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Changes in predator–prey interactions are often implicated as
drivers of major evolutionary change. A prominent example is
the dramatic changes in shallow marine assemblages during
the Mesozoic Marine Revolution (MMR) when major clades,
including rhynchonelliform brachiopods, became restricted
and less diverse. Currently, shallow-water temperate and
polar brachiopods can be large, but in the tropics, they
are small. By contrast, we demonstrate that throughout the
Jurassic large brachiopods occurred in shallow sites, from
polar to tropical latitudes, but are absent in later periods
from tropical areas. These changes occurred in parallel in both
major orders (Rhynchonellida and Terebratulida) and also
independently within the two sub-ordinal lineages within the
Terebratulida (terebratulinids and terebratellinids). Increases
in both grazing and predation pressures associated with the
MMR might account for this pattern. However, we note that
many current environments support both large brachiopods
and high densities of grazing species and suggest that the
pattern fits more closely to the intensification of durophagous
predation in shallow tropical waters.

1.  Introduction
Biological interactions are major structuring factors in ecosys-
tems, impacting organisms across scales, from morphological
adaptations of individuals [1], through controlling community
structure [2], to setting large-scale diversity patterns [3]. These
trends, or correlations, are clear but explanation of such effects
is the subject of a great deal of research in living assemblages.
Profound changes in predation or grazing pressure are also often
invoked to explain trends observed over evolutionary timescales,
for example, the rise of biomineralization at the beginning of
the Phanerozoic [4], and a wide range of morphological or life
habit attributes [5,6]. Such interactions have also been invoked in
an evolutionary context to explain observed shifts in clade-level
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dynamics such as reductions in diversity and abundance of ‘losing’ clades or their restriction into
habitats that provide a refuge from attack [5,7–9]. However, despite the attraction of such hypotheses
to explain changes in deep time they have proved difficult to test, as direct evidence of biological
interactions in the fossil record is sparse at best, and often limited to only particular guilds of predators
[5,10–12].

Brachiopods have been important marine organisms for over 500 million years. In the Palaeozoic
Fauna, large rhynchonelliform brachiopods were the dominant members of most shallow marine
communities [13]. In the Modern Fauna, rhynchonelliforms still occur in all oceans [14], often in dense
aggregations [15–18], but they are much less diverse and widespread than in previous geological times.
The decline in post-Palaeozoic brachiopod abundance and diversity has long been a topic of strong
debate among evolutionary biologists [9,19,20]. Explanations often centre on either competition with
bivalves [20,21], or the severity of the Permian/Triassic (PT) mass extinction [19,22]. Another hypothesis
is that having been severely depleted by the PT mass extinction, brachiopods failed the challenge of
the Mesozoic Marine Revolution (MMR) [9,23], either because of one or more of enhanced predation
pressure [8,24–27], increased grazing impact [28–30] or loss of stability or suffocation-risk caused by
increased bioturbation of the substrata [31].

The question as to whether predation, in particular, has had an important impact on post-Palaeozoic
brachiopod evolution has been hotly debated by palaeontologists [21,25,26,32,33]. It is, nevertheless,
clear that many modern predators (asteroids, fish, gastropods and crustaceans) do attack living
brachiopods [32,34–36] and that ancient brachiopods exhibit similar shell damage patterns to those
in modern assemblages [37–39]. In this paper, we seek to explore the changes in sizes of tropical
brachiopods over a critical time slice of the MMR and to marry this with recent data on the impacts of
crushing predators and grazing pressure on brachiopods.

One common way of assessing the impact of crushing durophagous predators uses repair frequency
(RF) in populations, either from living or from fossil skeletal assemblages [5,10,37,40]. The research
that led to the current study investigated RF in modern rhynchonelliform brachiopods at a global scale
[41]. It revealed a distinctive pattern in shallow waters (<200 m) of highest inferred predation pressure
in the mid-latitudes, with values much higher than at either polar or tropical latitudes. Although
latitudinal patterns of predation, particularly in the sea, are insufficiently resolved [42], there is a
generally accepted paradigm of increasing predation pressure towards the tropics [5,42–45], and there
is evidence for crushing predation of molluscan prey supporting this [46]. The pattern for brachiopods,
therefore, is in sharp contrast to this and, although the low RF levels at high latitudes have been
explained by the paucity of durophagous predators in polar regions [47], the low RFs in the tropics,
where durophagy is generally accepted to be intense [5,43–45], requires a different explanation which
we explore herein by analysing size patterns in rhynchonelliforms over the course of the MMR.

