
1. Introduction
The last few years have seen the release of a rapidly increasing number of seismic catalogs developed by means of 
enhanced detection methods, including ones based on machine learning (e.g., Lapins et al., 2021; Liu et al., 2020; 
Ross et al., 2018). These advanced techniques reveal high-resolution spatiotemporal characteristics of seismicity 
(e.g., Ross et al., 2019; Shelly, 2020; Tan, Waldhauser, Ellsworth, et al., 2021) that were previously untracea-
ble in catalogs obtained through standard processing procedures (e.g., routine detections and analyst-reviewed 
travel time measurements), whose real-time implementation becomes particularly challenging during aftershock 
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picture of how earthquake sequences evolve. These next-generation catalogs will be released and updated 
in real time conditions soon. Therefore, we ask whether the extra information they provide can be exploited 
to boost the performance of current popular models of short-term earthquake forecasting, namely, physical 
models of fault-to-fault stress interactions and purely statistical models. We use three enhanced catalogs for 
the 2016–2017 Central Italy earthquake sequence to develop physical and statistical forecasts for the first 6 
months of M3+ seismicity. By means of well-established tests, we quantify the predictive skill of the models 
and benchmark them against forecasts developed using real-time data sets only. We find that both physical and 
statistical forecasts benefit from gradually incorporating the triggering contributions from the many small, 
newly revealed events reported in the enhanced catalogs, but their overall performance does not convincingly 
improve compared to their respective real-time realizations. Sensitivity tests show how future experimental 
setups should consider that (a) even small variations in the basic components of different catalogs can affect the 
performance of the resulting forecasts and (b) the typically adopted model spatial resolutions are too coarse to 
capture small-scale triggering patterns described by enhanced catalogs.
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sequences. Seismologists have high hopes for this new generation of catalogs to open novel research avenues on 
unknown earthquake triggering mechanisms. Furthermore, since their compilation in real-time conditions is now 
within reach (Zhu et al., 2022), enhanced seismic catalogs might ultimately boost the predictive skill of earth-
quake forecast models (Beroza et al., 2021). While the spatial resolution of current data sets is certainly impres-
sive and allows describing in detail the cascading nature of earthquake occurrence (Arrowsmith et al., 2022) as 
well as fault geometries (Waldhauser et al., 2021a), how modelers should use the information encoded in those 
data products is not straightforward. For example, it is unclear how the high-resolution details about the seis-
micity evolution can be adequately captured to improve probabilistic models that inform operational earthquake 
forecasts (Jordan et  al.,  2011). Over the last few years, seismic sequences such as those that occurred in the 
Central Apennines (Italy, 2016–2017) or in Ridgecrest (California, 2019) presented scientists the opportunity to 
develop and validate short-term earthquake forecasts employing real-time and near real-time seismic catalogs 
and to calibrate modeling protocols for physical and statistical predictive models (Mancini et al., 2019, 2020; 
Marzocchi et  al.,  2017; Milner et  al.,  2020; Savran et  al.,  2020). Those experiments represented substantial 
advances in understanding how to improve the performance of physics-based earthquake forecasts. This cate-
gory includes continuum mechanics models that couple the coseismic Coulomb stress transfer among faults 
(Harris & Simpson, 1992) and laboratory-derived friction laws describing the seismicity response on faults to 
these stress perturbations (e.g., Dieterich, 1994), commonly known as Coulomb Rate-and-State (CRS) forecasts. 
There are tantalizing indications from state-of-the-art models that new information encoded in the seismicity 
patterns of next-generation earthquake catalogs will lead to a step forward in their predictive skill. Recent exper-
iments (Mancini et al., 2019, 2020) revealed that CRS models are potentially as informative as (and occasion-
ally outperform) standard point-process empirical models like the Epidemic-Type Aftershock Sequence (ETAS; 
Ogata, 1988) models, but only when they incorporate high-quality input data. These pseudo-prospective (i.e., 
blind forward) tests concluded that stress triggering models particularly benefit from the inclusion of (a) optimized 
parameterization, (b) finite-fault slip distributions, (c) small-scale spatial variability of fault networks (receiver 
faults) with rupture kinematics informed from multiple data sources (e.g., past and unfolding focal mechanism 
solutions, smoothed regional stress inversions, mapped active faults, etc.), and (d) triggering contributions from 
smaller earthquakes (so-called “secondary triggering”). The latter is a significant factor for models of earth-
quake interactions to track the fine-scale evolution of the stress state that controls the local conditions for earth-
quake nucleation (Hanagan et al., 2022; Hanks, 1992; Helmstetter, 2003; Helmstetter et al., 2005; Marsan, 2005; 
Meier et  al.,  2014). Although counterevidence has been occasionally reported (e.g., Nandan et  al.,  2022), 
there is now a growing body of evidence supporting the notion that triggering contributions and local faulting 
patterns of small-magnitude events help forecast larger earthquakes not only in stress-based forecasts (Cattania 
et al., 2018; Mancini et al., 2019, 2020; Parsons et al., 2012; Segou & Parsons, 2014) but also for statistical 
models across long-term time-independent experiments (Helmstetter & Werner, 2012; Helmstetter et al., 2007; 
Werner et al., 2010, 2011) and short-term time-dependent tests (Helmstetter et al., 2006; Werner et al., 2011). 
Fully prospective evaluations by the Collaboratory for the Study of Earthquake Predictability (CSEP; Michael 
& Werner, 2018; Schorlemmer et al., 2018) corroborate these findings (Bayona et al., 2022; Zechar et al., 2013).

In this context, the jointly funded NERC-NSFGEO project “The Central Apennines Earthquake Cascade Under 
a New Microscope” focused on the development of dramatically more comprehensive earthquake catalogs for 
the 2016–2017 Amatrice-Visso-Norcia (hereinafter, AVN) Italian seismic sequence using different techniques, 
which made it one of the best studied earthquake sequences ever. The AVN sequence started on 24 August 2016 
at 01:36:32 UTC with an M6.0 event near Amatrice. During the following 5 months, earthquakes were triggered 
over a 60-km long normal faulting region. Among these, the most notable were an M5.4 and an M5.9 at the 
northern termination of the activated fault system near the village of Visso, an M6.5 mainshock near Norcia, and 
four M5+ events in the Campotosto area (at the southernmost extent of the sequence).

In this work, we take advantage of the largest offline catalogs produced within the project, featuring a magni-
tude of completeness up to two units lower than the real-time catalog, to develop the first set of CRS and ETAS 
short-term earthquake forecasts based on high-resolution and deep-learning catalogs and tested in a retrospective 
experiment with the aim of (a) investigating if preliminary forecasts were already reliable enough or, conversely, 
we can provide higher predictability by informing current state-of-art modeling strategies with enhanced cata-
logs; (b) clarifying which key elements of these new catalogs (e.g., increased spatial clustering, event relocations, 
etc.) are the most beneficial, or detrimental, for models' performances; and (c) quantifying how the predictive 
skills of the forecasts improve when the assumed minimum triggering magnitude (MMIN) gradually decreases.
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2. Data
We develop and test our forecasts using four out of the six catalogs released for the AVN sequence in the last 
5  years. These catalogs present differences in the serial components of their development workflow starting 
from network geometries, detection, arrival time measurements, phase associations, locations, and magnitudes. 
We name them with progressive numbering, from CAT0 to CAT5. CAT0 is the real-time catalog obtained by 
the Italian National Institute of Geophysics and Volcanology (INGV) monitoring system from data collected by 
the permanent Italian National Seismic Network (ISIDe Working Group, 2007); it includes 73,009 events from 
24 August 2016 to 31 August 2017, reported with local magnitudes (MLs) and featuring a bulk completeness 
of Mc = 2.3 (Mancini et al., 2019). We do not employ the CAT1 and CAT2 catalogs as they are different reali-
zations of the real-time catalog, featuring the same CAT0 detections and magnitudes. The successively released 
catalogs all benefit from a much denser seismic network of 155 permanent and temporary stations deployed in 
the affected area following the M6.0 Amatrice earthquake (Moretti et al., 2016), and we categorize them as the 
“enhanced” catalogs. In the first, CAT3 (Michele et al., 2020; Spallarossa et al., 2020), detections are gener-
ated by an automated picker (Scafidi et al., 2018; Spallarossa et al., 2014) while the absolute hypocenters of its 
440,727 events are obtained by a nonlinear location algorithm (Lomax et al., 2000). CAT3 also features an auto-
mated reevaluation of MLs and has a completeness of Mc = 0.6. Starting from the CAT3 locations, Waldhauser 
et al. (2021a) applied a double-difference relocation algorithm with cross-correlation-based arrival time measure-
ments to reduce the location error to only a few tens of meters, obtaining the high-resolution CAT4 catalog, which 
comprises 390,336 events (with same MLs as CAT3) with Mc = 0.5. Finally, we use the deep-learning-derived 
CAT5 by Tan, Waldhauser, Ellsworth, et al. (2021), which is the largest catalog released so far for the sequence 
(Mc = 0.2), reporting 900,058 events with moment magnitudes until 15 August 2017. In CAT5, earthquakes are 
detected using the PhaseNet picker (Zhu & Beroza, 2019) based on a deep-neural network, and relative locations 
are obtained by means of the hypoDD double-difference method (Waldhauser & Ellsworth, 2000), but without the 
benefit of cross-correlation-based arrival time measurements. Since both CAT4 and CAT5 feature high-precision 
relative relocations, we refer to them as the “high-resolution” catalogs. For a more detailed description of the 
development process leading to each catalog and a thorough comparative illustration of the data sets used in this 
study, see Chiaraluce et al. (2022).

