Morphological and molecular diversity of monothalamids (Rhizaria, Foraminifera), including two new species and a new genus, from SW Greenland

3	
4	Andrew J. Gooday ^{1,2} , Maria Holzmann ³ , Elsa Schwarzgruber ⁴ , Tomas Cedhagen ⁵ , Jan
5	Pawlowski ^{3,8,9}
6	
7	¹ National Oceanography Centre, European Way, Southampton SO14 3ZH, UK.
8	orcid.org/0000-0002-5661-7371
9	
10	² Life Sciences Department, Natural History Museum, Cromwell Road, London SW7
11	5BD, UK
12	
13	³ Department of Genetics and Evolution, University of Geneva, Quai Ernest Ansermet
14	30, 1211 Geneva 4, Switzerland
15	
16	⁴ Ortmanau 5, 4675 Weibern, Austria
17	
18	⁵ Department of Bioscience, Aquatic Biology Section, University of Aarhus, Ole
19	Worms Allé 1, 8000 Aarhus C, Denmark.
20	
21	⁸ Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
22	
23	⁹ ID-Gene Ecodiagnostics, 1228 Plan-les-Ouates, Switzerland
24	
25	Corresponding author: A.J. Gooday <u>ang@noc.ac.uk</u> .
26	
27	
28	

29 Abstract

30

31 Single-chambered (monothalamous) for a repoorly known compared to their 32 multichambered relatives. In this first study of monothalamids from Greenland, we 33 describe one new genus and two new species belonging to different clades from the 34 Nuuk fjord system. Nujappikia idaliae Gooday & Holzmann gen. nov. sp. nov. (Clade 35 Y) has a bottle-shaped test terminating in a single aperture located on a short neck. 36 The flexible wall is basically organic but with a very fine agglutinated veneer. 37 Bathyallogromia kalaallita Gooday & Holzmann sp. nov. (Clade C) has a broadly 38 ovate test with an organic wall and a mound-like apertural structure. It is larger and 39 genetically distinct from the two other *Bathyallogromia* species, both from the 40 Southern Ocean. A survey of the morphological diversity of monothalamids in our 41 samples revealed 49 morphospecies, of which 19, including the two new species, 42 yielded DNA sequences. Five were assigned to the genera Bathysiphon, (Clade BM), 43 Micrometula. (Clade BM), Psammophaga. (Clade E), Hippocrepinella (Clade D) and 44 Crithionina (Clade J). The remaining twelve represented unknown taxa branching in 45 clades A, C, F, and Y and one new clade. Our results add to growing evidence that 46 monothalamids are common and diverse in fjords and other high-latitude settings. 47 48 *Keywords*: meiofauna, benthos, soft-walled saccamminids, molecular phylogeny,

- 49 subarctic, biogeography
- 50
- 51 52

54

53 Introduction

55 Monothalamids form a paraphyletic group of single-chambered foraminifera at the 56 base of the foraminiferal evolutionary tree (Pawlowski et al., 2003, 2013). They were 57 well-known to 19th-century scientists and are widespread in the oceans as well as 58 being the only foraminiferal group represented in freshwater and damp terrestrial 59 habitats (Holzmann et al., 2021). Some marine monothalamids, for example, species 60 of Astrorhiza, Bathysiphon, Hyperammina, Rhabdammina and Saccorhiza, have 61 large, fairly robust tests and were described well over a century ago. These 62 conspicuous foraminifera are sometimes very abundant, particularly at upper bathyal 63 depths (Table 2 in Gooday et al., 1997) and in Arctic settings (e.g., Thorson, 1934). 64 However, it is clear from recent studies that the majority of monothalamids, at least in 65 coastal waters, are small, delicate, relatively inconspicuous and to a large extent 66 undescribed. These 'soft-walled' forms have organic or finely agglutinated test walls 67 and are often overlooked or destroyed when sieve residues are dried for picking. 68 Having little fossilization potential, they may also be simply ignored, particularly in 69 geologically-oriented studies. However, the fact that monothalamids often represent a 70 largely undocumented component of foraminiferal diversity in coastal sediments 71 makes them worthy of attention (Pawlowski et al. 2002a, Habura et al. 2008).

Here, we focus on monothalamids, the majority of them small and delicate,
from fjords in the area around Nuuk in the SW of Greenland. We describe two new
species, one of them representing a new genus, together with a survey of the diversity
of monothalamids based on morphological and genetic data. Previous studies of

76 Arctic and Scandinavian foraminifera included a few of the larger and more robust 77 representatives of this group (e.g., Brady, 1881; Goës, 1894; Loeblich and Tappan, 78 1953), while Höglund's classic 1947 study of foraminifera from the Gullmar Fjord 79 and Skagarak included species (e.g., Hippocrepinella spp., Pilulina argentea) with 80 tests that are somewhat soft-walled, but still fairly large and coherent. The first really 81 delicate soft-walled monothalamous foraminifera from Scandinavia were described by 82 Nyholm (1952, 1953, 1954, 1955, 1974) from the Gullmar Fjord on the Swedish west 83 coast. This important series of papers established a number of organic-walled genera, 84 namely Cylindrogullmia, Gloiogullmia, Micrometula, Nemogullmia, and Tinogullmia, 85 that are widely distributed in mainly coastal waters. More recent surveys from fjords 86 on the west coast of Spitzbergen (Svalbard archipelago) and the Håkon-Mosby Mud 87 Volcano in the Barents Sea have yielded a rich variety of small monothalamids, 88 including both organic-walled and agglutinated forms (Gooday et al, 2005, 2013). 89 Combined molecular and morphological studies carried out in Antarctica and the sub-90 Antarctic island of South Georgia have also revealed a high diversity of mainly small 91 monothalamids (Pawlowski et al. 2002a, 2005, 2008, Majewski et al. 2015, Holzmann 92 et al.,2022).

93 Spärck (1933) and Thorson (1934) described a macrofaunal community 94 characterized by the relatively large monothalamid *Rhabdammina cornuta* Brady, 95 1884 (up to 6 mm long according to the original description) and the miliolid 96 Planispirinoides bucculentus (Brady, 1884) in Franz Joseph Fjord and Scoresby 97 Sound on the east coast, but otherwise all previous studies of modern foraminifera in 98 Greenland fjords (Lloyd et al., 2006; Holtegaard Nielsen et al., 2010; Jennings et al., 99 2020a, 2020b) have had a geological focus and included only one or two 100 monothalamids with rigid tests, such as *Lagenammina* and *Hyperammina* species. The 101 only foraminiferal study in the Nuuk fjord system (Ameralik Fjord) focused on Late 102 Holocene assemblages (Møller et al., 2006). This is therefore the first study dedicated 103 to soft-walled monothalamids in Greenland fjords. In a previous publication (Gooday 104 et al., 2021), we described new species of the rhizarian genus *Gromia* from the same 105 region.

106

107 Methods

108109 Sample collection, processing and morphological methods

110

Samples were collected in the Nuuk fjord (formerly Godthåbsfjord) system in July 111 112 2018. The sampling and processing methods were the same as those described for the 113 gromiids collected during the same expedition (Gooday et al., 2021). Briefly, samples 114 were taken at 13 sites in different branches of the fjord system (Table 1) from a small 115 boat using a Van Veen grab, and the surficial sediment removed with a spoon. The 116 sediment was immediately washed onboard through a series of sieves with mesh sizes 117 of 500, 250, 125 µm and placed in plastic bottles. As soon as possible after collection, 118 the residues were sorted in seawater for monothalamids by project participants using 119 stereo-microscopes in a laboratory of the Greenland Institute of Natural Resources in 120 Nuuk. Where possible (mainly the finer residues), photographs of freshly-picked 121 monothalamids were taken before preservation in either RNAlater for genetic 122 analyses or 10% buffered formalin for morphological study. Other photographs were

taken in Geneva using a Leica M205 C microscope fitted with a Leica DFC 450 C
camera, and in Southampton using an Olympus SZX7 stereo-microscope and an
Olympus BH2 compound microscope, both equipped with a Canon 60D SRL digital
camera.

127

128 DNA extraction, PCR amplification and sequencing

129

130 Forty-nine foraminiferal specimens were extracted individually using guanidine lysis

131 buffer (Pawlowski, 2000). Semi-nested PCR amplification was carried out for the

132 SSU rDNA barcoding fragment of foraminifera (Pawlowski and Holzmann, 2014)

using primers s14F3 (acgcamgtgtgaaacttg)-s20r (gacggggggtgtgtacaa) for the first and
 primers s14F1 (aagggcaccacaagaacgc)-s20r for the second amplification. Thirty-five

and 25 cycles were performed for the first and the second PCR, with an annealing

temperature of 50°C and 52°C, respectively. The amplified PCR products were

137 purified using the High Pure PCR Cleanup Micro Kit (Roche Diagnostics).

138 Sequencing reactions were performed using the BigDye Terminator v3.1 Cycle

139 Sequencing Kit (Applied Biosystems) and analyzed on a 3130XL Genetic Analyzer

140 (Applied Biosystems). The resulting sequences were deposited in the NCBI/GenBank

141 database. Isolate and Accession numbers are summarised in Table 2.

142

143

144 **Phylogenetic analysis**

145

146 The sequences obtained were added to 107 sequences that are part of the publicly 147 available 18S database of monothalamous foraminifera (NCBI/Nucleotide; 148 www.ncbi.nlm.nih.gov/nucleotide/). All sequences were aligned using the Muscle 149 automatic alignment option, as implemented in SeaView vs. 4.3.3 (Gouy et al. 2010), 150 Based on the preliminary alignment, the new sequences were assigned to established 151 monothalamous clades (Pawlowski et al. 2002b). Three partial alignments were 152 generated subsequently, including the representatives of selected clades and new 153 sequences. Because of the high genetic variability between clades (Pawlowski et 154 al.2002b), separate alignments allow a better resolution of tree topology. The 155 alignment of clades A, BM, C (Fig. 1) contains 68 sequences with 1611 sites used for 156 analysis. The alignment of clades D, E, F (Fig. 2) contains 50 sequences with 1379 157 sites used for analysis. The alignment of clades J, Y, New Clade (Fig. 3) contains 42 158 sequences with 1392 sites used for analysis.

