are significantly older than in the circulation
model underlying the synthetic target field (Fig. S8). This
large-scale circulation timescale difference leads to enhanced
accumulation of regenerated Zn in the deep Pacific relative
to the target field (Fig. 8). The use of VolRMSE results in a
sensitivity to residuals in the Zn-rich deep ocean to such an
extent that the misfit minimum is found for parameters that
drastically decrease globally integrated Zn export in order to
reduce Zn accumulation in old deep waters – even though this
simultaneously results in unrealistically high surface-ocean
Zn concentrations (Sect. 3.2.2). On the one hand, these re-
sults recapitulate the dependence of biogeochemical model
results on physical circulation pathways and timescales, but
they also reveal that such sensitivities may be exacerbated by
the sensitivities of the misfit function chosen for optimisa-
tion. Our results suggest that VolRMSE tends to enhance the
circulation dependence of optimisation results, although this
tendency may be strengthened in our study by the nutrient-

restoring nature of the underlying P cycling model (e.g. Kri-
est et al., 2020).

3.6 Interaction between data distribution and the
misfit function: importance of basin weighting

Finally, we bring together the two aspects of the suite of opti-
misation experiments discussed in Sect. 3.4 and 3.5, in order
to assess how the influence of a misfit function on optimisa-
tion results is affected by data distribution. In particular, we
discuss the importance of basin weighting when data cover-
age is reduced.

The two experiments in which the reduction in data cover-
age induces relatively large differences from those obtained
in corresponding synObs_ALL experiments are the RMSE-
optimised synObs_IDP_seas experiment and the RMAE-
optimised synObs_circ experiment (Table S2; Fig. 6). Fig-
ure 10 shows the depth distribution of the residuals in these
two experiments, as well as the residuals between the refer-
ence field and the corresponding target field. The depth distri-
bution of residuals between the reference field and the target
field of the synObs_seas experiments reveals that the sum
of squared residuals in the surface ocean is about as high
as that in the abyssal ocean, when data coverage is perfect
(Fig. 10b). However, restricting data coverage to IDP2017
coordinates leads to a larger normalised sum of residuals
(and especially of squared residuals) in the abyssal ocean,
simply due to the sampling locations at which residuals are
calculated. These residuals are reduced by optimisation in the
synObs_ALL and synObs_IDP experiments, but the depth
structure of the residuals, as well as the enhanced impor-
tance of the abyssal ocean with IDP2017 coverage, remains
(Fig. 10b). Overall, misfit minimisation appears to be a trade-
off between fitting Zn concentrations in the abyssal ocean
and that in the uppermost ∼ 300 m: with full data coverage,
RMSE optimisation slightly favours fitting the upper ocean,
but with reduced data coverage, changes to Zn concentrations
in the abyssal ocean affect a misfit more strongly than in the
surface ocean. This changed trade-off results in different op-
timised Zn uptake systematics when data coverage is reduced
(Fig. 6b, e).

In the synObs_circ experiments, analysis of the depth dis-
tribution of residuals between the reference field and the tar-
get field (Fig. 10c, d, h, i) reveals that limiting data cov-
erage to IDP2017 coordinates increases normalised residu-
als throughout the water column (Fig. 10c, d). The RMAE-
optimised synObs_ALL_circ experiment produces a Zn field
that is almost identical to the reference field, while in the
corresponding experiment with IDP2017 coverage, optimi-
sation worsens model fit in the uppermost layers (Fig. 10i) in
favour of reduced sums of absolute residuals at depth, a result
that is promoted by the small magnitude of residuals in the
Zn-poor upper ocean. Figure S9 suggests that nearly all syn-
Obs_IDP_circ optimisations achieve a lower global misfit at
the expense of increased surface residuals produced by a de-
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Figure 10. (a, c) Integrated reference residuals (i.e. Znreference–Zntarget) and residuals of optimised model over each model depth level.
(f, h) Zoom-ins of panels (a) and (c). (b, g, d, i) Same as panels (a), (f), (c), and (h), but the integration is done with residuals being squared
and with absolute values of residuals, respectively. In order to make results obtained with the two data situations comparable, all results
are normalised by the total number of observations. Note that positive and negative residuals within the same depth level can cancel each
other out and that the sum is influenced by the number of model cells located in the corresponding model depth level. (e) Relative frequency
distributions of the vertical distribution of three different observational sets, which are the non-reduced observations, i.e. MITgcm-2.8,
IDP2017, and IDP2017+, and (j) a zoom-in thereof.
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creased global Zn export flux. Thus, reducing data coverage
for optimisation can alter misfit trade-offs between different
ocean regions, due to changes in the vertical or geographic
sampling of the target distribution.

In order to assess the joint effect of reduced data cov-
erage and misfit function on optimisation results in more
detail, Fig. 11 compares the optimised Zn field obtained
in synObs_IDP_circ experiments with that obtained in syn-
Obs_ALL_circ. The synObs_IDP_circ experiments are the
experiments with the greatest variability among optimised
uptake systematics (Fig. 6); furthermore, the most-influential
and best-constrained parameter aZn is consistently underesti-
mated, relative to the optimised value obtained in the corre-
sponding synObs_ALL_circ experiment (Fig. 9; Sect. 3.4), a
finding that is especially clear with the RMAE misfit metric.

The comparison of the RMAE-optimised Zn fields ob-
tained from synObs_ALL_circ and synObs_IDP_circ against
each other, either only at IDP coordinates (Fig. 11a) or at
all model grid points (Fig. 11b), reveals that IDP2017 sam-
pling does indeed capture many of the systematic offsets be-
tween the two fields, such as those at high concentrations in
the Pacific and Southern Ocean >50◦ S. However, the off-
sets at IDP2017 coordinates are apparently neither numerous
nor large enough to drive the RMAE optimisation towards
the result obtained with full data coverage. Squaring resid-
uals amplifies the relative impact of these offsets (Fig. 11c,
d), and indeed a comparison of the corresponding RMSE-
optimised Zn field to RMSE-optimised synObs_ALL_circ
reveals that such offsets between the two simulations are vir-
tually absent at IDP coordinates (Fig. 11e). The fact that the
RMSE-optimised rZn :P obtained in synObs_IDP_circ is not
identical to that in synObs_ALL_circ, underestimating it at
high concentrations but slightly overestimating it at low con-
centrations (Fig. 6c, f), results in tiny but systematic devia-
tions from the theoretical quadratic relationship in the South-
ern Ocean (>50◦ S) and the Indian Ocean (grey points in
Fig. 11e), which appear to be barely captured with IDP coor-
dinates.

Basin weighting. Another way to amplify the system-
atic offsets seen in Fig. 11a is achieved by calculating sep-
arate RMAEs for different ocean basins as in our basin-
weighting scheme, which weights the differences between
the two fields in the Southern Ocean >50◦ S more strongly
(Fig. 11f). The systematic Zn differences in this region re-
sulting from different data coverage are mostly mitigated in
the corresponding BasinRMAE-optimised simulation, which
produces a field much more similar to RMAE-optimised syn-
Obs_ALL (Fig. 11h) and results in estimates of aZn and L
that are less strongly offset from this solution (Fig. 9; Ta-
ble S2). Similar alignments in parameters aZn and L with
basin weighting can be observed in the case of the RMSE-
optimised synObs_IDP_seas experiment discussed above.
Here, the BasinRMSE-optimised solution corrects both the
underestimation of aZn and the overestimation of L (Fig. 9a,
d; Table S2) and produces uptake systematics more simi-

lar to the corresponding synObs_ALL solution (Fig. 6b, e).
Thus, in both these experiments, basin weighting reduces
the sensitivity of optimisation results to the data distribution.
Our basin-weighting scheme was chosen to counteract the
unequal distribution of observations between basins in the
IDP2017 (Fig. 1b). Thus, basin-weighted metrics result in a
relative downweighting of the Atlantic and the Pacific, while
weights of the Indian Ocean and the Southern Ocean south
of 50◦ S are increased. As discussed for the two examples
above, improvements achieved through basin weighting are
more generally apparent in our ensemble, being reflected in
approximation of the uptake systematics in synObs_IDP(+)
experiments to those in the corresponding synObs_ALL ex-
periments with perfect data coverage (Fig. 6) and in a closer
correspondence between the numerical values of optimised
parameters aZn and L (Fig. 9).

