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Abstract
1. While abiotic drivers of yields represent important limiting factors to crop pro-

ductivity, the role of biotic drivers that could be directly managed by farmers 
(e.g. agri- environment schemes supporting key ecosystem services) remains 
poorly understood. Precision yield mapping provides an opportunity to un-
derstand the factors that limit agricultural yield through the interpretation of 
high- resolution cropping data. This has the potential to inform future precision 
agricultural management, such as the targeted application of agrochemicals, 
promoting increased sustainability in modern agricultural systems.

2. We used precision yield measurements from a network of 1174 fields in England 
(2006– 2020) to identify drivers of within- field yield variation in winter wheat 
and oilseed rape. Potential drivers included climate, topography and landscape 
composition and configuration. We then explored relationships between in- field 
yield patterns and local landscape context, including the presence of features 
associated with ecosystem benefits.

3. Proximity to the field edge was associated with reduced yields in 85% of wheat 
and 87% of oilseed fields. This translating to an approximate reduction of 10% in 
wheat and 18% in oilseed yields lost due to field edge effects.

4. We found evidence that reduced yields at the field edges were associated with 
biotic features of the surrounding landscape, including the occurrence of semi- 
natural habitats. Specifically, agri- environment scheme (AES) presence increased 
the rate at which yields at field edges approach those of the field centres. This 
suggests that AES occurrence within a landscape (rather than field adjacent) 
may increase edge effects. However, these trends are unclear and suggest inter-
actions between drivers and the spatial and temporal scale of investigation.

5. Synthesis and applications. While we found evidence of landscape context miti-
gating against field edge effects, these were counterintuitive. For example, AES 
at a landscape scale appeared to increase the severity of edge effects. This 
study highlights a lack of environmental data at sufficiently high spatiotemporal 
resolution to match that of precision agriculture data. This mismatch is hindering 
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1  |  INTRODUC TION

The current challenge for the agricultural industry is to meet the 
increasing future demands placed on the sector while minimising 
potential environmental impacts. Crop yields vary in response to 
multiple drivers which can interact over varying spatial and tempo-
ral extents (e.g. Deutsch et al., 2018). While some drivers, such as 
climate (e.g. precipitation and air temperature), may typically impact 
crop yields over large time- scales and areas (e.g. Zhao et al., 2017), 
others can drive variation at smaller scales, for example though 
changes in pest abundance in response to local landscape structure 
(Chaplin- Kramer et al., 2011 but see Savary et al., 2019).

While some drivers of crop yield are fixed and so not feasible 
to mitigate (e.g. slope and aspect of the growing area) at least par-
tial mitigation is possible for others (e.g. soil compaction; Hefner 
et al., 2019). Many of the known drivers of crop yield cumulate at 
the field edge, which commonly results in the so- called ‘field edge 
effect’ (e.g. Raatz et al., 2019; Ward et al., 2021). For this reason, it is 
common to see a reduction in crop yields at the field edge compared 
to the field centre.

One aspect of the farmland landscape which farmers can, at 
least to some extent, manage is semi- natural habitat cover. Semi- 
natural habitats within the surrounding landscape have previously 
been shown to benefit crops through increased provisioning of 
ecosystem services (e.g. pollination and pest control). Redhead 
et al. (2020) showed that the relative cover of, and proximity to, 
semi- natural land cover is associated with increased yield stability 
and resilience metrics. On smaller scales, agri- environment schemes 
(AES) can provide similar benefits. Benefits afforded to crops by nat-
ural habitats, including AES, are often through ecosystem services, 
including the provisioning of beneficial species (e.g. pollinators and 
predators of pest species; Dainese et al., 2019). Due to the spill- 
over effect whereby densities of some beneficial arthropods can be 
higher at field edges from where they disperse into the crop, such 
ecosystem benefits which may be higher at field edges potentially 
negating some yield edge effects associated with abiotic drivers (e.g. 
Woodcock et al., 2016).

AES creation established in association with fields represents 
a flexible and targetable management practice familiar to many 
farmers. As AES are typically small in size and designed to be com-
patible with production agriculture (e.g. flower- rich field margins), 
the required financial investment and practical limitations to their 

creation are much lower than the comparable creation of larger 
areas of semi- natural habitat (e.g. a nature reserve). While the value 
of AES has been questioned (e.g. Kleijn et al., 2006), research has 
shown that they have the potential to provide benefits to compa-
rable areas of existing semi- natural habitat. For example, AES de-
ployment has been shown to increase farmland biodiversity and the 
associated ecosystem services provided by pollinators (e.g. Ouvrard 
et al., 2018; Woodcock et al., 2016) and pest predators (e.g. Boetzl 
et al., 2019; Tschumi et al., 2016).