To calibrate the models' parameters, we use the same data as Mancini et al. (2019) to ensure consistency. They fit 
the rate-and-state and ETAS parameters on the M3+ presequence catalog (“learning phase catalog”) of the Ital-
ian Seismological Instrumental and Parametric Database (1990–2016 and 2005–2016 time periods for CRS and 
ETAS models, respectively) using the Maximum Likelihood Estimation approach by Zhuang et al. (2012). Like-
wise, our CRS models employ their set of finite-fault slip models (FFMs; Chiaraluce et al., 2017; Scognamiglio 
et al., 2016; Tinti et al., 2016). To define the receiver-fault matrix of the CRS models, we use their combination 
of kinematic parameters of large-scale fault structures of the Central Apennines as described by the Database of 
Individual Seismogenic Sources (DISS Working Group, 2018) and focal mechanisms for the CRS learning phase 
reported in the Italian centroid moment tensor catalog.

3. Methods
CRS models presented in this study share a 6-month forecast horizon (24 August 2016–24 February 2017) with 
the exception of the CRS model developed using CAT5 along with all ETAS models that are limited to the 
high-rate period of the first 3 months of the sequence due to computational limitations. To ensure consistency 
and comparability of results, we adopt the same spatiotemporal model resolution of the benchmark forecasts 
previously published by Mancini et al. (2019). Thus, all forecasts (a) evolve through daily time windows and are 
updated either every 24 hr or at the occurrence of an M5.4+ earthquake and (b) are developed for a 2D gridded 
testing region of ∼150 km × 150 km centered on the M6.0 Amatrice earthquake and discretized with 0.02° 
(∼2 km) wide square bins. Coulomb stress change calculations for all CRS models are performed on cubic bins 
between 0 and 12 km of depth.

To evaluate the added, if any, predictive value of forecasts that incorporate enhanced catalogs, we start by select-
ing the best performing near real-time CRS and ETAS formulations by Mancini et al.  (2019) as benchmarks. 
Here, we refer to them as CRS-CAT0 and ETAS-CAT0, respectively, where the second half of the name indicates 
the “input catalog” (or “input seismicity”) that informs the forecast model. The CRS-CAT0 main modeling 
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elements are as follows: (a) stress perturbations from M3+ events of the CAT0 input catalog (Figure 1a); (b) a 
heterogeneous background seismicity rate obtained by stochastic declustering (Zhuang et al., 2002) of the CRS 
learning phase catalog and smoothed in space with the adaptive kernel method by Helmstetter et  al.  (2007); 
(c) structural fault heterogeneities represented by a grid of spatially variable receiver planes derived by nearest 
neighbor association of (i) focal mechanisms included in the learning phase catalog (with random choice of nodal 
planes) and (ii) kinematic parameters from the DISS database in the off-fault regions; (d) rate-and-state consti-
tutive parameters fit on the CRS learning phase catalog (𝐴𝐴 𝐴𝐴𝐴𝐴  = 0.015 MPa and 𝐴𝐴 𝐴𝐴𝐴  = 1.9 𝐴𝐴 ⋅ 10 −4 MPa/year) and a 
fixed average coefficient of effective friction 𝐴𝐴 𝐴𝐴

′  = 0.4; and (e) FFMs for the six M5.4+ events of the sequence: 
for all 3 𝐴𝐴 ≤ M 𝐴𝐴 𝐴 5.4 events devoid of an FFM, the model either (a) employs a synthetic fault with nodal plane 
randomly selected from their near real-time moment tensor solution, empirically derived dimensions (Wells & 
Coppersmith, 1994) and uniform slip distribution from the moment relation of Hanks and Kanamori (1979) or (b) 
if no form of fault characterization is available, assumes an isotropic coseismic stress change distribution whose 
magnitude is directly proportional to the seismic moment and inversely proportional to the hypocentral distance 
(Chen et al., 2013).

Similarly, ETAS-CAT0 projects seismicity generated by events with MMIN = 3. Within each forecast window, this 
model considers the mean expected earthquake rates from 1,000 stochastic simulations of synthetic catalogs, with 
parameters fixed for the whole forecast horizon. Additional details about the formulations of the physical and 
statistical benchmarks, including the complete set of equations, are provided in Tables S1 and S2 in Supporting 
Information S1.

Developed with the same CRS-CAT0 and ETAS-CAT0 modeling principles and parameterizations, we gener-
ate six new forecast versions based on the newly available catalogs: CRS-CAT3, ETAS-CAT3, CRS-CAT4, 
ETAS-CAT4, CRS-CAT5, and ETAS-CAT5. Supported by the improvements in the completeness of the enhanced 
earthquake catalogs, we now extend the incorporation of secondary triggering over a wider range of minimum 
triggering magnitudes, down to M1 (Figures 1b–1d). Compared to the 1,067 M3+ stress sources used in CAT0 
benchmark models, for a 6-month experiment the potential number of stress-perturbing (or “parent”) events 
increases by orders of magnitude: 52,159 and 49,862 for models developed with CAT3 and CAT4, respectively, 
and 148,211 events for the 3-month CAT5 models.

Figure 1. Input (a–d) and target (e–h) earthquake catalogs used in this study. Input catalogs inform the development of the models, and target catalogs are used to 
assess the performance of the forecasts. Yellow stars indicate the location of M5+ earthquakes.
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We formally evaluate the performance of each forecast against the M3+ seismicity reported in the related catalog, 
that we name “target catalog” or “target seismicity” (Figures 1e–1h): for the 6-month tests, 1,088 targets in CAT0, 
835 in CAT3, and 809 CAT4. In CAT5 we consider the 998 targets of the first 3 months. We also cross-validate 
models against the target seismicity of the enhanced catalogs assuming those are more representative of the 
observed earthquakes. We use standard metrics, such as the likelihood-based S-test (Zechar et al., 2010) to assess 
the absolute spatial consistency of the forecasts and the T-test (information gain [IG] per earthquake; Rhoades 
et al., 2011) for the relative model ranking as established by the CSEP group. A description of the statistical 
metrics used in this paper is available in Supporting Information S1.

4. Results
In this section, we present the expected seismicity rate maps of forecasts based on different earthquake catalogs 
and compare them against the observations for specific periods during the AVN sequence. We then illustrate the 
statistical model performance evaluation, describing the absolute predictive power of the new models and their 
relative skill compared to the benchmark near real-time forecasts.

4.1. Forecast Maps

In Figure 2 and Figure S1 in Supporting Information S1, we show all the forecast maps for physics-based and 
statistical models, respectively, developed using the entire set of input catalogs, and we compare the expected 
rates against the M3+ observations as reported in each of the four catalogs. First, a preliminary visual anal-
ysis reveals that all forecasts satisfactorily bound the aftershock area, especially the stress-based models 
(Figure  2). We observe only subtle differences between the near-source seismicity rates projected by CRS 
and ETAS models developed with CAT0 and by the counterparts employing the enhanced catalogs. When we 
compare the CRS/ETAS-CAT0 expected rates against the aftershock distributions reported in the other catalogs 
(Figures 2b–2d and Figures S1b–S1d in Supporting Information S1), we still find a good overall agreement, 
although some off-fault target seismicity is not well captured, especially when we set the deep-learning catalog 
(CAT5) as our target (Figure 2d and Figure S1d in Supporting Information S1). This off-fault seismicity could 
be a result of misassociation, arrival-time measurement error, or it could be real and a signature of delocalization 
of failure (Collettini et al., 2022). Conversely, CAT5 now reveals activity on branching faults to the north-east 
of the main fault system, where the “CAT0” models did project heightened rates but no M3+ aftershocks were 
detected in real time.

