| T        | Morphological and molecular diversity of monothalamids (Knizaria,                                                                   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|
| 2        | Foraminifera), including two new species and a new genus, from SW Greenland                                                         |
| 3        |                                                                                                                                     |
| 4        | Andrew J. Gooday <sup>1,2</sup> , Maria Holzmann <sup>3</sup> , Elsa Schwarzgruber <sup>4</sup> , Tomas Cedhagen <sup>5</sup> , Jan |
| 5        | Pawlowski <sup>3,8,9</sup>                                                                                                          |
| 6        |                                                                                                                                     |
| 7        | <sup>1</sup> National Oceanography Centre, European Way, Southampton SO14 3ZH, UK.                                                  |
| 8        | orcid.org/0000-0002-5661-7371                                                                                                       |
| 9        |                                                                                                                                     |
| 10       | <sup>2</sup> Life Sciences Department, Natural History Museum, Cromwell Road, London SW7                                            |
| 11       | 5BD, UK                                                                                                                             |
| 12       |                                                                                                                                     |
| 13       | <sup>3</sup> Department of Genetics and Evolution, University of Geneva, Quai Ernest Ansermet                                       |
| 14       | 30, 1211 Geneva 4, Switzerland                                                                                                      |
| 15       | 4                                                                                                                                   |
| 16       | <sup>4</sup> Ortmanau 5, 4675 Weibern, Austria                                                                                      |
| 17       | 5                                                                                                                                   |
| 18       | <sup>5</sup> Department of Bioscience, Aquatic Biology Section, University of Aarhus, Ole                                           |
| 19       | Worms Allé 1, 8000 Aarhus C, Denmark.                                                                                               |
| 20       | 8t CO 1 D.I. 1 A 1 CC . 01.712.C . D.1 1                                                                                            |
| 21       | <sup>8</sup> Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland                                              |
| 22       | 9ID Core Earlies action 1929 Plan les Overtes Switzerland                                                                           |
| 23       | <sup>9</sup> ID-Gene Ecodiagnostics, 1228 Plan-les-Ouates, Switzerland                                                              |
| 24<br>25 | Corresponding author: A.J. Gooday ang@noc.ac.uk.                                                                                    |
|          | Corresponding author. A.J. Gooday angwhoc.ac.uk.                                                                                    |
| 26<br>27 |                                                                                                                                     |
| 47<br>2Ω |                                                                                                                                     |

## **Abstract**

293031

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Single-chambered (monothalamous) for aminifer are poorly known compared to their multichambered relatives. In this first study of monothalamids from Greenland, we describe one new genus and two new species belonging to different clades from the Nuuk fjord system. Nujappikia idaliae Gooday & Holzmann gen. nov. sp. nov. (Clade Y) has a bottle-shaped test terminating in a single aperture located on a short neck. The flexible wall is basically organic but with a very fine agglutinated veneer. Bathyallogromia kalaallita Gooday & Holzmann sp. nov. (Clade C) has a broadly ovate test with an organic wall and a mound-like apertural structure. It is larger and genetically distinct from the two other *Bathyallogromia* species, both from the Southern Ocean. A survey of the morphological diversity of monothalamids in our samples revealed 49 morphospecies, of which 19, including the two new species, yielded DNA sequences. Five were assigned to the genera *Bathysiphon*, (Clade BM), Micrometula. (Clade BM), Psammophaga. (Clade E), Hippocrepinella (Clade D) and Crithionina (Clade J). The remaining twelve represented unknown taxa branching in clades A, C, F, and Y and one new clade. Our results add to growing evidence that monothalamids are common and diverse in fjords and other high-latitude settings.

46 47 48

*Keywords*: meiofauna, benthos, soft-walled saccamminids, molecular phylogeny, subarctic, biogeography

50 51 52

49

# Introduction

53 54 55

56

57

58

59

60

61

62

63

64

65

66

67

Monothalamids form a paraphyletic group of single-chambered foraminifera at the base of the foraminiferal evolutionary tree (Pawlowski et al., 2003, 2013). They were well-known to 19<sup>th</sup>-century scientists and are widespread in the oceans as well as being the only foraminiferal group represented in freshwater and damp terrestrial habitats (Holzmann et al., 2021). Some marine monothalamids, for example, species of Astrorhiza, Bathysiphon, Hyperammina, Rhabdammina and Saccorhiza, have large, fairly robust tests and were described well over a century ago. These conspicuous foraminifera are sometimes very abundant, particularly at upper bathyal depths (Table 2 in Gooday et al., 1997) and in Arctic settings (e.g., Thorson, 1934). However, it is clear from recent studies that the majority of monothalamids, at least in coastal waters, are small, delicate, relatively inconspicuous and to a large extent undescribed. These 'soft-walled' forms have organic or finely agglutinated test walls and are often overlooked or destroyed when sieve residues are dried for picking. Having little fossilization potential, they may also be simply ignored, particularly in geologically-oriented studies. However, the fact that monothalamids often represent a largely undocumented component of foraminiferal diversity in coastal sediments makes them worthy of attention (Pawlowski et al. 2002a, Habura et al. 2008).

74

75

Here, we focus on monothalamids, the majority of them small and delicate, from fjords in the area around Nuuk in the SW of Greenland. We describe two new species, one of them representing a new genus, together with a survey of the diversity of monothalamids based on morphological and genetic data. Previous studies of

Arctic and Scandinavian foraminifera included a few of the larger and more robust representatives of this group (e.g., Brady, 1881; Goës, 1894; Loeblich and Tappan, 1953), while Höglund's classic 1947 study of foraminifera from the Gullmar Fjord and Skagarak included species (e.g., Hippocrepinella spp., Pilulina argentea) with tests that are somewhat soft-walled, but still fairly large and coherent. The first really delicate soft-walled monothalamous foraminifera from Scandinavia were described by Nyholm (1952, 1953, 1954, 1955, 1974) from the Gullmar Fjord on the Swedish west coast. This important series of papers established a number of organic-walled genera, namely Cylindrogullmia, Gloiogullmia, Micrometula, Nemogullmia, and Tinogullmia, that are widely distributed in mainly coastal waters. More recent surveys from fjords on the west coast of Spitzbergen (Svalbard archipelago) and the Håkon-Mosby Mud Volcano in the Barents Sea have yielded a rich variety of small monothalamids, including both organic-walled and agglutinated forms (Gooday et al, 2005, 2013). Combined molecular and morphological studies carried out in Antarctica and the sub-Antarctic island of South Georgia have also revealed a high diversity of mainly small monothalamids (Pawlowski et al. 2002a, 2005, 2008, Majewski et al. 2015, Holzmann et al.,2022).

Spärck (1933) and Thorson (1934) described a macrofaunal community characterized by the relatively large monothalamid *Rhabdammina cornuta* Brady, 1884 (up to 6 mm long according to the original description) and the miliolid *Planispirinoides bucculentus* (Brady, 1884) in Franz Joseph Fjord and Scoresby Sound on the east coast, but otherwise all previous studies of modern foraminifera in Greenland fjords (Lloyd et al., 2006; Holtegaard Nielsen et al., 2010; Jennings et al., 2020a, 2020b) have had a geological focus and included only one or two monothalamids with rigid tests, such as *Lagenammina* and *Hyperammina* species. The only foraminiferal study in the Nuuk fjord system (Ameralik Fjord) focused on Late Holocene assemblages (Møller et al., 2006). This is therefore the first study dedicated to soft-walled monothalamids in Greenland fjords. In a previous publication (Gooday et al., 2021), we described new species of the rhizarian genus *Gromia* from the same region.

### **Methods**

### Sample collection, processing and morphological methods

Samples were collected in the Nuuk fjord (formerly Godthåbsfjord) system in July 2018. The sampling and processing methods were the same as those described for the gromiids collected during the same expedition (Gooday et al., 2021). Briefly, samples were taken at 13 sites in different branches of the fjord system (Table 1) from a small boat using a Van Veen grab, and the surficial sediment removed with a spoon. The sediment was immediately washed onboard through a series of sieves with mesh sizes of 500, 250, 125 µm and placed in plastic bottles. As soon as possible after collection, the residues were sorted in seawater for monothalamids by project participants using stereo-microscopes in a laboratory of the Greenland Institute of Natural Resources in Nuuk. Where possible (mainly the finer residues), photographs of freshly-picked monothalamids were taken before preservation in either RNAlater for genetic analyses or 10% buffered formalin for morphological study. Other photographs were

taken in Geneva using a Leica M205 C microscope fitted with a Leica DFC 450 C camera, and in Southampton using an Olympus SZX7 stereo-microscope and an Olympus BH2 compound microscope, both equipped with a Canon 60D SRL digital camera.

## DNA extraction, PCR amplification and sequencing

Forty-nine foraminiferal specimens were extracted individually using guanidine lysis buffer (Pawlowski, 2000). Semi-nested PCR amplification was carried out for the SSU rDNA barcoding fragment of foraminifera (Pawlowski and Holzmann, 2014) using primers s14F3 (acgcamgtgtgaaacttg)-s20r (gacgggcggtgtgtacaa) for the first and primers s14F1 (aagggcaccacaagaacgc)-s20r for the second amplification. Thirty-five and 25 cycles were performed for the first and the second PCR, with an annealing temperature of 50°C and 52°C, respectively. The amplified PCR products were purified using the High Pure PCR Cleanup Micro Kit (Roche Diagnostics). Sequencing reactions were performed using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and analyzed on a 3130XL Genetic Analyzer (Applied Biosystems). The resulting sequences were deposited in the NCBI/GenBank database. Isolate and Accession numbers are summarised in Table 2.

### Phylogenetic analysis

The sequences obtained were added to 107 sequences that are part of the publicly available 18S database of monothalamous foraminifera (NCBI/Nucleotide; www.ncbi.nlm.nih.gov/nucleotide/). All sequences were aligned using the Muscle automatic alignment option, as implemented in SeaView vs. 4.3.3 (Gouy et al. 2010), Based on the preliminary alignment, the new sequences were assigned to established monothalamous clades (Pawlowski et al. 2002b). Three partial alignments were generated subsequently, including the representatives of selected clades and new sequences. Because of the high genetic variability between clades (Pawlowski et al.2002b), separate alignments allow a better resolution of tree topology. The alignment of clades A, BM, C (Fig. 1) contains 68 sequences with 1611 sites used for analysis. The alignment of clades D, E, F (Fig. 2) contains 50 sequences with 1379 sites used for analysis. The alignment of clades J, Y, New Clade (Fig. 3) contains 42 sequences with 1392 sites used for analysis.

The phylogenetic trees were constructed using maximum likelihood phylogeny (PhyML 3.0) as implemented in ATGC: PhyML (Guindon et al. 2010). An automatic model selection by SMS (Lefort et al. 2017) based on Akaike Information Criterion (AIC) was used, resulting in a HKY85+G+I substitution model being selected for the first analysis (Fig.1) and a GTR+G+I substitution model being selected for the remaining analyses (Figs. 2, 3). The initial trees are based on BioNJ. Bootstrap values (BV's) are based on 100 replicates.