There are currently no large rhynchonelliform brachiopods, over 20 mm in length, in shallow
waters at low latitudes [48]. This conforms to the observation that tropical brachiopods tend to occupy
cryptic refugia, such as crevices or undersides of corals [15,49]. It is traditionally noted that thecidine
brachiopods are micromorphic and predominantly occur in the 10–100 m depth range in the tropics
and subtropics, where they are an important part of the cryptic fauna and have been so throughout
the post-Palaeozoic [26]. However, both the other extant rhynchonelliform brachiopod clades, the
terebratulides and rhynchonellides, also occur in the tropics and at shallow depths where these are
also characterized by small individuals [48]. This pattern has not been found in epifaunal bivalves,
where taxa with large body size (e.g. Tridacna and Pinctada) may be conspicuous in shallow tropical
waters [50]. These observations suggested that small size is used by rhynchonelliforms as a refuge
from predation and that large size in the tropics in this clade is precluded by intense durophagous
predation. If so it should be possible to look back in time for the period when durophagy caused
this change in size distribution. Here, we test the hypothesis that extremely small size of modern
tropical brachiopods was imposed by the increased predation of the MMR [41], by investigating the
maximum size of brachiopods at different palaeolatitudes in the post-Palaeozoic record and discussing
the relevance of this pattern to other alternative hypotheses, such as an increase in competition or
grazing disturbance.

2.  Material and methods
We collected data on the maximum size attained by modern brachiopod taxa by expanding upon
the database created by Peck and Harper [48]. This enhanced database of 442 terebratulide and 58
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rhynchonellide taxa was assembled from published accounts (70 papers and monographs) and direct
measurements made from museum samples (including a large set from the wet collections of the
Smithsonian Institution National Museum of Natural History (Washington, DC, USA), the Naturhis-
toriska riksmuseet (Stockholm, Sweden)) and our own field collections (Supplementary Information
1). The following were recorded: taxon (making no attempt to revise the generic or specific systemat-
ics), longitude and latitude of collection site, depth of collection and length of the ventral valve of
the largest individual encountered (in mm). For trawl data, we used the minimum depth recorded.
Taxonomic coverage of the database is good with 95% of extant genera of both terebratulides and
rhynchonellides captured and including c.90% of the type species. Our database was then filtered by
depth to capture sub-samples representing collection depths of less than 80 m (n = 122 for terebratu-
lides (representing at least 10 129 individuals) and n = 12 (representing at least 1583 individuals) for
rhynchonellides). We chose this depth cutoff because it coincides approximately with the photic zone
depth [51], which allowed comparative material from shallow depths to be recognized in the fossil
record by their co-occurrence with photosynthetic or photosymbiotic organisms (e.g. scleractinian
corals and coralline algae) and also because these depths were those associated with significant shell
damage [41].

Palaeontological data were collected using 170 published papers and monographs, supplemented
by direct measurements of specimens in museum collections of the Sedgwick Museum of Earth
Sciences (University of Cambridge, Cambridge, UK), the Oxford University Museum of Natural
History (UK), the Natural History Museum (London, UK), the Naturhistoriska riksmuseet (Stockholm,
Sweden) and the Smithsonian Institution National Museum of Natural History (Washington, DC, USA)
(electronic supplementary material, Supplementary Information 2). For every fauna (i.e. taxa collected
from the same locality and time interval) only the maximum-sized individual of the largest each of
the terebratulide or rhynchonellide taxa present was recorded (i.e. data for smaller taxa were not
recorded). The following data for the largest individual from each order (and for Jurassic terebratulides
for each of the suborders Terebratellinida and Terebratulinida) were recorded: locality, precise age of
deposit and length of the ventral valve (mm). As outlined above, only those samples collected with
clear evidence of occurrence in the photic zone were included. Palaeolatitudes were derived either
using the established value on the Paleobiology Database (https://paleobiodb.org) or from published
local palaeogeographic reconstructions.

In our analysis, the principal comparison is between the Modern and Jurassic brachiopods. The
Jurassic period was chosen because it directly pre-dated the second major MMR pulse [52].

3.  Results
Global size trends with latitude for modern or palaeolatitude for Jurassic taxa are strikingly differ-
ent for both terebratulides and rhynchonellides (figures 1 and 2). Our expanded and more focused
database reveals a pattern for recent shallow-water terebratulide taxa (n = 122) like that of Peck and
Harper [48] (figure 1a); this most diverse modern brachiopod clade often exceeds 50 mm length,
and the largest species occur in the mid-latitudes (30°−60°) in both hemispheres (the largest being
the Chilean Magellania venosa which exceeds 90 mm length). Up to 10° either side of the equator, all
records are uniformly small and even up to 25° latitude the maximum size is only 26.6 mm, apart
from Kraussina rubra from Namibia, which inhabits the atypical rich cold upwelling Benguela Current
[53]. The difference in size between the largest tropical species (between 20˚N and 20˚S) and those at
higher latitudes is significant, as shown by a comparison of the 20% largest species in both groups
(Mann–Whitney U statistic = 0.000, n = 4,10, p = 0.002). Larger tropical taxa than those shown in figure 1
do occur, but only in deeper waters (see electronic supplementary material, figure S1), for example, the
largest terebratulide record in the tropics is 57.6 mm long from beyond 800 m depth off Jamaica.