The phylogenetic trees were constructed using maximum likelihood
phylogeny (PhyML 3.0) as implemented in ATGC: PhyML (Guindon et al. 2010). An
automatic model selection by SMS (Lefort et al. 2017) based on Akaike Information
Criterion (AIC) was used, resulting in a HKY85+G+I substitution model being
selected for the first analysis (Fig.1) and a GTR+G+I substitution model being
selected for the remaining analyses (Figs. 2, 3). The initial trees are based on BioNJ.
Bootstrap values (BV's) are based on 100 replicates.

Pairwise genetic distances were calculated using MEGA7, with a Maximum
Composite Likelihood method and uniform rates among sites applied to the analysis
(Kumar et al. 2016).

169

-

170 171	Results
172	Systematic descriptions
173 174 175 176 177	Rhizaria Cavalier-Smith, 2002 Retaria Cavalier-Smith, 1999 Foraminifera D'Orbigny, 1826 Monothalamids Pawlowski, Holzmann and Tyszka, 2013
178 179 180 181	Given the uncertain status of the monothalamids, we use the informal name rather than the formal Monothalamea for this paraphyletic group (Pawlowski et al., 2013). The type material is deposited in the Natural History Museum, London, registration numbers NHMUK PM ZF 9946¬9957.
182	Nujappikia Gooday & Holzmann gen. nov.
184 185 186 187 188	Etymology . The name is derived from that of a hunter from East Greenland named Nujappik, who's image, based on a photograph taken on 1906, is painted on the outer wall of an apartment block in Nuuk, the capital of Greenland.
189 190 191 192	Diagnosis. Monothalamid with more or less cylindrical test and single terminal aperture at end of short neck. Test wall translucent, composed of organic material with very finely agglutinated veneer. Cytoplasm pale, often containing some large ingested particles.
193 194 195	ZooBank registration: urn:lsid:zoobank.org:act:B5B8EB8C-528B-4108-A476-DBB0B29D00EF
196 197 100	Nujappikia idaliae Gooday & Holzmann gen. & sp. nov.
198 199 200	Figs 4–7
200 201 202 202	Etymology. In honour of Idalia (Alina) Pawlowska, who played a large role in organising our expedition to Greenland in 2018.
203 204 205 206	Diagnosis. Test $387 - 895 \mu m$ (mean $590 \mu m$) long, $165 - 285 \mu m$ (mean $222 \mu m$) wide, L/W ratio $1.7 - 4.0$ (mean 2.65). Other characteristics as for genus.
200 207 208	ZooBank registration: urn:lsid:zoobank.org:act:7F5A6C13-293E-4696-AD4E-638A27C0DF69
209 210 211 212 213 214	Type material. Station 16: inner part of Lysefjord off the sandur field; 64°12.656' N, 050°15.751' W; water depth 61 m. The holotype (reg. no. NHMUK PM ZF 9946) and seven paratypes (reg. nos NHMUK PM ZF 9947¬9953) are preserved in 10% formalin.

- **Other material.** Station 16: six sequenced specimens (isolates 19842–44,
- 216 19847, 19848, 19850); 13 specimens for morphology.
- 217 Station 15: inner part of Lysefjord off the sandur field; water depth 95 m;
- 218 64°12.639' N, 050°16.074' W; eight specimens for morphology.
- 219

220 **Description**

Test. In lateral view the test is approximately cylindrical to somewhat ovate in outline 221 222 (Figs 4–6) and circular in cross-section. Preserved specimens are sometimes more or 223 less flattened, although this is probably an artefact. The sides are approximately 224 parallel, slightly convex, or in a few elongate specimens slightly concave (Fig. 7A). 225 The abapertural end is usually evenly rounded while the apertural end is more or less 226 tapered. The length ranges from 387 to 895 μ m (mean 590±106 μ m), the maximum 227 width from 165 to 285 μ m (mean 222±27 μ m), and the length/width ratio from 1.7 to 228 4.0 (mean 2.65±0.44) (n=45 in each case). A rather more elongate specimen (one of 229 several in Fig. 4B), which was not available for measurement, had a length/width ratio 230 of 4.26.

231 *Apertural structures.* The single terminal aperture is typically located at the 232 end of a short neck, $30 \neg 95 \mu m \log and 50 \neg 110 \mu m$ wide. A well-developed 233 peduncle (pseudopodial trunk) sometimes extends along the axis of the apertural neck. 234 It is variably developed but sometimes forms a prominent feature, 45 to 58 μm wide 235 (Figs. 6F, H; 7A, B, D). The peduncle appears to develop directly from the cell body 236 and there is no evidence for a peduncular sheath (invagination of the cell body) in any 237 of the specimens that were examined in detail.

238 Test wall and contents. The wall is flexible, translucent, particularly in freshly 239 collected specimens, with a slight reflective sheen resulting from a veneer of very 240 fine, agglutinated particles overlying an organic layer. The surface is smooth, 241 sometimes with weak transverse undulations (Fig. 4C). After prolonged preservation 242 in formalin, however, the surface tends attract particles of detritus. The cytoplasm 243 forms a pale, well-defined, brownish mass when fresh, and is visible through the test 244 wall. It fills most of the test interior, but often with a narrow gap that is usually widest 245 at the abapertural end. In preserved specimens, the cytoplasm is less clearly defined. 246 When viewed in transmitted light in a compound microscope, it appears more or less 247 heterogeneous, with numerous small particles and in some cases a few large 248 inclusions. The latter include unknown spherical structures (Figs 5E, H; 7E, F), 249 probable mineral grains (Fig. 7A, E, F), a single diatom frustule (Fig. 5D), and an 250 apparently intact copepod exoskeleton or moult (Figs. 5E; 7E). An obvious nucleus 251 was not observed, possibly because it was obscured by these particles.

- 252
- 253 <u>Remarks</u>

The cylindrical test of *Nujappikia idaliae* is similar in shape to that of *Gloiogullmia eurystoma*, as illustrated by Nyholm (1974), but the wall is transluscent with a milky appearance, suggesting that it has a surface layer of very fine agglutinated particles. In addition, although some debris adheres to the wall in preserved specimens, the new species lacks the sticky outer test layer that is typical of *Gloiogullmia*. Among the many undescribed 'saccamminids' (a group in which the wall includes an

- agglutinated component), illustrated in the literature, Saccamminid sp. 11 from the Adriatic Sea [Pl. 2, fig. 8 in Sabbatini et al. (2010); Pl. 4, fig. 14 in Sabbatini et al.
- 262 (2014)] resembles the more ovate specimens of the *N. idaliae* most closely.

	Cite as: Gooday, AJ, M. Holzmann, E. Schwarzgruber, T. Cedhagen, J. Pawlowski, 2022. Morphological and molecular diversity of monothalamids (Rhizaria, Foraminifera), including two new species and a new genus, from SW Greenland. , European Journal of Protistology <u>86</u> , 125932
263 264 265	Molecular characteristics. The partial SSU rDNA sequences of <i>N. idaliae</i> contain 799 nucleotides and the GC content ranges from 48.9% to 49.1%.
266	
267	Pathwallogramia kalgallita Coodoy & Holzmonn en nov
269	Bainyallogromia kalaalilla Gooday & Holzmann sp. nov.
270	Figs 8–11
271	
272 273 274	Etymology . From the Inuit word <i>Kalaallit</i> , the name of the main group of indigenous inhabitants of Western Greenland.
274 275 276 277	Diagnosis: Test ranging from almost spherical to ovoid, $338 - 571 \mu m$ (mean 470 μm) long, $282 - 498 \mu m$ (mean 393 μm) wide, L/W ratio $0.98 - 1.44$ (mean 1.20).
278 279 280	ZooBank registration: urn:lsid:zoobank.org:pub:658496E9-0DA1-42D5-9023-33E1F035156A
281 282 283 284	Type material. Station 3: Qôrgut fjord, 64°14.957' N; 052.196' W; water depth 58 m, sandy mud. The holotype (reg. no. NHMUK PM ZF 9954) and three paratypes (reg nos NHMUK PM ZF 9955¬9957) preserved in 10% formalin for morphology.
285	Other material. Station 3: three sequenced specimens (isolates 19861-63); 9
286	specimens for morphology.
288	Description.
289	<i>Test.</i> The test is broadly oval to almost spherical in side view (Fig. 8) with a circular
290 291	cross section. Most specimens are more or less symmetrical about a longitudinal axis passing through the aperture, but some of the more spherical specimens are somewhat
292	asymmetrical (Fig. 10A, E). The test ranges from 338 to 571 µm (mean 470 µm) in
293	length, 282 to 498 μ m (mean 393 μ m) in width, with a L/W ratio of 0.98 –1.44 (mean
294	1.20) $(n = 23)$.
295	Apertural structures. The apertural end of the test is produced into a low,
296	sometimes truncated mound, in five specimens measuring $83-101 \ \mu m$ wide and $11-$
297	28 μ m high. A well-developed peduncle extends through the mound (Fig. 10A \neg D).
298	This feature is clearly visible in the specimens photographed in May 2022 where the
299	cell body had shrunk (Fig. 11). Here, the peduncle is often somewhat narrower in the
300	middle (width $20 - 30 \mu\text{m}$) than in the lower part ($21 - 33 \mu\text{m}$), widening again into a
301	funnel-shaped feature (width $44 - 56 \mu$ m) towards the top. In several specimens, the
302	peduncle seems to be a tubular structure with a central thread of cytoplasm (Fig. 11D,
303	H). The thread of cytoplasm (pseudopodial trunk) descends into the cell body within a
304	peduncular sheath. In two glycerol-mounted specimens where it can be seen most
305 207	clearly (Fig. 10A \neg L), the sheath is 65 μ m and 75 μ m wide and extends for at least 50 μ m into the call
300 207	uni mo the cent. Test wall and contents. The well is transport flexible, and entirely accession
308	with reflective highlights (Fig. 9A, C, E). It is between 7.3 and 16.4 μ m thick, with

308 with reflective highlights (Fig. 9A, C, E). It is between 7.3 and 16.4 μ m thick, with 309 some differences between individuals (for example, 7.3 – 9.1 μ m compared to 12.7 –

310 16.4 µm in two cases) and is often rather thinner at the abapertural end of the test 311 compared to near the aperture. In freshly collected specimens the cytoplasm is 312 typically brownish orange (Fig. 8A, B), sometimes tinged with grey or in a few cases 313 almost completely grey, but after storage in formalin for 6 months it lost much of its 314 colour and appeared whitish or greyish in reflected light (Figs. 8C,D; 9). The cell 315 body fills most or all of the test (Figs 9, 10). By May 2022, after almost four years in 316 formalin, however, it had shrunk and was separated from the test wall by a clear space 317 (Figs. 8D; 11). When viewed in water using a compound microscope with transmitted 318 light, the cytoplasm appears fine-grained with some small, scattered, mainly dark 319 particles, which become more obvious with the test immersed in glycerol (Fig. 10A– 320 C, F). These are presumably mineral grains. In two specimens a single large circular 321 structure measuring 51 and 93 µm in diameter is visible (Fig. 10A, B). This may be a 322 nucleus, although the absence of any obvious internal structure, such as nucleolus, 323 makes this somewhat doubtful.