Pairwise genetic distances were calculated using MEGA7, with a Maximum Composite Likelihood method and uniform rates among sites applied to the analysis (Kumar et al. 2016).

| 170<br>171                             | Results                                                                                                                                                                                                                                                                               |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 172                                    | Systematic descriptions                                                                                                                                                                                                                                                               |
| 173<br>174<br>175<br>176<br>177        | Rhizaria Cavalier-Smith, 2002<br>Retaria Cavalier-Smith, 1999<br>Foraminifera D'Orbigny, 1826<br>Monothalamids Pawlowski, Holzmann and Tyszka, 2013                                                                                                                                   |
| 178<br>179<br>180<br>181               | Given the uncertain status of the monothalamids, we use the informal name rather than the formal Monothalamea for this paraphyletic group (Pawlowski et al., 2013). The type material is deposited in the Natural History Museum, London, registration numbers NHMUK PM ZF 9946¬9957. |
| 183                                    | Nujappikia Gooday & Holzmann gen. nov.                                                                                                                                                                                                                                                |
| 184<br>185<br>186<br>187               | <b>Etymology</b> . The name is derived from that of a hunter from East Greenland named Nujappik, who's image, based on a photograph taken on 1906, is painted on the outer wall of an apartment block in Nuuk, the capital of Greenland.                                              |
| 188<br>189<br>190<br>191<br>192<br>193 | <b>Diagnosis.</b> Monothalamid with more or less cylindrical test and single terminal aperture at end of short neck. Test wall translucent, composed of organic material with very finely agglutinated veneer. Cytoplasm pale, often containing some large ingested particles.        |
| 194<br>195                             | <b>ZooBank registration:</b> urn:lsid:zoobank.org:act:B5B8EB8C-528B-4108-A476-DBB0B29D00EF                                                                                                                                                                                            |
| 196<br>197<br>198                      | Nujappikia idaliae Gooday & Holzmann gen. & sp. nov.                                                                                                                                                                                                                                  |
| 199                                    | Figs 4–7                                                                                                                                                                                                                                                                              |
| 200<br>201<br>202<br>203               | <b>Etymology.</b> In honour of Idalia (Alina) Pawlowska, who played a large role in organising our expedition to Greenland in 2018.                                                                                                                                                   |
| 204<br>205<br>206                      | <b>Diagnosis.</b> Test $387-895~\mu m$ (mean $590~\mu m$ ) long, $165-285~\mu m$ (mean $222~\mu m$ ) wide, L/W ratio $1.7-4.0$ (mean $2.65$ ). Other characteristics as for genus.                                                                                                    |
| 207<br>208<br>209                      | <b>ZooBank registration:</b> urn:lsid:zoobank.org:act:7F5A6C13-293E-4696-AD4E-638A27C0DF69                                                                                                                                                                                            |
| 210<br>211<br>212<br>213<br>214        | <b>Type material.</b> Station 16: inner part of Lysefjord off the sandur field; 64°12.656′ N, 050°15.751′ W; water depth 61 m. The holotype (reg. no. NHMUK PM ZF 9946) and seven paratypes (reg. nos NHMUK PM ZF 9947¬9953) are preserved in 10% formalin.                           |

- **Other material.** Station 16: six sequenced specimens (isolates 19842–44,
- 216 19847, 19848, 19850); 13 specimens for morphology.
- 217 Station 15: inner part of Lysefjord off the sandur field; water depth 95 m;
- 218 64°12.639′ N, 050°16.074′ W; eight specimens for morphology.

# **Description**

*Test.* In lateral view the test is approximately cylindrical to somewhat ovate in outline (Figs 4–6) and circular in cross-section. Preserved specimens are sometimes more or less flattened, although this is probably an artefact. The sides are approximately parallel, slightly convex, or in a few elongate specimens slightly concave (Fig. 7A). The abapertural end is usually evenly rounded while the apertural end is more or less tapered. The length ranges from 387 to 895  $\mu$ m (mean 590±106  $\mu$ m), the maximum width from 165 to 285  $\mu$ m (mean 222±27  $\mu$ m), and the length/width ratio from 1.7 to 4.0 (mean 2.65±0.44) (n=45 in each case). A rather more elongate specimen (one of several in Fig. 4B), which was not available for measurement, had a length/width ratio of 4.26.

Apertural structures. The single terminal aperture is typically located at the end of a short neck,  $30 - 95 \mu m$  long and  $50 - 110 \mu m$  wide. A well-developed peduncle (pseudopodial trunk) sometimes extends along the axis of the apertural neck. It is variably developed but sometimes forms a prominent feature, 45 to  $58 \mu m$  wide (Figs. 6F, H; 7A, B, D). The peduncle appears to develop directly from the cell body and there is no evidence for a peduncular sheath (invagination of the cell body) in any of the specimens that were examined in detail.

Test wall and contents. The wall is flexible, translucent, particularly in freshly collected specimens, with a slight reflective sheen resulting from a veneer of very fine, agglutinated particles overlying an organic layer. The surface is smooth, sometimes with weak transverse undulations (Fig. 4C). After prolonged preservation in formalin, however, the surface tends attract particles of detritus. The cytoplasm forms a pale, well-defined, brownish mass when fresh, and is visible through the test wall. It fills most of the test interior, but often with a narrow gap that is usually widest at the abapertural end. In preserved specimens, the cytoplasm is less clearly defined. When viewed in transmitted light in a compound microscope, it appears more or less heterogeneous, with numerous small particles and in some cases a few large inclusions. The latter include unknown spherical structures (Figs 5E, H; 7E, F), probable mineral grains (Fig. 7A, E, F), a single diatom frustule (Fig. 5D), and an apparently intact copepod exoskeleton or moult (Figs. 5E; 7E). An obvious nucleus was not observed, possibly because it was obscured by these particles.

#### Remarks

The cylindrical test of *Nujappikia idaliae* is similar in shape to that of *Gloiogullmia eurystoma*, as illustrated by Nyholm (1974), but the wall is transluscent with a milky appearance, suggesting that it has a surface layer of very fine agglutinated particles. In addition, although some debris adheres to the wall in preserved specimens, the new species lacks the sticky outer test layer that is typical of *Gloiogullmia*. Among the many undescribed 'saccamminids' (a group in which the wall includes an agglutinated component), illustrated in the literature, Saccamminid sp. 11 from the Adriatic Sea [Pl. 2, fig. 8 in Sabbatini et al. (2010); Pl. 4, fig. 14 in Sabbatini et al. (2014)] resembles the more ovate specimens of the *N. idaliae* most closely.

**Molecular characteristics.** The partial SSU rDNA sequences of *N. idaliae* contain 799 nucleotides and the GC content ranges from 48.9% to 49.1%.

Bathyallogromia kalaallita Gooday & Holzmann sp. nov.

Figs 8–11

**Etymology**. From the Inuit word *Kalaallit*, the name of the main group of indigenous inhabitants of Western Greenland.

**Diagnosis:** Test ranging from almost spherical to ovoid,  $338 - 571 \mu m$  (mean 470  $\mu m$ ) long,  $282 - 498 \mu m$  (mean 393  $\mu m$ ) wide, L/W ratio 0.98 - 1.44 (mean 1.20).

**ZooBank registration:** urn:lsid:zoobank.org:pub:658496E9-0DA1-42D5-9023-33E1F035156A

**Type material. S**tation 3: Qôrgut fjord, 64°14.957' N; 052.196' W; water depth 58 m, sandy mud. The holotype (reg. no. NHMUK PM ZF 9954) and three paratypes (reg. nos NHMUK PM ZF 9955¬9957) preserved in 10% formalin for morphology.

**Other material.** Station 3: three sequenced specimens (isolates 19861-63); 9 specimens for morphology.

#### Description.

*Test.* The test is broadly oval to almost spherical in side view (Fig. 8) with a circular cross section. Most specimens are more or less symmetrical about a longitudinal axis passing through the aperture, but some of the more spherical specimens are somewhat asymmetrical (Fig. 10A, E). The test ranges from 338 to 571  $\mu$ m (mean 470  $\mu$ m) in length, 282 to 498  $\mu$ m (mean 393  $\mu$ m) in width, with a L/W ratio of 0.98 –1.44 (mean 1.20) (n = 23).

Apertural structures. The apertural end of the test is produced into a low, sometimes truncated mound, in five specimens measuring 83–101  $\mu m$  wide and 11–28  $\mu m$  high. A well-developed peduncle extends through the mound (Fig. 10A¬D). This feature is clearly visible in the specimens photographed in May 2022 where the cell body had shrunk (Fig. 11). Here, the peduncle is often somewhat narrower in the middle (width 20 – 30  $\mu m$ ) than in the lower part (21 – 33  $\mu m$ ), widening again into a funnel-shaped feature (width 44 – 56  $\mu m$ ) towards the top. In several specimens, the peduncle seems to be a tubular structure with a central thread of cytoplasm (Fig. 11D, H). The thread of cytoplasm (pseudopodial trunk) descends into the cell body within a peduncular sheath. In two glycerol-mounted specimens where it can be seen most clearly (Fig. 10A¬D), the sheath is 65  $\mu m$  and 75  $\mu m$  wide and extends for at least 50  $\mu m$  into the cell.

Test wall and contents. The wall is transparent, flexible, and entirely organic with reflective highlights (Fig. 9A, C, E). It is between 7.3 and 16.4  $\mu$ m thick, with some differences between individuals (for example, 7.3 – 9.1  $\mu$ m compared to 12.7 –

16.4 µm in two cases) and is often rather thinner at the abapertural end of the test compared to near the aperture. In freshly collected specimens the cytoplasm is typically brownish orange (Fig. 8A, B), sometimes tinged with grey or in a few cases almost completely grey, but after storage in formalin for 6 months it lost much of its colour and appeared whitish or greyish in reflected light (Figs. 8C,D; 9). The cell body fills most or all of the test (Figs 9, 10). By May 2022, after almost four years in formalin, however, it had shrunk and was separated from the test wall by a clear space (Figs. 8D; 11). When viewed in water using a compound microscope with transmitted light, the cytoplasm appears fine-grained with some small, scattered, mainly dark particles, which become more obvious with the test immersed in glycerol (Fig. 10A–C, F). These are presumably mineral grains. In two specimens a single large circular structure measuring 51 and 93 µm in diameter is visible (Fig. 10A, B). This may be a nucleus, although the absence of any obvious internal structure, such as nucleolus, makes this somewhat doubtful.

### Remarks

Bathyallogromia kalaallita closely resembles the two previously described species of the genus, but is larger than both. The mean lengths of B. weddellensis from the deep Weddell Sea (1000-6000 m depth) and B. olivacea from South Georgia are 251  $\mu$ m and 314  $\mu$ m, respectively (Gooday et al., 2004; Holzmann et al., submitted), compared to 470  $\mu$ m for B. kalaallita. There are also differences in shape. Bathyallogromia weddellensis is the most nearly spherical of the three species with a mean length/width ratio of 1.09 and B. olivacea is the most ovate, with a mean length/width ratio of 1.45. The new species has a shape that is intermediate between these extremes (mean length/width ratio 1.20).

When freshly collected, the three species also displayed differences in the colour of the cell body, light grey or greenish in *B. weddellensis*, olive-green in *B. olivacea*, and brownish orange to greyish in *B. kalaalita*. However, it is not certain that these colours have any value as taxonomic characters. It is more likely that they reflect the consumption of different food material, as in other foraminifera (e.g., Jepps, 1942; Moodley et al., 2000). In any case, the colours disappear in preserved specimens, in which the cytoplasm is generally whitish.