Despite the widespread uptake of AES and their promotion in 
multiple national and international policy frameworks (e.g. CAP), 
few studies have directly linked their associated ecosystem bene-
fits to improved agricultural productivity. While the goal of AES is 
not solely to benefit agricultural production, such an added bene-
fit demonstrable to farmers can encourage both engagement and 
the likely quality of individual interventions as farmers see the 
wider benefit of investing time into such management for their 
farm productivity. Such evidence is also important in justifying 
their expense both from a farmer and national policy perspective, 
as land is often removed from agricultural production, with resul-
tant costs. Pywell et al. (2015) provided evidence that the removal 
of up to 8% of land from production was offset by increased yields 
in the remaining production area. Field et al. (2015) also showed 
that wildlife friendly farming practices could negate the produc-
tivity losses incurred by removing ~10% of land from production. 
While these studies make valuable use of yield data measured at 
a high spatial resolution, their scale was limited to single farms, 
making generalisations difficult. The scaling up of such studies is 
important as the benefits of AES are known to vary with respect 
to multiple factors, including features of the wider landscape (e.g. 
Boetzl et al., 2020).

Here we use precision yield data at high spatial and temporal 
resolutions, collected from a network of farms across the dominant 
agricultural regions of England. We focus on winter wheat and win-
ter oilseed crops from 1171 fields from 2006 to 2020. We aimed to 
assess two key research questions:

1. Are in- field crop yield patterns affected by biotic and abiotic 
environmental drivers describing local environmental conditions?

2. Are there environmental drivers, including occurrence of semi- 
natural habitat, which could mitigate against edge effects and 
help to increase agricultural efficiency?

the effective integration of precision agriculture data in an environmental policy 
and/or management context and potentially leading to unnecessarily poorly in-
formed decisions related to AES deployment. This may limit environmental and 
economic benefits.

K E Y W O R D S
agri- environment schemes, crop yield, ecosystem services, field edge effect, pollinators, 
precision agriculture, semi- natural habitat
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The latter question addresses the tendency for arable field edges 
to be lower yielding than their centres, an effect often anecdot-
ally attributed to processes such as increased compaction or poor 
agrochemical delivery in these areas (e.g. Sklenicka et al., 2002). 
Identifying which factors reduce yields at crop edges provides an 
important mechanism for raising average field yields by reduc-
ing their yield heterogeneity. As precision agriculture technology 
aims to improve agricultural yields and reduce costs (Gebbers & 
Adamchuck, 2010) through the collection of data to inform manage-
ment practices, it has the potential to facilitate beneficial ecosystem 
services provided by farmland biodiversity directly through reduced 
application of agri- chemicals (Frampton & Dorne, 2007). For exam-
ple, the collection of large volumes of spatially and temporally ex-
plicit data facilitates the targeted application of agrochemicals (e.g. 
pesticides and synthetic fertilisers), reducing waste and the likeli-
hood of non- target impacts. The widescale collection of precision 
field productivity data has the potential to provide valuable insights 
into the drivers of crop yield. Using this data, we have attempted to 
identify key patterns in within- field variation in crop yields and ex-
plore how these might be mitigated through management strategies 
that target agricultural landscapes, such as via AES.

2  |  MATERIAL S AND METHODS

2.1  |  Precision yield data

Crop yield data were collected by combine harvesters, from 1171 
fields (Figure S1), during crop harvesting using automated grain yield 
monitors. In addition to recording crop yields, yield monitoring sys-
tems also record a high accuracy RTK GPS position of the combine 
harvester, grain moisture content, a timestamp and machine operat-
ing metrics (e.g. speed).

Precision yield data are generally collected by commercial equip-
ment and remain the property of the individual farmer. Additionally, 
precision yield data are collected by multiple proprietary systems, in 
various file formats. Therefore, collating data to analyse patterns in 
yield across large areas spanning different landscape and farm man-
agement contexts remains challenging. Yield data were supplied on 
a voluntary basis by farmers through manual data exports from farm 
management software, and downloads from the CLAAS Telematics 
cloud platform (http://www.claas - telem atics.com/). We cleaned the 
raw data to remove potentially erroneous data points. Initial cleaning 
steps were the removal of data outside: (1) the reliable working condi-
tions of the combine harvester, (2) known cropping areas and (3) the 
known biologically possible yield (Table S2). In addition, further clean-
ing procedures were applied, including the exclusion of yield measure-
ments outside the field mean (±2 SD) and local mean, defined as the 10 
adjacent data points (±2 SD; Muhammed et al., 2016). Yield data from 
two combine harvesters working the same field in the same year were 
standardised to the mean of both datasets and combined to account 
for potential calibration differences between the two machines. When 
more than two combine harvesters were working the same field in the 

same year, these data were removed. The yield recording rate varied 
between combine harvesters (1– 15 s). To ensure consistency across 
all fields, we standardised data to a common recording frequency, 
through subsampling. This resulted in a median time and distance be-
tween points of 15 s and 20 m, respectively.