CRS forecasts incorporating secondary triggering from M1+ events (Figures 2e–2j) explain some isolated target 
seismicity in the southwestern area of seismicity suppression (stress shadow) cast by the mainshocks (e.g., 
CRS-CAT4, Figures 2h and 2i). Nevertheless, some seismicity reported in the enhanced catalogs—but absent 
in CAT0—occasionally violates the shadow regions, indicating that further research is required to understand 
earthquake triggering in areas of coseismic stress reduction (e.g., Segou & Parsons, 2020). Within the set of new 
stress-based models, we observe the main differences between the CRS-CAT3 and CRS-CAT4 models: (a) at 
the edges of the main aftershock zone, where the former features increased rates at the southern tip of the fault 
system and the latter presents higher rates in the rest of the peripheral area, and (b) at the near epicentral areas of 
the Visso and Norcia events where CRS-CAT4 projects heightened seismicity. We attribute those findings to the 
relocation process, which is the only difference between the two catalogs. By contrast, the 3-month CRS-CAT5 
does not present striking differences with respect to CRS-CAT4 by visual inspection.

Similarly, there are only minor large-scale visual differences between the preliminary ETAS (Figures S1a–S1d in 
Supporting Information S1) and the updated ETAS models implementing M1+ parent events (Figures S1e–S1j 
in Supporting Information S1); however, the near-fault expected rates in ETAS-CAT4 appear to be slightly lower 
than the other competing ETAS forecasts and more homogeneously distributed over a wider area. The possible 
reason behind this result is that CAT4 reports 35 M3+ parent earthquakes fewer than CAT3 (11 of which have 
M 𝐴𝐴 ≥ 4).

 21699356, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025202 by B
ritish G

eological Survey, W
iley O

nline L
ibrary on [15/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

MANCINI ET AL.

10.1029/2022JB025202

6 of 16

4.2. Likelihood Maps

In Figure 3 and Figure S2 in Supporting Information S1, we present the S-test log-likelihood (LLS) maps of the 
CRS and ETAS models, respectively, for the entire testing region aggregated over the daily forecast windows. 
Models with higher LLS provide a better match with the observed earthquake locations. LLS are calculated from 
normalized expected rates to isolate the forecasts' spatial performance. We first evaluate each model against its 
corresponding input catalog and then cross-validate them against more evolved catalog generations. In general, 
we find that for all input-target catalog combinations, the ETAS joint log-likelihood (jLLS) values are higher than 
the CRS models, even when the latter are developed using the enhanced catalogs.

A persistent problem in the near real-time CRS forecasts published by Mancini et al. (2019) was represented by 
the low LLS values in the high clustering region around Mt. Bove (Figure 3a), which is the northern termination 
of the Mt. Vettore fault system activated by the M6.5 Norcia mainshock. We observe that model spatial perfor-
mance in such critical regions, as well as in the wider near-source area, improves when the physical model incor-
porates M1+ stress sources in CRS-CAT3 (Figure 3e) but deteriorates again when models are evaluated against 

Figure 2. (a–j) Maps of expected seismicity rate for the Coulomb Rate-State (CRS) models developed with and evaluated 
against the four catalogs. CAT0, CAT3, and CAT4 models cover a 6-month forecast period, while CRS-CAT5 has a 3-month 
horizon. Each rate map is overlain with the corresponding target seismicity for the periods of interest: black stars for the M5+ 
earthquakes and black dots for the 3 𝐴𝐴 ≤ M 𝐴𝐴 𝐴 5 events.
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the relocated CAT4 and CAT5 catalogs (Figures 3f–3i). We also find that all CRS models evaluated using the 
enhanced catalogs (Figures 3b–3j) suffer from the presence of the now revealed, sparse off-fault target seismicity 
which is instead missing in CAT0; this feature is particularly evident when models are validated against CAT5, 
which presents a previously undetected cluster of events to the east of the main aftershock zone. Surprisingly, the 
highest LLS values are reached when the near real-time model is evaluated versus the enhanced CAT3 and CAT4 
catalogs (Figures 3b and 3c), suggesting that the overall spatial forecast of the CRS-CAT0 model incorporating 

Figure 3. (a–j) S-test's log-likelihood (LLS) maps for the Coulomb Rate-State models developed with and evaluated against the four generations of catalog. In each cell, 
LLS values are aggregated over single daily forecast windows for a total period of 3 months. For each model, we report its joint log-likelihood value when it is validated 
versus catalogs that are either equal or more evolved than the one used for its development.
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only the M3+ stress sources was already satisfactory. On the other hand, we obtain the lowest spatial consistency 
when models are validated against CAT5, presumably because of the presence of more newly detected target 
seismicity in off-fault regions that alter the likelihood values at a very localized scale, especially when tightly 
clustered (Figure 3j).

The ETAS model ranking based on the LLS values (Figure S2 in Supporting Information S1) follows that of the 
CRS models, with the ETAS-CAT0 forecast evaluated against the CAT3 and CAT4 catalogs ranking among the 
best-performing models. However, in this case ETAS-CAT3 provides a slightly better spatial performance than 
the competing model versions.

4.3. Information Content of the Models

For an overall assessment of the skill of the new model generations compared to the near real-time forecasts, we 
calculate the IG per earthquake of each new CRS and ETAS model against the respective “CAT0” realization as 
a benchmark. We note that, unlike the LLS, IG scores are calculated from likelihoods derived from unnormalized 
seismic rates; therefore, this single metric accounts for model performance in reproducing both the spatial distri-
bution of triggered earthquakes and their number. Positive IG values indicate a better performance of the model 
with respect to the selected benchmark, while negative values denote an information loss. To standardize the test 
and to facilitate the interpretation of the results, we (a) select a common 3-month testing phase for all models 
and (b) employ a consistent testing catalog for each model-benchmark couple (i.e., the likelihoods of model 
CRS/ETAS-𝐴𝐴 CAT𝑖𝑖 , with 𝐴𝐴 𝐴𝐴  = 0, 3, 4, 5, and of the benchmark CRS/ETAS-CAT0 are both calculated against 𝐴𝐴 CAT𝑗𝑗 , 
with 𝐴𝐴 𝐴𝐴  = 4, 5). Furthermore, to quantify the effect of incorporating gradually more complete input catalogs in 
the forecasting protocols, for each model, we illustrate how the IG scores vary when we consider different MMIN 
thresholds (Figure 4).

At the same minimum triggering magnitude of the CRS-CAT0 benchmark (MMIN = 3) no CRS model has a statis-
tically significant IG over the CRS-CAT0 model developed with the monitoring room catalog (Figures 4a–4d). 
Instead, the performance of models developed using the enhanced catalogs oscillates from merely comparable 
(CRS-CAT4, Figure 4c) to slightly poorer than CRS-CAT0 (CRS-CAT3 and CRS-CAT5, Figures 4b and 4d). 
In any case, the information losses are no greater than 0.9 IG units (by comparison, Mancini et al. (2019) found 
that the CRS-CAT0 model that we use here as benchmark reached IGs up to 8 units over simplistic CRS forecast 
models using real-time data). When we extend the analysis to a wider range of minimum triggering magnitudes, 
from MMIN = 1 to 5, we find that (a) within any single model IG values gradually rise as models incorporate second-
ary stress triggering from progressively smaller events and (b) no model is more informative than CRS-CAT0. 
We observe this IG trend both when CRS models are validated versus CAT4 (red symbols in Figure 4) and 
versus CAT5 (blue symbols). This result confirms and emphasizes the importance of secondary triggering for the 
success of stress-based models; however, for MMIN 𝐴𝐴 ≤ 2 the IG tends to plateau (Figures 4a, 4b and 4d) and in some 
cases drops at MMIN = 1 (CRS-CAT4, Figure 4c). Therefore, the question arises of whether this outcome is due to 
the fact that M < 2 events do not contribute to the local M3+ aftershock triggering or instead reflects the limits of 
an insufficient model spatial resolution to describe stress patterns at a subkilometric level.

Another interesting aspect is the spread at any MMIN threshold between the IG trends depicted by models eval-
uated against CAT4 and CAT5, as it is diagnostic of how the likelihood-based model ranking is sensitive to 
catalog selection. We observe that while CRS models developed with CAT4/5 appear less sensitive to the choice 
of the target catalog, CRS-CAT3 exhibits marked differences and performs worse when validated against CAT5 
(𝐴𝐴 ∆𝐼𝐼𝐼𝐼 ≈ 0.5). This remark shows how alternate catalogs can describe the same sequence differently. The IG 
discrepancies between the CRS-CAT3 and CRS-CAT4 sets of models are surprising and beg the question on how 
stability of catalogs could be quantified during (or shortly after) their development.