324

325

326 Remarks

327 *Bathyallogromia kalaallita* closely resembles the two previously described species of 328 the genus, but is larger than both. The mean lengths of *B. weddellensis* from the deep 329 Weddell Sea (1000 – 6000 m depth) and *B. olivacea* from South Georgia are 251 μ m 330 and 314 μ m, respectively (Gooday et al., 2004; Holzmann et al., submitted),

331 compared to 470 µm for *B. kalaallita*. There are also differences in shape.

Bathyallogromia weddellensis is the most nearly spherical of the three species with a
mean length/width ratio of 1.09 and *B. olivacea* is the most ovate, with a mean
length/width ratio of 1.45. The new species has a shape that is intermediate between
these extremes (mean length/width ratio 1.20).

When freshly collected, the three species also displayed differences in the colour of the cell body, light grey or greenish in *B. weddellensis*, olive-green in *B. olivacea*, and brownish orange to greyish in *B. kalaalita*. However, it is not certain that these colours have any value as taxonomic characters. It is more likely that they reflect the consumption of different food material, as in other foraminifera (e.g., Jepps, 1942; Moodley et al., 2000). In any case, the colours disappear in preserved specimens, in which the cytoplasm is generally whitish.

343 Two almost spherical *Bathyallogromia*-like organic-walled monothalamids 344 from ~1300 m depth on the Håkon-Mosby Mud Volcano (Fig. 2a,b in Gooday et al., 345 2013) measure about 122 and 233 μ m in length (including the apertural structure), 346 and are therefore more similar in size and shape to the Weddell Sea species than to *B*. 347 *kalaallita*.

- 348
- 349 Molecular characteristics. The partial SSU rDNA sequences of *B. kalaallita* contain
 350 1009 nucleotides (isolate 19863) and 1015 nucleotides (isolates 19861, 19862)
 351 respectively and the GC content amounts to 41.1%.
- 352

353 Morphological and molecular diversity

Including the two species described above, our samples from the Nuuk fjord systemyielded a total of 49 morphologically distinct types for which we have photographic

356 documentation. The majority are from the $125 - 500 \,\mu m$ size fraction. For thirty of 357 these (illustrated in Supplementary Figs S1-3) no molecular data are available. They 358 include a mixture of organic-walled monothalamids (Supplementary Fig. S1A,E,I,K) 359 and agglutinated forms, including flask-shaped 'saccamminids' (Supplementary Figs 360 S1B \neg D, F \neg H, L \neg N; S2A, B, D), many of which cannot be assigned to a genus, as 361 well as *Pelosina*, *Pelosina*-like and *Crithionina*-like morphotypes (Supplementary 362 Fig. S3). It should be noted that organic-walled monothalamiids, agglutinated 363 'saccamminids' and Crithionina-like morphotypes are distributed in different clades. 364 Without genetic data, these terms can only be used in an informal sense to indicate 365 morphology-based groupings; they have no phylogenetic or taxonomic meaning. In 366 addition, some monothalamids, including *Pelosina* species, can have quite variable 367 test shapes, which further complicates the recognition of species. In many cases, 368 therefore, the taxonomic assignment of monothalamid morphotypes belonging to 369 these groups should be avoided in the absence of genetic data.

370 Sequences were obtained from the remaining 19 morphotypes. In addition to 371 the two new species (*Bathyallogromia kalaallita* and *Nujappikia idaliae*), these 372 included single undescribed representatives of five genera (Bathysiphon, 373 Micrometula, Psammophaga, Hippocrepinella, Crithionina), and twelve undescribed 374 monothalamids that cannot be assigned to known genera. Together, these 19 375 morphotypes represent the following nine monothalamid clades, eight of them 376 established by Pawlowski et al. (2002b): Clade A (two indeterminate forms illustrated 377 in Fig. 12A,C), Clade BM (Bathysiphon sp. and Micrometula sp.; Figs 12B, 378 Supplementary Fig. S1R, respectively), Clade C (Bathyallogromia kalaallita and four 379 indeterminate forms, Fig. 12D-F; isolate 20304 is not illustrated), Clade D 380 (Hippocrepinella sp., Fig. 13), Clade E (Psammophaga sp., Fig. 12G), Clade F 381 (indeterminate form, Fig. 12H), Clade J (Crithionina sp., Fig. 12I), Clade Y 382 (Nujappikia idaliae; four indeterminate forms, Fig. 12J-M), New Clade 383 (indeterminate attached forms, Fig. 12N,O).

384

385 Molecular phylogeny

386

387 Clade A (Fig. 1) comprises a large number of undetermined monothalamids including 388 three Greenland isolates. Two of these form a well-supported group (97% BV) with 389 an undetermined monothalamid from Antarctica while the third branches separately. 390 Limaxia alba, the first morphologically described species belonging to Clade A 391 (Holzmann et al., 2022), branches with undetermined monothalamids from Antarctica 392 (93% BV). Clade A is well supported (91% BV) and branches as sister to Clade BM 393 (100% BV), which includes two closely related genera, Bathysiphon and 394 Micrometula. The specimens from Greenland branch with other undescribed species 395 of these genera, with strong support: 93% for *Bathvsiphon* sp. and 100% for 396 Micrometula sp.. Bathysiphon flexilis and B. argentea branch at the base of the two 397 groups, but the branching is not supported.

In Clade C (98 % BV, Fig. 1), our new species *Bathyallogromia kalaallita*

399 (100% BV) branches next to *B. olivacea* from South Georgia fjords. The two species

400 build a sister clade to *B. weddellensis* from the deep Weddell Sea and

- 401 Bathyallogromia sp. from the east Greenland shelf. The genus Bathyallogromia is
- 402 supported by 90% BV. In addition to *Bathyallogromia*, six monothalamids from

Greenland branch within Clade C. Four cluster as sister to *Hippocrepinella alba* from
South Georgia, their branching being strongly supported (99% BV). Two others
cluster with specimens from Antarctica and Patagonia (100% BV).

Eleven monothalamids from Greenland identified as *Hippocrepinella* sp.
branch together with other representatives of this genus from Svalbard and Antarctica,
within Clade D (Fig.2). Bootstrap support for this group is weak (74%) and it
branches as sister to two *Hippocrepinella* sp. from Tjärnö, Sweden, and Svalbard
(93% BV). *Hippocrepinella hirudinea* from South Georgia and Antarctica branch at
the base of Clade D, as sister to *Hippocrepinella* sp. The relations between these
different *Hippocrepinella* species are strongly supported (100% BV).

The Greenland *Psammophaga* sp. clusters in Clade E (Fig. 2) and builds a group with *Psammophaga* specimens from Svalbard and western Canada. The group branches next to the Adriatic species *P. zirconia*, but the branching is not supported. Two other monothalamids from Greenland branch as sister to *Hemisphaerammina bradyi*, but bootstrap support for this branching is weak (73% BV). All of them form a strongly supported (96% BV) clade F, which also contains the deep-sea genus *Vanhoeffenella* and the Antarctic genus *Notodendrodes*.

420 The *Crithionina* sp. sequence from Greenland branches in Clade J (Fig. 3) 421 next to C. granum from Sweden and C. delacai from Antarctica and South Georgia 422 (89% BV). The group is a sister to Crithionina sp. from South Georgia and a deep-sea 423 species, Capsammina patelliformis. Clade J is strongly supported (100% BV) and 424 branches next to Clade Y (86% BV), which includes our new species Nujappikia 425 idaliae (89% BV) from Greenland. The closest relative of N. idaliae is an 426 environmental sequence from Sapelo Island, USA. Clade Y also contains Hilla 427 argentea from South Georgia as well as nine monothalamid isolates from Greenland, 428 eight of them divided between three groups and one branching with an environmental 429 clone from the Japan Sea. Finally, three of the Greenland monothalamid isolates form 430 a new clade (Fig.3) composed of a sequence obtained from Astrorhiza limicola and 431 several environmental sequences from Antarctica and the Florida Keys, USA. The 432 new clade is strongly supported (100% BV).

433

434 **Discussion**

436 Monothalamid biodiversity

437

435

438 The Nuuk fjords join similar high latitude fjords in Svalbard (Gooday et al., 2005; 439 Majewski et al., 2005; Sabbatini et al., 2007) and South Georgia (Holzmann et al., 440 2022), and the shallow New Harbor area of Antarctica (Gooday et al, 1996; 441 Pawlowski et al., 2002a), in hosting diverse assemblages of monothalamids. 'Soft-442 walled saccamminids' with finely agglutinated tests, and to a lesser extent 443 agglutinated spheres ('psammophaerids') and organic-walled morphotypes, represent 444 the majority of species in the finer fractions (Table 3). Representatives of the mud-445 walled genus *Pelosina* are often present in the coarser residues as well as in some 446 Norwegian fjords (Cedhagen, 1993). Some shallow temperate habitats are inhabited 447 by similar taxa (Habura et al., 2008; Gooday et al., 2010; Sergeeva et al., 2010). For 448 example, Sabbatini et al. (2013) illustrated 38 organic-walled, 27 'saccamminid' and 449 7 'psammosphaerid' morphotypes (72 in total) from depths of <50 m in the Adriatic

Sea. *Pelosina* species are sometimes common at upper bathyal depths in lowerlatitude settings (e.g., Levin et al., 1991; Gooday et al., 2009; Cedhagen et al., 2013).
Monothalamid assemblages comparable to those in fjords are also recorded at greater
water depths (~1300 m) around the Håkon Mosby Mud Volcano in the Barents Sea
(Gooday et al., 2013).