For all data points, we calculated the distance to and identity of 
the nearest field edge. We removed field edges and their associated 
yield records where the minimum distance to the nearest field edge 
was over 18 m (the 95% confidence interval). We also removed yield 
records where the difference between the distance to the nearest field 
edge and the second nearest edge was less than 20 m. This was to re-
duce the potential for the environmental impacts of other field edges, 
which are not the nearest, to significantly impact the analysed yields.

The rotation of crops is used extensively and is a longstanding 
and standard practice in agriculture, used to increase yields of subse-
quent crops by improving soil health, nutrient availability and limiting 
the establishment of pests (e.g. Conrad et al., 2021). Although exact 
identification of rotations is complex, generally our study fields were 
from agricultural systems where winter wheat was grown in rotation 
with other winter cereals (e.g. barley, oats), spring cereals (wheat, 
barley, oats) and combinable break crops such as oilseed rape and 
field beans. Other crops recorded in our fields (e.g. linseed, peas) 
were rare. Wheat crops are, on occasion, grown consecutively in the 
same field, the so called ‘second cropping’, but typically show lower 
yields (e.g. Knight et al., 2012). We identified instances of ‘second 
cropping’, where the same crop is grown in sequential years.

We also identified which field edges were used as vehicle turning 
headlands, used by farm machinery (Appendix S3). While inevitable 
in modern mechanised arable farming, turning headlands are known 
to impact crop growth through physical damage and soil compaction 
and are an important consideration when exploring within- field spa-
tial patterns in crop yield.

2.2  |  Field boundaries

We downloaded field boundaries from the CLAAS telematics 
cloud platform and supplemented these with polygons from the 
Ordinance Survey MasterMap Topography Layer® (www.ordna 
ncesu rvey.co.uk). Field boundaries were split into field edges based 
on the turning angle of the polygon vertices. Threshold angles de-
fined for each field based on the number of field edges identified 
and the proportion of the total field perimeter covered by the field 
edges (Appendix S4). Field edges were restricted to a minimum 
length of 180 m to allow for approximately 10 data points (assuming 
the  median spacing of 20 m).

2.3  |  Environmental data

We used composite digital terrain and surface models derived from 
LiDAR data (Environment Agency, 2017a, 2017b) to calculate the 
topographic wetness, slope, aspect (measured as ‘southness’) and 
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the relative shading for each yield data point (Table S5). Shading was 
obtained by calculating sun position (direction angle, zenith and azi-
muth) for each field centroid for the first day of each month in 2017, 
the mean harvest year, at three time points (1000, 1300 and 1600). 
We used slope, aspect and sun position information to calculate sun-
light exposure, using the ‘hillShade’ function (Hijmans, 2020) which, 
when inverted, provides a metric of shading.

We used the UKCEH Land Cover Map 2015 (Rowland et al., 2017) 
to create three metrics of surrounding semi- natural land cover. We 
quantified the areas of: all non- cultivated habitats, semi- natural land 
cover and higher- quality semi- natural habitats within a 1 km radius 
of each field (Tables S5 and S6). We further generated Shannon 
evenness, Shannon diversity and relative patch richness indices as 
metrics of landscape structure surrounding each field.

We sampled AES agreement data (DEFRA & Natural England, 2020) 
of options known to benefit pollinating insects (Staley et al., 2021), 
within a 1 km radius of each field (Table S5). The exact position of AES 
options was not recorded, with most options being recorded at the 
level of field or farm centroid. To quantify the relative AES uptake in 
the local landscape, we calculated the area of AES options as a pro-
portion of agricultural land within the same 1 km radius.

Lastly, we sampled HadUK 1 km mean annual daily precipitation 
and temperature data (Met Office et al., 2018) for each field and 
year combination (Table S5).

2.4  |  Statistical analyses

All yield data preparation and statistical analyses were undertaken 
in R version 4.0.2 (R Core Team, 2020).

2.5  |  Drivers of crop yield variation

To identify key within- field yield patterns, we ran independent linear 
mixed- effects models for wheat and oilseed crop yields (Bates et al., 
2015). We modelled crop yield against distance from the field edge, 
slope, aspect and topographic wetness with all variables fitted as first 
and second order polynomial terms. We fitted models containing all 
combinations of the environmental variables (Table; Table S7). All 
candidate models contained the ‘harvest year’ term and a ‘field edge 
ID’ and ‘field ID’ nested random effect. All model terms were scaled 
and mean centred, except for aspect which was scaled only. Models 
for wheat crops also contained a ‘second cropping’ term. This term 
was not required in oilseed models as this practice does not occur. 
We used the MuMIn r package to fit and compare the models using 
their penalised Akaike information criterion (AICc) scores.