It is worth noting that our experience with basin weight-
ing is to some extent in contrast with the findings of Tjipu-
tra et al. (2007) who applied variational data assimilation to
a three-dimensional global marine biogeochemical model.
Calculating misfits from surface cells only, these authors
found that twin experiments aiming to assimilate synthetic
chlorophyll observations are more successful in reducing the
misfit function if an implicit regional scaling is applied by
weighting each residual by its fractional volume, i.e. a met-
ric similar to VolRMSE, which performs poorly in our exper-
iments (Sect. 3.5.2). On the other hand, some optimisations
towards the distributions of dissolved nutrients (e.g. Frants et
al., 2016) explicitly encode an ad hoc emphasis of the South-
ern Ocean that is implicit in our basin-weighting scheme.
Though basin weighting might be considered subjective, we
argue that the high zonal symmetry in the Southern Ocean
and its key role in determining global ocean nutrient distri-
butions (Sarmiento et al., 2004, 2007) are sufficient justifi-
cation for its application. In particular, we hypothesise that
the biogeochemical importance of the Southern Ocean in de-
termining the global Zn distribution (Vance et al., 2017; de
Souza et al., 2018; Weber et al., 2018) is the reason why it is
preferable to (implicitly) emphasise this region in the misfit
metric. Given the general importance of the Southern Ocean
in determining large-scale ocean biogeochemical parameters,
such a metric is likely to perform well for most biogeochem-
ically cycled elements with long oceanic residence times.
Nonetheless, different misfit metrics obviously capture dif-
ferent aspects of the distribution of model performance. In
order to ensure a thorough skill evaluation, Stow et al. (2009)
suggest that the use of several metrics simultaneously is of-
ten to be recommended, and Sauerland et al. (2019) show
that multi-objective optimisation can help to better constrain
model parameters.

3.7 Implications for model calibration using real data

Although there are modelling studies of marine trace metal
cycling that objectively calibrate a variety of their model pa-
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Figure 11. Comparison of Zn obtained in synObs_IDP_ circ to Zn obtained in synObs_ALL_circ. The first row compares RMAE-optimised
Zn obtained in synObs_IDP_circ and synObs_ALL_circ. The second and third rows show the effect on deviations seen in the first row if either
Zn is squared, as in RMSE, or five ocean regions are distinguished, as in BasinRMAE. The first and second columns plot RMAE-optimised
Zn obtained in synObs_IDP_circ and synObs_ALL_circ restricted to the coordinates in the GEOTRACES IDP2017 and the entire field,
respectively. Panels (e) and (h) of the third column compare Zn obtained with the RMSE misfit function and BasinRMAE misfit function in
synObs_IDP_circ to the corresponding Zn obtained in synObs_ALL_circ, respectively.
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rameters (e.g. Frants et al., 2016; Weber et al., 2018; Pasquier
et al., 2022), the impact of data distribution, model imper-
fections, or choice of the misfit function on optimisation
results are often not discussed. In this study, we have sep-
arately assessed how optimisation results are impacted by
these sources of uncertainty. In accordance with other work
(e.g. Löptien and Dietze, 2019; Kriest et al., 2020), our en-
semble of optimisations shows that biogeochemical param-
eters are often optimised to compensate for the inability of
model formulations to reproduce the target field (Sect. 3.3).
Reconstructed Zn uptake systematics were most different
from the reference uptake systematics in experiments with
systematic differences between the large-scale circulation of
the model and that underlying the target field (synObs_circ;
Fig. 6); misfits obtained in this experiment type were also
about an order of magnitude higher than those for syn-
Obs_seas, which differ only in terms of the presence or ab-
sence of seasonality within the same physical model. While
optimisation to real Zn data (e.g. Weber et al., 2018) is out-
side this study’s focus, the results of our ensemble have di-
rect implications for such optimisations and the inferences
that may be drawn from them:

– Because biogeochemical parameters are often opti-
mised to compensate for the inability of model formula-
tions to reproduce the target field, any optimisation of a
simple biogeochemical model such as ours towards real
data must be seen as attempting to retrieve the systemat-
ics of biogeochemical behaviour, rather than physically
meaningful parameter values. This is especially the case
since – even though observations from wild phytoplank-
ton (Twining and Baines, 2013) indicate geographical
systematics that are similar to those that result from this
model formulation (de Souza et al., 2018) – there is no
reason to believe that the stoichiometry of Zn : P uptake
in the real ocean should follow a single dependence on
dissolved Zn concentration.

– Because increasing both spatial and temporal model res-
olution might be computationally unaffordable, even for
a relatively efficient global optimisation algorithm like
CMA-ES, it is important for studies focusing on op-
timisation towards global (micro)nutrient distributions
with long whole-ocean residence times to prioritise the
choice of circulation model, with special focus on accu-
rate simulation of large-scale circulation timescales.

– It is important to recognise the subjectivity that the
choice of the misfit function introduces to objective pa-
rameter optimisation and to carefully weigh the sen-
sitivities implicit to the misfit function in making this
choice for any particular application. A misfit function
that appears suitable for optimisation in a simple TWIN
experiment, in which the model can perfectly describe
the target field, may not be the best choice for optimi-

sation towards noisy, incomplete, and/or irregularly dis-
tributed real-world data.

It should also be emphasised that our study has not con-
sidered the influence of model simplifications, such as the
lack of external sources of Zn or simplifications in the under-
lying P cycling model. External inputs such as those from
marginal sediments, atmospheric deposition, or hydrother-
mal vents (e.g. Conway and John, 2014; Roshan et al., 2016;
Lemaitre et al., 2020; Liao et al., 2020; Sugino and Oka,
2022) are not relevant to our optimisation ensemble to syn-
thetic observations, but their potential significance should be
taken into account during optimisation to real data. With re-
gard to the underlying P cycling model, it directly affects
Zn cycling in our model formulation, since Zn uptake is re-
lated to PO4 uptake through rZn :P (Sunda and Huntsman,
1992), and Zn remineralises with the same globally constant
length scale as P (Twining et al., 2014). In particular, the lat-
ter assumption may be oversimplified, as the remineralisation
length scale might be dependent on latitude or upper-ocean
temperature (DeVries et al., 2014; Marsay et al., 2015; Weber
et al., 2016). Furthermore, observational studies have come
to contrasting conclusions regarding the similarities between
the regeneration length scales of Zn and P (Twining et al.,
2014; Ellwood et al., 2020; Cloete et al., 2021).

4 Conclusions

This study has assessed how data distribution, model imper-
fections, and the misfit function influence the optimisation of
a marine Zn cycling model with the algorithm CMA-ES. Us-
ing synthetic observations that allow us full control over the
target field, we aimed to investigate the algorithm’s skill at
retrieving parameter values and emergent model behaviour
under real-world conditions resulting from data constraints,
such as reduced data coverage and analytical errors, or from
systematic bias between the model and target field related to
either seasonality or large-scale physical circulation.

Our results revealed good performance of CMA-ES with
respect to recovering biogeochemical model behaviour. In
TWIN experiments, in which the model was optimised to-
wards target fields that could theoretically be perfectly re-
produced by the model, CMA-ES recovered all model pa-
rameter values regardless of data coverage. Furthermore, the
analysis of our suite of synObs experiments, in which re-
production of reference model behaviour was impeded since
the target field could a priori not be exactly reproduced by
the model, revealed that (i) the data coverage of the GEO-
TRACES IDP2017 can be sufficient to reconstruct the sys-
tematics of Zn cycling at the global scale; (ii) optimisation
generally broadly reproduced the Zn uptake systematics of
the reference simulation, with a few meaningful exceptions
related to the choice of the misfit function; and (iii) the degree
to which a parameter can be constrained depends strongly on
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its influence on the model’s Zn uptake systematics and emer-
gent properties such as global export flux.