455 The monothalamids in our samples have tests with organic, finely agglutinated 456 or coarsely agglutinated walls and span a wide morphological range. They include 457 tubular, elongate ovate, and approximately spherical morphotypes, as well as several 458 low, finely agglutinated domes attached to mineral grains (Fig, 12, 13). Among those 459 that were sequenced, organic-walled and agglutinated forms are often found in the 460 same clades. Only a few clades comprise species with similar morphologies. Among 461 those represented in the present study, Clade BM includes forms with elongate, 462 basically tubular tests (Fig. 12B, Supplementary Fig. S1R), Clade E includes 463 Psammophaga species and Clade D includes Hippocrepinella species. Other clades 464 encompass contrasting morphotypes; for example, an attached, coarsely agglutinated 465 dome, an elongate ovate 'silver saccamminid', two organic-walled tubes, and the 466 bottle-shaped N. idaliae (Fig. 12 J-M) are all assigned to Clade Y. Similarly, clade C contains spherical to ovate morphotypes from Greenland in addition to the giant deep-467 468 sea xenophyophores, which are morphologically very different.

469 Our Greenland *Hippocrepinella* species branches as a sister group to the type 470 species *H. hirudinea* from its type area, South Georgia (Fig. 2). However, the 471 Greenland specimens display considerable morphological variation. Those that were 472 sequenced range from a long, tubular specimen (isolate 20332, length = 2.9 mm; Fig. 473 13A) to a much smaller, barrel-shaped specimen (isolate 20333, length = 0.50 mm; 474 Fig. 13E). Some have a finely agglutinated, smooth test surface (isolates 20333, 475 20264) and resemble *H. hirudinea* of Höglund (1947) from Gullmar Fjord. The 476 barrel-shaped isolate 20333, which also has a smooth surface, is more similar to H. 477 acuta of Höglund (1947, Pl. 1, Figs. 17-23) while others are more coarsely agglutinated (isolates 20332, 20334, 20366). In most of our Greenland specimens. the 478 479 test ends bluntly, but in isolate 20264 (length = 2.35 mm; Fig. 13D) one end is 480 somewhat produced into a poorly defined neck, a feature also seen in *H. acuta* (Pl. 1, 481 figs 17, 18 in Höglund, 1947). Nevertheless, the eleven sequenced specimens of 482 *Hippocrepinella* sp. group together in the tree, albeit with a relatively low BV value 483 of 74% and a pairwise genetic distance between them ranging from 0 to 0.003.

485 Biogeography

486

484

487 Because monothalamids have relatively few taxonomic characters, phylogenetic data 488 are particularly important for establishing reliable biogeographic patterns, as well as 489 for defining species. The present study adds to a growing body of genetic information 490 for this poorly-documented group of foraminifera. In the first study to address 491 distributions from mainly shallow-water (depths <100 m) higher latitude sites, 492 Pawlowski et al. (2008) showed that morphologically similar populations of 493 monothalamids assigned to *Hippocrepinella hirudinea* and the genera *Gloiogullmia*. 494 Micrometula, and Psammophaga were genetically distinct. Our recent study of 495 monothalamids from South Georgia fjords (Holzmann et al., 2022) established 496 distributions at a regional scale across parts of the Southern Ocean for

Holzmann et al. (2022) found no evidence for the occurrence outside South Georgiaof two other species they described, *Bathyallogromia olivacea* and *Hilla argentea*.

500 The current investigation reveals similar regional-scale distributions for a 501 number of monothalamid species at high northern latitudes. In Clade BM, 502 Bathysiphon sp. is represented in the Nuuk Fjord system and Storfjord in Norway 503 (pairwise genetic distance 0.002). It is genetically distinct from *B. argenteus* and *B.* 504 *flexilis* of Höglund (1947) from the Gullmar Fjord, and its relatively short, wide test is 505 different from the long, thin test of B. minutus, another species found by Höglund, for 506 which no molecular data are available. The Nuuk species of Micrometula sp., also 507 located in Clade BM, clusters with sequenced specimens from Svalbard (0.004 -508 (0.007) and near Vancouver in western Canada (0.003 - 0.013). In Clade E, isolates of 509 the widely-distributed genus *Psammophaga* sp. are close to specimens from Svalbard 510 (0.001 - 0.002) and eastern Canada (0.001 - 0.003). On the other hand, the Nuuk Bathysiphon sp. clusters (BV 93%) with Antarctic isolates from McMurdo Sound, 511 512 Adelaide Island off the Peninsula, and King George Island in the South Shetlands 513 group, in addition to sequences from Svalbard (pairwise distance 0.001 - 0.003). The 514 Bathysiphon species from Nuuk is represented by a single sequenced specimen with 515 one transition in the variable region 49/e (Pawlowski and Lecroq 2010) that distinguish it from its Antarctic counterparts. Based on this single Greenland 516 517 specimen and our single gene analysis it is difficult to decide whether these Northern 518 and Southern Hemisphere *Bathysiphon* populations represent the same species or 519 different species. A multi-gene analysis will be necessary in order to resolve this 520 problem. Similarly, the Nuuk Hippocrepinella sp. (Clade D) clusters with two 521 sequences from New Harbor in McMurdo Sound, Antarctica (pairwise distance 0.001 522 -0.004), as well as with one sequence from Svalbard (0 - 0.001). The sequences of 523 the Antarctic *Hippocrepinella* sp. are distinguished by a transition in the variable 524 region 43/e (Pawlowski and Lecroq 2010) from the Northern hemisphere 525 *Hippocrepinella*.

526 Our two newly described species are currently known only from the Nuuk 527 fjord system. In Clade C, Bathyallogromia kalaallita is closely related to B. olivacea 528 from comparable settings in South Georgia fjords (Holzmann et al., 2022), and more 529 distantly to the type species B. weddellensis, from much deeper water in the Weddell 530 Sea (Gooday et al. 2004). The pairwise distance ranges from 0.001 - 0.002 and 0.021531 -0.022, respectively. A single sequence of an undescribed *Bathyallogromia* from the 532 East Greenland Shelf is closely related to B. weddellensis (0.003 – 0.004). In Clade Y, 533 the sequence of an environmental clone (Sap 10) from Sapelo Island, USA is the 534 closest relative to Nujappikia with a pairwise genetic distance ranging from 0.047 to 535 0.048, compared to between 0 and 0.003 within N. *idaliae*. In Clade J, the loosely 536 agglutinated *Crithionina* species from Nuuk is morphologically similar to the 537 Northern hemisphere species C. granum (Goës, 1894) and also to the Southern 538 hemisphere species C. delacai (Gooday et al., 1995). It is closely related genetically 539 to both species but is not identical (pairwise distance ranging from 0.155 to 0.178). 540

541

542 Acknowledgements. We thank Dr Thomas Juul-Pedersen (Greenland Climate
543 Research Centre, University of Nuuk), who facilitated our laboratory work in Nuuk,
544 Dr Ole Ziemer and Prof. Dr Reinhardt Kristensen, who provided valuable practical
545 assistance, and Alina Pawlowska, who played an important role in organising the

- 546 Greenland expedition. We thank two reviewers for helpful comments that led to
- 547 improvements in the manuscript.
- 548

549 **CRediT author statement**

Andrew J Gooday, 'Conceptualization, Investigation, Validation, Data curation,
Original draft preparation, Writing - Review & Editing, Visualization. Maria
Holzmann Conceptualization, Investigation, Validation, Formal analysis, Data
curation, Reviewing and Editing, Visualization. Elsa Schwarzgruber Investigation.

Tomas Cedhagen Conceptualization, Investigation, Reviewing and Editing, Project
 management. Jan Pawlowski Conceptualization, Investigation, Reviewing and

- 556 Editing, Resources, Funding acquisition.
- 557

558 Author contributions

Author contributions AJG, MH, TC, and JP collected and picked foraminifera from
the Greenland samples. MH and ES were responsible for DNA extraction,
amplification and sequencing; MH carried out the phylogenetic analysis, and wrote
the genetic parts of the text, with contributions from JP. The remainder of the text was
written by AJG, with edits from MH, JP and TC. AJG was responsible for the

564 photography and all figures, except for Figs $1\neg 3$, which were prepared by MH.

565

569

Funding. JP and MH were supported by a grant from the Swiss National Science
Foundation (31003A_179125), with additional funding from the Schmidheiny
Foundation (MH).

570 Data availability. All data generated and analysed during this study are included in
571 this published article. Type specimens are deposited in the Natural History Museum,
572 London.

573

574

575

576

Figure captions

Fig.1. PhyML phylogenetic tree based on the 3'end fragment of the SSU rRNA gene,
showing the evolutionary relationships of 68 monothalamid foraminiferal sequences
belonging to Clades A, BM, C. Taxa marked in bold indicate those for which
sequences were acquired for the present study. The tree is unrooted. Specimens are
identified by their isolate numbers (1st) and accession numbers (2nd). Numbers in
brackets refer to clones. Numbers at nodes indicate bootstrap values (BV). Only
BV>70% are shown.

584

Fig.2. PhyML phylogenetic tree based on the 3'end fragment of the SSU rRNA gene,
showing the evolutionary relationships of 50 monothalamid foraminiferal sequences
belonging to Clades D, E, F. Taxa marked in bold indicate those for which sequences
were acquired for the present study. The tree is unrooted. Specimens are identified by
their isolate numbers (1st) and accession numbers (2nd). Numbers at nodes indicate
bootstrap values (BV). Only BV>70% are shown.