Two almost spherical *Bathyallogromia*-like organic-walled monothalamids from ~1300 m depth on the Håkon-Mosby Mud Volcano (Fig. 2a,b in Gooday et al., 2013) measure about 122 and 233  $\mu$ m in length (including the apertural structure), and are therefore more similar in size and shape to the Weddell Sea species than to *B. kalaallita*.

**Molecular characteristics.** The partial SSU rDNA sequences of *B. kalaallita* contain 1009 nucleotides (isolate 19863) and 1015 nucleotides (isolates 19861, 19862) respectively and the GC content amounts to 41.1%.

# Morphological and molecular diversity

Including the two species described above, our samples from the Nuuk fjord system yielded a total of 49 morphologically distinct types for which we have photographic

documentation. The majority are from the 125 – 500 µm size fraction. For thirty of these (illustrated in Supplementary Figs S1–3) no molecular data are available. They include a mixture of organic-walled monothalamids (Supplementary Fig. S1A,E,I,K) and agglutinated forms, including flask-shaped 'saccamminids' (Supplementary Figs S1B¬D, F¬H, L¬N; S2A, B, D), many of which cannot be assigned to a genus, as well as *Pelosina*, *Pelosina*-like and *Crithionina*-like morphotypes (Supplementary Fig. S3). It should be noted that organic-walled monothalamids, agglutinated 'saccamminids' and *Crithionina*-like morphotypes are distributed in different clades. Without genetic data, these terms can only be used in an informal sense to indicate morphology-based groupings; they have no phylogenetic or taxonomic meaning. In addition, some monothalamids, including *Pelosina* species, can have quite variable test shapes, which further complicates the recognition of species. In many cases, therefore, the taxonomic assignment of monothalamid morphotypes belonging to these groups should be avoided in the absence of genetic data.

Sequences were obtained from the remaining 19 morphotypes. In addition to the two new species (*Bathyallogromia kalaallita* and *Nujappikia idaliae*), these included single undescribed representatives of five genera (*Bathysiphon*, *Micrometula*, *Psammophaga*, *Hippocrepinella*, *Crithionina*), and twelve undescribed monothalamids that cannot be assigned to known genera. Together, these 19 morphotypes represent the following nine monothalamid clades, eight of them established by Pawlowski et al. (2002b): Clade A (two indeterminate forms illustrated in Fig. 12A,C), Clade BM (*Bathysiphon* sp. and *Micrometula* sp.; Figs 12B, Supplementary Fig. S1R, respectively), Clade C (*Bathyallogromia kalaallita* and four indeterminate forms, Fig. 12D–F; isolate 20304 is not illustrated), Clade D (*Hippocrepinella* sp., Fig. 13), Clade E (*Psammophaga* sp., Fig. 12G), Clade F (indeterminate form, Fig. 12H), Clade J (*Crithionina* sp., Fig. 12I), Clade Y (*Nujappikia idaliae*; four indeterminate forms, Fig. 12N,O).

# Molecular phylogeny

Clade A (Fig. 1) comprises a large number of undetermined monothalamids including three Greenland isolates. Two of these form a well-supported group (97% BV) with an undetermined monothalamid from Antarctica while the third branches separately. *Limaxia alba*, the first morphologically described species belonging to Clade A (Holzmann et al., 2022), branches with undetermined monothalamids from Antarctica (93% BV). Clade A is well supported (91% BV) and branches as sister to Clade BM (100% BV), which includes two closely related genera, *Bathysiphon* and *Micrometula*. The specimens from Greenland branch with other undescribed species of these genera, with strong support; 93% for *Bathysiphon* sp. and 100% for *Micrometula* sp.. *Bathysiphon flexilis* and *B. argentea* branch at the base of the two groups, but the branching is not supported.

In Clade C (98 % BV, Fig. 1), our new species *Bathyallogromia kalaallita* (100% BV) branches next to *B. olivacea* from South Georgia fjords. The two species build a sister clade to *B. weddellensis* from the deep Weddell Sea and *Bathyallogromia* sp. from the east Greenland shelf. The genus *Bathyallogromia* is supported by 90% BV. In addition to *Bathyallogromia*, six monothalamids from

Greenland branch within Clade C. Four cluster as sister to *Hippocrepinella alba* from South Georgia, their branching being strongly supported (99% BV). Two others cluster with specimens from Antarctica and Patagonia (100% BV).

Eleven monothalamids from Greenland identified as *Hippocrepinella* sp. branch together with other representatives of this genus from Svalbard and Antarctica, within Clade D (Fig.2). Bootstrap support for this group is weak (74%) and it branches as sister to two *Hippocrepinella* sp. from Tjärnö, Sweden, and Svalbard (93% BV). *Hippocrepinella hirudinea* from South Georgia and Antarctica branch at the base of Clade D, as sister to *Hippocrepinella* sp. The relations between these different *Hippocrepinella* species are strongly supported (100% BV).

The Greenland *Psammophaga* sp. clusters in Clade E (Fig. 2) and builds a group with *Psammophaga* specimens from Svalbard and western Canada. The group branches next to the Adriatic species *P. zirconia*, but the branching is not supported. Two other monothalamids from Greenland branch as sister to *Hemisphaerammina bradyi*, but bootstrap support for this branching is weak (73% BV). All of them form a strongly supported (96% BV) clade F, which also contains the deep-sea genus *Vanhoeffenella* and the Antarctic genus *Notodendrodes*.

The *Crithionina* sp. sequence from Greenland branches in Clade J (Fig. 3) next to *C. granum* from Sweden and *C. delacai* from Antarctica and South Georgia (89% BV). The group is a sister to *Crithionina* sp. from South Georgia and a deep-sea species, *Capsammina patelliformis*. Clade J is strongly supported (100% BV) and branches next to Clade Y (86% BV), which includes our new species *Nujappikia idaliae* (89% BV) from Greenland. The closest relative of *N. idaliae* is an environmental sequence from Sapelo Island, USA. Clade Y also contains *Hilla argentea* from South Georgia as well as nine monothalamid isolates from Greenland, eight of them divided between three groups and one branching with an environmental clone from the Japan Sea. Finally, three of the Greenland monothalamid isolates form a new clade (Fig.3) composed of a sequence obtained from *Astrorhiza limicola* and several environmental sequences from Antarctica and the Florida Keys, USA. The new clade is strongly supported (100% BV).

## **Discussion**

### Monothalamid biodiversity

The Nuuk fjords join similar high latitude fjords in Svalbard (Gooday et al., 2005; Majewski et al., 2005; Sabbatini et al., 2007) and South Georgia (Holzmann et al., 2022), and the shallow New Harbor area of Antarctica (Gooday et al, 1996; Pawlowski et al., 2002a), in hosting diverse assemblages of monothalamids. 'Softwalled saccamminids' with finely agglutinated tests, and to a lesser extent agglutinated spheres ('psammophaerids') and organic-walled morphotypes, represent the majority of species in the finer fractions (Table 3). Representatives of the mudwalled genus *Pelosina* are often present in the coarser residues as well as in some Norwegian fjords (Cedhagen, 1993). Some shallow temperate habitats are inhabited by similar taxa (Habura et al., 2008; Gooday et al., 2010; Sergeeva et al., 2010). For example, Sabbatini et al. (2013) illustrated 38 organic-walled, 27 'saccamminid' and 7 'psammosphaerid' morphotypes (72 in total) from depths of <50 m in the Adriatic

Sea. Pelosina species are sometimes common at upper bathyal depths in lowerlatitude settings (e.g., Levin et al., 1991; Gooday et al., 2009; Cedhagen et al., 2013). Monothalamid assemblages comparable to those in fjords are also recorded at greater water depths (~1300 m) around the Håkon Mosby Mud Volcano in the Barents Sea (Gooday et al., 2013).

The monothalamids in our samples have tests with organic, finely agglutinated or coarsely agglutinated walls and span a wide morphological range. They include tubular, elongate ovate, and approximately spherical morphotypes, as well as several low, finely agglutinated domes attached to mineral grains (Fig. 12, 13). Among those that were sequenced, organic-walled and agglutinated forms are often found in the same clades. Only a few clades comprise species with similar morphologies. Among those represented in the present study, Clade BM includes forms with elongate, basically tubular tests (Fig. 12B, Supplementary Fig. S1R), Clade E includes Psammophaga species and Clade D includes Hippocrepinella species. Other clades encompass contrasting morphotypes; for example, an attached, coarsely agglutinated dome, an elongate ovate 'silver saccamminid', two organic-walled tubes, and the bottle-shaped N. idaliae (Fig. 12 J–M) are all assigned to Clade Y. Similarly, clade C contains spherical to ovate morphotypes from Greenland in addition to the giant deepsea xenophyophores, which are morphologically very different.

Our Greenland *Hippocrepinella* species branches as a sister group to the type species H. hirudinea from its type area, South Georgia (Fig. 2). However, the Greenland specimens display considerable morphological variation. Those that were sequenced range from a long, tubular specimen (isolate 20332, length = 2.9 mm; Fig. 13A) to a much smaller, barrel-shaped specimen (isolate 20333, length = 0.50 mm; Fig. 13E). Some have a finely agglutinated, smooth test surface (isolates 20333, 20264) and resemble H. hirudinea of Höglund (1947) from Gullmar Fjord. The barrel-shaped isolate 20333, which also has a smooth surface, is more similar to H. acuta of Höglund (1947, Pl. 1, Figs. 17-23) while others are more coarsely agglutinated (isolates 20332, 20334, 20366). In most of our Greenland specimens, the test ends bluntly, but in isolate 20264 (length = 2.35 mm; Fig. 13D) one end is somewhat produced into a poorly defined neck, a feature also seen in H. acuta (Pl. 1, figs 17, 18 in Höglund, 1947). Nevertheless, the eleven sequenced specimens of Hippocrepinella sp. group together in the tree, albeit with a relatively low BV value of 74% and a pairwise genetic distance between them ranging from 0 to 0.003.

### **Biogeography**

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467 468

469

470

471

472

473

474

475

476

477

478 479

480

481

482

483

484 485

486 487

488

489

490

491

492

493

494

495

496

497

Because monothalamids have relatively few taxonomic characters, phylogenetic data are particularly important for establishing reliable biogeographic patterns, as well as for defining species. The present study adds to a growing body of genetic information for this poorly-documented group of foraminifera. In the first study to address distributions from mainly shallow-water (depths <100 m) higher latitude sites, Pawlowski et al. (2008) showed that morphologically similar populations of monothalamids assigned to *Hippocrepinella hirudinea* and the genera *Gloiogullmia*, Micrometula, and Psammophaga were genetically distinct. Our recent study of monothalamids from South Georgia fjords (Holzmann et al., 2022) established distributions at a regional scale across parts of the Southern Ocean for

Psammosphaera sp., Micrometula sp., and a Crithionina species. However,

Holzmann et al. (2022) found no evidence for the occurrence outside South Georgia of two other species they described, *Bathyallogromia olivacea* and *Hilla argentea*.