As CMA-ES generally identified parameter sets that pro-
duced lower misfits than would have been calculated with the
reference parameter set, all optimised results contain some
error-compensating effects. Despite these, the reference Zn
export flux is generally relatively well reproduced, except
with the VolRMSE misfit metric. Applying this metric, which
deemphasises the shallow ocean and polar regions, results in
the most distinct Zn uptake systematics from both the refer-
ence curve and those resulting from optimisation with other
misfit metrics. Furthermore, the inability of this metric to re-
produce model behaviour increases with the dissimilarity be-
tween the target field and reference field (Fig. 6). Based on
our results, we suggest avoiding misfit metrics that deempha-
sise regions where parameters to be optimised are likely to be
influential.

Finally, our study emphasises the importance of implicit
basin weighting in the misfit function and the significance of
the information gained from an increase in high-latitude Zn
concentration data. The basin-weighting misfit metrics ap-
plied in this study (BasinRMSE and BasinRMAE) oppose
differences in data coverage between basins and prove most
successful in minimising the sensitivity of optimised model
behaviour to data coverage. Since the high latitudes are un-
dersampled in the extant data, the efficacy of basin weight-
ing, in turn, reveals the importance of high-latitude Zn data
for constraining model behaviour, as does the fact that our
best-constrained parameter – which dominantly determines
the magnitude of Zn export at high latitudes – is underesti-
mated when data coverage is reduced.

Code and data availability. The TMM software and
transport matrices are available to download from
https://doi.org/10.5281/zenodo.1246300 (Khatiwala, 2018).
The OptClimSO optimisation framework is available at
https://doi.org/10.5281/zenodo.5517610 (Oliver, 2021). It is
originally sourced from Tett et al. (2013) and includes the CMA-ES
optimisation code taken from Kriest et al. (2017). Code implement-
ing the Zn model and optimised model outputs are available from
https://doi.org/10.3929/ethz-b-000543389 (Eisenring et al., 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-19-5079-2022-supplement.

Author contributions. GFdS and CE conceived the study and de-
signed the experiments. SEO and CE developed code, and SEO
and SK advised on implementation. CE carried out all experiments
and analysis and wrote the first draft. GFdS and other authors con-
tributed to the ideas presented in this study and provided input for
the final manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We thank Derek Vance for his helpful com-
ments on an earlier version of this manuscript and two anony-
mous reviewers for their stimulating questions and comments,
which helped improve the paper. This work was supported
by a grant from the Swiss National Supercomputing Centre
(CSCS; project ID s941). Claudia Eisenring is supported by the
Swiss National Science Foundation (grant no. 200021_192116
to GFdS). Sophy E. Oliver was supported by the Oxford Doc-
toral Training Partnership in Environmental Research and the
Met Office through NERC (Natural Environment Research Coun-
cil; grant nos. NE/L002612/1 and NE/N007824/1). Samar Khati-
wala was supported by NERC (grant nos. NE/M020835/1 and
NE/T009357/1).

Financial support. This research has been supported by
the Schweizerischer Nationalfonds zur Förderung der Wis-
senschaftlichen Forschung (grant no. 200021_192116) and the
Natural Environment Research Council (grant nos. NE/L002612/1,
NE/N007824/1, NE/M020835/1, and NE/T009357/1).

Review statement. This paper was edited by Julia Uitz and re-
viewed by two anonymous referees.

References

Baars, O. and Croot, P. L.: The speciation of dissolved zinc in the
Atlantic sector of the Southern Ocean, Deep-Sea Res. Pt. II, 58,
2720–2732, https://doi.org/10.1016/j.dsr2.2011.02.003, 2011.

Bevington, P. R. and Robinson, D. K.: Data reduction and error
analysis for the physical sciences, 3rd Edn., Boston, McGraw-
Hill, ISBN 0-07-247227-8, 2003.

Bruland, K. W.: Oceanographic distributions of cadmium, zinc,
nickel, and copper in the North Pacific, Earth Planet. Sc. Lett., 47,
176–198, https://doi.org/10.1016/0012-821X(80)90035-7, 1980.

Bruland, K. W.: Complexation of zinc by natural organic ligands
in the central North Pacific, Limnol. Oceanogr., 34, 269–285,
https://doi.org/10.4319/lo.1989.34.2.0269, 1989.

Moffett, J.: standards and reference materials for intercalibration,
https://www.geotraces.org/standards-and-reference-materials/
(last access: 27 October 2022), 2019.

Chester, R. and Jickells, T. D.: Marine geochemistry, 3rd Edn.,
Chichester, Wiley-Blackwell, ISBN 978-1-405-18734-3, 2012.

Cloete, R., Loock, J. C., van Horsten, N. R., Menzel Bar-
raqueta, J. L., Fietz, S., Mtshali, T. N., Planquette, H.,
García-Ibáñez, M. I., and Roychoudhury, A. N.: Winter dis-
solved and particulate zinc in the Indian Sector of the

https://doi.org/10.5194/bg-19-5079-2022 Biogeosciences, 19, 5079–5106, 2022

https://doi.org/10.5281/zenodo.1246300
https://doi.org/10.5281/zenodo.5517610
https://doi.org/10.3929/ethz-b-000543389
https://doi.org/10.5194/bg-19-5079-2022-supplement
https://doi.org/10.1016/j.dsr2.2011.02.003
https://doi.org/10.1016/0012-821X(80)90035-7
https://doi.org/10.4319/lo.1989.34.2.0269
https://www.geotraces.org/standards-and-reference-materials/


5102 C. Eisenring et al.: Influence of GEOTRACES data distribution

Southern Ocean: Distribution and relation to major nutrients
(GEOTRACES GIpr07 transect), Mar. Chem., 236, 104031,
https://doi.org/10.1016/j.marchem.2021.104031, 2021.

Conway, T. M. and John, S. G.: The biogeochemical
cycling of zinc and zinc isotopes in the North At-
lantic Ocean, Global Biogeochem. Cy., 28, 1111–1128,
https://doi.org/10.1002/2014gb004862, 2014.

Conway, T. M. and John, S. G.: The cycling of iron, zinc and
cadmium in the North East Pacific Ocean – Insights from
stable isotopes, Geochim. Cosmochim. Ac., 164, 262–283,
https://doi.org/10.1016/j.gca.2015.05.023, 2015.

Conway, T. M., Horner, T. J., Plancherel, Y., and González, A. G.:
A decade of progress in understanding cycles of trace elements
and their isotopes in the oceans, Chem. Geol., 580, 120381,
https://doi.org/10.1016/j.chemgeo.2021.120381, 2021.

de Souza, G. F., Khatiwala, S. P., Hain, M. P., Little, S.
H., and Vance, D.: On the origin of the marine zinc–
silicon correlation, Earth Planet. Sc. Lett., 492, 22–34,
https://doi.org/10.1016/j.epsl.2018.03.050, 2018.

DeVries, T., Liang, J. H., and Deutsch, C.: A mechanistic parti-
cle flux model applied to the oceanic phosphorus cycle, Biogeo-
sciences, 11, 5381–5398, https://doi.org/10.5194/bg-11-5381-
2014, 2014.

Dietze, H. and Löptien, U.: Revisiting “nutrient trapping” in global
coupled biogeochemical ocean circulation models, Global Bio-
geochem. Cy., 27, 265–284, https://doi.org/10.1002/gbc.20029,
2013.

Donat, J. R. and Bruland, K. W.: A comparison of two
voltammetric techniques for determining zinc speciation in
Northeast Pacific Ocean waters, Mar. Chem., 28, 301–323,
https://doi.org/10.1016/0304-4203(90)90050-M, 1990.

Doney, S. C.: Major challenges confronting marine biogeo-
chemical modeling, Global Biogeochem. Cy., 13, 705–714,
https://doi.org/10.1029/1999GB900039, 1999.

Doney, S. C., Lindsay, K., Caldeira, K., Campin, J. M., Drange,
H., Dutay, J. C., Follows, M., Gao, Y., Gnanadesikan, A., Gru-
ber, N., Ishida, A., Joos, F., Madec, G., Maier-Reimer, E.,
Marshall, J. C., Matear, R. J., Monfray, P., Mouchet, A., Naj-
jar, R., Orr, J. C., Plattner, G. K., Sarmiento, J., Schlitzer, R.,
Slater, R., Totterdell, I. J., Weirig, M. F., Yamanaka, Y., and
Yool, A.: Evaluating global ocean carbon models: The impor-
tance of realistic physics, Global Biogeochem. Cy., 18, GB3017,
https://doi.org/10.1029/2003GB002150, 2004.