592 Fig.3. PhyML phylogenetic tree based on the 3'end fragment of the SSU rRNA gene,593 showing the evolutionary relationships of 42 monothalamid foraminiferal sequences

- 594 belonging to Clades J, Y and a new Clade. Taxa marked in bold indicate those for 595 which sequences were acquired for the present study. The tree is unrooted. Specimens 596 are identified by their isolate numbers (1st) and accession numbers (2nd). Numbers in 597 brackets refer to clones. Numbers at nodes indicate bootstrap values (BV). Only 598 BV>70% are shown.
- 599 600
- Figure 4. Nujappikia idaliae gen. & sp. nov. A–D. Unfixed specimens photographed in July 2018, soon after collection. E, F. Specimens fixed in formalin, photographed 601 602 in April 2019. Scale bars in E and F = 0.50 mm. 603
- 604 Figure 5. Nujappikia idaliae gen. & sp. nov.; type specimens, photographed in 605 glycerol in April 2019. A. Holotype, NHMUK PM ZF 9946. B. Paratype 1, NHMUK 606 PM ZF 9947. C. Paratype 2, NHMUK PM ZF 9948. D. Paratype 3, NHMUK PM ZF 607 9949. E. Paratype 4, NHMUK PM ZF 9950. F. Paratype 5, NHMUK PM ZF 9951. 608 G. Paratype 6, NHMUK PM ZF 9952. H. Paratype 7, NHMUK PM ZF 9953. Scale 609 bars = $250 \,\mu m$.
- 610
- Figure 6. Nujappikia idaliae gen. & sp. nov.; (A, C, E, G, I) Dark field views of 611 612 specimens photographed in LifeGuard in February 2019. (B, D, F, H, J) Light field 613 views of the same specimens. Scale bars = $250 \,\mu m$.
- 614

615 Figure 7. Nujappikia idaliae gen. & sp. nov. (A). Unusually shaped specimen. (B–D). Apertural structures. (B) Paratype 5, NHMUK PM ZF 9951. (C) Paratype 2, NHMUK 616 617 PM ZF 9948. (D). Paratype 6, NHMUK PM ZF 9952. (E) Abapertural end of 618 Paratype 4, NHMUK PM ZF 9950. (F). Abapertural end of Paratype 7, NHMUK PM 619 ZF 9953. Scale bars = $250 \mu m$ (A), $100 \mu m$ (B–F)

620

621 Figure 8. Bathyallogromia kalaallita sp. nov. (A, B) Unfixed specimens 622 photographed in July 2018, soon after collection. (C) Specimens fixed in formalin, 623 photographed in April 2019. (D) Specimens photographed in May 2022, by which 624 time the cell body had shrunk, leaving a clear space between it and the cell wall. Scale 625 bars = 1.0 mm

626

627 Figure 9. Bathyallogromia kalaallita sp. nov. Corresponding views of three 628 specimens photographed in LifeGuard in February 2019 under different lighting 629 conditions. Scale bars = $250 \,\mu m$.

630

Figure 10. Bathyallogromia kalaallita sp. nov. Specimens photographed in April 631 632 2019 using transmitted light and either with (A - E) or without (F - H) Nomarski 633 interference optics. (A) Small specimen with well-developed peduncle, peduncular 634 sheath and large nucleus. (B) Detail of apertural region and nucleus. (C) Ovate 635 specimen. (D) Detail of apertural region. (E) Large almost spherical specimen. (F) 636 Ovate specimen. (G) More elongate ovate specimen. (H) Detail of apertural region. 637 Scale bars = $250 \,\mu m$.

638

639 Figure 11. Bathyallogromia kalaallita sp. nov. Type specimens, photographed in 640 May 2022 when the cell body had shrunk, revealing good views of the peduncle. (A) 641 Holotype NHMUK PM ZF 9954. (B) Holotype, detail of apertural region. (C)

642 Paratype 1 NHMUK PM ZF xxxx. (D) Paratype 1, detail of apertural region. (E) 643 Paratype 2 NHMUK PM ZF 9956; the test wall has been distorted in the preservative. 644 (F) Paratype 2, detail of apertural region. (G) Paratype 3 NHMUK PM ZF 9957. (H) 645 Paratype 3, detail of apertural region. Scale bars = $250 \mu m$ (A, C, E, G), $100 \mu m$ (B, 646 D, E, G). 647

- 648 Figure 12. Sequenced specimens that can only be identified to genus level or are 649 indeterminate. (A) Indeterminate, finely agglutinated monothalamid, St. 2B; isolate 650 20261, Clade A. (B) Bathysiphon sp., St. 12; isolate 20435, Clade BM. (C) 651 indetermined monothalamid, St. 13; isolate 20296 – 96, Clade A. (D) Ovate 652 saccamminid, St. 2B; isolate 20256, Clade C. (E) Small saccamminid with apertural 653 neck, St. 2B; isolate 20246, Clade C. (F) Ovate, organic-walled test with brownish 654 contents, St. 12; isolate 20403, Clade C. (G) Psammophaga sp., St. 15; isolate 20371, 655 Clade E. (H) Small organic-walled allogomiid, St. 16; isolate 20351, Clade F. (I) 656 Crithionina sp., St. 11; isolate 20399, Clade J. (J) Coarsely agglutinated attached test, 657 St. 13; isolate 20290, Clade Y. (K) Silver saccamminid, St. 5; isolate 20321, Clade Y. (L) Nemogullmia sp., St. 5; isolate 19859; Clade Y. (M) Elongate organic-walled test 658 with what appear to be terminal apertures. St. 16: isolate 20350. Clade Y. (N) Whitish 659 660 dome attached to mineral grain, St. 13; isolate 20285, New Clade. (O) Similar dome, 661 St. 13; isolate 20286, New Clade. Scale bars = $250 \,\mu m$ except where indicated 662 otherwise.
- 663

Figure 13. *Hippocrepinella* sp. (A–E) Sequenced specimens, photographed in
RNAlater in Geneva. Note that C and particularly E are much smaller than other
specimens. (A) Isolate 20332, St. 8. (B) Isolate 20334, St. 7. (C) Isolate 20366, St.
15. (D) Isolate 20264, St. 13. (E) Isolate 20333, St. 7. (F, G) Specimens fixed in
formalin that were not sequenced, photographed in Southampton. Scale bars = 0.50
mm.

670 671

673

672 **References**

- Brady, H.B., 1881. On some Arctic Foraminifera from soundings obtained on the
 Austro-Hungarian North-Polar Expedition of 1872–1874. Ann. Mag. Nat. Hist.
 ser 5, 8, 393¬418
- 677 Cedhagen, T., 1993. Taxonomy and Biology of *Pelosina Arborescens* with
 678 Comparative Notes on *Astrorhiza limicola* (Foraminiferida), Ophelia 37, 143679 162. http://doi: 10.1080/00785326.1993.10429914
- Cedhagen, T., Aungtonya, C., Banchongmanee, S., Sinniger, F., Pawlowski, J., 2013.
 Gromiids and monothalamous foraminiferans (Rhizaria) from the Andaman Sea,
 Thailand taxonomic notes. Phuket Mar. Biol Center Res. Bull. 72, 1-17.
- Earland, A., 1934. Foraminifera. Part III. The Falklands sector of the Antarctic
 (excluding South Georgia). Disc. Rep. X, 1–208.
- Goës, A. T., 1894. A synopsis of the Arctic and Scandinavian recent marine
 foraminifera hitherto discovered. Kungl. Svenska Vetenskapsakad. Handl. 25,
 1-127.

- Gooday, A.J., Bernhard, J.M. Bowser, S.S., 1995. The taxonomy and ecology of *Crithionina delacai* sp. nov., an abundant large agglutinated foraminifer from
 Explorers Cove, Antarctica. J. Foram. Res. 25, 290-298.
- 691 Gooday, A.J., Bernhard, J.M. Bowser, S.S., 1996. Benthic foraminiferal assemblages
 692 in Explorer's Cove, Antarctica: a shallow water site with deep sea characteristics.
 693 Progr. Oceanogr., 37, 219-267.
- 694 Gooday, A.J., Shires, R. Jones, A.R., 1997. Large deep-sea agglutinated foraminifera;
 695 two differing kinds of organization and their possible ecological significance. J.
 696 Foram. Res. 27, 278-291.
- Gooday, A.J., Holzmann, M., Guiard, J., Cornelius, N., Pawlowski, J., 2004. A new
 monothalamous foraminiferan from 1000 to 6300 m water depth in the Weddell
 Sea: morphological and molecular characterisation. Deep-Sea Res. II 51, 1603–
 1616.
- Gooday, A.J., Bowser, S.S., Cedhagen, T., Cornelius, N., Hald, M., Korsun, S.
 Pawlowski, J., 2005. Monothalamous foraminiferans and gromiids (Protista) from
 western Svalbard: A preliminary survey. Mar. Biol. Res. 1, 290-312.
- Gooday, A.J., Levin, L.A., Aranda da Silva, A., Bett, B.J., Cowie, G.L., Dissard, D.,
 Gage, J.D., Hughes, D.J., Jeffreys, R., Lamont, P.A., Larkin, K.E., Murty, S.J.,
 Schumacher, S., Whitcraft, C., Woulds, C, 2009. Faunal responses to oxygen
 gradients on the Pakistan Margin: a comparison of foraminiferans, macrofauna
 and megafauna. Deep-Sea Res. II 56, 488-502.
- Gooday, A.J., Anikeeva, O.V., Pawlowski, J., 2011. New genera and species of
 monothalamous foraminifera from Balaclava and Kazach'ya Bays (Crimean
 Peninsula, Black Sea). Mar. Biodiv. 41, 481–494
- Gooday A.J., Kamenskaya, O.E. Soltwedel, T., 2013. Basal foraminifera and gromiids
 (Protista) at the Håkon-Mosby Mud Volcano (Barents Sea slope). Mar. Biodiv.
 43, 205–225. https://doi 10.1007/s12526-013-0148-5
- Gooday, A.J., Holzmann, M., Goetz, E., Cedhagen, T., Korsun, S., Pawlowski, J.,
 2021. Three new species of *Gromia* (Protista, Rhizaria) from western Greenland
 fjords. Polar Biol. 405011. https://doi.org/10.1007/s00300-021-02858-9
- Gouy, M., Guindon, S., Gascuel, O., 2010. SeaView version 4: a multiplatform
 graphical user interface for sequence alignment and phylogenetic tree building.
 Mol. Biol. Evol. 27, 221–224.
- Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O.,
 2010. New algorithms and methods to estimate maximum-likelihood
 phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321.
- Habura, A., Goldstein, S.T., Broderick, S. Bowser, S.S., 2008. A bush, not a tree: the
 extraordinary diversity of cold-water basal foraminiferans extends to warm-water
 environments. Limnol. Oceanogr. 53, 1339–1351.
- Höglund, H., 1947. Foraminifera in the Gullmar Fjord and the Skagerak. Zool. Bidrag
 Uppsala. 26, 1-328.
- Holtegaard Nielsen M., Reng Erbs-Hansen, D., Knudsen K. L., 2010. Water masses
 in Kangerlussuaq, a large fjord in West Greenland: the processes of
 formation and the associated foraminiferal fauna. Pol. Res. 29, 159-175.
 https://doi.org/10.3402/polar.v29i2.6063
- Holzmann, M., Gooday, A.J., Siemensma, F., Pawlowski, J., 2021. Review:
 freshwater and soil foraminifera a story of long-forgotten relatives. J. Foram.
 Res. 51, 318–331.