The current investigation reveals similar regional-scale distributions for a number of monothalamid species at high northern latitudes. In Clade BM, Bathysiphon sp. is represented in the Nuuk Fjord system and Storfjord in Norway (pairwise genetic distance 0.002). It is genetically distinct from B. argenteus and B. flexilis of Höglund (1947) from the Gullmar Fjord, and its relatively short, wide test is different from the long, thin test of B. minutus, another species found by Höglund, for which no molecular data are available. The Nuuk species of *Micrometula* sp., also located in Clade BM, clusters with sequenced specimens from Svalbard (0.004 – 0.007) and near Vancouver in western Canada (0.003 – 0.013). In Clade E, isolates of the widely-distributed genus *Psammophaga* sp. are close to specimens from Svalbard (0.001 - 0.002) and eastern Canada (0.001 - 0.003). On the other hand, the Nuuk Bathysiphon sp. clusters (BV 93%) with Antarctic isolates from McMurdo Sound, Adelaide Island off the Peninsula, and King George Island in the South Shetlands group, in addition to sequences from Svalbard (pairwise distance 0.001 - 0.003). The Bathysiphon species from Nuuk is represented by a single sequenced specimen with one transition in the variable region 49/e (Pawlowski and Lecroq 2010) that distinguish it from its Antarctic counterparts. Based on this single Greenland specimen and our single gene analysis it is difficult to decide whether these Northern and Southern Hemisphere *Bathysiphon* populations represent the same species or different species. A multi-gene analysis will be necessary in order to resolve this problem. Similarly, the Nuuk *Hippocrepinella* sp. (Clade D) clusters with two sequences from New Harbor in McMurdo Sound, Antarctica (pairwise distance 0.001 -0.004), as well as with one sequence from Svalbard (0 – 0.001). The sequences of the Antarctic Hippocrepinella sp. are distinguished by a transition in the variable region 43/e (Pawlowski and Lecroq 2010) from the Northern hemisphere Hippocrepinella.

Our two newly described species are currently known only from the Nuuk fjord system. In Clade C, *Bathyallogromia kalaallita* is closely related to *B. olivacea* from comparable settings in South Georgia fjords (Holzmann et al., 2022), and more distantly to the type species *B. weddellensis*, from much deeper water in the Weddell Sea (Gooday et al. 2004). The pairwise distance ranges from 0.001 - 0.002 and 0.021 - 0.022, respectively. A single sequence of an undescribed *Bathyallogromia* from the East Greenland Shelf is closely related to *B. weddellensis* (0.003 – 0.004). In Clade Y, the sequence of an environmental clone (Sap 10) from Sapelo Island, USA is the closest relative to *Nujappikia* with a pairwise genetic distance ranging from 0.047 to 0.048, compared to between 0 and 0.003 within *N. idaliae*. In Clade J, the loosely agglutinated *Crithionina* species from Nuuk is morphologically similar to the Northern hemisphere species *C. granum* (Goës, 1894) and also to the Southern hemisphere species *C. delacai* (Gooday et al., 1995). It is closely related genetically to both species but is not identical (pairwise distance ranging from 0.155 to 0.178).

540541542

543

544

545

498

499

500

501

502

503

504

505

506

507

508

509

510

511512

513

514

515

516517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

**Acknowledgements.** We thank Dr Thomas Juul-Pedersen (Greenland Climate Research Centre, University of Nuuk), who facilitated our laboratory work in Nuuk, Dr Ole Ziemer and Prof. Dr Reinhardt Kristensen, who provided valuable practical assistance, and Alina Pawlowska, who played an important role in organising the

Greenland expedition. We thank two reviewers for helpful comments that led to improvements in the manuscript.

#### **CRediT** author statement

- 550 Andrew J Gooday, 'Conceptualization, Investigation, Validation, Data curation,
- Original draft preparation, Writing Review & Editing, Visualization. Maria
- Holzmann Conceptualization, Investigation, Validation, Formal analysis, Data
- curation, Reviewing and Editing, Visualization. **Elsa Schwarzgruber** Investigation.
- Tomas Cedhagen Conceptualization, Investigation, Reviewing and Editing, Project
- 555 management. Jan Pawlowski Conceptualization, Investigation, Reviewing and
- Editing, Resources, Funding acquisition.

### **Author contributions**

Author contributions AJG, MH, TC, and JP collected and picked foraminifera from the Greenland samples. MH and ES were responsible for DNA extraction, amplification and sequencing; MH carried out the phylogenetic analysis, and wrote the genetic parts of the text, with contributions from JP. The remainder of the text was written by AJG, with edits from MH, JP and TC. AJG was responsible for the photography and all figures, except for Figs 1¬3, which were prepared by MH.

**Funding.** JP and MH were supported by a grant from the Swiss National Science Foundation (31003A\_179125), with additional funding from the Schmidheiny Foundation (MH).

**Data availability**. All data generated and analysed during this study are included in this published article. Type specimens are deposited in the Natural History Museum, London.

### Figure captions

**Fig.1.** PhyML phylogenetic tree based on the 3'end fragment of the SSU rRNA gene, showing the evolutionary relationships of 68 monothalamid foraminiferal sequences belonging to Clades A, BM, C. Taxa marked in bold indicate those for which sequences were acquired for the present study. The tree is unrooted. Specimens are identified by their isolate numbers (1st) and accession numbers (2nd). Numbers in brackets refer to clones. Numbers at nodes indicate bootstrap values (BV). Only BV>70% are shown.

**Fig.2.** PhyML phylogenetic tree based on the 3'end fragment of the SSU rRNA gene, showing the evolutionary relationships of 50 monothalamid foraminiferal sequences belonging to Clades D, E, F. Taxa marked in bold indicate those for which sequences were acquired for the present study. The tree is unrooted. Specimens are identified by their isolate numbers (1st) and accession numbers (2nd). Numbers at nodes indicate bootstrap values (BV). Only BV>70% are shown.

**Fig.3.** PhyML phylogenetic tree based on the 3'end fragment of the SSU rRNA gene, showing the evolutionary relationships of 42 monothalamid foraminiferal sequences

belonging to Clades J, Y and a new Clade. Taxa marked in bold indicate those for which sequences were acquired for the present study. The tree is unrooted. Specimens are identified by their isolate numbers (1st) and accession numbers (2nd). Numbers in brackets refer to clones. Numbers at nodes indicate bootstrap values (BV). Only BV>70% are shown.

Figure 4. Nujappikia idaliae gen. & sp. nov. A–D. Unfixed specimens photographed
 in July 2018, soon after collection. E, F. Specimens fixed in formalin, photographed
 in April 2019. Scale bars in E and F = 0.50 mm.

- Figure 5. Nujappikia idaliae gen. & sp. nov.; type specimens, photographed in glycerol in April 2019. A. Holotype, NHMUK PM ZF 9946. B. Paratype 1, NHMUK PM ZF 9947. C. Paratype 2, NHMUK PM ZF 9948. D. Paratype 3, NHMUK PM ZF 9949. E. Paratype 4, NHMUK PM ZF 9950. F. Paratype 5, NHMUK PM ZF 9951.
  G. Paratype 6, NHMUK PM ZF 9952. H. Paratype 7, NHMUK PM ZF 9953. Scale bars = 250 μm.
- Figure 6. Nujappikia idaliae gen. & sp. nov.; (A, C, E, G, I) Dark field views of
   specimens photographed in LifeGuard in February 2019. (B, D, F, H, J) Light field
   views of the same specimens. Scale bars = 250 μm.
- Figure 7. Nujappikia idaliae gen. & sp. nov. (A). Unusually shaped specimen. (B–D).
   Apertural structures. (B) Paratype 5, NHMUK PM ZF 9951. (C) Paratype 2, NHMUK
   PM ZF 9948. (D). Paratype 6, NHMUK PM ZF 9952. (E) Abapertural end of
   Paratype 4, NHMUK PM ZF 9950. (F). Abapertural end of Paratype 7, NHMUK PM
   ZF 9953. Scale bars = 250 μm (A), 100 μm (B–F)
  - **Figure 8**. *Bathyallogromia kalaallita* sp. nov. (A, B) Unfixed specimens photographed in July 2018, soon after collection. (C) Specimens fixed in formalin, photographed in April 2019. (D) Specimens photographed in May 2022, by which time the cell body had shrunk, leaving a clear space between it and the cell wall. Scale bars = 1.0 mm
  - **Figure 9**. *Bathyallogromia kalaallita* sp. nov. Corresponding views of three specimens photographed in LifeGuard in February 2019 under different lighting conditions. Scale bars =  $250 \,\mu m$ .
  - **Figure 10**. *Bathyallogromia kalaallita* sp. nov. Specimens photographed in April 2019 using transmitted light and either with (A E) or without (F H) Nomarski interference optics. (A) Small specimen with well-developed peduncle, peduncular sheath and large nucleus. (B) Detail of apertural region and nucleus. (C) Ovate specimen. (D) Detail of apertural region. (E) Large almost spherical specimen. (F) Ovate specimen. (G) More elongate ovate specimen. (H) Detail of apertural region. Scale bars = 250 µm.
- Figure 11. Bathyallogromia kalaallita sp. nov. Type specimens, photographed in
   May 2022 when the cell body had shrunk, revealing good views of the peduncle. (A)
   Holotype NHMUK PM ZF 9954. (B) Holotype, detail of apertural region. (C)

- Paratype 1 NHMUK PM ZF xxxx. (D) Paratype 1, detail of apertural region. (E)
- Paratype 2 NHMUK PM ZF 9956; the test wall has been distorted in the preservative.
- (F) Paratype 2, detail of apertural region. (G) Paratype 3 NHMUK PM ZF 9957. (H)
- Paratype 3, detail of apertural region. Scale bars =  $250 \mu m$  (A, C, E, G),  $100 \mu m$  (B,
- 646 D, E, G).

647 648

649

- **Figure 12.** Sequenced specimens that can only be identified to genus level or are indeterminate. (A) Indeterminate, finely agglutinated monothalamid, St. 2B; isolate
- 650 20261, Clade A. (B) *Bathysiphon* sp., St. 12; isolate 20435, Clade BM. (C)
- indetermined monothalamid, St. 13; isolate 20296 96, Clade A. (D) Ovate
- saccamminid, St. 2B; isolate 20256, Clade C. (E) Small saccamminid with apertural
- neck, St. 2B; isolate 20246, Clade C. (F) Ovate, organic-walled test with brownish
- 654 contents, St. 12; isolate 20403, Clade C. (G) *Psammophaga* sp., St. 15; isolate 20371,
- 655 Clade E. (H) Small organic-walled allogomiid, St. 16; isolate 20351, Clade F. (I)
- 656 Crithionina sp., St. 11; isolate 20399, Clade J. (J) Coarsely agglutinated attached test,
- 657 St. 13; isolate 20290, Clade Y. (K) Silver saccamminid, St. 5; isolate 20321, Clade Y.
- 658 (L) Nemogullmia sp., St. 5; isolate 19859; Clade Y. (M) Elongate organic-walled test
- with what appear to be terminal apertures, St. 16; isolate 20350, Clade Y. (N) Whitish
- dome attached to mineral grain, St. 13; isolate 20285, New Clade. (O) Similar dome,
- St. 13; isolate 20286, New Clade. Scale bars =  $250 \,\mu m$  except where indicated
- otherwise.