Dutkiewicz, S., Follows, M. J., and Parekh, P.: Interactions
of the iron and phosphorus cycles: A three-dimensional
model study, Global Biogeochem. Cy., 19, GB1021,
https://doi.org/10.1029/2004GB002342, 2005.

Eisenring, C., Oliver, S. E., Khatiwala, S., and de Souza, G. F.: Code
and data availability of the article “Influence of GEOTRACES
data distribution and misfit function choice on objective param-
eter retrieval in a marine zinc cycle model”, ETH Zurich [code],
https://doi.org/10.3929/ethz-b-000543389, 2022.

Ellwood, M. and van den Berg, C. M. G.: Zinc speciation in
the Northeastern Atlantic Ocean, Mar. Chem., 68, 295–306,
https://doi.org/10.1016/S0304-4203(99)00085-7, 2000.

Ellwood, M. J.: Wintertime trace metal (Zn, Cu, Ni, Cd, Pb
and Co) and nutrient distributions in the Subantarctic Zone
between 40–52◦ S; 155–160◦ E, Mar. Chem., 112, 107–117,
https://doi.org/10.1016/j.marchem.2008.07.008, 2008.

Ellwood, M. J. and Hunter, K. A.: The incorporation of
zinc and iron into the frustule of the marine diatom Tha-
lassiosira pseudonana, Limnol. Oceanogr., 45, 1517–1524,
https://doi.org/10.4319/lo.2000.45.7.1517, 2000.

Ellwood, M. J., Strzepek, R., Chen, X., Trull, T. W., and Boyd,
P. W.: Some observations on the biogeochemical cycling of
zinc in the Australian sector of the Southern Ocean: a ded-
ication to Keith Hunter, Mar. Freshwater Res., 71, 355–373,
https://doi.org/10.1071/mf19200, 2020.

Evans, G. T.: Defining misfit between biogeochemi-
cal models and data sets, J. Mar. Syst. 40/41, 49–54,
https://doi.org/10.1016/S0924-7963(03)00012-5, 2003.

Falls, M., Bernardello, R., Castrillo, M., Acosta, M., Llort, J., and
Galí, M.: Use of genetic algorithms for ocean model parameter
optimisation: a case study using PISCES-v2_RC for North At-
lantic particulate organic carbon, Geosci. Model Dev., 15, 5713–
5737, https://doi.org/10.5194/gmd-15-5713-2022, 2022.

Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski,
P.: Primary Production of the Biosphere: Integrating Ter-
restrial and Oceanic Components, Science, 281, 237–240,
https://doi.org/10.1126/science.281.5374.237, 1998.

Frants, M., Holzer, M., DeVries, T., and Matear, R.: Con-
straints on the global marine iron cycle from a sim-
ple inverse model, J. Geophys. Res.-Biogeo., 121, 28–51,
https://doi.org/10.1002/2015jg003111, 2016.

Friedrichs, M. A. M., Hood, R. R., and Wiggert, J. D.: Ecosystem
model complexity versus physical forcing: Quantification of their
relative impact with assimilated Arabian Sea data, Deep-Sea Res.
Pt. II, 53, 576–600, https://doi.org/10.1016/j.dsr2.2006.01.026,
2006.

Friedrichs, M. A. M., Dusenberry, J. A., Anderson, L. A., Arm-
strong, R. A., Chai, F., Christian, J. R., Doney, S. C., Dunne, J.,
Fujii, M., Hood, R., McGillicuddy, D. J., Moore, J. K., Schar-
tau, M., Spitz, Y. H., and Wiggert, J. D.: Assessment of skill
and portability in regional marine biogeochemical models: Role
of multiple planktonic groups, J. Geophys. Res., 112, C08001,
https://doi.org/10.1029/2006jc003852, 2007.

Garcia, H., Weathers, K., Paver, C., Smolyar, I., Boyer, T., Lo-
carnini, R., Zweng, M., Mishonov, A., Baranova, O., Seidov,
D., and Reagan, J.: NOAA Atlas NESDIS 84 WORLD OCEAN
ATLAS 2018, Vol. 4, Dissolved Inorganic Nutrients (phosphate,
nitrate and nitrate+ nitrite, silicate) NOAA National Centers
for Environmental Information WORLD OCEAN ATLAS 2018,
Vol. 4, Dissolved Inorganic Nutrients (phosphate, nitrate and
nitrate+ nitrite, silicate), A. Mishonov Technical Ed., Silver
Spring, 2019.

Hansen, N.: The CMA Evolution Strategy: A Comparing Review,
in: Towards a New Evolutionary Computation: Advances in the
Estimation of Distribution Algorithms, edited by: Lozano, J. A.,
Larrañaga, P., Inza, I., and Bengoetxea, E., Springer Berlin Hei-
delberg, Berlin, Heidelberg, 75–102, https://doi.org/10.1007/3-
540-32494-1_4, 2006.

Hansen, N.: Benchmarking a BI-population CMA-ES on the
BBOB-2009 function testbed, in: Proceedings of the 11th
Annual Conference Companion on Genetic and Evolution-
ary Computation Conference: Late Breaking Papers, GECCO
2009, Montreal, Québec, Canada, 8–12 July 2009, 2389–2396,
https://doi.org/10.1145/1570256.1570333, 2009.

Biogeosciences, 19, 5079–5106, 2022 https://doi.org/10.5194/bg-19-5079-2022

https://doi.org/10.1016/j.marchem.2021.104031
https://doi.org/10.1002/2014gb004862
https://doi.org/10.1016/j.gca.2015.05.023
https://doi.org/10.1016/j.chemgeo.2021.120381
https://doi.org/10.1016/j.epsl.2018.03.050
https://doi.org/10.5194/bg-11-5381-2014
https://doi.org/10.5194/bg-11-5381-2014
https://doi.org/10.1002/gbc.20029
https://doi.org/10.1016/0304-4203(90)90050-M
https://doi.org/10.1029/1999GB900039
https://doi.org/10.1029/2003GB002150
https://doi.org/10.1029/2004GB002342
https://doi.org/10.3929/ethz-b-000543389
https://doi.org/10.1016/S0304-4203(99)00085-7
https://doi.org/10.1016/j.marchem.2008.07.008
https://doi.org/10.4319/lo.2000.45.7.1517
https://doi.org/10.1071/mf19200
https://doi.org/10.1016/S0924-7963(03)00012-5
https://doi.org/10.5194/gmd-15-5713-2022
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1002/2015jg003111
https://doi.org/10.1016/j.dsr2.2006.01.026
https://doi.org/10.1029/2006jc003852
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1145/1570256.1570333


C. Eisenring et al.: Influence of GEOTRACES data distribution 5103

Hansen, N.: The CMA Evolution Strategy: A Tutorial,
https://doi.org/10.48550/arXiv.1604.00772, 2016.

Hansen, N. and Kern, S.: Evaluating the CMA Evolution Strategy
on Multimodal Test Functions, in: Parallel Problem Solving from
Nature PPSN VIII, edited by: Yao, X., Burke, E. K., Lozano, J.
A., Smith, J., Merelo Guervós, J. J., Bullinaria, J. A., Rowe, J. E.,
Tiño, P., Kabán, A., and Schwefel, H.-P., LNCS, Springer, 3242,
282–291, https://doi.org/10.1007/978-3-540-30217-9_29, 2004.

Hansen, N. and Ostermeier, A.: Completely Derandomized Self-
Adaptation in Evolution Strategies, Evol. Comput., 9, 159–195,
https://doi.org/10.1162/106365601750190398, 2001.

Hansen, N., Niederberger, A. S. P., Guzzella, L., and Koumout-
sakos, P.: A Method for Handling Uncertainty in Evolution-
ary Optimization With an Application to Feedback Control
of Combustion, IEEE Trans. Evolut. Comput., 13, 180–197,
https://doi.org/10.1109/TEVC.2008.924423, 2009.