We find that the IG trends of ETAS forecasts (Figures 4e–4h) mostly mirror those of physical models, confirm-
ing the general benefit from secondary triggering processes for statistical models as well. Similarly to the CRS 
counterparts, the ETAS IG values have the tendency to level out at MMIN 𝐴𝐴 ≤ 2 (Figures 4f and 4h), and in the case 
of ETAS-CAT4 they significantly fall at MMIN = 1 (Figure 4g). Interestingly, ETAS realizations with MMIN < 5 
developed with the enhanced catalogs outperform ETAS-CAT0 when they are evaluated against CAT4. On the 
other hand, they all rank slightly worse than the benchmark when CAT5 is set as testing catalog.
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4.4. Sensitivity Tests

To explore the reasons behind our findings, we perform sensitivity tests on three potentially critical elements 
related to catalog development that could influence the performance of forecast models: the magnitude estima-
tion, the event locations, and the spatial discretization.

According to the formulation of CRS and ETAS models, the higher the magnitude of a parent (or stress-perturbing) 
event the larger the number of its directly triggered earthquakes and the area of influence of the spatial kernel over 
which they decay. In Figure 5, we plot the cumulative magnitude difference per spatial bin between the matching 
parent events of CAT4 (with automatically reestimated MLs) and CAT0 (with preliminary MLs) against the 
resulting cellwise LL differences when models developed using the two catalog generations are evaluated against 
CAT4. Overall, we find that the majority of those events present lower magnitudes in CAT4, although in most 
bins the cumulative differences are well below one unit of magnitude. For the ETAS model, we observe a rough 
visual agreement between information loss (i.e., a lower LL) and negative magnitude differences for ∼60% of 

Figure 4. (a–d) Average daily information gain (IG) per earthquake from Coulomb Rate-State (CRS)-CAT0 of the whole set of CRS models for a cumulative 3-month 
forecast horizon. Each of the CRS models developed with enhanced catalogs is presented in five versions implementing a different minimum triggering magnitude 
(MMIN) from M5 to M1. The MMIN values for CRS-CAT0 range from M5 to M3 due to the more limited completeness of the real-time catalog (gray shaded area). A 
model is deemed more informative than the reference if its mean IG is positive and if its error bars do not cross the IG = 0 line. Red and blue symbols indicate models 
validated versus CAT4 and versus CAT5, respectively. Panels (e–h) same as the left panels but for the set of Epidemic-Type Aftershock Sequence (ETAS) realizations.
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cells throughout the duration of the sequence. Conversely, we find a more balanced 𝐴𝐴 ∆LL distribution for the 
CRS model, where several cells present an almost constant performance especially until the Norcia mainshock 
occurrence. Interestingly, for both models, we find that bins where the effect of magnitude re-estimation appears 
most detrimental (up to 10 LL units after the Amatrice and Norcia mainshocks) are not those with the largest 
cumulative magnitude difference, underlining the importance of the employed spatial kernel.

Relocated catalogs, such as CAT4, provide a highly clustered description of seismicity at local scales. Conse-
quently, they aggregate seismicity in an increasingly smaller number of spatial bins and, in turn, increase the 
number of empty grid cells in the testing region. Their imprint on the spatial grid of the forecast perturbs the 
likelihood-based scoring of the models due to differences in the spatial distribution of target seismicity. However, 
by visual inspection we see that the overall spatial differences arising from the relocation procedure in the cluster-
ing characteristics of CAT3 and CAT4 target seismicity are likely minimal at a regional scale (Figures 1f and 1g). 
Still, relocations of parent events may result in local redistribution of expected rates at the single spatial bin scale. 
To quantify such an effect, we compare between CRS-CAT3 and CRS-CAT4 (since CAT4 is the relocation of 
CAT3) when their performances are both evaluated against the relocated CAT4 catalog for time windows of inter-
est in between mainshocks (Figure 6). As expected, the influence of relocation varies between high and low-rate 
periods of the sequence, with results suggesting a weak information loss during the high-rate period between the 
Amatrice and Visso earthquakes (IG 𝐴𝐴 ≈ −0.25) and a small IG at the low-rate period after the Campotosto events 
(IG 𝐴𝐴 ≈ 0.35). Overall, the CRS-CAT4 model does not present strong evidence for a better/worse performance. 
However, we note that the small differences between forecasts using non- and relocated earthquake catalogs could 
be attributed to the extremely large number of stations that recorded the sequence. Therefore, it could be argued 
that the effect of more precise hypocentral locations (i.e., with average relative horizontal location error <0.1 km 
in CAT4, about one order of magnitude smaller than in CAT3) is either negligible or not resolvable using our 
standard 2-km spatial resolution.

The discretization of the testing region might hamper our ability to determine the effective local performance 
of models, particularly for forecasts based on enhanced catalogs that enable triggering contributions from very 
small magnitude events (e.g., source fault lengths are smaller than the grid spacing). In Figure 7, we illustrate 
the absolute performance of CRS-CAT4 and ETAS-CAT4 in terms of LLS over time. We produce three versions 
of each model using a 5-km, a 2-km, and a 500-m spatial binning for the first month of the sequence. Since 
more granular model resolutions imply lower probability of occurrence in any one cell, it is not surprising that 

Figure 5. Cell-wise differences in cumulative magnitudes between common source (parent) events of CAT0 and CAT4 versus resulting log-likelihood (LL) differences 
in each spatial bin. LL values are obtained by using CAT4 target seismicity for both models. Colors follow the relative percentage ranges in the four quadrants.
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absolute jLL values drop with finer model discretizations. Instead, here we 
focus on the relative 𝐴𝐴 ∆𝐿𝐿𝐿𝐿𝑆𝑆 between CRS-CAT4 and ETAS-CAT4 within 
each binning category. We observe the maximum difference in likelihood 
between the two models at 5-km binning (𝐴𝐴 ∆LLS  = 150), which reduces by a 
half at 2-km binning, and almost disappears at 500-m discretization. These 
results suggest that stress-based forecasts improve their spatial performance 
relative to ETAS when the stress field is resolved at a smaller scale, allowing 
a better description of the small fault segments (<1 km) contributing to the 
local evolution of the physical system. On the other hand, the spatial perfor-
mance of ETAS-like models, based on simulated catalogs instead of discrete 
point calculations, seems to be less affected by its resolution.

5. Discussion
In this study, the forecasts for the M3+ earthquakes of the 2016–2017 
AVN sequence show no clear boost in their predictive skills when standard 
ETAS and best practice CRS modeling strategies are informed by enhanced, 
high-resolution and deep-learning earthquake catalogs. This supports 
the operational efficiency of the modeling strategy illustrated by Mancini 
et al. (2019, 2020) even when only real-time data sets are employed.

We find that the new small-magnitude events (1 𝐴𝐴 ≤ M 𝐴𝐴 𝐴 3) made available 
by enhanced catalogs have minor influence on the expected CRS and ETAS 
earthquake rates in the near source. This suggests that the near-fault after-
shock patterns may be largely dominated by the triggering effects from large 
to moderate events. On the other hand, we observe that the contribution of 
smaller earthquakes (a) can influence the off-fault model validation and (b) 
is more likely effective at a finer scale. Accounting for the local triggering 
effects of these events improves the overall forecast performance, as shown 
by the trend of increasing IG when models implement gradually lower mini-
mum triggering magnitudes (at least until MMIN 𝐴𝐴 ≈ 2). This should encourage 
catalog developers to routinely produce more complete earthquake catalogs 
as seismic sequences unfold to allow testing future generations of forecasts in 
operational applications.

When we decrease the minimum triggering magnitudes to M1, however, we 
observe little to no additional IG, and in some cases even an information 
loss. From a modeling implementation perspective, as events approach such 
very small magnitudes their magnitude/location uncertainties and the radius 
of their triggering influence become comparable, which likely negates their 
ability to improve the forecast at the observational scales typically used. 
Nevertheless, this outcome also raises a more profound question for future 
model developments: is there a magnitude threshold below which physical 
fault-to-fault interactions become negligible or are our current modeling 
strategies approaching the limit of their predictability?