663

Figure 13. Hippocrepinella sp. (A–E) Sequenced specimens, photographed in
 RNAlater in Geneva. Note that C and particularly E are much smaller than other
 specimens. (A) Isolate 20332, St. 8. (B) Isolate 20334, St. 7. (C) Isolate 20366, St.
 (D) Isolate 20264, St. 13. (E) Isolate 20333, St. 7. (F, G) Specimens fixed in
 formalin that were not sequenced, photographed in Southampton. Scale bars = 0.50

669 mm.

670 671

### References

672673674

675

676 677

678

679

680

681

- Brady, H.B., 1881. On some Arctic Foraminifera from soundings obtained on the Austro-Hungarian North-Polar Expedition of 1872–1874. Ann. Mag. Nat. Hist. ser 5, 8, 393¬418
- Cedhagen, T., 1993. Taxonomy and Biology of *Pelosina Arborescens* with Comparative Notes on *Astrorhiza limicola* (Foraminiferida), Ophelia 37, 143-162. http://doi: 10.1080/00785326.1993.10429914
- Cedhagen, T., Aungtonya, C., Banchongmanee, S., Sinniger, F., Pawlowski, J., 2013. Gromiids and monothalamous foraminiferans (Rhizaria) from the Andaman Sea, Thailand taxonomic notes. Phuket Mar. Biol Center Res. Bull. 72, 1-17.
- Earland, A., 1934. Foraminifera. Part III. The Falklands sector of the Antarctic (excluding South Georgia). Disc. Rep. X, 1–208.
- Goës, A. T., 1894. A synopsis of the Arctic and Scandinavian recent marine
   foraminifera hitherto discovered. Kungl. Svenska Vetenskapsakad. Handl. 25,
   1-127.

- Cite as: Gooday, AJ, M. Holzmann, E. Schwarzgruber, T. Cedhagen, J. Pawlowski, 2022. Morphological and molecular diversity of monothalamids (Rhizaria, Foraminifera), including two new species and a new genus, from SW Greenland., European Journal of Protistology <u>86</u>, 125932
- Gooday, A.J., Bernhard, J.M. Bowser, S.S., 1995. The taxonomy and ecology of
   *Crithionina delacai* sp. nov., an abundant large agglutinated foraminifer from
   Explorers Cove, Antarctica. J. Foram. Res. 25, 290-298.
- Gooday, A.J., Bernhard, J.M. Bowser, S.S., 1996. Benthic foraminiferal assemblages
   in Explorer's Cove, Antarctica: a shallow water site with deep sea characteristics.
   Progr. Oceanogr., 37, 219-267.
- Gooday, A.J., Shires, R. Jones, A.R., 1997. Large deep-sea agglutinated foraminifera;
   two differing kinds of organization and their possible ecological significance. J.
   Foram. Res. 27, 278-291.
- Gooday, A.J., Holzmann, M., Guiard, J., Cornelius, N., Pawlowski, J., 2004. A new
   monothalamous foraminiferan from 1000 to 6300 m water depth in the Weddell
   Sea: morphological and molecular characterisation. Deep-Sea Res. II 51, 1603–
   1616.
- Gooday, A.J., Bowser, S.S., Cedhagen, T., Cornelius, N., Hald, M., Korsun, S.
   Pawlowski, J., 2005. Monothalamous foraminiferans and gromiids (Protista) from western Svalbard: A preliminary survey. Mar. Biol. Res. 1, 290-312.
  - Gooday, A.J., Levin, L.A., Aranda da Silva, A., Bett, B.J., Cowie, G.L., Dissard, D., Gage, J.D., Hughes, D.J., Jeffreys, R., Lamont, P.A., Larkin, K.E., Murty, S.J., Schumacher, S., Whitcraft, C., Woulds, C, 2009. Faunal responses to oxygen gradients on the Pakistan Margin: a comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Res. II 56, 488-502.
    - Gooday, A.J., Anikeeva, O.V., Pawlowski, J., 2011. New genera and species of monothalamous foraminifera from Balaclava and Kazach'ya Bays (Crimean Peninsula, Black Sea). Mar. Biodiv. 41, 481–494
- Gooday A.J., Kamenskaya, O.E. Soltwedel, T., 2013. Basal foraminifera and gromiids
   (Protista) at the Håkon-Mosby Mud Volcano (Barents Sea slope). Mar. Biodiv.
   43, 205–225. https://doi.10.1007/s12526-013-0148-5
- Gooday, A.J., Holzmann, M., Goetz, E., Cedhagen, T., Korsun, S., Pawlowski, J.,
   2021. Three new species of *Gromia* (Protista, Rhizaria) from western Greenland
   fjords. Polar Biol. 405011. https://doi.org/10.1007/s00300-021-02858-9
  - Gouy, M., Guindon, S., Gascuel, O., 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224.
  - Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321.
  - Habura, A., Goldstein, S.T., Broderick, S. Bowser, S.S., 2008. A bush, not a tree: the extraordinary diversity of cold-water basal foraminiferans extends to warm-water environments. Limnol. Oceanogr. 53, 1339–1351.
- Höglund, H., 1947. Foraminifera in the Gullmar Fjord and the Skagerak. Zool. Bidrag
   Uppsala. 26, 1-328.
- Holtegaard Nielsen M., Reng Erbs-Hansen, D., Knudsen K. L., 2010. Water masses
   in Kangerlussuaq, a large fjord in West Greenland: the processes of
   formation and the associated foraminiferal fauna. Pol. Res. 29, 159-175.
- 732 https://doi.org/10.3402/polar.v29i2.6063
- Holzmann, M., Gooday, A.J., Siemensma, F., Pawlowski, J., 2021. Review:
- freshwater and soil foraminifera a story of long-forgotten relatives. J. Foram.
- 735 Res. 51, 318–331.

704

705

706

707

708

709

710

711

718

719

720

721

722

723

724

725

- Holzmann, M., Gooday, A.J., Majewski, W., Pawlowski, J., 2022. Molecular and
   morphological diversity of monothalamous foraminifera from South Georgia
   and the Falkland Islands: Description of four new species. Eur. J. Protistol.
   85, 125909.
- Jepps, M.W., 1942. Studies on *Polystomella* Lamark (Foraminifera). J. Mar. Biol.
   Assoc. U. K. 25, 607-666.
- Jennings, A, Andrews, J., Reilly, B., Walczak, M., Jakobsson, M., Mix, A., Stoner, J.,
  Nicholls, K.W. Cheseby, M., 2020a. Modern foraminiferal assemblages in
  northern Nares Strait, Petermann Fjord, and beneath Petermann ice tongue, NW
  Greenland, Arc., Antarc., Alp. Res. 52, 491-511. https://doi:
  10.1080/15230430.2020.1806986
- Jennings, A.E., Seidenkrantz, M.-S., Knudsen, K.L., 2020b. *Glomulina oculus*, new calcareous foraminiferal species from the High Arctic: a potential indicator of a nearby marine-terminating glacier. J. Foram. Res. 50, 219–234.
- Lefort, V., Longueville, J.E., Gascuel, O., 2017. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 34, 2422–2424.
- Levin, L.A., Childers S.E., Smith. C.R., 1991. Epibenthic, agglutinating foraminiferans
   in the Santa Catalina Basin and their response to disturbance. Deep-Sea Res., 38,
   465-483
- Lloyd, J. M., 2006. Modern distribution of benthic foraminifera from Disko Bugt,
   West Greenland., J. Foram. Res. 36, 315-331.
- Loeblich, A.R., Tappan, H., 1987. Foraminiferal Genera and their Classification, v.1 2, Van Nostrand Reinhold, New York
- Majewski, W., Pawlowski, J., Zalączkowski, M., 2005. Monothalamous foraminifera
   from West Spitsbergen fjords, Svalbard: a brief overview. Pol. Polar Res. 26,
   269–285.
- Majewski, W., Bowser, S.S. Pawlowski, J., 2015. Widespread intra-specific genetic
   homogeneity of coastal Antarctic benthic foraminifera. Pol. Biol. 38, 2047-2058.
- Møller, H.S., Jensen, K.G., Kuijpers, A., Aagaard-Sørensen, S., Seidenkrantz, M.-S.,
   Prins, M., Endler, R., Mikkelsen, N., 2006. Late-Holocene environment and
   climatic changes in Ameralik Fjord, southwest Greenland: evidence from the
   sedimentary record. Holocene. 16, 685¬695.
   https://doi:10.1191/0959683606hl963rp.
- Moodley, L., Boschker, H.T.S., Middelburg, J.J., Pel, R., Herman, P.M.J., de
   Deckere, E., Heip, C.H.R., 2000. Ecological significance of benthic foraminifera:
   <sup>13</sup>C labelling experiments. Mar. Ecol. Prog. Ser. 202, 289-295.
- Nyholm, K.G., 1952. Studies on Recent Allogromiidae: 1. *Micrometula hyalostriata* n.g., n.sp. from the Gullmar Fjord, Sweden. Contrib. Cushman Found.
   Foraminifer. Res. 3, 14–16.
- Nyholm K.G., 1953. Studies on Recent Allogromiidae: 2. *Nemogullmia variabilis* n.g., n.sp. from the Gullmar Fjord. Contrib. Cushman Found. Foraminifer. Res.
   4, 105–106.
- Nyholm K.G., 1954. Studies on Recent Allogromiidae: 3. *Tinogullmia hyaline* n.g.,
   n.sp. from the Gullmar Fjord. Contrib. Cushman Found. Foraminifer. Res. 5,
   36.
- Nyholm K.G., 1955. Studies on Recent Allogromiidae: 4. *Phainogullmia aurata* n.g., n.sp. Zool. Bidrag Uppsala. 30, 465–474.

- Nyholm, K.G., 1974. New monothalamous foraminifera. Zoon 2, 117-122.
- Pawlowski, J., 2000. Introduction to the molecular systematics of foraminifera.

  Micropaleontology 46, 1–12.
- Pawlowski, J., Holzmann, M., 2014. A plea for DNA barcoding of foraminifera. J. Foram. Res. 44, 62–67.
- Pawlowski, J., Lecroq, B., 2010. Short rDNA Barcodes for Species Identification in Foraminifera. J. Eukaryot. Microbiol. 57, 197–205.
- Pawlowski, J., Fahrni, J.F., Brykczynska, U., Habura, A., Bowser, S.S., 2002a.
   Molecular data reveal high taxonomic diversity of allogromiid Foraminifera in
   Explorers Cove (McMurdo Sound, Antarctica). Pol. Biol. 25, 96–105.