- Holzmann, M., Gooday, A.J., Majewski, W., Pawlowski, J., 2022. Molecular and
 morphological diversity of monothalamous foraminifera from South Georgia
 and the Falkland Islands: Description of four new species. Eur. J. Protistol.
 85, 125909.
- Jepps, M.W., 1942. Studies on *Polystomella* Lamark (Foraminifera). J. Mar. Biol.
 Assoc. U. K. 25, 607-666.
- Jennings, A, Andrews, J., Reilly, B., Walczak, M., Jakobsson, M., Mix, A., Stoner, J.,
 Nicholls, K.W. Cheseby, M., 2020a. Modern foraminiferal assemblages in
 northern Nares Strait, Petermann Fjord, and beneath Petermann ice tongue, NW
 Greenland, Arc., Antarc., Alp. Res. 52, 491-511. https://doi:
 10.1080/15230430.2020.1806986
- Jennings, A.E., Seidenkrantz, M.-S., Knudsen, K.L., 2020b. *Glomulina oculus*, new calcareous foraminiferal species from the High Arctic: a potential indicator of a nearby marine-terminating glacier. J. Foram. Res. 50, 219–234.
- Lefort, V., Longueville, J.E., Gascuel, O., 2017. SMS: Smart Model Selection in
 PhyML. Mol. Biol. Evol. 34, 2422–2424.
- Levin, L.A., Childers S.E., Smith. C.R., 1991. Epibenthic, agglutinating foraminiferans
 in the Santa Catalina Basin and their response to disturbance. Deep-Sea Res., 38,
 465-483
- Lloyd, J. M., 2006. Modern distribution of benthic foraminifera from Disko Bugt,
 West Greenland., J. Foram. Res. 36, 315-331.
- Loeblich, A.R., Tappan, H., 1987. Foraminiferal Genera and their Classification, v.12, Van Nostrand Reinhold, New York
- Majewski, W., Pawlowski, J., Zalączkowski, M., 2005. Monothalamous foraminifera
 from West Spitsbergen fjords, Svalbard: a brief overview. Pol. Polar Res. 26,
 269–285.
- Majewski, W., Bowser, S.S. Pawlowski, J., 2015. Widespread intra-specific genetic
 homogeneity of coastal Antarctic benthic foraminifera. Pol. Biol. 38, 2047-2058.
- Møller, H.S., Jensen, K.G., Kuijpers, A., Aagaard-Sørensen, S., Seidenkrantz, M.-S.,
 Prins, M., Endler, R., Mikkelsen, N., 2006. Late-Holocene environment and
 climatic changes in Ameralik Fjord, southwest Greenland: evidence from the
 sedimentary record. Holocene. 16, 685¬695.
- 768 https://doi:10.1191/0959683606hl963rp.
- Moodley, L., Boschker, H.T.S., Middelburg, J.J., Pel, R., Herman, P.M.J., de
 Deckere, E., Heip, C.H.R., 2000. Ecological significance of benthic foraminifera:
 ¹³C labelling experiments. Mar. Ecol. Prog. Ser. 202, 289-295.
- Nyholm, K.G., 1952. Studies on Recent Allogromiidae: 1. *Micrometula hyalostriata*n.g., n.sp. from the Gullmar Fjord, Sweden. Contrib. Cushman Found.
 Foraminifer. Res. 3, 14–16.
- Nyholm K.G., 1953. Studies on Recent Allogromiidae: 2. *Nemogullmia variabilis*n.g., n.sp. from the Gullmar Fjord. Contrib. Cushman Found. Foraminifer. Res.
 4, 105–106.
- Nyholm K.G., 1954. Studies on Recent Allogromiidae: 3. *Tinogullmia hyaline* n.g.,
 n.sp. from the Gullmar Fjord. Contrib. Cushman Found. Foraminifer. Res. 5,
 36.
- Nyholm K.G., 1955. Studies on Recent Allogromiidae: 4. *Phainogullmia aurata* n.g.,
 n.sp. Zool. Bidrag Uppsala. 30, 465–474.

- 783 Nyholm, K.G., 1974. New monothalamous foraminifera. Zoon 2, 117-122.
- Pawlowski, J., 2000. Introduction to the molecular systematics of foraminifera.
 Micropaleontology 46, 1–12.
- Pawlowski, J., Holzmann, M., 2014. A plea for DNA barcoding of foraminifera. J.
 Foram. Res. 44, 62–67.
- Pawlowski, J., Lecroq, B., 2010. Short rDNA Barcodes for Species Identification in
 Foraminifera. J. Eukaryot. Microbiol. 57, 197–205.
- Pawlowski, J., Fahrni, J.F., Brykczynska, U., Habura, A., Bowser, S.S., 2002a.
 Molecular data reveal high taxonomic diversity of allogromiid Foraminifera in Explorers Cove (McMurdo Sound, Antarctica). Pol. Biol. 25, 96–105.
- Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Cedhagen, T., Bowser, S.S.,
 2002b. Phylogeny of allogromiid foraminifera inferred from SSU rRNA gene
 sequences. J. Foram. Res. 32, 334–343.
- Pawlowski, J., Guiard, J., Conlan, K., Hardecker, J., Habura, A., Bowser, S.S., 2005.
 Allogromiid foraminifera and gromiids from under the Ross Ice Shelf:
 morphological and molecular diversity. Pol. Biol. 28, 514–522.
 https://doi:10.1007/s00300-005-0717-6
- Pawlowski, J., Majewski, W., Longet, D., Guiard, J., Cedhagen, T., Gooday, A.J.,
 Korsun, S., Habura, A.A., Bowser, S.S., 2008. Genetic differentiation between
 Arctic and Antarctic monothalamous foraminiferans. Pol. Biol. 31, 1205-1216.
- Pawlowski, L., Holzmann, M. Tyszka, J., 2013. New supraordinal classification of
 Foraminifera: Molecules meet morphology. Mar. Micropaleontol. 100, 1-10.
- Sabbatini, A., Morigi, C., Negri, A., Gooday, A.J., 2007. Distribution and biodiversity
 of living benthic foraminifera, including monothalamous taxa, from Tempelfjord,
 Svalbard. J Foram. Res. 37, 93 106.
- Sabbatini, A., Bonatto, S., Gooday, A.J., Morigi, C., Pancotti, I., Pucci, P., Negri, A.,
 2010. Modern benthic foraminifers at northern shallow sites of Adriatic Sea
 including soft-walled, monothalamous taxa: a brief overview. Micropaleontology
 56, 359-376.
- Sabbatini, A., Morigi, C., Nardelli, P.M., Negri, A., 2014. Foraminifera, in: Goffredo,
 S., Dubinsky, Z. (Eds), The Mediterranean Sea: Its history and present
 challenges, Springer, pp. 237¬256. http://doi:10.1007/978-94-007-6704-1_13
- 815 Sergeeva, N.G., Anikeeva, O.E., Gooday, A.J., 2010. Soft-shelled (monothalamous)
- 816 Foraminifera from the oxic /anoxic interface (NW Black Sea).
 817 Micropaleontology 56, 393-407
- Spärck, R., 1933. Contributions to the Animal Ecology of the Franz Joseph Fjord and
 Adjacent East Greenland Waters. Medd. Grønl. 100 (1), 1¬38.
- 820 Thorson, G., 1934. Contributions to the Animal Ecology of the Scoresby Sound
- Fjord Complex (East Greenland). Medd. Grønl. 100(3), 1¬67.

Table 1. Sampling sites for the new species in Greenland, with corresponding DNA isolate numbers and species names. Undescribed isolates from Greenland that are included in the trees are also listed.