Hansen, N., Auger, A., Ros, R., Finck, S., and Pošík, P.: Comparing
results of 31 algorithms from the black-box optimization bench-
marking BBOB-2009, in: Proceedings of the 12th annual con-
ference companion on Genetic and evolutionary computation,
GECCO 2010, Portland, Oregon, USA, 7–11 July 2010, 1689–
1696, https://doi.org/10.1145/1830761.1830790, 2010.

Janssen, D. J. and Cullen, J. T.: Decoupling of zinc and silicic acid
in the subarctic northeast Pacific interior, Mar. Chem., 177, 124–
133, https://doi.org/10.1016/j.marchem.2015.03.014, 2015.

John, S. G. and Conway, T. M.: A role for scaveng-
ing in the marine biogeochemical cycling of zinc and
zinc isotopes, Earth Planet. Sc. Lett., 394, 159–167,
https://doi.org/10.1016/j.epsl.2014.02.053, 2014.

Khatiwala, S.: A computational framework for simulation of bio-
geochemical tracers in the ocean, Global Biogeochem. Cy., 21,
GB3001, https://doi.org/10.1029/2007GB002923, 2007.

Khatiwala, S.: Fast spin up of Ocean biogeochemical models us-
ing matrix-free Newton–Krylov, Ocean Model., 23, 121–129,
https://doi.org/10.1016/j.ocemod.2008.05.002, 2008.

Khatiwala, S.: Transport Matrix Method software for
ocean biogeochemical simulations (2.0), Zenodo [code],
https://doi.org/10.5281/zenodo.1246300, 2018.

Khatiwala, S., Visbeck, M., and Cane, M. A.: Ac-
celerated simulation of passive tracers in ocean
circulation models, Ocean Model., 9, 51–69,
https://doi.org/10.1016/j.ocemod.2004.04.002, 2005.

Kim, T., Obata, H., Kondo, Y., Ogawa, H., and Gamo, T.: Dis-
tribution and speciation of dissolved zinc in the western North
Pacific and its adjacent seas, Mar. Chem., 173, 330–341,
https://doi.org/10.1016/j.marchem.2014.10.016, 2015.

Kriest, I.: Calibration of a simple and a complex model of
global marine biogeochemistry, Biogeosciences, 14, 4965–4984,
https://doi.org/10.5194/bg-14-4965-2017, 2017.

Kriest, I., Sauerland, V., Khatiwala, S., Srivastav, A., and Os-
chlies, A.: Calibrating a global three-dimensional biogeochemi-
cal ocean model (MOPS-1.0), Geosci. Model Dev., 10, 127–154,
https://doi.org/10.5194/gmd-10-127-2017, 2017.

Kriest, I., Kähler, P., Koeve, W., Kvale, K., Sauerland, V., and Os-
chlies, A.: One size fits all? Calibrating an ocean biogeochem-
istry model for different circulations, Biogeosciences, 17, 3057–
3082, https://doi.org/10.5194/bg-17-3057-2020, 2020.

Kwon, E. Y., Holzer, M., Timmermann, A., and Primeau, F.: Esti-
mating Three-Dimensional Carbon-To-Phosphorus Stoichiome-

try of Exported Marine Organic Matter, Global Biogeochem. Cy.,
36, e2021GB007154, https://doi.org/10.1029/2021GB007154,
2022.

Lemaitre, N., de Souza, G. F., Archer, C., Wang, R.-M., Planquette,
H., Sarthou, G., and Vance, D.: Pervasive sources of isotopically
light zinc in the North Atlantic Ocean, Earth Planet. Sc. Lett.,
539, 116216, https://doi.org/10.1016/j.epsl.2020.116216, 2020.

Liao, W. H., Takano, S., Yang, S. C., Huang, K. F., Sohrin, Y.,
and Ho, T. Y.: Zn Isotope Composition in the Water Column
of the Northwestern Pacific Ocean: The Importance of Exter-
nal Sources, Global Biogeochem. Cy., 34, e2019GB006379,
https://doi.org/10.1029/2019GB006379, 2020.

Lohan, M. C., Crawford, D. W., Purdie, D. A., and Statham,
P. J.: Iron and zinc enrichments in the northeastern subarc-
tic Pacific: Ligand production and zinc availability in response
to phytoplankton growth, Limnol. Oceanogr., 50, 1427–1437,
https://doi.org/10.4319/lo.2005.50.5.1427, 2005.

Löptien, U. and Dietze, H.: Constraining parameters in marine
pelagic ecosystem models – is it actually feasible with typi-
cal observations of standing stocks?, Ocean Sci., 11, 573–590,
https://doi.org/10.5194/os-11-573-2015, 2015.

Löptien, U. and Dietze, H.: Reciprocal bias compensation and en-
suing uncertainties in model-based climate projections: pelagic
biogeochemistry versus ocean mixing, Biogeosciences, 16,
1865–1881, https://doi.org/10.5194/bg-16-1865-2019, 2019.

Lynch, D. R., McGillicuddy, D. J., and Werner, F.
E.: Skill assessment for coupled biological/physical
models of marine systems, J. Mar. Syst., 76, 1–3,
https://doi.org/10.1016/j.jmarsys.2008.05.002, 2009.

Marinov, I., Gnanadesikan, A., Toggweiler, J. R., and Sarmiento,
J. L.: The Southern Ocean biogeochemical divide, Nature, 441,
964–967, https://doi.org/10.1038/nature04883, 2006.

Marsay, C. M., Sanders, R. J., Henson, S. A., Pabort-
sava, K., Achterberg, E. P., and Lampitt, R. S.: Attenua-
tion of sinking particulate organic carbon flux through the
mesopelagic ocean, P. Natl. Acad. Sci. USA, 112, 1089–1094,
https://doi.org/10.1073/pnas.1415311112, 2015.

Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A
finite-volume, incompressible Navier Stokes model for studies of
the ocean on parallel computers, J. Geophys. Res.-Ocean., 102,
5753–5766, https://doi.org/10.1029/96JC02775, 1997.

Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W.
W.: VERTEX: carbon cycling in the northeast Pacific, Deep-
Sea Res. Pt. A, 34, 267–285, https://doi.org/10.1016/0198-
0149(87)90086-0, 1987.

Middag, R., de Baar, H. J. W., and Bruland, K. W.: The Rela-
tionships Between Dissolved Zinc and Major Nutrients Phos-
phate and Silicate Along the GEOTRACES GA02 Transect in
the West Atlantic Ocean, Global Biogeochem. Cy., 33, 63–84,
https://doi.org/10.1029/2018gb006034, 2019.

Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank,
I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J.,
Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J.,
Lenton, T. M., Mahowald, N. M., Maranon, E., Marinov,
I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and pat-
terns of oceanic nutrient limitation, Nat. Geosci., 6, 701–710,
https://doi.org/10.1038/NGEO1765, 2013.

https://doi.org/10.5194/bg-19-5079-2022 Biogeosciences, 19, 5079–5106, 2022

https://doi.org/10.48550/arXiv.1604.00772
https://doi.org/10.1007/978-3-540-30217-9_29
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1109/TEVC.2008.924423
https://doi.org/10.1145/1830761.1830790
https://doi.org/10.1016/j.marchem.2015.03.014
https://doi.org/10.1016/j.epsl.2014.02.053
https://doi.org/10.1029/2007GB002923
https://doi.org/10.1016/j.ocemod.2008.05.002
https://doi.org/10.5281/zenodo.1246300
https://doi.org/10.1016/j.ocemod.2004.04.002
https://doi.org/10.1016/j.marchem.2014.10.016
https://doi.org/10.5194/bg-14-4965-2017
https://doi.org/10.5194/gmd-10-127-2017
https://doi.org/10.5194/bg-17-3057-2020
https://doi.org/10.1029/2021GB007154
https://doi.org/10.1016/j.epsl.2020.116216
https://doi.org/10.1029/2019GB006379
https://doi.org/10.4319/lo.2005.50.5.1427
https://doi.org/10.5194/os-11-573-2015
https://doi.org/10.5194/bg-16-1865-2019
https://doi.org/10.1016/j.jmarsys.2008.05.002
https://doi.org/10.1038/nature04883
https://doi.org/10.1073/pnas.1415311112
https://doi.org/10.1029/96JC02775
https://doi.org/10.1016/0198-0149(87)90086-0
https://doi.org/10.1016/0198-0149(87)90086-0
https://doi.org/10.1029/2018gb006034
https://doi.org/10.1038/NGEO1765


5104 C. Eisenring et al.: Influence of GEOTRACES data distribution

Morel, F. M. M. and Price, N. M.: The Biogeochemical Cy-
cles of Trace Metals in the Oceans, Science, 300, 944–947,
https://doi.org/10.1126/science.1083545, 2003.