2.6  |  Edge effect metrics

To quantify the field edge effect, we formulated linear models of crop 
yield against the environmental variables shown to be important in 

driving the within- field yield variation (Table 1) for each field, crop 
type and year. All explanatory covariates were scaled and mean cen-
tred, except for aspect which was scaled. As previous research has 
shown that the benefits of adjacent landscape features can be meas-
ured up to 50 m into the field (Woodcock et al., 2016), we tested 
for the presence of breakpoints (BPs) in the field edge effect over 
the first 50 m from the field edge into the field centre. We used the 
segMented r package (Vito & Muggeo, 2017) to identify potential 
BPs in the yield ~ distance from the field edge relationship, after ac-
counting for the additional environmental variables (Figure S8). We 
conducted Davies tests (Davies, 2002) to find evidence to support 
these potential BPs. Where there was insufficient evidence of a BP 
for a particular field, year and crop combination or where that BP did 
not result in subsequent viable regression models (due to a BP at the 
boundary), these points were excluded.

We used the same environmental variables to calculate the re-
gression slopes (β coefficients) between crop yield and distance 
from the field edge, after accounting for the additional environmen-
tal variables (Figure S8). We used data within 100 m of the field edge 
to quantify the yield drop off associated with the field edge. In keep-
ing with previous studies (Collins et al., 2002; Raatz et al., 2019), 
we expected the relationship between crop yields and distance to 
the field edge to be positive, with yields increasing with increasing 
distance from the field edge. We excluded negative relationships, 
which we attributed to anomalous recording or unusual field shapes, 
from subsequent analyses (see Table S9 for a sensitivity analysis of 
this assumption).

We define BP values as the distances from the field edge towards 
the field centre over which the edge effect is identified as impacting 
yield. We therefore propose that higher BP values are detrimental to 
agricultural productivity. Similarly, we suggest that higher β coeffi-
cients are indicative of a greater field edge effect, as the yields differ 
to a larger degree between the field edge and the field centre. In the 
‘best case’ scenario, BP distances would be minimal, suggesting that 
the field edge effect is affecting only a small area, and β coefficients 
would be zero, indicating that yields are consistent irrespective of 
proximity to the field edge. Our edge effect metrics do not neces-
sarily relate to overall field productivity but instead reflect the mag-
nitude of yield loss, due to the field edge effect, in relation to the 
average field yield at the field centre.

2.7  |  Landscape and local context drivers of field 
edge effect

To explore how landscape and local context affected the severity of 
the edge effect, we applied a modified random effects meta- analytic 
approach (see Keogan et al., 2018) to fit linear mixed- effects models. 
Importantly, this modelling framework allowed us to account for the 
fact that our response variables are estimates themselves, by restrict-
ing their variance using their associated standard errors. We used INLA 
(Rue et al., 2009) to model the (1) the BP distance and (2) the β co-
efficients calculated previously. We fitted separate models for wheat 
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and oilseed crops, and for the two edge effect metrics, against local 
and landscape metrics of the farmed environment that could plausibly 
be influenced by either farmer behaviour or wider agricultural policy. 
We modelled BPs and β coefficients against our three metrics of sur-
rounding semi- natural land cover (all non- cultivated green space, semi- 
natural land cover and higher- quality semi- natural habitats), landscape 
composition (Shannon evenness, Shannon diversity and relative patch 
richness), and AES uptake in the surrounding environment. Our models 
also included two climatic terms, mean annual rainfall and tempera-
ture, in addition to a year term and a ‘field ID’ random effect. Wheat 
models also contained a ‘second cropping’ term.

Models were constructed sequentially, using Watanabe- Akaike 
information criterion (WAIC), introducing new model terms when 
found to improve the previous model. Interactions between terms 
were tested in the same way. Variation between years was tested 
by modelling harvest year as a categorical variable in addition to 
AR1 and RW1 processes, again using WAIC scores to determine any 
improved model fit. Due to being highly correlated, models did not 
contain either multiple semi- natural habitat or landscape composi-
tion metrics.

Ethical approval was not required for this study.

3  |  RESULTS

3.1  |  Drivers of crop yield variation

Model selection of the full set of candidate models resulted in one 
well- fitting candidate model (ΔAICc < 10) for wheat and two for oil-
seed (Table S7; Bolker et al., 2009). For both crops, the model with 
the greatest support was the maximal model (wi = 0.999 and 0.969). 

The second oilseed model, for which there was some evidence, 
was the same as the maximal but did not contain a ‘shading’ term 
(ΔAICc = 6.910, wi = 0.031).

Analysis of wheat and oilseed crops yielded qualitatively similar 
results (Table 1), with distance from the field edge being identified 
as a key determinant of crop yield. Specifically, crop yields increased 
as distance from the field edge increased (Figure 1). Yield declines, 
as measured as the difference in yield between the field edge and 
the highest predicted yield, are comparable between crops (0.9 t/ha  
for wheat and 0.8 t/ha for oilseed). However, when measured as a 
percentage of field centre yield, field edge declines are greater in 
oilseed fields (21%) than wheat (8.9%). For both crops, increased 
shading was associated with lower yields (Table 1) while an increase 
in topographic wetness was associated with higher yields (Table 1). 
Both crop models included a polynomial slope- aspect interaction 
term which indicated (1) that yields tend to decrease as fields be-
came increasingly sloped and (2) this relationship varies with respect 
to the field's aspect, with the most severe and linear decreases in 
North facing fields (Figure 2). Lastly, fields which were growing 
wheat for a second consecutive year were associated with, on aver-
age, 5.6% lower yields.