Sampling location	Latitude (N)	Longitude (W)	Depth (m)	DNA Isolates
St 2, Itissoq embayment of Qôrnup	64°15.347'	51°14.532'	111	Indeterminate Clade A: 20261,
Suvdlua branch		500 50 10 4	50	Indeterminate Clade C: 20246, 20256
St. 3. Qôrgut fjord	64°14.957'	50° 52.196'	58	Bathyallogromia kalaallita
	(4015 020)		110	Unsequenced silver saccamminid, Fig. S2D
St 4, Oorgut embayment of Umanap	64°15.039	50°53.467	118	<i>Hippocrepina inalvisa</i> unsequenced: Fig. SIH
Suvulua branch				<i>Micrometula</i> sp.: 20520
				Unsequenced silver saccomminid Fig. S2B
St 5 South of Llumanag island	64°27 600'	50°48 856'	240	Indeterminate Clade V: 19859
St 5, South of Culturing Island	01 27.000	50 10.050	210	Indeterminate Clade C: 20304
St. 6. Oôrnup assua channel	64°43.916'	50°26.189'	521	Unsequenced spindle: Fig. S1J
				Unsequenced organic-walled form: Fig. S1E
St. 7 Qôrnup assua channel	64°43.784'	50°23.356'	274	Hippocrepinella sp., 20333, 20334
St. 8 Qôrnup assua channel	64°43.750'	50°24.634'	195	Hippocrepinella sp., 20332
St. 11 Kobbefjord	64°09.680'	51°25.849'	150	Crithonina sp. Clade J: 20399
St 12, Kobbefjord	64°08.733'	51°23.658'	43	Bathysiphon sp. Clade BM: 20435
				Indeterminate Clade C: 20403
St 13, Kobbefjord	64°08.580'	51°23.377'	22	Hippocrepinella sp., Clade D 20264
				Indeterminate Clade A: 20296
				Indeterminate Clade D: 20264
				Indeterminate Clade Y: 20290
				Indeterminate Clade Y: 20403
St 14 Inner port of Lycofierd	64012 0401	50020 0401	212	Indeterminate New Clade: 20285, 20286
St 14, inner part of Lyserjord	64 12.040	50 20.948	212	Pelosina sp.: Fig. 55b
St. 15, Inner part of Lysefjord	64°12.639	50°16.074	95	Nujappikia iaaliae Uinn agraniu alla an Clada Di 20266
				Psammonhaga sp. Clade E: 20371
St 16 Inner part of I vsefiord	64°12 656'	050°15 751'	61	Nujapnikia idaliae
St. 10, miler part of Lyseljoid	07 12.000	000 10.701	01	Indeterminate Clade F [.] 20351
				Indeterminate Clade Y: 20350

Table 2. Isolate and GenBank accession numbers, and locality data for sequenced monothalamid specimens. Taxa shown in bold indicate those analysed for the current paper.

Taxa	Isolate	Accession number	Sampling site	Additional remarks		
Clade A						
Limaxia alba	21252	OM422947	UK, South Georgia, Fortuna Bay			
Limaxia alba	21300	OM422948	UK, South Georgia, Cumberland Bay			
undet. monothalamid	1212	AJ307744	Antarctica, New Harbor	Cylindrogullmia -like		
undet. monothalamid	2226	AJ514858	Antarctica, New Harbor	elongate		
undet. monothalamid°	3022	OM422851, ON053330	Antarctica, New Harbor	Cylindrogullmia -like		
undet. monothalamid	3132	HE998678	Antarctica, McMurdo	coarsely agglutinated, attached		
undet. monothalamid	3133	OM422938	Antarctica, McMurdo	Allo groupio like		
undet, monothalamid	3525	OI 772090	Weddell Sea, abyssal	Allogromia like		
undet monothalamid*	20261	01/12090	Greenland Nuuk Fiord St 2B	elongate finely agglutinated		
undet. monothalamid*	20295		Greenland, Nuuk Fjord, St.13	elongate, sticky, soft walled		
undet. monothalamid*	20296		Greenland, Nuuk Fjord, St.13	elongate, sticky, soft walled		
<u>Clade BM</u>						
Bathysiphon argenteus	1780	AJ514836	Sweden, Gullmar Fjord			
Bathysiphon flexilis	1784	AJ514837	Sweden, Gullmar Fjord			
Bathysiphon sp.°	5324	ON053431, ON053432	Norway, Storfjord			
Bathysiphon sp.°	7517	ON053433	Antarctica, McMurdo			
Bathysiphon sp.	8029	ON053440	Antarctica, King George Island			
Bathysiphon sp.	8157	ON053441	Antarctica, King George Island			
Bathysiphon sp.	1/432	ON053434, ON053435	Greenland Numk Fiord St 12			
Micrometula sp	20433	ON053442	Norway, Syalbard			
Micrometula sp.	2880 4518	ON053443	Norway, Svalbard Kongsfjorden			
Micrometula sp.	4683	ON053445	Norway, Svalbard, Kongsfjorden			
Micrometula sp.°	4684	ON053436	Norway, Svalbard, Kongsfjorden			
Micrometula sp.°	4747	ON053437	Norway, Svalbard, Adventfjorden			
Micrometula sp.	4888	ON053446	Norway, Svalbard, Adventfjorden			
Micrometula sp.°	5053	ON053438	Canada, Vancouver, Howe Sound			
Micrometula sp.°	5082	ON053439	Canada, Vancouver, Howe Sound			
Micrometula sp.	20326	ON053447	Greenland, Nuuk Fjord, St.4			
<u>Clade C</u>						
Bathyallogromia kalaallita	19861	ON053401	Greenland, Nuuk Fjord, St.3			
Bathyallogromia kalaallita	19862	ON053402	Greenland, Nuuk Fjord, St.3			
Bathyallogromia kalaaliita	19863	ON053403	Greenland, Nuuk Fjord, St.3			
Bathyallogromia olivacea	21323	OM422961 OM422962	UK, South Georgia, Stromness Bay			
Bathyallogromia olivacea	21324	OM422963	UK South Georgia, Stromness Bay			
Bathyallogromia olivacea	21325	OM422964	UK South Georgia, Stromness Bay			
Bathvallogromia sp.°	5396	OM422905	Denmark, East Greenland Shelf			
Bathyallogromia weddellensis°	3334	OM422904	Weddell Sea, abyssal			
Bathyallogromia weddellensis°	3338	FR875101	Weddell Sea, abyssal			
Bathyallogromia weddellensis°	3339	FR875100	Weddell Sea, abyssal			
$Bathy allogromia\ weddellens is^\circ$	3553	FR875102	Weddell Sea, abyssal			
Gloiogullmia eurystoma	526	AJ317981	Sweden, Tjaerno			
Gloiogullmia eurystoma°	2882	LT796823	Norway, Svalbard			
Hippocrepina indivisa°	17534	OM422906	Chile, Patagonia, Beagle Channel			
Hippocrepinella alba	20870	OM422966	UK, South Georgia, Fortuna Bay			
Hippocrepinella alba	20873	ON1422968 EM200503	Waddall San abyggal			
Leptammina grisea	8352	FM209505	Weddell Sea, abyssal			
Marsinella sp	4074	FR8751/7	France Mediterranean Sea			
Marsipella sp.	4076	FR875148	France, Mediterranean Sea			
Pilulina argentea	2837	OL873224	Norway, Svalbard			
Pilulina argentea	2841	OL873225	Norway, Svalbard			
Technitella sp.	R5	FR754396	Norway, Oslo Fjord			
Toxisarcon alba	WC18H	AJ307750	Uk, Scotland, Loch Linnhe			
Toxisarcon synsuicida	1370	AJ315955	Sweden, Tjaerno			
Toxisarcon taimyr	14533	KF931124	Russia, Kara Sea			
undet.monothalamid	7702	ON053411	Chile, Patagonia, Beagle Channel	Phainogullmia- like		
undet.monothalamid ^o	14322	ON053398	Antarctica, New Harbor			
undet.monothalamid	14323	UN053399	Antarctica, New Harbor	and anostronal nearly finally applytingted		
undet monothalamid*	20240		Greenland, Nuuk Fjord, St.2B	elongate agglutinated		
undet, monothalamid*	20304		Greenland, Nuuk Fiord, St.2D	elongate		
undet. monothalamid*	20341		Greenland, Nuuk Fiord, St.7	oval, finely agglutinated		
undet. monothalamid*	20393		Greenland, Nuuk Fjord, St.13	oval, finely agglutinated		
undet. monothalamid*	20403		Greenland, Nuuk Fjord, St.12	oval, brownish, soft walled		
Clade D			-			
Hippocrepinella hirudinea	7863	LN873692	Antarctica, King George Island			
Hippocrepinella hirudinea	14310	LN873683	Antarctica, New Harbor			
Hippocrepinella hirudinea	21241	OM422932	UK, South Georgia, Stromness Bay			
Hippocrepinella hirudinea	21241	OM422931	UK, South Georgia, Stromness Bay			
Hippocrepinella sp.	33U 2857	AJ307703	Sweden, 1 Jaerno			
<i>inppocrepinena</i> sp.	2857	OM422929	Norway, Svaidard			