793

794

795

803

- Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Cedhagen, T., Bowser, S.S., 2002b. Phylogeny of allogromiid foraminifera inferred from SSU rRNA gene sequences. J. Foram. Res. 32, 334–343.
- Pawlowski, J., Guiard, J., Conlan, K., Hardecker, J., Habura, A., Bowser, S.S., 2005.
   Allogromiid foraminifera and gromiids from under the Ross Ice Shelf:
   morphological and molecular diversity. Pol. Biol. 28, 514–522.
   https://doi:10.1007/s00300-005-0717-6
- Pawlowski, J., Majewski, W., Longet, D., Guiard, J., Cedhagen, T., Gooday, A.J.,
  Korsun, S., Habura, A.A., Bowser, S.S., 2008. Genetic differentiation between
  Arctic and Antarctic monothalamous foraminiferans. Pol. Biol. 31, 1205-1216.
  - Pawlowski, L., Holzmann, M. Tyszka, J., 2013. New supraordinal classification of Foraminifera: Molecules meet morphology. Mar. Micropaleontol. 100, 1-10.
- Sabbatini, A., Morigi, C., Negri, A., Gooday, A.J., 2007. Distribution and biodiversity of living benthic foraminifera, including monothalamous taxa, from Tempelfjord, Svalbard. J Foram. Res. 37, 93 106.
- Sabbatini, A., Bonatto, S., Gooday, A.J., Morigi, C., Pancotti, I., Pucci, P., Negri, A.,
  2010. Modern benthic foraminifers at northern shallow sites of Adriatic Sea
  including soft-walled, monothalamous taxa: a brief overview. Micropaleontology
  56, 359-376.
- Sabbatini, A., Morigi, C., Nardelli, P.M., Negri, A., 2014. Foraminifera, in: Goffredo, S., Dubinsky, Z. (Eds), The Mediterranean Sea: Its history and present challenges, Springer, pp. 237–256. http://doi:10.1007/978-94-007-6704-1\_13
- Sergeeva, N.G., Anikeeva, O.E., Gooday, A.J., 2010. Soft-shelled (monothalamous)
   Foraminifera from the oxic /anoxic interface (NW Black Sea).
   Micropaleontology 56, 393-407
- 818 Spärck, R., 1933. Contributions to the Animal Ecology of the Franz Joseph Fjord and Adjacent East Greenland Waters. Medd. Grønl. 100 (1), 1¬38.
- Thorson, G., 1934. Contributions to the Animal Ecology of the Scoresby Sound Fjord Complex (East Greenland). Medd. Grønl. 100(3), 1¬67.

**Table 1.** Sampling sites for the new species in Greenland, with corresponding DNA isolate numbers and species names. Undescribed isolates from Greenland that are included in the trees are also listed.

| Sampling location                 | Latitude (N) | Longitude (W) | Depth (m) | DNA Isolates                                               |
|-----------------------------------|--------------|---------------|-----------|------------------------------------------------------------|
| St 2, Itissoq embayment of Qôrnup | 64°15.347'   | 51°14.532'    | 111       | Indeterminate Clade A: 20261,                              |
| Suvdlua branch                    |              |               |           | Indeterminate Clade C: 20246, 20256                        |
| St. 3. Qôrgut fjord               | 64°14.957'   | 50° 52.196′   | 58        | Bathyallogromia kalaallita                                 |
| ~                                 |              |               |           | Unsequenced silver saccamminid, Fig. S2D                   |
| St 4, Oorgut embayment of Ũmánap  | 64°15.039'   | 50°53.467'    | 118       | Hippocrepina indivisa unsequenced: Fig. S1                 |
| Suvdlua branch                    |              |               |           | Micrometula sp.: 20326                                     |
|                                   |              |               |           | Unsequenced specimens: Fig. S1G,L,P                        |
| Ct 5 Cth -f.H :-1 t               | (4007 (00)   | 50040.0561    | 240       | Unsequenced silver saccamminid, Fig. S2B                   |
| St 5, South of Uumanaq island     | 64°27.600'   | 50°48.856'    | 240       | Indeterminate Clade Y: 19859 Indeterminate Clade C: 20304  |
| St. 6, Qôrnup assua channel       | 64°43.916'   | 50°26.189'    | 521       | Unsequenced spindle: Fig. S1J                              |
| St. 0, Qornup assua channel       | 04 43.910    | 30 20.169     | 321       | Unsequenced organic-walled form: Fig. S1F                  |
| St. 7 Qôrnup assua channel        | 64°43.784'   | 50°23.356'    | 274       | Hippocrepinella sp., 20333, 20334                          |
| St. 8 Qôrnup assua channel        | 64°43.750'   | 50°24.634'    | 195       | Hippocrepinella sp., 20332                                 |
| St. 8 Qornup assua channer        | 04 45.750    | 30 24.034     | 193       | Tippocrepinetta sp., 20332                                 |
| St. 11 Kobbefjord                 | 64°09.680'   | 51°25.849'    | 150       | Crithonina sp. Clade J: 20399                              |
| St 12, Kobbefjord                 | 64°08.733'   | 51°23.658'    | 43        | Bathysiphon sp. Clade BM: 20435                            |
|                                   |              |               |           | Indeterminate Clade C: 20403                               |
| St 13, Kobbefjord                 | 64°08.580'   | 51°23.377'    | 22        | Hippocrepinella sp., Clade D 20264                         |
|                                   |              |               |           | Indeterminate Clade A: 20296                               |
|                                   |              |               |           | Indeterminate Clade D: 20264                               |
|                                   |              |               |           | Indeterminate Clade Y: 20290                               |
|                                   |              |               |           | Indeterminate Clade Y: 20403                               |
| Ct 14 Innovement of Lycafiand     | 64012 0401   | 50000 0401    | 212       | Indeterminate New Clade: 20285, 20286                      |
| St 14, Inner part of Lysefjord    | 64°12.040'   | 50°20.948'    | 212       | Pelosina sp.: Fig. S3B                                     |
| St. 15, Inner part of Lysefjord   | 64°12.639'   | 50°16.074'    | 95        | Nujappikia idaliae                                         |
|                                   |              |               |           | Hippocrepinella sp. Clade D: 20366                         |
| St. 16, Inner part of Lysefjord   | 64°12.656'   | 050°15.751'   | 61        | Psammophaga sp. Clade E: 20371<br>Nujappikia idaliae       |
| or. 10, milet part of Lyserjoid   | 04 12.030    | 030 13.731    | O1        | Indeterminate Clade F: 20351                               |
|                                   |              |               |           | Indeterminate Clade Y: 20351  Indeterminate Clade Y: 20350 |
|                                   |              |               |           | indeterminate Clade 1. 20000                               |

Table 2. Isolate and GenBank accession numbers, and locality data for sequenced monothalamid specimens. Taxa shown in bold indicate those analysed for the current paper.