The sensitivity tests suggest that we cannot rule out either hypothesis, 
because (a) commonly adopted forecast spatial discretizations are inad-
equate to resolve localized triggering patterns revealed by high-resolution 
catalogs, (b) seismic catalogs resulting from different workflows present 
remarkable differences even at moderate magnitudes (i.e., M3+) that might 
only be reflected in models by ad hoc parameter calibrations, and (c) the  
current likelihood-based validation metrics are extremely susceptible to the  
choice of input and target seismicity and to the extent and resolution of the 
grid used to evaluate models. Regarding the latter point, it should be also 
considered that catalogs of tightly clustered seismicity clearly illustrate the 

Figure 6. Average daily information gain per earthquake (IG) of Coulomb 
Rate-State (CRS)-CAT4 (developed with a relocated catalog) from CRS-CAT3 
(developed with a nonrelocated catalog). We plot the IG values for each period 
between the first four mainshocks and from the Campotosto events until 
6-months from the start of the sequence. CRS-CAT4 is more informative than 
the reference at 95% confidence interval if IG values are positive and the error 
bars do not cross the red no-gain line.

Figure 7. Cumulative spatial joint log-likelihood (jLLS) during the first month 
of the sequence for the Coulomb Rate-State (CRS)-CAT4 and Epidemic-Type 
Aftershock Sequence (ETAS)-CAT4 models. We plot the spatial performance 
of the forecasts for three different spatial discretizations: 500 m, 2 km, and 
5 km. The jLLS trends are obtained by summing the S-test log-likelihoods of 
each bin and 1-day time step.
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existence of strong small-scale space-time dependencies among earthquakes that are not accounted for in stand-
ard forecast evaluation protocols established more than a decade ago (Schorlemmer et al., 2007). Those protocols 
assume independent Poisson distributions in each space-time-magnitude bin, responding to the earlier needs of 
testing longer term models in extended study areas (e.g., 5–20 years of M4.95+ seismicity in California). The 
rapid development of deep-learning and other advanced techniques providing high-resolution catalogs, refocuses 
scientists on the development of sequence-specific earthquake forecasts evolving within shorter time frames 
(i.e., daily, or even hourly) over spatial extents of few tens of kilometers when seismicity is understandably 
non-Poissonian in nature. Therefore, validation strategies will need to be redrawn free from these assumptions 
(Bayona et al., 2022; Savran et al., 2020) to adapt to the experimental setups made possible by modern enhanced 
data sets.

For the above reasons, a rigorous quantification of the added value of enhanced catalogs for short-term earth-
quake forecasts is challenging at present, and model rankings presented here need to be interpreted with caution. 
We argue our standard binning (2 km) is the most limiting factor for properly resolving the triggering contribu-
tions of M < 2 earthquakes at a local (i.e., less than kilometric) scale. This is perhaps not too surprising as the 
source dimension for an M2 earthquake with nominal 3 MPa stress drop is ∼50 m, and it is supported by the fact 
that ETAS spatial consistency is superior to CRS at 5-km binning, but with a 500-m discretization the two models 
are equally informative. This is a promising result as it shows the potential for improving physics-based model 
performance by resolving stress changes at a subcluster resolution of few hundred meters. A way forward will be 
to incorporate enhanced fault characterizations to capture the small-scale variability of the receiver-fault matrix. 
For example, motivated by the success of the implementation of time-dependent receiver-fault populations during 
the Ridgecrest sequence (Mancini et al., 2020), further work is needed to combine enhanced earthquake cata-
logs with information from richer rupture data sets (e.g., sets of focal mechanism solutions obtained with deep 
learning techniques or emerging fault structures progressively illuminated by high-resolution catalogs). Moreo-
ver, future experiments on the adoption of enhanced catalogs for earthquake forecasting should consider testing 
3D spatial models, potentially featuring locally variable or adaptive spatial discretization (Khawaja et al., 2022) 
over time (4D models). In this regard, current algorithms should become more computationally efficient, but the 
emerging cloud-based capabilities for catalog development (e.g., QuakeFlow; Zhu et al., 2022) pave the way for 
real-time applications.

Our results also show that forecasts developed with enhanced catalogs suffer from magnitude estimation resolu-
tion. The effect of magnitude inconsistencies on ETAS models' performance is not surprising as the magnitude 
of a parent event is directly related to the spatiotemporal distribution of triggered events. On the other hand, 
in physical models this translation is mediated through a series of operators (the slip distribution, the elastic 
dislocations, and the stress attenuation) that control the magnitude and spatial extent of the stress changes. 
We therefore stress the potential severe implications of magnitude inconsistencies in enhanced seismic cata-
logs (Herrmann & Marzocchi, 2020) on the performance of earthquake forecast with magnitude-dependent 
productivity.

Although we find event relocations have a weak impact on IGs, we note that location uncertainties in relocated 
catalogs may perturb likelihood values, presumably at a cell-wise level. This experiment does not provide sound 
evidence for a systematic influence of input seismicity relocations on models' predictive skills, but it is not 
uncommon for the relocation algorithms to deplete catalogs in very small magnitude events (e.g., CAT4 reports 
about 50,000 M 𝐴𝐴 𝐴 2 earthquakes less compared to the nonrelocated CAT3), introducing obvious modifications 
in the input and target seismicity as well as nonlinear effects over space. Also, the set of AVN catalogs offer 
a striking example of how relocations of target seismicity might condition model performance evaluation. We 
refer to the M5.4 Campotosto event, whose epicentral location among the four catalogs spreads over about 4 km 
(Figure 1). This is likely due to the availability of either real-time, near real-time or offline data to constrain the 
location and should warn modelers on how variable input and target seismic patterns return a different model 
score. The fact that model ranking could be significantly influenced by the presence/absence of very few events 
in a small number of isolated cells (e.g., the cluster of earthquakes newly detected by CAT5 at the eastern 
off-fault region) underlines the necessity for more objectively defined testing regions in earthquake forecasting 
experiments.

A major obstacle for an unbiased estimate of the predictive skill of short-term forecast models informed by 
enhanced catalogs is that we cannot know a priori which catalog, if any, more closely represents the ground truth.
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6. Conclusions
This study set out to explore the potential for improving physics-based and statistical short-term earthquake 
forecasts for the 2016–2017 Central Italy seismic cascade by incorporating additional information provided by 
enhanced, high-resolution and deep-learning earthquake catalogs released a few years after the sequence. To 
that end, we design a retrospective experiment where the best-performing CRS and ETAS forecasts among those 
generated by Mancini et al. (2019) using near real-time data are set as benchmarks to measure any performance 
improvement of the updated models. Given their much lower magnitude of completeness (Mc < 1), the enhanced 
catalogs enable the incorporation of the secondary triggering contributions from all M1+ earthquakes to forecast 
the space-time occurrence of the M3+ events.

From the absolute and comparative evaluation of models' predictive skills, based on the typically used S- and 
T-tests, we observe that most forecasts developed with the enhanced catalogs are not more informative than those 
based on the preliminary monitoring room catalog. We observe, however, that in the set of new CRS and ETAS 
models the predictive skills improve with decreasing minimum triggering magnitude from M5 to M2, while 
fixing MMIN = 1 appears ineffective and occasionally even detrimental for model performance within the same 
2-km grid.

Despite its exploratory nature, this study offers valuable insights into the issues that modelers are likely to face 
soon. Notwithstanding the fact that current enhanced seismic catalogs provide an unprecedented quality descrip-
tion of earthquake occurrence, each of them illustrates a different version of it. These catalogs are products of 
different choices in their serial components of detection, event association, and seismic parameters estimation 
that make it difficult to quantify the contribution of each choice toward improving earthquake forecasts. As cata-
log development in the era of deep-learning becomes more widespread, we will likely see more target-specific 
catalogs in place holding increased testing capability against benchmark data sets.

Furthermore, likelihood-based scores are extremely sensitive to such uncertainties, and the most commonly used 
model spatial discretizations (from the standard 10 km of CSEP tests to the 2 km of the present experiment) are 
likely inadequate to evaluate highly localized triggering patterns of clustered, non-Poissonian seismicity. This 
experiment also provides a step forward in understanding the relevance of secondary triggering interactions in 
a high clustering environment, but more work is needed to characterize the event-specific triggering potential 
to probe subcluster triggering mechanisms. In this regard, the fact that resolving the static stress variability at a 
finer scale is beneficial for CRS models should encourage catalog developers to produce and release enhanced 
catalogs in real time. We believe that deep-learning-based forecasts shared with the community will promote 
detailed investigations in the wake of those presented in this study and motivate further research on model vali-
dation strategies.

To conclude, our findings illustrate some of the limitations of currently popular modeling protocols and evalu-
ation metrics but are also an invitation to promote further probing on the actual power of enhanced catalogs for 
earthquake forecasting.