3.2  |  Edge effect metrics

Overall, 49% of wheat fields and 48% of oilseed fields showed 
evidence of field edge effect related BPs and 85% of wheat and 
87% of oilseed fields showed positive β coefficients, evidence 
of yields increasing towards the field centre. BP distances and 
β coefficient estimates were similar between wheat and oilseed 
crops (mean BPs = 25.9 m [±11.1] and 26.2 m [±10.5], mean β 

Model term

Crop model

Wheat Oilseed

(Intercept) 8.978 (±0.258) 4.059 (±0.203)

Distance 0.351 (±0.002) 0.334 (±0.002)

Distance2 −0.144 (±0.002) −0.101 (±0.001)

Second cropping: Yes −0.483 (±0.018)

Slope −0.026 (±0.005) −0.052 (±0.005)

Slope2 −0.015 (±0.002) −0.010 (±0.002)

Aspect 0.057 (±0.006) 0.022 (±0.006)

Aspect2 0.003 (±0.006) 0.020 (±0.005)

Topographic wetness 0.018 (±0.002) 0.003 (±0.002)

Topographic wetness2 0.009 (±0.001) 0.005 (±0.001)

Shading −0.014 (±0.007) −0.003 (±0.006)

Shading2 −4.36 × 10−04 (±−3.10 × 10−04) −0.001 (±4.04 × 10−04)

Turning headland: Yes −0.059 (±0.004) −0.059 (±0.004)

Slope × Aspect 0.048 (±0.006) 0.023 (±0.006)

Slope2 × Aspect −0.010 (±0.002) −0.008 (±0.001)

Slope × Aspect2 0.008 (±0.007) 0.008 (±0.007)

Slope2 × Aspect2 4.64 × 10−04 (±0.003) −0.005 (±0.003)

TA B L E  1  Model coefficients for wheat 
and oilseed yields against features of 
the agricultural landscape over which 
land managers and policymakers have no 
reasonable control. The ‘best- fit’ model 
terms are shown with their associated 
model estimates and standard errors. 
Harvest year was treated as a categorical 
variable and 2012, a known poor yielding 
year, was treated as the reference 
year. Model selection was undertaken 
using orthogonal polynomials but raw 
polynomials are reported here for clarity
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coefficients = 0.015 [±0.013] and 0.013 [±0.010]). Assuming aver-
age yields at the field centres and average field sizes, these β coef-
ficient estimates would translate to approximately 10% of wheat and 
18% of total potential oilseed yields lost due to the field edge effect.

3.3  |  Landscape and local context drivers of field 
edge effect: BPs

Breakpoint models for both crops suggested the BP distances were 
associated largely with climatic variables (Table 2). Increasing rain-
fall was correlated with increasing BP distances in wheat crops 
(Figure 3). For oilseed crops, despite temperature being identified as 
an influential driver of BP distance, the effect of this was negligible. 
In contrast to wheat crops, increasing precipitation was associated 
with shorter BPs in oilseed fields. We found no evidence that varia-
bles describing features of the surrounding landscape or AES uptake 
were important in determining BP distances for either crop (Table 2).

3.4  |  Landscape and local context drivers of field 
edge effect: β  coefficients

Model selection provided evidence that β coefficients varied for 
both wheat and oilseed in response to climate, with rainfall and 
temperature interacting (Table 2). In wheat fields, the lowest β co-
efficients were predicted at average temperatures (~10°C) with 

estimates increasing at either temperature extremes. Increasing 
rainfall values were positively correlated with β coefficients. In oil-
seed crops, both temperature and rainfall were positively associated 
with increasing β coefficient predictions. These results highlight 
how climatic variables can interact into either an overall mitigating 
(e.g. high temperatures partially offsetting high rainfall via increased 
evapotranspiration) or exacerbating (e.g. high temperatures and low 
rainfall creating drought conditions) effect. Including AES cover im-
proved the fit of both β coefficient models. These models suggested 
a general and moderate increase in β coefficients as AES uptake in-
creases in the surrounding landscape (Table 2). This means that AES 
use is associated with increased yield loss at the field edge.

The degree to which the features of the surrounding landscape 
impact a field's β coefficient varied between the crop types. In wheat 
fields, the proportion of higher- quality semi- natural habitats inter-
acts with our metrics of landscape diversity. However, our model 
only suggests a minor increase in a field's β coefficient in response 
to increasing landscape diversity (Table 2). In oilseed fields, we found 
evidence that the proportion of higher- quality semi- natural habitats 
was interacting with our metric of landscape evenness. Similarly to 
wheat fields, this interaction results in only minor changes to pre-
dicted β coefficients (Table 2). It is possible that evidence supporting 
the inclusion of this model term is driven primarily by the subset of 
fields containing an above average amount of higher quality semi- 
natural habitats in the nearby landscape. In this group, our model 
predicts in increase in β coefficients as the landscape evenness 
increases.