Morel, F. M. M., Milligan, A. J., and Saito, M. A.: Marine Bioinor-
ganic Chemistry: The Role of Trace Metals in the Oceanic Cycles
of Major Nutrients, in: Treatise on Geochemistry, edited by: Hol-
land, H. D. and Turekian, K. K, Treatise on Geochemistry, 2nd
Edn., Oxford, Elsevier, 123–150, https://doi.org/10.1016/b978-
0-08-095975-7.00605-7, 2014.

Najjar, R. G., Jin, X., Louanchi, F., Aumont, O., Caldeira, K.,
Doney, S. C., Dutay, J. C., Follows, M., Gruber, N., Joos, F.,
Lindsay, K., Maier-Reimer, E., Matear, R. J., Matsumoto, K.,
Monfray, P., Mouchet, A., Orr, J. C., Plattner, G. K., Sarmiento,
J. L., Schlitzer, R., Slater, R. D., Weirig, M. F., Yamanaka, Y.,
and Yool, A.: Impact of circulation on export production, dis-
solved organic matter, and dissolved oxygen in the ocean: Results
from Phase II of the Ocean Carbon-cycle Model Intercompari-
son Project (OCMIP-2), Global Biogeochem. Cy., 21, GB3007,
https://doi.org/10.1029/2006GB002857, 2007.

Oliver, S. and Tett, S.: OPTCLIMSO Optimisation Framework,
Zenodo [code], https://doi.org/10.5281/zenodo.5517610, 2021.

Oliver, S., Cartis, C., Kriest, I., Tett, S. F. B., and Khatiwala,
S.: A derivative-free optimisation method for global ocean
biogeochemical models, Geosci. Model Dev., 15, 3537–3554,
https://doi.org/10.5194/gmd-15-3537-2022, 2022.

Pasquier, B., Hines, S. K. V., Liang, H., Wu, Y., Goldstein, S. L.,
and John, S. G.: GNOM v1.0: an optimized steady-state model
of the modern marine neodymium cycle, Geosci. Model Dev., 15,
4625–4656, https://doi.org/10.5194/gmd-15-4625-2022, 2022.

Primeau, F. W., Holzer, M., and DeVries, T.: Southern
Ocean nutrient trapping and the efficiency of the bio-
logical pump, J. Geophys. Res.-Ocean., 118, 2547–2564,
https://doi.org/10.1002/jgrc.20181, 2013.

Richon, C. and Tagliabue, A.: Insights Into the Major Processes
Driving the Global Distribution of Copper in the Ocean From
a Global Model, Global Biogeochem. Cy., 33, 1594–1610,
https://doi.org/10.1029/2019GB006280, 2019.

Roshan, S., Wu, J., and Jenkins, W. J.: Long-range
transport of hydrothermal dissolved Zn in the
tropical South Pacific, Mar. Chem., 183, 25–32,
https://doi.org/10.1016/j.marchem.2016.05.005, 2016.

Roshan, S., DeVries, T., Wu, J., and Chen, G.: The Internal Cycling
of Zinc in the Ocean, Global Biogeochem. Cy., 32, 1833–1849,
https://doi.org/10.1029/2018GB006045, 2018.

Roshan, S., DeVries, T., Wu, J., John, S., and Weber,
T.: Reversible scavenging traps hydrothermal iron in
the deep ocean, Earth Planet. Sc. Lett., 542, 116297,
https://doi.org/10.1016/j.epsl.2020.116297, 2020.

Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne,
J. P.: High-latitude controls of thermocline nutrients and
low latitude biological productivity, Nature, 427, 56–60,
https://doi.org/10.1038/nature02127, 2004.

Sarmiento, J. L., Simeon, J., Gnanadesikan, A., Gruber, N., Key,
R. M., and Schlitzer, R.: Deep ocean biogeochemistry of sili-
cic acid and nitrate, Global Biogeochem. Cy., 21, GB1S90,
https://doi.org/10.1029/2006GB002720, 2007.

Sauerland, V., Kriest, I., Oschlies, A., and Srivastav, A.: Mul-
tiobjective Calibration of a Global Biogeochemical Ocean
Model Against Nutrients, Oxygen, and Oxygen Mini-

mum Zones, J. Adv. Model. Earth Syst., 11, 1285–1308,
https://doi.org/10.1029/2018MS001510, 2019.

Schartau, M., Oschlies, A., and Willebrand, J.: Parameter es-
timates of a zero-dimensional ecosystem model applying
the adjoint method, Deep-Sea Res. Pt. II, 48, 1769–1800,
https://doi.org/10.1016/S0967-0645(00)00161-2, 2001.

Schlitzer, R., Anderson, R. F., Dodas, E. M., Lohan, M., Geib-
ert, W., Tagliabue, A., Bowie, A., Jeandel, C., Maldonado, M.
T., Landing, W. M., Cockwell, D., Abadie, C., Abouchami, W.,
Achterberg, E. P., Agather, A., Aguliar-Islas, A., van Aken, H.
M., Andersen, M., Archer, C., Auro, M., de Baar, H. J., Baars,
O., Baker, A. R., Bakker, K., Basak, C., Baskaran, M., Bates, N.
R., Bauch, D., van Beek, P., Behrens, M. K., Black, E., Bluhm,
K., Bopp, L., Bouman, H., Bowman, K., Bown, J., Boyd, P.,
Boye, M., Boyle, E. A., Branellec, P., Bridgestock, L., Brissebrat,
G., Browning, T., Bruland, K. W., Brumsack, H.-J., Brzezinski,
M., Buck, C. S., Buck, K. N., Buesseler, K., Bull, A., Butler,
E., Cai, P., Mor, P. C., Cardinal, D., Carlson, C., Carrasco, G.,
Casacuberta, N., Casciotti, K. L., Castrillejo, M., Chamizo, E.,
Chance, R., Charette, M. A., Chaves, J. E., Cheng, H., Chever,
F., Christl, M., Church, T. M., Closset, I., Colman, A., Con-
way, T. M., Cossa, D., Croot, P., Cullen, J. T., Cutter, G. A.,
Daniels, C., Dehairs, F., Deng, F., Dieu, H. T., Duggan, B., Du-
laquais, G., Dumousseaud, C., Echegoyen-Sanz, Y., Edwards, R.
L., Ellwood, M., Fahrbach, E., Fitzsimmons, J. N., Russell Fle-
gal, A., Fleisher, M. Q., van de Flierdt, T., Frank, M., Friedrich,
J., Fripiat, F., Fröllje, H., Galer, S. J. G., Gamo, T., Ganeshram,
R. S., Garcia-Orellana, J., Garcia-Solsona, E., Gault-Ringold,
M., George, E., Gerringa, L. J. A., Gilbert, M., Godoy, J. M.,
Goldstein, S. L., Gonzalez, S. R., Grissom, K., Hammerschmidt,
C., Hartman, A., Hassler, C. S., Hathorne, E. C., Hatta, M.,
Hawco, N., Hayes, C. T., Heimbürger, L.-E., Helgoe, J., Heller,
M., Henderson, G. M., Henderson, P. B., van Heuven, S., Ho,
P., Horner, T. J., Hsieh, Y.-T., Huang, K.-F., Humphreys, M. P.,
Isshiki, K., Jacquot, J. E., Janssen, D. J., Jenkins, W. J., John,
S., Jones, E. M., Jones, J. L., Kadko, D. C., Kayser, R., Kenna,
T. C., Khondoker, R., Kim, T., Kipp, L., Klar, J. K., Klunder,
M., Kretschmer, S., Kumamoto, Y., Laan, P., Labatut, M., La-
can, F., Lam, P. J., Lambelet, M., Lamborg, C. H., Le Moigne,
F. A. C., Le Roy, E., Lechtenfeld, O. J., Lee, J.-M., Lherminier,
P., Little, S., López-Lora, M., Lu, Y., Masque, P., Mawji, E., Mc-
Clain, C. R., Measures, C., Mehic, S., Barraqueta, J.-L. M., van
der Merwe, P., Middag, R., Mieruch, S., Milne, A., Minami, T.,
Moffett, J. W., Moncoiffe, G., Moore, W. S., Morris, P. J., Mor-
ton, P. L., Nakaguchi, Y., Nakayama, N., Niedermiller, J., Nish-
ioka, J., Nishiuchi, A., Noble, A., Obata, H., Ober, S., Ohnemus,
D. C., van Ooijen, J., O’Sullivan, J., Owens, S., Pahnke, K., Paul,
M., Pavia, F., Pena, L. D., Peters, B., Planchon, F., Planquette,
H., Pradoux, C., Puigcorbé, V., Quay, P., Queroue, F., Radic,
A., Rauschenberg, S., Rehkämper, M., Rember, R., Remenyi, T.,
Resing, J. A., Rickli, J., Rigaud, S., Rijkenberg, M. J. A., Rin-
toul, S., Robinson, L. F., Roca-Martí, M., Rodellas, V., Roeske,
T., Rolison, J. M., Rosenberg, M., Roshan, S., Rutgers van der
Loeff, M. M., Ryabenko, E., Saito, M. A., Salt, L. A., Sanial, V.,
Sarthou, G., Schallenberg, C., Schauer, U., Scher, H., Schlosser,
C., Schnetger, B., Scott, P., Sedwick, P. N., Semiletov, I., Shel-
ley, R., Sherrell, R. M., Shiller, A. M., Sigman, D. M., Singh, S.
K., Slagter, H. A., Slater, E., Smethie, W. M., Snaith, H., Sohrin,
Y., Sohst, B., Sonke, J. E., Speich, S., Steinfeldt, R., Stewart, G.,