| Taxa                                                                                                                        | Isolate                 | Accession number                 | Sampling site                                                                                  | Additional remarks                        |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|
| Clade A                                                                                                                     | 2125-                   | 03.44000:-                       |                                                                                                |                                           |
| Limaxia alba                                                                                                                | 21252                   | OM422947                         | UK, South Georgia, Fortuna Bay                                                                 |                                           |
| Limaxia alba                                                                                                                | 21300                   | OM422948                         | UK, South Georgia, Cumberland Bay                                                              |                                           |
| undet. monothalamid                                                                                                         | 1212                    | AJ307744                         | Antarctica, New Harbor                                                                         | Cylindrogullmia -like                     |
| undet. monothalamid                                                                                                         | 2226                    | AJ514858                         | Antarctica, New Harbor                                                                         | elongate                                  |
| undet. monothalamid°                                                                                                        | 3022                    | OM422851, ON053330               | Antarctica, New Harbor                                                                         | Cylindrogullmia -like                     |
| undet. monothalamid                                                                                                         | 3132                    | HE998678                         | Antarctica, McMurdo                                                                            | coarsely agglutinated, attached           |
| undet. monothalamid                                                                                                         | 3133                    | OM422938                         | Antarctica, McMurdo                                                                            | coarsely agglutinated, attached           |
| undet. monothalamid                                                                                                         | 3523                    | OM422939                         | Weddell Sea, abyssal                                                                           | Allogromia like                           |
| undet. monothalamid                                                                                                         | 3552                    | OL772090                         | Weddell Sea, abyssal                                                                           | Allogromia like                           |
| undet. monothalamid*                                                                                                        | 20261                   |                                  | Greenland, Nuuk Fjord, St.2B                                                                   | elongate, finely agglutinated             |
| undet. monothalamid*                                                                                                        | 20295                   |                                  | Greenland, Nuuk Fjord, St.13                                                                   | elongate, sticky, soft walled             |
| undet. monothalamid*                                                                                                        | 20296                   |                                  | Greenland, Nuuk Fjord, St.13                                                                   | elongate, sticky, soft walled             |
| Clade BM                                                                                                                    |                         |                                  |                                                                                                |                                           |
| Bathysiphon argenteus                                                                                                       | 1780                    | AJ514836                         | Sweden, Gullmar Fjord                                                                          |                                           |
| Bathysiphon flexilis                                                                                                        | 1784                    | AJ514837                         | Sweden, Gullmar Fjord                                                                          |                                           |
| Bathysiphon sp.°                                                                                                            | 5324                    | ON053431, ON053432               | Norway, Storfjord                                                                              |                                           |
| Bathysiphon sp.°                                                                                                            | 7517                    | ON053433                         | Antarctica, McMurdo                                                                            |                                           |
| Bathysiphon sp.                                                                                                             | 8029                    | ON053440                         | Antarctica, King George Island                                                                 |                                           |
| Bathysiphon sp.                                                                                                             | 8157                    | ON053441                         | Antarctica, King George Island                                                                 |                                           |
| Bathysiphon sp.°                                                                                                            | 17432                   | ON053434, ON053435               | Antarctica, Adelaide Island                                                                    |                                           |
| Bathysiphon sp.                                                                                                             | 20435                   | ON053442                         | Greenland, Nuuk Fjord, St.12                                                                   |                                           |
| Micrometula sp.                                                                                                             | 2880                    | ON053443                         | Norway, Svalbard                                                                               |                                           |
| Micrometula sp.                                                                                                             | 4518                    | ON053444                         | Norway, Svalbard, Kongsfjorden                                                                 |                                           |
| Micrometula sp.                                                                                                             | 4683                    | ON053445                         | Norway, Svalbard, Kongsfjorden                                                                 |                                           |
| Micrometula sp.°                                                                                                            | 4684                    | ON053436                         | Norway, Svalbard, Kongsfjorden                                                                 |                                           |
| Micrometula sp.°                                                                                                            | 4747                    | ON053437                         | Norway, Svalbard, Adventfjorden                                                                |                                           |
| Micrometula sp.                                                                                                             | 4888                    | ON053446                         | Norway, Svalbard, Adventfjorden                                                                |                                           |
| Micrometula sp.°                                                                                                            | 5053                    | ON053438                         | Canada, Vancouver, Howe Sound                                                                  |                                           |
| Micrometula sp.°                                                                                                            | 5082                    | ON053439                         | Canada, Vancouver, Howe Sound                                                                  |                                           |
| Micrometula sp.                                                                                                             | 20326                   | ON053447                         | Greenland, Nuuk Fjord, St.4                                                                    |                                           |
| Clade C                                                                                                                     |                         |                                  | •                                                                                              |                                           |
| Bathyallogromia kalaallita                                                                                                  | 19861                   | ON053401                         | Greenland, Nuuk Fjord, St.3                                                                    |                                           |
| Bathyallogromia kalaallita                                                                                                  | 19862                   | ON053402                         | Greenland, Nuuk Fjord, St.3                                                                    |                                           |
| Bathyallogromia kalaallita                                                                                                  | 19863                   | ON053403                         | Greenland, Nuuk Fjord, St.3                                                                    |                                           |
| Bathyallogromia olivacea                                                                                                    | 21323                   | OM422961                         | UK, South Georgia, Stromness Bay                                                               |                                           |
| Bathyallogromia olivacea                                                                                                    | 21324                   | OM422962                         | UK, South Georgia, Stromness Bay                                                               |                                           |
| Bathyallogromia olivacea                                                                                                    | 21325                   | OM422963                         | UK, South Georgia, Stromness Bay                                                               |                                           |
| Bathyallogromia olivacea                                                                                                    | 21326                   | OM422964                         | UK, South Georgia, Stromness Bay                                                               |                                           |
| Bathyallogromia sp.°                                                                                                        | 5396                    | OM422905                         | Denmark, East Greenland Shelf                                                                  |                                           |
| Bathyallogromia weddellensis°                                                                                               | 3334                    | OM422904                         | Weddell Sea, abyssal                                                                           |                                           |
| Bathyallogromia weddellensis°                                                                                               | 3338                    | FR875101                         | Weddell Sea, abyssal                                                                           |                                           |
| Bathyallogromia weddellensis°                                                                                               | 3339                    | FR875100                         | Weddell Sea, abyssal                                                                           |                                           |
| Bathyallogromia weddellensis°                                                                                               | 3553                    | FR875102                         | Weddell Sea, abyssal                                                                           |                                           |
| Gloiogullmia eurystoma                                                                                                      | 526                     | AJ317981                         | Sweden, Tjaerno                                                                                |                                           |
| Gloiogullmia eurystoma°                                                                                                     | 2882                    | LT796823                         | Norway, Svalbard                                                                               |                                           |
| Hippocrepina indivisa°                                                                                                      | 17534                   | OM422906                         | Chile, Patagonia, Beagle Channel                                                               |                                           |
| Hippocrepinella alba                                                                                                        | 20870                   | OM422966                         | UK, South Georgia, Fortuna Bay                                                                 |                                           |
| Hippocrepinella alba                                                                                                        | 20873                   | OM422968                         | UK, South Georgia, Fortuna Bay                                                                 |                                           |
| Leptammina grisea°                                                                                                          | 8352                    | FM209503                         | Weddell Sea, abyssal                                                                           |                                           |
| Leptammina grisea°                                                                                                          | 8353                    | FM209505<br>FM209505             | Weddell Sea, abyssal                                                                           |                                           |
| Marsipella sp.                                                                                                              | 4074                    | FR875147                         | France, Mediterranean Sea                                                                      |                                           |
| Marsipella sp.                                                                                                              | 4074                    | FR875148                         | France, Mediterranean Sea                                                                      |                                           |
| Pilulina argentea                                                                                                           | 2837                    | OL873224                         | Norway, Svalbard                                                                               |                                           |
| Pilulina argentea                                                                                                           | 2841                    | OL873225                         | Norway, Svalbard                                                                               |                                           |
| Technitella sp.                                                                                                             | R5                      | FR754396                         | Norway, Oslo Fjord                                                                             |                                           |
| Toxisarcon alba                                                                                                             | WC18H                   | AJ307750                         | Uk, Scotland, Loch Linnhe                                                                      |                                           |
| Toxisarcon aiba<br>Toxisarcon synsuicida                                                                                    | 1370                    | AJ315955                         | Sweden, Tjaerno                                                                                |                                           |
| Toxisarcon synsuiciaa Toxisarcon taimyr                                                                                     | 14533                   | KF931124                         | Russia, Kara Sea                                                                               |                                           |
| undet.monothalamid                                                                                                          | 7702                    | ON053411                         | Chile, Patagonia, Beagle Channel                                                               | Phainogullmia- like                       |
| undet.monothalamid°                                                                                                         | 14322                   | ON053411<br>ON053398             | Antarctica, New Harbor                                                                         | 1 manogumua- iike                         |
| undet.monothalamid°                                                                                                         | 14322                   | ON053398<br>ON053399             | Antarctica, New Harbor<br>Antarctica, New Harbor                                               |                                           |
| undet. monothalamid*                                                                                                        | 20246                   | 011033377                        | Greenland, Nuuk Fjord, St.2B                                                                   | oval apertural neck finely agalutinated   |
| undet. monothalamid*                                                                                                        |                         |                                  |                                                                                                | oval, apertural neck, finely agglutinated |
| undet. monothalamid*                                                                                                        | 20256                   |                                  | Greenland, Nuuk Fjord, St.2B                                                                   | elongate, agglutinated                    |
|                                                                                                                             | 20304                   |                                  | Greenland, Nuuk Fjord, St.5                                                                    | elongate                                  |
| undet. monothalamid*                                                                                                        | 20341                   |                                  | Greenland, Nuuk Fjord, St.7                                                                    | oval, finely agglutinated                 |
| undet. monothalamid*                                                                                                        | 20393                   |                                  | Greenland, Nuuk Fjord, St.13                                                                   | oval, finely agglutinated                 |
|                                                                                                                             | 20403                   |                                  | Greenland, Nuuk Fjord, St.12                                                                   | oval, brownish, soft walled               |
| undet. monothalamid*                                                                                                        |                         |                                  |                                                                                                |                                           |
| Clade D                                                                                                                     | 7962                    | I NI072602                       | Automotica Vice Course 7.1 1                                                                   |                                           |
| <u>Clade D</u><br>Hippocrepinella hirudinea                                                                                 | 7863                    | LN873692                         | Antarctica, King George Island                                                                 |                                           |
| <u>Clade D</u><br>Hippocrepinella hirudinea<br>Hippocrepinella hirudinea                                                    | 14310                   | LN873683                         | Antarctica, New Harbor                                                                         |                                           |
| Clade D<br>Hippocrepinella hirudinea<br>Hippocrepinella hirudinea<br>Hippocrepinella hirudinea                              | 14310<br>21241          | LN873683<br>OM422932             | Antarctica, New Harbor<br>UK, South Georgia, Stromness Bay                                     |                                           |
| Clade D<br>Hippocrepinella hirudinea<br>Hippocrepinella hirudinea<br>Hippocrepinella hirudinea<br>Hippocrepinella hirudinea | 14310<br>21241<br>21241 | LN873683<br>OM422932<br>OM422931 | Antarctica, New Harbor<br>UK, South Georgia, Stromness Bay<br>UK, South Georgia, Stromness Bay |                                           |
| Clade D<br>Hippocrepinella hirudinea<br>Hippocrepinella hirudinea<br>Hippocrepinella hirudinea                              | 14310<br>21241          | LN873683<br>OM422932             | Antarctica, New Harbor<br>UK, South Georgia, Stromness Bay                                     |                                           |

| Hippocrepinella sp.                              | 4821           | OM422893             | Norway, Svalbard                                             |                                 |
|--------------------------------------------------|----------------|----------------------|--------------------------------------------------------------|---------------------------------|
| Hippocrepinella sp.                              | 14308          | LN873677             | Antarctica, New Harbor                                       |                                 |
| Hippocrepinella sp.                              | 14309          | LN873680             | Antarctica, New Harbor                                       |                                 |
| Hippocrepinella sp.                              | 20264          | ON053393             | Greenland, Nuuk Fjord, St.13                                 |                                 |
| Hippocrepinella sp.                              | 20266          | ON053394             | Greenland, Nuuk Fjord, St.13                                 |                                 |
| Hippocrepinella sp.                              | 20267          | ON053395             | Greenland, Nuuk Fjord, St.13                                 |                                 |
| Hippocrepinella sp. Hippocrepinella sp.          | 20332          | ON053396             | Greenland, Nuuk Fjord, St.8                                  |                                 |
| Hippocrepinella sp.                              | 20333          | ON053387             | Greenland, Nuuk Fjord, St.7                                  |                                 |
| Hippocrepinella sp.                              | 20334<br>20335 | ON053397<br>ON053388 | Greenland, Nuuk Fjord, St.7<br>Greenland, Nuuk Fjord, St.7   |                                 |
| Hippocrepinella sp.                              | 20336          | ON053389             | Greenland, Nuuk Fjord, St.7                                  |                                 |
| Hippocrepinella sp.                              | 20366          | ON053390             | Greenland, Nuuk Fjord, St.15                                 |                                 |
| Hippocrepinella sp.                              | 20367          | ON053391             | Greenland, Nuuk Fjord, St.15                                 |                                 |
| Hippocrepinella sp.                              | 20368          | ON053392             | Greenland, Nuuk Fjord, St.15                                 |                                 |
| Clade E                                          |                |                      | <b>J</b>                                                     |                                 |
| Nellya rugosa                                    | 10150          | FN995336             | Ukraine, Sevastopol Shelf, Balaklava Bay                     |                                 |
| Nellya rugosa                                    | 10151          | FN995333             | Ukraine, Sevastopol Shelf, Balaklava Bay                     |                                 |
| Psammophaga crystallifera                        | 1786           | FN995294             | Sweden, Gullmar Fjord                                        |                                 |
| Psammophaga crystallifera                        | 2361           | FN995293             | Sweden, Tjaerno                                              |                                 |
| Psammophaga fuegia                               | 17381          | KU313688             | Chile, Patagonia, Beagle Channel                             |                                 |
| Psammophaga fuegia                               | 17510          | KU313694             | Chile, Patagonia, Beagle Channel                             |                                 |
| Psammophaga magnetica                            | 2976           | FN995274             | Antarctica, Mc Murdo                                         |                                 |
| Psammophaga magnetica                            | 3184<br>c2     | FN995272             | Antarctica, Mc Murdo, Gneiss Point                           |                                 |
| Psammophaga sapela<br>Psammophaga sapela         | c2<br>c5       | JX645726<br>JX645725 | USA, Sapelo Island                                           |                                 |
| Psammophaga sp.                                  | 10285          | ON053376             | USA, Sapelo Island<br>Canada, Halifax, Chezzetcook Inlet     |                                 |
| Psammophaga sp.                                  | 19260          | ON053377             | Norway, Svalbard                                             |                                 |
| Psammophaga sp.                                  | 19261          | ON053378             | Norway, Svalbard                                             |                                 |
| Psammophaga sp.                                  | 19262          | ON053379             | Norway, Svalbard                                             |                                 |
| Psammophaga sp.                                  | 19263          | ON053380             | Norway, Svalbard                                             |                                 |
| Psammophaga sp.                                  | 20369          | ON053327             | Greenland, Nuuk Fjord, St.15                                 |                                 |
| Psammophaga sp.                                  | 20370          | ON053328             | Greenland, Nuuk Fjord, St.15                                 |                                 |
| Psammophaga sp.                                  | 20371          | ON053329             | Greenland, Nuuk Fjord, St.15                                 |                                 |
| Psammophaga zirconia                             | 9495           | LN886765             | Ukraine, Sevastopol Shelf, Omega Bay                         |                                 |
| Psammophaga zirconia                             | 18412          | LN886768             | Italy, Adriatic Sea                                          |                                 |
| Vellaria zucchelli                               | 3792           | FN995311             | Antarctica, Terranova Bay                                    |                                 |
| Vellaria zucchelli                               | 3804           | FN995310             | Antarctica, Terranova Bay                                    |                                 |
| <u>Clade F</u><br>Hemisphaerammina bradyi        | 1439           | AJ311216             | France, Mediterranean Sea, Banyuls                           |                                 |
| Notodendrodes antarcticos                        | 1082           | AJ311210<br>AJ311213 | Antarctica, New Harbor                                       |                                 |
| Notodendrodes hyalinosphaira                     | 1225           | AJ311214             | Antarctica, New Harbor                                       |                                 |
|                                                  | 1921           | AJ514860             | Antarctica, New Harbor                                       |                                 |
| undet. monothalamid*                             | 20351          |                      | Greenland, Nuuk Fjord, St.16                                 | rounded, soft walled            |
| undet. monothalamid*                             | 20352          |                      | Greenland, Nuuk Fjord, St.16                                 | rounded, soft walled            |
| Vanhoeffenella dilatata                          | 3256           | MF457695             | Weddell Sea, abyssal                                         |                                 |
| Vanhoeffenella dilatata                          | 3291           | MF457696             | Weddell Sea, abyssal                                         |                                 |
| Clade J                                          | 10050          | F7446005             | D                                                            |                                 |
| Capsammina patelliformis°                        | 10069          | FJ646885             | Portugal, NE Atlantic, Nazare Canyon                         |                                 |
| Capsammina patelliformis°<br>Crithionina delacai | 10070<br>189   | FJ646888             | Portugal, NE Atlantic, Nazare Canyon<br>Antarctica, Mc Murdo |                                 |
| Crithionina delacai                              | 21390          | AJ317988<br>OM422882 | UK, South Georgia, Stromness Bay                             |                                 |
| Crithionina granum                               | 156            | AJ317987             | Sweden, Kosterfjord                                          |                                 |
| Crithionina sp.                                  | 20399          | ON053450             | Greenland, Nuuk Fjord, St.11                                 |                                 |
| Crithionina sp.                                  | 21354          | OM422880             | UK, South Georgia, Cumberland Bay                            |                                 |
| Crithionina sp.                                  | 21355          | OM422881             | UK, South Georgia, Cumberland Bay                            |                                 |
| Clade Y                                          |                |                      | •                                                            |                                 |
| environmental clone                              | 808-34         | JN003669             | Japan, Sagami Bay, 1453m depth                               |                                 |
| environmental clone                              | Sap10          | EU213230             | USA, Sapelo Island                                           |                                 |
| Hilla argentea                                   | 21333          | OM422871             | UK, South Georgia, Cumberland Bay                            |                                 |
| Hilla argentea                                   | 21334          | OM422872             | UK, South Georgia, Cumberland Bay                            |                                 |
| Nujappikia idaliensis                            | 19842          | ON053404             | Greenland, Nuuk Fjord, St.16                                 |                                 |
| Nujappikia idaliensis                            | 19843          | ON053405             | Greenland, Nuuk Fjord, St.16                                 |                                 |
| Nujappikia idaliensis                            | 19844          | ON053406<br>ON053407 | Greenland, Nuuk Fjord, St.16                                 |                                 |
| Nujappikia idaliensis<br>Nujappikia idaliensis   | 19847          | ON053407             | Greenland, Nuuk Fjord, St.16                                 |                                 |
| Nujappikia idaliensis<br>Nujappikia idaliensis   | 19848<br>19850 | ON053408<br>ON053409 | Greenland, Nuuk Fjord, St.16<br>Greenland, Nuuk Fjord, St.16 |                                 |
| wujappiкia iaauensis<br>undet. monothalamid      | 2091           | ON053409<br>OM422864 | Antarctica                                                   | finely agglutinated, flask like |
| undet. monothalamid<br>undet. monothalamid       | 2861           | ON053400             | Norway, Svalbard                                             | Cylindrogullmia- like           |
| undet. monothalamid°                             | 9296           | OM422884             | Japan, Yokosuka                                              | yellow-green colour             |
| undet. monothalamid°                             | 9300           | OM422885             | Japan, Yokosuka                                              | yellow-green colour             |
| undet. monothalamid°                             | 9323           | OM422886             | Japan, Yokosuka                                              | yellow-green colour             |
| undet. monothalamid*                             | 19857          |                      | Greenland, Nuuk Fjord, St.5                                  | Nemogullmia- like, yellow       |
| undet. monothalamid*                             | 19859          |                      | Greenland, Nuuk Fjord, St.5                                  | Nemogullmia- like, yellow       |
| undet. monothalamid*                             | 20257          |                      | Greenland, Nuuk Fjord, St.2B                                 | finely agglutinated             |
| undet. monothalamid*                             | 20290          |                      | Greenland, Nuuk Fjord, St13                                  | coarsely agglutinated, attached |
| undet. monothalamid*                             | 20302          |                      | Greenland, Nuuk Fjord, St.3                                  | finely agglutinated             |
| undet. monothalamid*                             | 20320          |                      | Greenland, Nuuk Fjord, St.5                                  | finely agglutinated, silvery    |
|                                                  |                |                      |                                                              |                                 |