F I G U R E  2  Interacting effects of slope 
and aspect (as measured as the degree of 
‘southness’) on crop yield for (a) wheat and 
(b) oilseed. For both crops, increasingly 
sloped fields generally resulted in lower 
yields; however, this effect varied with 
the fields aspect. Yield declines with 
increasing field slope were the greatest 
in north facing fields, with south facing 
fields showing less extreme declines.

F I G U R E  1  The predicted relationship 
between crop yield (tonnes per hectare) 
and distance from the field edge (m), using 
the best fitting models for wheat (a) and 
oilseed (b) crops. Model prediction (black) 
is shown with its 95% (grey) and 50% 
(blue) prediction intervals (n = 999).
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TA B L E  2  Model coefficients and associated credible intervals for the BP and β coefficient analyses of wheat (n = 418 for BP and 1793 
for β coefficient) and oilseed (n = 210 for BP and 913 for β coefficient) crops. Oilseed models did not contain second cropping variables as 
second cropping does not commonly occur in oilseed crops. The area of agri- environment (AES) schemes, known to beneficial to pollinators 
and whose recorded points are within 1 km of the field, were analysed as a categorical variable. Categories represent the area of AES as a 
proportion of agricultural area within 1 km of fields; 0% (the reference level), 0.001– 3% (‘AES: 0.001– 3%’), 3– 8% (‘AES: 3– 8%’) and 8 + % 
(‘AES: 8%+’). Similarly, the area of semi- natural habitats within the same 1 km buffer around fields was calculated for different habitat groups 
(see Table S5). ‘“Top” SNH cover’ relates to semi- natural improved grassland and mountain, heath, bog categories of the UKCEH land cover 
map. Model selection was undertaken using orthogonal polynomials, raw polynomials are presented here for clarity

Model term

Breakpoints

Wheat Oilseed

Mean SD 2.5% CI 97.5% CI Mean SD 2.5% CI 97.5% CI

Intercept 39.819 12.511 15.221 64.354 70.652 90.389 −108.142 247.271

Rainfall −0.043 0.033 −0.109 0.022 −0.017 0.103 −0.218 0.185

Rainfall2 3.32 × 10−5 2.16 × 10 −5 −9.23 × 10−6 7.56 × 10−5

Temperature −4.286 8.432 −20.768 12.364

Temperature2

AES: 0.001– 3%

AES: 3– 8%

AES: 8%+

‘Top’ SNH cover

Shannon diversity

Shannon evenness

Rainfall × Temperature 0.001 0.010 −0.018 0.020

Rainfall × Temperature2

Rainfall2 × Temperature2

‘Top’ SNH cover × Shannon diversity

‘Top’ SNH cover × Shannon evenness

Beta coefficients

Wheat Oilseed

Model term Mean SD 2.5% CI 97.5% CI Mean SD 2.5% CI 97.5% CI

Intercept 1.84 × 10−02 1.91 × 10−02 −1.91 × 10−02 5.58 × 10−02 6.97 × 10−02 1.25 × 10−01 −1.75 × 10−01 3.16 × 10−01

Rainfall −2.66 × 10−05 2.16 × 10−05 −6.91 × 10−05 1.58 × 10−05 −2.83 × 10−05 1.67 × 10−05 −6.12 × 10−05 4.56 × 10−06

Rainfall2 1.80 × 10−08 1.69 × 10−08 −1.50 × 10−08 5.14 × 10−08

Temperature −1.20 × 10−02 2.37 × 10−02 −5.87 × 10−02 3.44 × 10−02

Temperature2 −7.62 × 10−05 1.66 × 10−04 −4.01 × 10−04 2.49 × 10−04 6.88 × 10−04 1.14 × 10−03 −1.54 × 10−03 2.92 × 10−03

AES: 0.001– 3% 1.57 × 10−03 5.32 × 10−04 5.25 × 10−04 2.61 × 10−03 8.34 × 10−04 6.19 × 10−04 −3.80 × 10−04 2.05 × 10−03

AES: 3– 8% 1.30 × 1−03 7.40 × 10−04 −1.49 E- 04 2.75 × 10−03 −6.02 × 10−04 7.86 × 10−04 −2.15 × 10−03 9.39 × 10−04

AES: 8%+ 4.07 × 10−03 1.67 × 10−03 7.94 × 10−04 7.35 × 10−03 2.03 × 10−03 1.89 × 10−03 −1.67 × 10−03 5.73 × 10−03

‘Top’ SNH cover −2.89 × 10−04 1.34 × 10−04 −5.52 × 10−04 −2.64 × 10−05 −4.44 × 10−04 1.78 × 10−04 −7.93 × 10−04 −9.45 × 10−05