Data Availability Statement
The seismic catalogs employed in this paper are currently available at the individual repositories indicated in 
their related publications. The real-time catalog (here named CAT0) by the INGV seismic monitoring room 
(ISIDe Working Group,  2007) can be searched at http://cnt.rm.ingv.it/en. The CAT3 catalog by Spallarossa 
et  al.  (2020) can be acquired at the following Zenodo repository: https://doi.org/10.5281/zenodo.4306165 
(Michele et al., 2020). CAT4 (Waldhauser et al., 2021a) is available at https://doi.org/10.5281/zenodo.5091137 
(Waldhauser et al., 2021b). CAT5 catalog by Tan, Waldhauser, Ellsworth, et al. (2021) is accessible at the Zenodo 
repository https://doi.org/10.5281/zenodo.4736089 (Tan, Waldhauser, & Ellsworth,  2021). A comprehensive 
repository for all the catalogs developed for the AVN sequence (including CAT1 and CAT2, not employed in this 
paper) is available at http://doi.org/10.5285/5afccfe5-142e-4e93-a6cc-55216fa1db06. The near real-time moment 
tensor solutions have been taken from https://doi.org/10.13127/TDMT (Scognamiglio et al., 2006). The Italian 
centroid moment tensor data set is available at https://doi.org/10.13127/rcmt/italy (Pondrelli & Salimbeni, 2006). 
The Database of Individual Seismogenic Sources for Italy and surrounding areas (version 3.2.1) is download-
able at https://doi.org/10.13127/diss3.3.0 (DISS Working Group,  2018). The calculations for the Coulomb 
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Rate-and-State forecasts were performed using the code “CRS” by Cattania and Khalid (2016), available at https://
github.com/camcat/crs. Maps presented in this paper have been produced using QGIS (http://www.qgis.org).

References
Arrowsmith, S. J., Trugman, D. T., MacCarthy, J., Bergen, K. J., Lumley, D., & Magnani, M. B. (2022). Big data seismology. Reviews of Geophys-

ics, 60(2), e2021RG000769. https://doi.org/10.1029/2021RG000769
Bayona, J. A., Savran, W. H., Rhoades, D. A., & Werner, M. J. (2022). Prospective evaluation of multiplicative hybrid earthquake forecasting 

models in California. Geophysical Journal International, 229(3), 1736–1753. https://doi.org/10.1093/gji/ggac018
Beroza, G. C., Segou, M., & Mousavi, S. M. (2021). Machine learning and earthquake forecasting—next steps. Nature Communications, 12(1), 

4761. https://doi.org/10.1038/s41467-021-24952-6
Cattania, C., & Khalid, F. (2016). A parallel code to calculate rate-state seismicity evolution induced by time dependent, heterogeneous Coulomb 

stress changes. Computers & Geosciences, 94, 48–55. https://doi.org/10.1016/j.cageo.2016.06.007
Cattania, C., Werner, M. J., Marzocchi, W., Hainzl, S., Rhoades, D., Gerstenberger, M., et al. (2018). The forecasting skill of physics-based 

seismicity models during the 2010–2012 Canterbury, New Zealand, earthquake sequence. Seismological Research Letters, 89(4), 1238–1250. 
https://doi.org/10.1785/0220180033

Chen, K. H., Bürgmann, R., & Nadeau, R. M. M. (2013). Do earthquakes talk to each other? Triggering and interaction of repeating sequences at 
Parkfield. Journal of Geophysical Research: Solid Earth, 118(1), 165–182. https://doi.org/10.1029/2012JB009486

Chiaraluce, L., Di Stefano, R., Tinti, E., Scognamiglio, L., Michele, M., Casarotti, E., et al. (2017). The 2016 central Italy seismic sequence: A first 
look at the mainshocks, aftershocks, and source models. Seismological Research Letters, 88(3), 757–771. https://doi.org/10.1785/0220160221

Chiaraluce, L., Michele, M., Waldhauser, F., Tan, Y. J., Herrmann, M., Spallarossa, D., et al. (2022). A comprehensive suite of earthquake cata-
logues for the 2016–2017 Central Italy seismic sequence. Scientific Data. Accepted manuscript.

Collettini, C., Barchi, M. R., De Paola, N., & Tinti, E. (2022). Rock and fault rheology explain differences between on fault and distributed seis-
micity. Nature Communications, 13(1), 5627. https://doi.org/10.1038/s41467-022-33373-y

Dieterich, J. H. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical 
Research, 99(B2), 2601–2618. https://doi.org/10.1029/93jb02581

DISS Working Group. (2018). Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A compilation of potential sources for earth-
quakes larger than M5.5 in Italy and surrounding areas. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/
diss3.3.0

Hanagan, C., Bennett, R. A., Chiaraluce, L., Hughes, A., & Cocco, M. (2022). Implications of receiver plane uncertainty for the static stress 
triggering hypothesis. Journal of Geophysical Research: Solid Earth, 127(5), e2021JB023589. https://doi.org/10.1029/2021JB023589

Hanks, T. (1992). Small earthquakes, tectonic forces. Science, 256(5062), 1430–1432. https://doi.org/10.1126/science.256.5062.1430
Hanks, T., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84(B5), 2348–2350. https://doi.org/10.1029/

JB084iB05p02348
Harris, R. A., & Simpson, R. W. (1992). Changes in static stress on southern California faults after the 1992 Landers earthquake. Nature, 

360(6401), 251–254. https://doi.org/10.1038/360251a0
Helmstetter, A. (2003). Is earthquake triggering driven by small earthquakes? Physical Review Letters, 91(5), 058501. https://doi.org/10.1103/

PhysRevLett.91.058501
Helmstetter, A., Kagan, Y., & Jackson, D. D. (2005). Importance of small earthquakes for stress transfers and earthquake triggering. Journal of 

Geophysical Research, 110(B5), B05S08. https://doi.org/10.1029/2004JB003286
Helmstetter, A., Kagan, Y., & Jackson, D. D. (2006). Comparison of short-term and time-independent earthquake forecast models for southern 

California. Bulletin of the Seismological Society of America, 96(1), 90–106. https://doi.org/10.1785/0120050067
Helmstetter, A., Kagan, Y., & Jackson, D. D. (2007). High-resolution time-independent grid-based forecast for M >= 5 earthquakes in California. 

Seismological Research Letters, 78(1), 78–86. https://doi.org/10.1785/gssrl.78.1.78
Helmstetter, A., & Werner, M. J. (2012). Adaptive spatiotemporal smoothing of seismicity for long-term earthquake forecasts in California. 

Bulletin of the Seismological Society of America, 102(6), 2518–2529. https://doi.org/10.1785/0120120062
Herrmann, M., & Marzocchi, W. (2020). Inconsistencies and Lurking Pitfalls in the magnitude–frequency distribution of high-resolution earth-

quake catalogs. Seismological Research Letters, 92(2A), 909–922. https://doi.org/10.1785/0220200337
ISIDe Working Group. (2007). Italian Seismological Instrumental and Parametric Database (ISIDe). Istituto Nazionale di Geofisica e Vulcano-

logia (INGV). https://doi.org/10.13127/ISIDE
Jordan, T. H., Chen, Y., Main, I., Raul Madariaga, Ian Main, Warner Marzocchi, et al. (2011). Operational earthquake forecasting: State of knowl-

edge and guidelines for utilization. Annals of Geophysics, 54(4), 316–391. https://doi.org/10.4401/ag-5350
Khawaja, M. A., Schorlemmer, D., Hainzl, S., Iturrieta, P., & Savran, W. (2022). Multi-resolution grids in earthquake forecasting: The Quadtree 

approach. Bulletin of the Seismological Society of America, 112(1), 494–507. https://doi.org/10.1785/0120210146
Lapins, S., Goitom, B., Kendall, J. M., Werner, M. J., Cashman, K. V., & Hammond, J. O. S. (2021). Automatic seismic phase arrival picking at Nabro 

volcano with transfer learning. Journal of Geophysical Research: Solid Earth, 126(7), e2021JB021910. https://doi.org/10.1029/2021JB021910
Liu, M., Zhang, M., Zhu, W., Ellsworth, W. L., & Li, H. (2020). Rapid characterization of the July 2019 Ridgecrest, California, earthquake 

sequence from raw seismic data using machine-learning phase picker. Geophysical Research Letters, 47(4), e2019GL086189. https://doi.
org/10.1029/2019GL086189

Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic earthquake location in 3D and layered models: Introduction of a 
Metropolis–Gibbs method and comparison with linear locations. In C. H. Thurber & N. Rabinowitz (Eds.), Advances in seismic event location 
(pp. 101–134). Kluwer Academic Publishers.