Biogeosciences, 19, 5079–5106, 2022 https://doi.org/10.5194/bg-19-5079-2022

https://doi.org/10.1126/science.1083545
https://doi.org/10.1016/b978-0-08-095975-7.00605-7
https://doi.org/10.1016/b978-0-08-095975-7.00605-7
https://doi.org/10.1029/2006GB002857
https://doi.org/10.5281/zenodo.5517610
https://doi.org/10.5194/gmd-15-3537-2022
https://doi.org/10.5194/gmd-15-4625-2022
https://doi.org/10.1002/jgrc.20181
https://doi.org/10.1029/2019GB006280
https://doi.org/10.1016/j.marchem.2016.05.005
https://doi.org/10.1029/2018GB006045
https://doi.org/10.1016/j.epsl.2020.116297
https://doi.org/10.1038/nature02127
https://doi.org/10.1029/2006GB002720
https://doi.org/10.1029/2018MS001510
https://doi.org/10.1016/S0967-0645(00)00161-2


C. Eisenring et al.: Influence of GEOTRACES data distribution 5105

Stichel, T., Stirling, C. H., Stutsman, J., Swarr, G. J., Swift, J.
H., Thomas, A., Thorne, K., Till, C. P., Till, R., Townsend, A.
T., Townsend, E., Tuerena, R., Twining, B. S., Vance, D., Ve-
lazquez, S., Venchiarutti, C., Villa-Alfageme, M., Vivancos, S.
M., Voelker, A. H. L., Wake, B., Warner, M. J., Watson, R., van
Weerlee, E., Alexandra Weigand, M., Weinstein, Y., Weiss, D.,
Wisotzki, A., Woodward, E. M. S., Wu, J., Wu, Y., Wuttig, K.,
Wyatt, N., Xiang, Y., Xie, R. C., Xue, Z., Yoshikawa, H., Zhang,
J., Zhang, P., Zhao, Y., Zheng, L., Zheng, X.-Y., Zieringer, M.,
Zimmer, L. A., Ziveri, P., Zunino, P., and Zurbrick, C.: The GEO-
TRACES Intermediate Data Product 2017, Chem. Geol., 493,
210–223, https://doi.org/10.1016/j.chemgeo.2018.05.040, 2018.

Seegers, B. N., Stumpf, R. P., Schaeffer, B. A., Loftin, K. A., and
Werdell, P. J.: Performance metrics for the assessment of satellite
data products: an ocean color case study, Opt. Express, 26, 7404–
7422, https://doi.org/10.1364/OE.26.007404, 2018.

Shaked, Y., Xu, Y., Leblanc, K., and Morel, F. M. M.: Zinc availabil-
ity and alkaline phosphatase activity in Emiliania huxleyi: Impli-
cations for Zn-P co-limitation in the ocean, Limnol. Oceanogr.,
51, 299–309, https://doi.org/10.4319/lo.2006.51.1.0299, 2006.

Sieber, M., Conway, T. M., de Souza, G. F., Hassler, C. S., Ellwood,
M. J., and Vance, D.: Cycling of zinc and its isotopes across mul-
tiple zones of the Southern Ocean: Insights from the Antarctic
Circumnavigation Expedition, Geochim. Cosmochim. Ac., 268,
310–324, https://doi.org/10.1016/j.gca.2019.09.039, 2020.

Sinha, B., Buitenhuis, E. T., Quéré, C. L., and Anderson, T. R.:
Comparison of the emergent behavior of a complex ecosystem
model in two ocean general circulation models, Prog. Oceanogr.,
84, 204–224, https://doi.org/10.1016/j.pocean.2009.10.003,
2010.

Sinoir, M., Ellwood, M. J., Butler, E. C. V., Bowie, A.
R., Mongin, M., and Hassler, C. S.: Zinc cycling in
the Tasman Sea: Distribution, speciation and relation
to phytoplankton community, Mar. Chem., 182, 25–37,
https://doi.org/10.1016/j.marchem.2016.03.006, 2016.

Stammer, D., Ueyoshi, K., Köhl, A., Large, W. G., Josey,
S. A., and Wunsch, C.: Estimating air-sea fluxes of
heat, freshwater, and momentum through global ocean
data assimilation, J. Geophys. Res.-Ocean., 109, C05023,
https://doi.org/10.1029/2003JC002082, 2004.

Stow, C. A., Jolliff, J., McGillicuddy, D. J., Doney, S. C.,
Allen, J. I., Friedrichs, M. A. M., Rose, K. A., and
Wallhead, P.: Skill assessment for coupled biological/phys-
ical models of marine systems, J. Mar. Syst., 76, 4–15,
https://doi.org/10.1016/j.jmarsys.2008.03.011, 2009.

Sugino, K. and Oka, A.: Zinc and silicon biogeochemical de-
coupling in the North Pacific Ocean, J. Oceanogr., C05023,
https://doi.org/10.1007/s10872-022-00663-4, 2022.

Sunda, W. G. and Huntsman, S. A.: Feedback interactions between
zinc and phytoplankton in seawater, Limnol. Oceanogr., 37, 25–
40, https://doi.org/10.4319/lo.1992.37.1.0025, 1992.

Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N.,
Johnson, K. S., and Saito, M. A.: The integral role
of iron in ocean biogeochemistry, Nature, 543, 51–59,
https://doi.org/10.1038/nature21058, 2017.

Tagliabue, A., Bowie, A. R., DeVries, T., Ellwood, M. J., Land-
ing, W. M., Milne, A., Ohnemus, D. C., Twining, B. S., and
Boyd, P. W.: The interplay between regeneration and scavenging

fluxes drives ocean iron cycling, Nat. Commun., 10, 4960–4960,
https://doi.org/10.1038/s41467-019-12775-5, 2019.

Taylor, K. E.: Summarizing multiple aspects of model performance
in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.