Shannon diversity 5.03 × 10−03 9.17x 1−04 3.24 × 10−03 6.84 × 10−03

Shannon evenness −3.23 × 10−04 1.47 × 10−03 −3.21 × 10−03 2.56 × 10−03

Rainfall × Temperature

Rainfall × Temperature2 2.74 × 10−07 1.95 × 10−07 −1.08 × 10−07 6.56 × 10−07

Rainfall2 × Temperature2 3.34 × 10−11 1.30 × 10−10 −2.22 × 10−10 2.87 × 10−10

‘Top’ SNH 
cover × Shannon 
diversity

2.53 × 10−04 1.53 × 10−04 −4.84 × 10−05 5.54 × 10−04

‘Top’ SNH 
cover × Shannon 
evenness

5.59 × 10−04 3.24 × 10−04 −7.74 × 10−05 1.19 × 10−03
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4  |  DISCUSSION

4.1  |  Drivers of crop yield variation

Our results showed that a variety of factors have a strong and con-
sistent influence on within- field patterns of crop yield, across a large 
sample of fields. Several of these variables are associated with to-
pography (e.g. topographic wetness, slope and aspect) and, while 
they have a measurable impact on yields, options for mitigation are 
limited. For example, steep slopes can result in increased water run- 
off and associated soil damage; however, mitigation options are lim-
ited to minimising downslope tillage and practices to increase soil 
stability (e.g. direct drilling, cover cropping). Despite this long- term 
selection against topographic extremes, it is interesting to note that 
variation in yield remains evident over a relatively small range of 
slopes (0– 25 degrees, 95% quantile = 6.6).

In addition to topographic related drivers, we also found evi-
dence that the operation of agricultural machinery can impact crop 
yields. For example, turning headlands are associated with reduced 
yields, likely through changes in soil properties (Etana et al., 2020; 
Hefner et al., 2019), with this becoming an increasing problem in re-
cent decades as the size and weight of agricultural machinery has 
grown. While complete mitigation of these effects is unlikely, prac-
tices such as controlled traffic systems (Bai et al., 2009) and the dou-
ble drilling of headlands can minimise potential yield losses.

Landscape features therefore provide mitigation opportunities 
to increase agricultural productivity. Shading of cultivated areas by 
adjacent landscape features (e.g. woodland) is also associated with 
reduced yields. It is important to note that these same features (e.g. 
woodland) may also be associated with pests which can compound 
their apparent negative effect (Marshall et al., 2003) and/or interact 
with their potential crop benefits, for example, through buffering 
against climatic extremes (Kort, 1988; Raatz et al., 2019).

In addition to the aforementioned drivers of crop yield, we also 
found evidence of a consistent, strong effect of spatial context of 

the distance to the field edge. We found evidence that field edges 
had, on average, lower yields than field centres. We suggest that 
mitigating against effects of the field edge is a clear way in which 
the necessary increases in productivity might be achieved. By our 
estimates, such mitigation efforts could increase wheat yields by up 
to 10% and oilseed yields by up 18%. These estimates make distance 
from the field edge one of the greatest determinants of crop yield 
in our analyses and ultimately one of the most productive routes to 
increase yields in the future.

4.2  |  Edge effect metrics

The effect on yield of proximity to the field edge is the com-
pounded effect of multiple drivers. While many of these driv-
ers are detrimental to crop yields [e.g. soil compaction (Sklenicka 
et al., 2002) and weed ingress (Marshall et al., 2003)], edges can 
also benefit nearby crops [e.g. sheltering from adverse climatic 
conditions (Kort, 1988; Raatz et al., 2019) and ingress of natural 
enemies of pests (Woodcock et al., 2016)]. While these inter-
acting, and often opposing, underlying effects complicate iden-
tifying the specific driver of the field edge effect, our analyses 
have allowed us to marginalise known contributors to this com-
bined effect to increase clarity of those sources of yield varia-
tion. Ultimately, our results suggest that, in the majority of cases 
under the typical English agricultural system, the detrimental 
physical effects associated with the field edge (e.g. soil compac-
tion) outweigh any associated biological benefits (e.g. biological 
control).

In addition to the specific targeting of known components of the 
field edge effect (e.g. turning headlands), it should be possible to re-
duce the negative effects of the field edge effect through practices 
such as AES, which have been shown to improve crop yields and 
ultimately offset the areas of land removed from cultivation at the 
single farm scale (Pywell et al., 2015).