Hippocrepinella sp.	4821	OM422893	Norway, Svalbard	
Hippocrepinella sp.	14308	LN873677	Antarctica, New Harbor	
Hippocrepinella sp.	14309	LN873680	Antarctica, New Harbor	
Hippocrepinella sp.	20264	ON053393	Greenland, Nuuk Fiord, St.13	
Hippocrepinella sp.	20266	ON053394	Greenland, Nuuk Fiord, St.13	
Hippocrepinella sp.	20267	ON053395	Greenland Nuuk Fiord St 13	
Hippocrepinella sp.	20332	ON053396	Greenland, Nuuk Fjord, St 8	
Hippocrepinella sp.	20332	ON053387	Greenland, Nuuk Fjord, St.7	
Hinnocreninella sp	20333	ON053307	Greenland, Nuuk Fjord, St.7	
Hinnocreninella sp	20334	ON053397	Greenland, Nuuk Fjord, St.7	
Hippocrepinella sp.	20333	01055388	Greenland, Nuck Fjord, St.7	
Hippocrepinella sp.	20356	01053389	Greenland, Nuuk Fjord, St.7	
Him on the second sp.	20366	ON053390	Greenland, Nuuk Fjord, St.15	
Hippocrepineua sp.	20367	ON053391	Greenland, Nuuk Fjord, St.15	
Hippocrepineua sp.	20368	ON053392	Greenland, Nuuk Fjord, St.15	
Clade E				
Nellya rugosa	10150	FN995336	Ukraine, Sevastopol Shelf, Balaklava Bay	
Nellya rugosa	10151	FN995333	Ukraine, Sevastopol Shelf, Balaklava Bay	
Psammophaga crystallifera	1786	FN995294	Sweden, Gullmar Fjord	
Psammophaga crystallifera	2361	FN995293	Sweden, Tjaerno	
Psammophaga fuegia	17381	KU313688	Chile, Patagonia, Beagle Channel	
Psammophaga fuegia	17510	KU313694	Chile, Patagonia, Beagle Channel	
Psammophaga magnetica	2976	FN995274	Antarctica, Mc Murdo	
Psammophaga magnetica	3184	FN995272	Antarctica, Mc Murdo, Gneiss Point	
Psammophaga sapela	c2	JX645726	USA, Sapelo Island	
Psammophaga sapela	c5	JX645725	USA, Sapelo Island	
Psammophaga sp.	10285	ON053376	Canada, Halifax, Chezzetcook Inlet	
Psammophaga sp.	19260	ON053377	Norway, Svalbard	
Psammophaga sp.	19261	ON053378	Norway, Svalbard	
Psammopnaga sp.	19262	ON053379	Norway, Svalbard	
Psammophaga sp.	19263	ON053380	Norway, Svalbard	
Psammonhaga sp.	20369	ON053327	Greenland, Nuuk Fjord, St.15	
Psammophaga sp.	20370	ON053328	Greenland, Nuuk Fjord, St.15	
n summophaga sp.	20371	UN053329	Greenland, Nuuk Fjord, St. 15	
Psammopnaga zirconia	9495		Ukraine, Sevastopol Sneir, Omega Bay	
Psammopnaga zirconia	18412	LN880/08 EN005211	Italy, Adriatic Sea	
Vellaria zucchelli	3804	FN995310	Antarctica, Terranova Bay	
Clade F	5004	11099510	Antarctica, Terranova Day	
Hemisphaerammina bradvi	1439	AI311216	France Mediterranean Sea Banyuls	
Notodendrodes antarcticos	1082	AI311213	Antarctica New Harbor	
Notodendrodes hvalinosphaira	1225	AI311214	Antarctica New Harbor	
Notodendrodes hyalinosphaira	1921	AJ514860	Antarctica, New Harbor	
undet. monothalamid*	20351		Greenland, Nuuk Fjord, St.16	rounded, soft walled
undet. monothalamid*	20352		Greenland, Nuuk Fjord, St.16	rounded, soft walled
Vanhoeffenella dilatata	3256	MF457695	Weddell Sea, abyssal	,
Vanhoeffenella dilatata	3291	MF457696	Weddell Sea, abyssal	
Clade J			· •	
Capsammina patelliformis°	10069	FJ646885	Portugal, NE Atlantic, Nazare Canyon	
Capsammina patelliformis°	10070	FJ646888	Portugal, NE Atlantic, Nazare Canyon	
Crithionina delacai	189	AJ317988	Antarctica, Mc Murdo	
Crithionina delacai	21390	OM422882	UK, South Georgia, Stromness Bay	
Crithionina granum	156	AJ317987	Sweden, Kosterfjord	
Crithionina sp.	20399	ON053450	Greenland, Nuuk Fjord, St.11	
Crithionina sp.	21354	OM422880	UK, South Georgia, Cumberland Bay	
Crithionina sp.	21355	OM422881	UK, South Georgia, Cumberland Bay	
Clade Y				
environmental clone	808-34	JN003669	Japan, Sagami Bay, 1453m depth	
environmental clone	Sap10	EU213230	USA, Sapelo Island	
Hilla argentea	21333	OM422871	UK, South Georgia, Cumberland Bay	
Hilla argentea	21334	OM422872	UK, South Georgia, Cumberland Bay	
Nujappikia idaliensis	19842	ON053404	Greenland, Nuuk Fjord, St.16	
Nujappikia idaliensis	19843	ON053405	Greenland, Nuuk Fjord, St.16	
Nujappikia idaliensis	19844	ON053406	Greenland, Nuuk Fjord, St.16	
Nujappikia idaliensis	19847	ON053407	Greenland, Nuuk Fjord, St.16	
Nujappikia idaliensis	19848	ON053408	Greenland, Nuuk Fjord, St.16	
Nujappikia idaliensis	19850	ON053409	Greenland, Nuuk Fjord, St.16	
undet. monothalamid	2091	OM422864	Antarctica	finely agglutinated, fl
undet. monothalamid	2861	ON053400	Norway, Svalbard	Cylindrogullmia-like
undet. monothalamid°	9296	OM422884	Japan, Yokosuka	yellow-green colour
undet. monothalamid°	9300	OM422885	Japan, Yokosuka	yellow-green colour
undet. monothalamid°	9323	OM422886	Japan, Yokosuka	yellow-green colour
undet. monothalamid*	19857		Greenland, Nuuk Fjord, St.5	<i>Nemogulimia</i> -like, y
undet. monothalamid*	19859		Greenland, Nuuk Fjord, St.5	ivemogulimia-like, y
undet monothalamid*	20237		Greenland Nuck Fjord, St.2B	coarsely agglutinated
undet monothalamid*	20290		Greenland Nuuk Fjord St ?	finely applutinated
undet monothalamid*	20302		Greenland Nuuk Fiord St 5	finely agglutinated
under, monomatanillu	20320		Groemand, Huuk 1 Join, St.J	mery aggiutiliated, si

l, flask like like our our our ae, yellow ae, yellow ited, attached d, silvery

undet. monothalamid* undet. monothalamid* undet. monothalamid*	20321 20348 20350		Greenland, Nuuk Fjord, St.5 Greenland, Nuuk Fjord, St.16 Greenland, Nuuk Fjord, St.16	finely agglutinated, silvery elongate, finely gglutinated elongate, finely gglutinated
undet. monothalamid	20868	OM422869	UK, South Georgia, Cumberland Bay	finely agglutinated, flask like
New Clade				
Astrorhiza limicola	n.a.	AF411217	Antarctica	
environmental clone	IC28	AY452798	Antarctica	
environmental clone	IC36	AY452797	Antarctica	
environmental clone	Keys16	EU213206	USA, Florida Keys	
environmental clone	Keys37	EU213205	USA, Florida Keys	
environmental clone	Keys60	EU213204	USA, Florida Keys	
undet. monothalamid*	20285		Greenland, Nuuk Fjord, St.13	white, agglutinated, hemisphaerical, attached
undet. monothalamid*	20286		Greenland, Nuuk Fjord, St.13	white, agglutinated, hemisphaerical, attached
undet. monothalamid*	20423		Greenland, Nuuk Fjord, St.13	white, agglutinated, hemisphaerical, attached

* undetermined monothalamid sequences obtained for this study will be submitted to GenBank if they can be assigned to genera or species ° PCR products have been cloned prior to sequencing

	Nuuk	Svalbard	Svalbard: Kongsfjord, Isfjord Adventfjord	Svalbard Tempelfjord	New Harbor
Depth (m)	22–521	26-313 ²	6–345	26–104	<30 m
Size fractions (µm)	125–250, 250–500,	125–250, 250–500	125–500	63–125, 125–300,	125–400, 400–1000
	>500	>500	>500	>500	>1000
Methods	Morphology & Genetics	Morphology	Morphology	Morphology	Genetics
Reference	This study	Gooday et al. (2005)	Majewski et al. (2005)	Sabbatini et al. (2007)	Pawlowski et al. (2002)
Organic walled	14	13	10	23	6
'Saccamminids'	17	23	12	34	8
Spheres and domes	5	10	3	7	6
<i>Pelosina</i> sp.	8	6	1	-	2
Tubes ¹	3	3	3	-	2
Hippocrepina	-	1	5	-	-
Hyperammina	1	3	2	-	-
Astrorhriza	-	1	-	-	-
Others	1	-	-	-	5
TOTAL	49	60	36	64	27

Table 3. Taxonomic composition of monothalamid assemblages in Nuuk and Svalbard Fjords and the New Harbor area of McMurdo Sound, Antarctica.

¹Including *Hippocrepinella hirudinea* ²Isford trough and slope sites (313–2472 m depth) are disregarded

Supplementary figures

Figure S1. (A–Q) Monothalamids that were not sequenced. (A) Elongate organic-walled test with white cytoplasm and single nucleus, St. 3. (B) Unknown saccamminid, St. 16. (C) Elongate saccamminid, St. 15. (D) *Technitella*-like specimen, St. 2B. (E) Organic-walled test with attached detritus, St. 6. (F) *Phainogullmia*-like specimen, St. 8. (G) Elongate saccamminid, St. 4. (H) *Hippocrepina indivisa*, St. 4. (I) *Cylindrogullmia*-like organic-walled test, st. 16. (L) Bottle-shaped saccamminid, St. 4. (M) Elongate tapered saccamminid with apertural neck, St. 14. (N) Elongate saccamminid, St. 5. (O) Elongate slightly tapered organic-walled test containing whitish cytoplasm, St. 4. (Q) Small, elongate organic-walled test containing brownish cytoplasm, St. 15. (R) *Micrometula* sp., St. 4, sequenced specimen. Scale bars are not available.

Figure S2. Silver saccamminids. (A) St. 5, south of the island Uumanaq, water depth 240 m; the lower left elongate specimen is probably the one that was sequenced, shown in Figure 12K. (B) St 16, Lysefjord, water depth 61 m; silver saccammnid, probably the same species as shown in A. (C) St. 4, Qôrgut fjord, water depth 118 m; elongate species. (D) St. 3, Qôrgut fjord, 58 m; species with a silvery sheen and distinct aperture. Scale bars are not available.

Figure S3. *Pelosina, Pelosina-*like, and *Crithionina-*like species that were not sequenced. (A) Mudball, possibly a species of *Globipelorhiza;* St. 5. (B) Subtriangular *Pelosina* with arms; St. 14. (C, H) *Pelosina-*like test with arms, heavily encrusted with large mineral grains; St. 5 and 7, respectively. (D) Lemon-shaped *Pelosina* resembling *P. fusiformis* Earland, 1934. (E. F) Elongate fusiform *Pelosina* with smooth surface; St. 8 and 7, respectively. (G) Fusiform *Pelosina* covered in short tufts, possibly *P. variabilis* Brady, 1879; St 5. (I) Small ovate to droplet-shaped mudwalled tests with arms, possibly a *Pelosina;* St. 15. (J) *Crithionina-*like form composed of relatively large mineral grains. (K) Relatively large elongate *Pelosina,* possibly the same as *Pelosina variabilis* n. var. *constricta* of Earland (1934); St.5. Scale bars are not available.