Tett, S. F. B., Rowlands, D. J., Mineter, M. J., and Cartis, C.: Can
Top-of-Atmosphere Radiation Measurements Constrain Climate
Predictions? Part II: Climate Sensitivity, J. Clim., 26, 9367–9383,
https://doi.org/10.1175/JCLI-D-12-00596.1, 2013.

Thiele, G. and Sarmiento, J. L.: Tracer dating and ocean
ventilation, J. Geophys. Res.-Ocean., 95, 9377–9391,
https://doi.org/10.1029/JC095iC06p09377, 1990.

Tjiputra, J. F., Polzin, D., and Winguth, A. M. E.: Assimilation
of seasonal chlorophyll and nutrient data into an adjoint three-
dimensional ocean carbon cycle model: Sensitivity analysis and
ecosystem parameter optimization, Global Biogeochem. Cy., 21,
GB1001, https://doi.org/10.1029/2006GB002745, 2007.

Trudinger, C. M., Raupach, M. R., Rayner, P. J., Kattge, J., Liu,
Q., Pak, B., Reichstein, M., Renzullo, L., Richardson, A. D.,
Roxburgh, S. H., Styles, J., Wang, Y. P., Briggs, P., Barrett, D.,
and Nikolova, S.: OptIC project: An intercomparison of opti-
mization techniques for parameter estimation in terrestrial bio-
geochemical models, J. Geophys. Res.-Biogeo., 112, G02027,
https://doi.org/10.1029/2006JG000367, 2007.

Twining, B. S. and Baines, S. B.: The Trace Metal Composition
of Marine Phytoplankton, Ann. Rev. Mar. Sci., 5, 191–215,
https://doi.org/10.1146/annurev-marine-121211-172322, 2013.

Twining, B. S., Baines, S. B., Fisher, N. S., Maser, J., Vogt,
S., Jacobsen, C., Tovar-Sanchez, A., and Sañudo-Wilhelmy, S.
A.: Quantifying Trace Elements in Individual Aquatic Protist
Cells with a Synchrotron X-ray Fluorescence Microprobe, Anal.
Chem, 75, 3806–3816, https://doi.org/10.1021/ac034227z, 2003.

Twining, B. S., Nodder, S. D., King, A. L., Hutchins, D. A., LeCleir,
G. R., DeBruyn, J. M., Maas, E. W., Vogt, S., Wilhelm, S. W.,
and Boyd, P. W.: Differential remineralization of major and trace
elements in sinking diatoms, Limnol. Oceanogr., 59, 689–704,
https://doi.org/10.4319/lo.2014.59.3.0689, 2014.

van Hulten, M., Middag, R., Dutay, J.-C., de Baar, H., Roy-Barman,
M., Gehlen, M., Tagliabue, A., and Sterl, A.: Manganese in the
west Atlantic Ocean in the context of the first global ocean cir-
culation model of manganese, Biogeosciences, 14, 1123–1152,
https://doi.org/10.5194/bg-14-1123-2017, 2017.

Vance, D., de Souza, G. F., Zhao, Y., Cullen, J. T., and Lohan, M.
C.: The relationship between zinc, its isotopes, and the major
nutrients in the North-East Pacific, Earth Planet. Sc. Lett., 525,
115748, https://doi.org/10.1016/j.epsl.2019.115748, 2019.

Vance, D., Little, Susan H., de Souza, Gregory F., Khatiwala, S., Lo-
han, Maeve C., and Middag, R.: Silicon and zinc biogeochemi-
cal cycles coupled through the Southern Ocean, Nat. Geosci., 10,
202–206, https://doi.org/10.1038/ngeo2890, 2017.

Wang, R. M., Archer, C., Bowie, A. R., and Vance, D.: Zinc and
nickel isotopes in seawater from the Indian Sector of the South-
ern Ocean: The impact of natural iron fertilization versus South-
ern Ocean hydrography and biogeochemistry, Chem. Geol., 511,
452–464, https://doi.org/10.1016/j.chemgeo.2018.09.010, 2019.

Ward, B. A., Friedrichs, M. A. M., Anderson, T. R., and Oschlies,
A.: Parameter optimisation techniques and the problem of under-
determination in marine biogeochemical models, J. Mar. Syst.,
81, 34–43, https://doi.org/10.1016/j.jmarsys.2009.12.005, 2010.

https://doi.org/10.5194/bg-19-5079-2022 Biogeosciences, 19, 5079–5106, 2022

https://doi.org/10.1016/j.chemgeo.2018.05.040
https://doi.org/10.1364/OE.26.007404
https://doi.org/10.4319/lo.2006.51.1.0299
https://doi.org/10.1016/j.gca.2019.09.039
https://doi.org/10.1016/j.pocean.2009.10.003
https://doi.org/10.1016/j.marchem.2016.03.006
https://doi.org/10.1029/2003JC002082
https://doi.org/10.1016/j.jmarsys.2008.03.011
https://doi.org/10.1007/s10872-022-00663-4
https://doi.org/10.4319/lo.1992.37.1.0025
https://doi.org/10.1038/nature21058
https://doi.org/10.1038/s41467-019-12775-5
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1175/JCLI-D-12-00596.1
https://doi.org/10.1029/JC095iC06p09377
https://doi.org/10.1029/2006GB002745
https://doi.org/10.1029/2006JG000367
https://doi.org/10.1146/annurev-marine-121211-172322
https://doi.org/10.1021/ac034227z
https://doi.org/10.4319/lo.2014.59.3.0689
https://doi.org/10.5194/bg-14-1123-2017
https://doi.org/10.1016/j.epsl.2019.115748
https://doi.org/10.1038/ngeo2890
https://doi.org/10.1016/j.chemgeo.2018.09.010
https://doi.org/10.1016/j.jmarsys.2009.12.005


5106 C. Eisenring et al.: Influence of GEOTRACES data distribution

Weber, T., John, S., Tagliabue, A., and DeVries, T.: Biological
uptake and reversible scavenging of zinc in the global ocean,
Science, 361, 72–76, https://doi.org/10.1126/science.aap8532,
2018.

Weber, T., Cram, J. A., Leung, S. W., DeVries, T., and Deutsch, C.:
Deep ocean nutrients imply large latitudinal variation in parti-
cle transfer efficiency, P. Natl. Acad. Sci. USA, 113, 8606–8611,
https://doi.org/10.1073/pnas.1604414113, 2016.

Wunsch, C. and Heimbach, P.: Practical global
oceanic state estimation, Physica D, 230, 197–208,
https://doi.org/10.1016/j.physd.2006.09.040, 2007.

Wunsch, C. and Heimbach, P.: How long to oceanic tracer
and proxy equilibrium?, Quaternary Sci. Rev., 27, 637–651,
https://doi.org/10.1016/j.quascirev.2008.01.006, 2008.

Biogeosciences, 19, 5079–5106, 2022 https://doi.org/10.5194/bg-19-5079-2022

https://doi.org/10.1126/science.aap8532
https://doi.org/10.1073/pnas.1604414113
https://doi.org/10.1016/j.physd.2006.09.040
https://doi.org/10.1016/j.quascirev.2008.01.006

	Abstract
	Introduction
	Methods: models and optimisation ensemble
	Biogeochemical ocean model
	Circulation framework
	Biogeochemical model of zinc

	Optimisation algorithm
	Experiment setups and nomenclature
	Types of uncertainty in synObs experiments
	Misfit functions
	Synthetic-observational constraints


	Results and discussion
	Parameter value retrieval and its sensitivities
	Retrieval of biogeochemical model behaviour
	RMSE-optimised synObs_ALL_seas
	VolRMSE-optimised synObs_ALL_circ
	RMAE-optimised synObs_IDP_circ

	Influence of uncertainty in the target field on parameter retrieval
	Analytical uncertainty
	Lack of seasonal variability
	Differences in underlying circulation

	Influence of reduced data coverage on parameter retrieval
	Effects of reducing data coverage
	Effect of including high-latitude data

	Importance of the misfit function
	Influence of the misfit function: variance weighting
	Influence of the misfit function: volume weighting

	Interaction between data distribution and the misfit function: importance of basin weighting
	Implications for model calibration using real data

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