F I G U R E  3  Effect of climatic variables on BP distances for wheat (a) and oilseed (b) crops. For wheat, increasing rainfall was positively 
associated with higher BP distances. This effect was most noticeable above 800 mm of annual rainfall. In oilseed crops, increasing rainfall 
was associated with decreased BP distances. Temperature was also important in determining the BP distance in oilseed fields, with higher 
temperatures associated with reduced BP distances. Temperature was analysed as a continuous variable but presented here as categories, to 
facilitate interpretation. High and low temperatures are defined as being over one standard deviation away from the mean temperature value.
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4.3  |  Landscape and local context drivers of field 
edge effect

AES have received significant research attention and financial in-
vestment with the aim of mitigating environmental degradation in 
agricultural landscapes. Despite this, our current understanding 
of their benefits remains unclear due to the context specificity of 
their effects (Kleijn et al., 2001, 2011; Woodcock et al., 2010 but 
see Kleijn & Sutherland, 2003). We had hypothesised that AES may 
benefit crops through the provision of ecosystem benefits, which 
may be realised through increased yields or reduced edge effects. 
The spill over of advantageous invertebrate species being a potential 
mechanism for this (Woodcock et al., 2016). The provision of non- 
crop and semi- natural habitats (the restoration of which can be a 
target for AES) has also been demonstrated to be important in regu-
lating yield via the same mechanisms (e.g. Martin et al., 2019).

However, our analyses suggested that, where an effect was de-
tectable, AES and semi- natural habitat extent were generally slightly 
detrimental to crop yield, resulting in more extreme field edge effect 
metrics. It may be that the farm- scale beneficial effects detected 
by Pywell et al. (2015) and Field et al. (2015) are simply not present 
across the wider English agricultural system, due to insufficient, quan-
tity, quality or spatial configuration of AES options. This would be in 
common with many studies demonstrating a lack of ability to translate 
demonstrable scale farm- scale AES benefits into larger scale impacts 
(e.g. Kleijn et al., 2006). An alternative (or additional) possibility is the 
mismatch between the resolution of our relevant spatial data (e.g. AES 
positions) and the resolution at which such benefits might be expected 
to occur (e.g. Woodcock et al., 2016). Specifically, our metrics of AES 
uptake were limited by the resolution of the data to aggregate farm 
level, making quantification of effects over small spatial scales diffi-
cult (e.g. adjacent crops). While precision agricultural technology now 
provides yield data at very fine spatiotemporal resolution, we lack data 
at the equivalent resolution on AES uptake, position and quality. It is 
likely that continued developments in remote sensing technology and 
machine learning techniques will be able to fill some of these current 
data gaps. However, there is an ongoing need to ensure that the ad-
vances in precision agricultural technology are matched by develop-
ments in environmental monitoring if we are to maximise the benefits 
of these datasets.

An additional explanation for our apparently counterintuitive re-
sults may also be that the relationships between the extent of habitats 
and yield are too complex to analyse across large samples of fields and 
are entirely dependent on local context. For example, the ability of a 
habitat to provide beneficial invertebrates to increase yield depends 
on interactions within the beneficial invertebrate and pest communi-
ties, and the extent to which pests and beneficials move into crops. 
Beneficial features of the landscape may well impact target and non- 
target species alike, for example, impacting pest and beneficial spe-
cies to the same degree may result in no net change. Conversely, any 
effect of landscape features may interact with other variables of the 
growing environment, such as rainfall, which we have shown could 
impact wheat and oilseed crops differently, likely through a series of 

further complex interactions (e.g. rainfall may be interacting with com-
mon crop pests of the crops, which are likely different). It is because 
of these numerous and complex interactions that result in these re-
lationships often being highly context dependant (Haan et al., 2020) 
with any benefits not always translating into changes in crop measure-
ments (Martin et al., 2019; Smith et al., 2020). There is thus a great 
deal of scope for highly context- dependent effects, or effects which 
are only apparent under certain conditions. For example, Zamorano 
et al. (2020) provided evidence that while floral AES options increased 
pollinator abundance and diversity there were no measurable effects 
on crop yield. Similarly, Redhead et al. (2020) reported that landscape 
composition increased yield resilience, especially in reducing the im-
pact of extreme weather events, but had no effect on average yields.

5  |  CONCLUSIONS

We have provided evidence that the proximity to the field edge re-
mains one of the primary determinants of crop yield in wheat and oil-
seed crops. We have shown how minimising yield loss at the field edge 
could be a way in which the ever- growing demands for agricultural 
outputs could be supported while meeting national and international 
environmental commitments. We had expected our use of precision 
yield data to, at least in part, elucidate some of the previous complexi-
ties surrounding the benefits provided by AES (e.g. Kleijn et al., 2006). 
However, despite our application of a large precision yield dataset, 
we were unable to show a measurable benefit of AES on crop yields, 
via metrics of the field edge effect. While it may be the case that AES 
are simply not providing these benefits across the wider agricultural 
system, our analyses also highlight the need for higher resolution data 
on AES positioning, to match that now available for agricultural data 
through precision agricultural systems. Mechanisms for achieving this 
could include new technologies in earth observation, but also future 
policy requirements to ensure the mapping and sharing of AES option 
data and the development of tools and protocols to support farmers 
in doing this. Ultimately, obtaining both environmental and agronomic 
data at common resolutions will be required to fully disentangle the 
complexities surrounding AES deployment and their associated ben-
efits and ultimately justify their expense.
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