Mancini, S., Segou, M., Werner, M. J., & Cattania, C. (2019). Improving physics-based aftershock forecasts during the 2016–2017 Central Italy 
earthquake cascade. Journal of Geophysical Research: Solid Earth, 124(8), 8626–8643. https://doi.org/10.1029/2019JB017874

Mancini, S., Werner, M. J., Segou, M., & Parsons, T. (2020). The predictive skills of elastic Coulomb rate-and-state aftershock forecasts during 
the 2019 Ridgecrest, California, earthquake sequence. Bulletin of the Seismological Society of America, 110(4), 1736–1751. https://doi.
org/10.1785/0120200028

Marsan, D. (2005). The role of small earthquakes in redistributing crustal elastic stress. Geophysical Journal International, 163(1), 141–151. 
https://doi.org/10.1111/j.1365-246X.2005.02700.x

Acknowledgments
This research was supported by the 
project “The Central Apennines 
Earthquake Cascade Under a New 
Microscope” (NE/R000794/1NE/
R0000794/1), funded by the UK National 
Environment Research Council (NERC) 
and the United States National Science 
Foundation, Directorate for Geosciences 
(NSFGEO). The authors would like 
to thank the participants in the project 
for the fruitful discussion and the 
constructive comments that improved 
the quality of the manuscript. This study 
has also received funding from the 
European Research Council (ERC) under 
the European Union's Horizon 2020 
research and innovation program (Grant 
Agreement Number 821115, Real-time 
earthquake rIsk reduction for a reSilient 
Europe, RISE, http://www.rise-eu.org). 
The authors thank Daniel Trugman and 
an anonymous reviewer for the insightful 
comments that helped us improving the 
clarity and quality of the paper.

 21699356, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025202 by B
ritish G

eological Survey, W
iley O

nline L
ibrary on [15/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/camcat/crs
https://github.com/camcat/crs
http://www.qgis.org/
https://doi.org/10.1029/2021RG000769
https://doi.org/10.1093/gji/ggac018
https://doi.org/10.1038/s41467-021-24952-6
https://doi.org/10.1016/j.cageo.2016.06.007
https://doi.org/10.1785/0220180033
https://doi.org/10.1029/2012JB009486
https://doi.org/10.1785/0220160221
https://doi.org/10.1038/s41467-022-33373-y
https://doi.org/10.1029/93jb02581
https://doi.org/10.13127/diss3.3.0
https://doi.org/10.13127/diss3.3.0
https://doi.org/10.1029/2021JB023589
https://doi.org/10.1126/science.256.5062.1430
https://doi.org/10.1029/JB084iB05p02348
https://doi.org/10.1029/JB084iB05p02348
https://doi.org/10.1038/360251a0
https://doi.org/10.1103/PhysRevLett.91.058501
https://doi.org/10.1103/PhysRevLett.91.058501
https://doi.org/10.1029/2004JB003286
https://doi.org/10.1785/0120050067
https://doi.org/10.1785/gssrl.78.1.78
https://doi.org/10.1785/0120120062
https://doi.org/10.1785/0220200337
https://doi.org/10.13127/ISIDE
https://doi.org/10.4401/ag-5350
https://doi.org/10.1785/0120210146
https://doi.org/10.1029/2021JB021910
https://doi.org/10.1029/2019GL086189
https://doi.org/10.1029/2019GL086189
https://doi.org/10.1029/2019JB017874
https://doi.org/10.1785/0120200028
https://doi.org/10.1785/0120200028
https://doi.org/10.1111/j.1365-246X.2005.02700.x
http://www.rise-eu.org/


Journal of Geophysical Research: Solid Earth

MANCINI ET AL.

10.1029/2022JB025202

15 of 16

Marzocchi, W., Taroni, M., & Falcone, G. (2017). Earthquake forecasting during the complex Amatrice-Norcia seismic sequence. Science 
Advances, 3(9), e1701239. https://doi.org/10.1126/sciadv.1701239

Meier, M., Werner, M. J., Woessner, J., & Wiemer, S. (2014). A search for evidence of secondary static stress triggering during the 1992 
Mw7.3 Landers, California, earthquake sequence. Journal of Geophysical Research: Solid Earth, 119(4), 3354–3370. https://doi.
org/10.1002/2013JB010385

Michael, A. J., & Werner, M. J. (2018). Preface to the focus section on the Collaboratory for the Study of Earthquake Predictability (CSEP): New 
results and future directions. Seismological Research Letters, 89(4), 1226–1228. https://doi.org/10.1785/0220180161

Michele, M., Cattaneo, M., Chiaraluce, L., Spallarossa, D., Scafidi, D., Segou, M., & Main, I. (2020). An automatically generated high-resolution 
earthquake catalogue for the 2016–2017 Central Italy seismic sequence, including P and S phase arrival times [Dataset]. Zenodo. https://doi.
org/10.5281/zenodo.4306165

Milner, K. R., Field, E. H., Savran, W. H., Page, M. T., & Jordan, T. H. (2020). Operational earthquake forecasting during the 2019 Ridge-
crest, California, earthquake sequence with the UCERF3-ETAS model. Seismological Research Letters, 91(3), 1567–1578. https://doi.
org/10.1785/0220190294

Moretti, M., Pondrelli, S., & Margheriti, L., & SISMIKO Working Group. (2016). Emergency network deployment and data sharing for the 2016 
central Italy seismic sequence. Annals of Geophysics, 59(5), 1-8. https://doi.org/10.4401/ag-7212

Nandan, S., Ouillon, G., & Sornette, D. (2022). Are large earthquakes preferentially triggered by other large events? Journal of Geophysical 
Research: Solid Earth, 127, e2022JB024380. https://doi.org/10.1029/2022JB024380

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical 
Association, 83(401), 9–27. https://doi.org/10.1080/01621459.1988.10478560

Parsons, T., Ogata, Y., Zhuang, J., & Geist, E. L. (2012). Evaluation of static stress change forecasting with prospective and blind tests. Geophys-
ical Journal International, 188(3), 1425–1440. https://doi.org/10.1111/j.1365-246x.2011.05343.x

Pondrelli, S., & Salimbeni, S. (2006). Italian CMT dataset [Dataset]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.
org/10.13127/rcmt/italy

Rhoades, D. A., Schorlemmer, D., Gerstenberger, M. C., Christophersen, A., Zechar, J. D., & Imoto, M. (2011). Efficient testing of earthquake 
forecasting models. Acta Geophysica, 59(4), 728–747. https://doi.org/10.2478/s11600-011-0013-5

Ross, Z. E., Meier, M. A., Hauksson, E., & Heaton, T. H. (2018). Generalized seismic phase detection with deep learning. Bulletin of the Seismo-
logical Society of America, 108(5A), 2894–2901. https://doi.org/10.1785/0120180080

Ross, Z. E., Trugmann, D. T., Hauksson, E., & Shearer, P.  M. (2019). Searching for hidden earthquakes in Southern California. Science, 
364(6442), 767–771. https://doi.org/10.1126/science.aaw6888

Savran, W. H., Werner, M. J., Marzocchi, W., Rhoades, D. A., Jackson, D. D., Milner, K., et  al. (2020). Pseudoprospective evaluation of 
UCERF3-ETAS forecasts during the 2019 Ridgecrest sequence. Bulletin of the Seismological Society of America, 110(4), 1799–1817. https://
doi.org/10.1785/0120200026

Scafidi, D., Vigan, A., Ferretti, G., & Spallarossa, D. (2018). Robust picking and accurate location with RSNI-Picker2: Real-time automatic 
monitoring of earthquakes and non-tectonic events. Seismological Research Letters, 89(4), 1478–1487. https://doi.org/10.1785/0220170206

Schorlemmer, D., Gerstenberger, M. C., Wiemer, S., Jackson, D. D., & Rhoades, D. A. (2007). Earthquake likelihood model testing. Seismolog-
ical Research Letters, 78(1), 17–29. https://doi.org/10.1785/gssrl.78.1.17

Schorlemmer, D., Werner, M. J., Marzocchi, W., Jordan, T. H., Ogata, Y., Jackson, D. D., et al. (2018). The Collaboratory for the Study of Earth-
quake Predictability: Achievements and priorities. Seismological Research Letters, 89(4), 1305–1313. https://doi.org/10.1785/0220180053

Scognamiglio, L., Tinti, E., & Quintiliani, M. (2006). Time Domain Moment Tensor (TDMT) [Dataset]. Istituto Nazionale di Geofisica e Vulcan-
ologia (INGV). https://doi.org/10.13127/TDMT

Scognamiglio, L., Tinti, E., & Quintiliani, M. (2016). The first month of the 2016 Amatrice seismic sequence: Fast determination of time domain 
moment tensors and finite fault model analysis of the ML 5.4 aftershock. Annals of Geophysics, 59, 1–10. https://doi.org/10.4401/ag-7246