By contrast, shallow-water Jurassic terebratulides have a very different size distribution (figure 1b),
with large individuals occurring throughout the low latitudes (in 30 records from the palaeotropics
the maximum length recorded was 67 mm) and there is no discernible latitudinal trend in maximum
size. When the same analysis as that done comparing the size of the largest tropical species with
lower latitudes in living species is done for Jurassic terebratulides there is no significant difference
(Mann–Whitney U statistic = 53, n = 6,11, p = 0.93). Terebratulides have two sub-ordinal lineages (the
terebratulinids and terebratellinids) which had separated by the end of the Triassic [54]. Interestingly,
both of these include large shallow-water tropical Jurassic taxa and both undergo parallel trends of size
reduction in shallow tropical water across the MMR (see Supplementary Information 2). Additionally,
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we note that the only Jurassic superfamily with extant representatives—the Zeillerioidea—contains
large taxa, but is today found only in deeper bathyal or even abyssal waters [54].

Data for modern rhynchonellides are more limited, as they are much less diverse, particularly in the
tropics [55], and because they predominantly occur in deeper water today [26,56,57]. Modern rhyncho-
nellides attain smaller maximum sizes than terebratulides (the largest reported is 32 mm long). There
are few records from water depths shallower than 80 m and only two from tropical sites, the largest
of which is 15.8 mm (figure 2a), but rhynchonellides up to 30 mm length do occur in deeper tropical
waters (electronic supplementary material, figure S1). By contrast, there were far more shallow-water
rhynchonellides in the Jurassic [55,57]. Our data show Jurassic shallow-water rhynchonellides with
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Figure 1. Distribution of lengths of shallow (<80 m water depth) terebratulide brachiopods plotted against latitude during life.
(a) Extant taxa, each point records the length of the largest individual of a particular taxon at a given locality. Latitude versus
maximum size of recent terebratulides <80 m water depth (n = 122). (b) Jurassic taxa, each point records the maximum length of any
terebratulide brachiopod collected at a particular sampling site plotted against the palaeolatitude of that site. Palaeolatitude versus
maximum size of Jurassic terebratulides in shallow water (n = 78).
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large taxa (up to 62.3 mm) present across all latitudes, and the largest tropical Jurassic species was 58.1
mm long (figure 2b).

Having established that the modern size distribution of shallow-water brachiopods is strikingly
different from that of the Jurassic, it is of interest to establish when the pattern changed. Although
palaeotropical data for brachiopods are much sparser in the later periods than for the Jurassic itself
[58], there are no records of large taxa in this region at any time since the Jurassic (electronic supple-
mentary material, figures S2 and S3) except for records for the Caribbean during the Paleocene, which
are reported to be, like those from modern Namibia, influenced by a cold upwelling [59].
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Figure 2. Distribution of lengths of shallow (<80 m water depth) rhynchonellide brachiopods plotted against latitude during life.
(a) Extant taxa, each point records the length of the largest individual of a particular taxon at a given locality. (b) Jurassic taxa,
each point records the maximum length of any rhynchonellide brachiopod collected at a particular sampling site plotted against the
palaeolatitude of that site.
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4.  Discussion
Our data indicate that, although large brachiopods were present in the shallow-water palaeotropics in
the Jurassic, large taxa were, and remain to the present day, excluded from these habitats after this
period. This pattern of size distribution is evident in all the extant brachiopod clades; terebratulides
(including the two suborders that had already separated prior to the Jurassic [54]), rhynchonellides and
thecidines.

The MMR is a complex multifactor event, and the relative importance of competition, grazing and
predation are difficult to unravel. However, information on the likely importance of the main factors
involved can be obtained from the analysis of the ecology of living brachiopod species. The size
distribution of modern shallow-water brachiopods in the tropics is generally below the minimum size
at which repaired damage has been recorded in populations living at higher latitudes [41]. However,
larger brachiopod taxa do occur at these latitudes but only in deeper waters where durophagous
predators are much less active, as shown by the low observed repair frequencies beyond 100 m [41].