| undet. monothalamid*<br>undet. monothalamid* | 20321<br>20348 |          | Greenland, Nuuk Fjord, St.5<br>Greenland, Nuuk Fjord, St.16 | finely agglutinated, silvery elongate, finely gglutinated |
|----------------------------------------------|----------------|----------|-------------------------------------------------------------|-----------------------------------------------------------|
| undet. monothalamid*                         | 20350          |          | Greenland, Nuuk Fjord, St.16                                | elongate, finely gglutinated                              |
| undet. monothalamid                          | 20868          | OM422869 | UK, South Georgia, Cumberland Bay                           | finely agglutinated, flask like                           |
| New Clade                                    |                |          |                                                             |                                                           |
| Astrorhiza limicola                          | n.a.           | AF411217 | Antarctica                                                  |                                                           |
| environmental clone                          | IC28           | AY452798 | Antarctica                                                  |                                                           |
| environmental clone                          | IC36           | AY452797 | Antarctica                                                  |                                                           |
| environmental clone                          | Keys16         | EU213206 | USA, Florida Keys                                           |                                                           |
| environmental clone                          | Keys37         | EU213205 | USA, Florida Keys                                           |                                                           |
| environmental clone                          | Keys60         | EU213204 | USA, Florida Keys                                           |                                                           |
| undet. monothalamid*                         | 20285          |          | Greenland, Nuuk Fjord, St.13                                | white, agglutinated, hemisphaerical, attached             |
| undet. monothalamid*                         | 20286          |          | Greenland, Nuuk Fjord, St.13                                | white, agglutinated, hemisphaerical, attached             |
| undet. monothalamid*                         | 20423          |          | Greenland, Nuuk Fjord, St.13                                | white, agglutinated, hemisphaerical, attached             |

 $<sup>^*</sup>$  undetermined monothalamid sequences obtained for this study will be submitted to GenBank if they can be assigned to genera or species  $^\circ$  PCR products have been cloned prior to sequencing

Table 3. Taxonomic composition of monothalamid assemblages in Nuuk and Svalbard Fjords and the New Harbor area of McMurdo Sound, Antarctica.

|                     | Nuuk                      | Svalbard                 | Svalbard: Kongsfjord, Isfjord<br>Adventfjord | Svalbard<br>Tempelfjord  | New Harbor                 |
|---------------------|---------------------------|--------------------------|----------------------------------------------|--------------------------|----------------------------|
| Depth (m)           | 22–521                    | 26–313 <sup>2</sup>      | 6–345                                        | 26–104                   | <30 m                      |
| Size fractions (µm) | 125–250, 250–500,<br>>500 | 125–250, 250–500<br>>500 | 125–500<br>>500                              | 63–125, 125–300,<br>>500 | 125–400, 400–1000<br>>1000 |
| Methods             | Morphology & Genetics     | Morphology               | Morphology                                   | Morphology               | Genetics                   |
| Reference           | This study                | Gooday et al. (2005)     | Majewski et al. (2005)                       | Sabbatini et al. (2007)  | Pawlowski et al. (2002)    |
| Organic walled      | 14                        | 13                       | 10                                           | 23                       | 6                          |
| 'Saccamminids'      | 17                        | 23                       | 12                                           | 34                       | 8                          |
| Spheres and domes   | 5                         | 10                       | 3                                            | 7                        | 6                          |
| Pelosina sp.        | 8                         | 6                        | 1                                            | -                        | 2                          |
| Tubes <sup>1</sup>  | 3                         | 3                        | 3                                            | -                        | 2                          |
| Hippocrepina        | -                         | 1                        | 5                                            | -                        | -                          |
| Hyperammina         | 1                         | 3                        | 2                                            | -                        | -                          |
| Astrorhriza         | -                         | 1                        | -                                            | -                        | -                          |
| Others              | 1                         | -                        | -                                            | -                        | 5                          |
| TOTAL               | 49                        | 60                       | 36                                           | 64                       | 27                         |

<sup>&</sup>lt;sup>1</sup>Including *Hippocrepinella hirudinea*<sup>2</sup>Isford trough and slope sites (313–2472 m depth) are disregarded





























### **Supplementary figures**

**Figure S1.** (A–Q) Monothalamids that were not sequenced. (A) Elongate organic-walled test with white cytoplasm and single nucleus, St. 3. (B) Unknown saccamminid, St. 16. (C) Elongate saccamminid, St. 15. (D) *Technitella*-like specimen, St. 2B. (E) Organic-walled test with attached detritus, St. 6. (F) *Phainogullmia*-like specimen, St. 8. (G) Elongate saccamminid, St. 4. (H) *Hippocrepina indivisa*, St. 4. (I) *Cylindrogullmia*-like organic-walled test with agglutinated casing, St. 15. (J) Spindle-like species, St. 6. (K) Organic-walled test, St. 16. (L) Bottle-shaped saccamminid, St. 4. (M) Elongate tapered saccamminid with apertural neck, St. 14. (N) Elongate saccamminid, St. 5. (O) Elongate slightly tapered organic-walled test with one aperture and containing yellow cytoplasm. (P) Small, elongate tapered organic-walled test containing whitish cytoplasm, St. 4. (Q) Small, elongate organic-walled test containing brownish cytoplasm, St. 15. (R) *Micrometula* sp., St. 4, sequenced specimen. Scale bars are not available.

**Figure S2.** Silver saccamminids. (A) St. 5, south of the island Uumanaq, water depth 240 m; the lower left elongate specimen is probably the one that was sequenced, shown in Figure 12K. (B) St 16, Lysefjord, water depth 61 m; silver saccamminid, probably the same species as shown in A. (C) St. 4, Qôrgut fjord, water depth 118 m; elongate species. (D) St. 3, Qôrgut fjord, 58 m; species with a silvery sheen and distinct aperture. Scale bars are not available.

**Figure S3.** *Pelosina, Pelosina*-like, and *Crithionina*-like species that were not sequenced. (A) Mudball, possibly a species of *Globipelorhiza;* St. 5. (B) Subtriangular *Pelosina* with arms; St. 14. (C, H) *Pelosina*-like test with arms, heavily encrusted with large mineral grains; St. 5 and 7, respectively. (D) Lemon-shaped *Pelosina* resembling *P. fusiformis* Earland, 1934. (E. F) Elongate fusiform *Pelosina* with smooth surface; St. 8 and 7, respectively. (G) Fusiform *Pelosina* covered in short tufts, possibly *P. variabilis* Brady, 1879; St 5. (I) Small ovate to droplet-shaped mudwalled tests with arms, possibly a *Pelosina;* St. 15. (J) *Crithionina*-like form composed of relatively large mineral grains. (K) Relatively large elongate *Pelosina,* possibly the same as *Pelosina variabilis* n. var. *constricta* of Earland (1934); St. 5. Scale bars are not available.