Segou, M., & Parsons, T. (2014). The stress shadow problem in physics-based aftershock forecasting: Does incorporation of secondary stress 
changes help? Geophysical Research Letters, 41(11), 3810–3817. https://doi.org/10.1002/2013GL058744

Segou, M., & Parsons, T. (2020). A new technique to calculate earthquake stress transfer and to probe the physics of aftershocks. Bulletin of the 
Seismological Society of America, 110(2), 863–873. https://doi.org/10.1785/0120190033

Shelly, D. R. (2020). A high-resolution seismic catalog for the initial 2019 Ridgecrest earthquake sequence: Foreshocks, aftershocks, and fault 
complexity. Seismological Research Letters, 91(4), 1971–1978. https://doi.org/10.1785/0220190309

Spallarossa, D., Cattaneo, M., Scafidi, D., Michele, M., Chiaraluce, L., Segou, M., & Main, I. G. (2020). An automatically generated 
high-resolution earthquake catalogue for the 2016–2017 Central Italy seismic sequence, including P and S phase arrival times. Geophysical 
Journal International, 225(1), 555–571. https://doi.org/10.1093/gji/ggaa604

Spallarossa, D., Ferretti, G., Scafidi, D., Turino, C., & Pasta, M. (2014). Performance of the RSNI-picker. Seismological Research Letters, 85(6), 
1243–1254. https://doi.org/10.1785/0220130136

Tan, Y. J., Waldhauser, F., & Ellsworth, W. (2021). Machine-learning-based high-resolution earthquake catalog for the 2016–2017 central Italy 
sequence (1.1) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.4736089

Tan, Y. J., Waldhauser, F., Ellsworth, W. L., Zhang, M., Zhu, W., Michele, M., et al. (2021). Machine-learning-based high-resolution earthquake 
catalog reveals how complex fault structures were activated during the 2016–2017 central Italy sequence. The Seismic Record, 1(1), 11–19. 
https://doi.org/10.1785/0320210001

Tinti, E., Scognamiglio, L., Michelini, A., & Cocco, M. (2016). Slip heterogeneity and directivity of the ML 6.0, 2016, Amatrice earthquake 
estimated with rapid finite-fault inversion. Geophysical Research Letters, 43(20), 10745–10752. https://doi.org/10.1002/2016GL071263

Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward 
Fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006

Waldhauser, F., Michele, M., Chiaraluce, L., Di Stefano, R., & Schaff, D. P. (2021a). Fault planes, fault zone structure and detachment frag-
mentation resolved with high-precision aftershock locations of the 2016–2017 central Italy sequence. Geophysical Research Letters, 48(16), 
e2021GL092918. https://doi.org/10.1029/2021GL092918

Waldhauser, F., Michele, M., Chiaraluce, L., Di Stefano, R., & Schaff, D. P. (2021b). High-precision aftershock locations and fault planes of the 
2016–2017 central Italy sequence [Dataset]. In Geophysical Research Letters (v202012.1). Zenodo. https://doi.org/10.5281/zenodo.5091137

Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface 
displacement. Bulletin of the Seismological Society of America, 84, 974–1002. https://doi.org/10.1785/BSSA0840040974

Werner, M. J., Helmstetter, A., Jackson, D. D., & Kagan, Y. Y. (2011). High-resolution long-term and short-term earthquake forecasts for Cali-
fornia. Bulletin of the Seismological Society of America, 101(4), 1630–1648. https://doi.org/10.1785/0120090340

 21699356, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025202 by B
ritish G

eological Survey, W
iley O

nline L
ibrary on [15/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1126/sciadv.1701239
https://doi.org/10.1002/2013JB010385
https://doi.org/10.1002/2013JB010385
https://doi.org/10.1785/0220180161
https://doi.org/10.5281/zenodo.4306165
https://doi.org/10.5281/zenodo.4306165
https://doi.org/10.1785/0220190294
https://doi.org/10.1785/0220190294
https://doi.org/10.4401/ag-7212
https://doi.org/10.1029/2022JB024380
https://doi.org/10.1080/01621459.1988.10478560
https://doi.org/10.1111/j.1365-246x.2011.05343.x
https://doi.org/10.13127/rcmt/italy
https://doi.org/10.13127/rcmt/italy
https://doi.org/10.2478/s11600-011-0013-5
https://doi.org/10.1785/0120180080
https://doi.org/10.1126/science.aaw6888
https://doi.org/10.1785/0120200026
https://doi.org/10.1785/0120200026
https://doi.org/10.1785/0220170206
https://doi.org/10.1785/gssrl.78.1.17
https://doi.org/10.1785/0220180053
https://doi.org/10.13127/TDMT
https://doi.org/10.4401/ag-7246
https://doi.org/10.1002/2013GL058744
https://doi.org/10.1785/0120190033
https://doi.org/10.1785/0220190309
https://doi.org/10.1093/gji/ggaa604
https://doi.org/10.1785/0220130136
https://doi.org/10.5281/zenodo.4736089
https://doi.org/10.1785/0320210001
https://doi.org/10.1002/2016GL071263
https://doi.org/10.1785/0120000006
https://doi.org/10.1029/2021GL092918
https://doi.org/10.5281/zenodo.5091137
https://doi.org/10.1785/BSSA0840040974
https://doi.org/10.1785/0120090340


Journal of Geophysical Research: Solid Earth

MANCINI ET AL.

10.1029/2022JB025202

16 of 16

Werner, M. J., Zechar, J. D., Marzocchi, W., & Wiemer, S. (2010). Retrospective evaluation of the 5-year and 10-year CSEP-Italy earthquake 
forecasts. Annals of Geophysics. CSEP-Italy special issue (this issue), in revision. Retrieved from http://arxiv.org/abs/1003.1092

Zechar, J. D., Gerstenberger, M. C., & Rhoades, D. A. (2010). Likelihood based tests for evaluating space-rate-magnitude earthquake forecasts. 
Bulletin of the Seismological Society of America, 100(3), 1184–1195. https://doi.org/10.1785/0120090192

Zechar, J. D., Schorlemmer, D., Werner, M. J., Gerstenberger, M. C., Rhoades, D. A., & Jordan, T. H. (2013). Regional earthquake likelihood 
models I: First-order results. Bulletin of the Seismological Society of America, 103(2A), 787–798. https://doi.org/10.1785/0120120186

Zhu, W., & Beroza, G. C. (2019). PhaseNet: A deep neural-network based seismic arrival-time picking method. Geophysical Journal Interna-
tional, 216, 261–273.

Zhu, W., Hou, A. B., Yang, R., Datta, A., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). QuakeFlow: A scalable machine-learning-
based earthquake monitoring workflow with cloud computing. Geophysical Journal International, 232(1), 684–693. https://doi.org/10.1093/
gji/ggac355

Zhuang, J., Harte, D., Werner, M. J., Hainzl, S., & Zhou, S. (2012). Basic models of seismicity: Temporal models. Community Online Resource 
for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-79905851 Retrieved from http://www.corssa.org

Zhuang, J., Ogata, Y., & Vere-Jones, D. (2002). Stochastic declustering of space-time earthquake occurrences. Journal of the American Statistical 
Association, 97(458), 369–380. https://doi.org/10.1198/016214502760046925

References From the Supporting Information
Dieterich, J. H., Cayol, V., & Okubo, P. (2000). The use of earthquake rate changes as stress meter at Kilauea volcano. Nature, 408(6811), 

457–460. https://doi.org/10.1038/35044054
Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 

1018–1040. https://doi.org/10.1785/bssa0820021018
Rice, J. R. (1992). Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. In B. Evans & T. Wong (Eds.), Fault 

mechanics and transport properties of rocks: A Festschrift in honour of W. F. Brace (pp. 475–503). Academic Press.

 21699356, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025202 by B
ritish G

eological Survey, W
iley O

nline L
ibrary on [15/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://arxiv.org/abs/1003.1092
https://doi.org/10.1785/0120090192
https://doi.org/10.1785/0120120186
https://doi.org/10.1093/gji/ggac355
https://doi.org/10.1093/gji/ggac355
https://doi.org/10.5078/corssa-79905851
http://www.corssa.org
https://doi.org/10.1198/016214502760046925
https://doi.org/10.1038/35044054
https://doi.org/10.1785/bssa0820021018

	On the Use of High-Resolution and Deep-Learning Seismic Catalogs for Short-Term Earthquake Forecasts: Potential Benefits and Current Limitations
	Abstract
	Plain Language Summary
	1. Introduction
	2. Data
	3. Methods
	4. Results
	4.1. Forecast Maps
	4.2. Likelihood Maps
	4.3. Information Content of the Models
	4.4. Sensitivity Tests

	5. Discussion
	6. Conclusions
	Data Availability Statement
	References
	References From the Supporting Information