Small body size has two advantages in avoidance of predation. Firstly, it facilitates, but does
not necessitate, occupation of cryptic habitats such as crevices or the undersides of reef-building
organisms. These confined habitats offer protection from larger grazers and predators. Secondly,
low flesh yield reduces prey value [60], and the data for brachiopods demonstrate size refuges for
both individuals below a threshold size and for large individuals above a critical size [61]. Clearly,
small size does not provide immunity from predation; predatory drill holes occur in a range of
micromorphic brachiopods [32,62,63] and grazing species such as sea urchins consume small species,
including brachiopods [15,28]. Other potential defensive adaptations in shallow-water brachiopods
include cryptic colour patterning [64] and ornamentation, noting also that spiny terebratulides were
not present, or were rare before the MMR, but much more common after [27], another factor indicating
an effect of increased predation.

Aside from predation pressure, other biological interactions intensified during the MMR [5,7] and
might be considered as potential causes of the changes described here. However, although we accept
that competition and grazing may be locally important, we reject their major roles here. In a seminal
work, Stanley [8] concluded that competition rarely, if ever, results in the removal of species, and that
predation is a far stronger factor in species elimination than competition. In ecology, the competitive
exclusion principle, often called Gause’s law [65], states that when two species compete for the same
resource one must be driven to extinction by competition. However, such exclusion is very rare
in ecology arguing against significant competitive exclusion [66]. Modern shallow-water brachiopod
communities at all latitudes coexist with a wide range of sessile encrusters, such as sponges, ascidians
and bryozoans, often in dense aggregations [18,67 and see electronic supplementary material, figure
S4], and all of these taxa are competing directly for space. To argue that increased competition was
important in restricting the size of shallow-water tropical brachiopods would require evidence of a
decrease in competition between encrusting communities with increasing latitude. Although competi-
tion has been shown to decrease with latitude in encrusting Bryozoa [68], there is still intense seabed
competition in Antarctica. Competition in bryozoans also becomes more polarized towards the poles,
with poorer competitors failing more frequently at high latitude [69]. Furthermore, these studies on
bryozoans have all been conducted at shallow depths, <30 m where iceberg scour and anchor ice
have strong effects and exclude brachiopods [70]. At depths beyond 30 m, however, the Antarctic
seabed is characterized by very dense and abundant communities dominated by encrusting sponges,
holothurians and ascidians [67 and electronic supplementary material, figure S4c]. The biomass of
these communities is around an order of magnitude higher than similar areas of seabed in boreal and
subtropical regions [70,71]. Such a high standing biomass and permanent standing stock indicate that
spatial competition in Antarctica is intense, and the existence of large brachiopods (largest recorded is
58.4 mm) there, suggests that size is not restricted by competitive interactions.

Increased grazing is the other potential factor to explain the exclusion of large tropical brachiopods
since Jurassic times. However, there are several lines of information arguing against this. Firstly,
by the Jurassic grazing of hard substrata was already well-developed [29,72,73]. Secondly, there are
modern shallow-water brachiopod communities at middle and high latitudes where large taxa coexist
with strong grazing pressures (see electronic supplementary material, figure S4). For example, the
brachiopod fauna of Antarctica is among the most diverse in the current oceans with 63 species
recorded there [74], some of which are large and exceed 50 mm in length [60]. The Antarctic seabed
has also been reported to have extremely high densities of grazing species, with the urchin Sterechinus
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neumayeri occurring at densities up to 600 m−2 and a biomass of over 500 g m−2, and the limpet Nacella
concinna regularly has densities reported over 200 m−2 [75–77]. These are as high or higher densities
of grazing species reported in Antarctic as anywhere globally. We found no reports of similarly high
grazer densities in the tropics, where mean densities of 7.7 m−2 and highs of 25 m−2 were reported for
the Caribbean from a compilation of over 70 published sources [78], and such densities are considered
very high for coral reefs in general [79]. Similar surveys in the Seychelles found mean urchin densities
of 0.02 m−2 and maxima of 0.16 m−2 [80], in Kenya mean densities were less than 10 m−2 and the
maximum was between 50 and 60 m−2 [81], in the Florida Keys these values were 0.3 and 0.6 m−2 [82],
and in Moorea, urchins occurred at densities less than 0.03 m−2 [83]. A further consideration is that
small individuals or taxa ought to be particularly susceptible to grazing [30,84], with larger individuals
reaching a size refuge. Such a solution would favour rapid growth and should be easier to attain in the
tropics where growth rates in the oceans are fastest at lower latitudes, and an order of magnitude faster
in tropical bivalve molluscs compared to polar species [85] while the brachiopod Liothyrella neozelanica
in New Zealand grows 3.3–5.4 times faster than the Antarctic congeneric, Liothyrella uva [86].

In conclusion, our data show that large brachiopods were lost from habitats where durophagous
predation is most intense in tropical shallow areas, and this pattern was established during the early
part of the MMR and persists to the present day. The current data do not allow us to determine
whether the decrease in size in tropical brachiopods was due to either exclusion of large, and the
survival of small taxa or to miniaturization of existing specific lineages by paedomorphic processes.
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