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Abstract: Today’s geoscience challenges often require repurposing of data and samples from legacy bore-
holes. Collection of new deep core is expensive; maximizing this investment is vital. However, the condition
of legacy cores varies due to factors including recovery, sampling, lithology, and storage.
Rock Quality Designation analysis is often undertaken on new core but this only provides a snapshot of core

condition and will not be indicative of subsequent condition. Poor core condition can make destructive analyt-
ical techniques impossible and also impacts non-destructive techniques including core scanning.
Since 2011, BGS have systematically collected 125 000 core images. This study investigates if core condition

of this archive can be assessed using automated analysis by machine learning. A neural network-based approach
was used to segment these images. By differentiating imaged core from their background, properties such as
number of fragments and total rock area were determined and used to assess core condition. Analysis of outputs
demonstrates that with minimal input data, core condition can be rapidly assessed. This allows users to better
understand and visualize core. This can be used to qualitatively assess non-destructive data, improve success of
destructive sampling through targeted sampling and reduce the time and effort spent interacting with physical
material.

Supplementary material: The code for CoreScore is available at https://github.com/BritishGeologicalSur-
vey/CoreScore/. The photographs analysed are available for download from the British Geological Survey
website, https://www.bgs.ac.uk/information-hub/photos-and-images/

Core material from boreholes is critical to the under-
standing and modelling of subsurface systems. How-
ever, acquiring new core is an expensive operation
and, in addition to this, UK onshore drilling projects
have come under increased public scrutiny due to
perceived environmental risks and impacts (Ireland
et al. 2021). This adds additional complexity to the
development of new onshore drilling projects and,
as a result, acquisition of new core material.

In the absence of new core material, subsurface
research relies heavily on archives of legacy core
for the UK landmass and continental shelf. Over
600 km of core material is stored as part of the
National Geoscience Data Centre (NGDC) hosted
at the British Geological Survey (BGS) Keyworth
site. The NGDC archive underpins a huge volume
of subsurface research, from large-scale characteri-
zation studies (e.g. NIREX 1997; Andrews 2013;
Monaghan and The Project Team 2016) to small-
scale physical property studies (e.g. Fellgett et al.
2019; Payton et al. 2021).

Regardless of how carefully core is handled and
stored post acquisition, it will degrade over time.
The condition of legacy core can be highly variable

and is dependent on a number of factors including
initial core recovery, sampling (pre- and post-
delivery to the NGDC), lithology and physical prop-
erties. Some lithologies such as well-cemented sand-
stones may not degrade much over time but others
such as shales may degrade within years of acquisi-
tion. Storage techniques such as wrapping and refrig-
eration can help preserve core condition, but such
techniques are costly and due to the volumes of
core stored in the NGDC only a small proportion
of the core can be preserved in this way. Core
which is not specially preserved for the longer term
can develop core breaks (biscuiting), post-
acquisition salt crust or crumble into small pieces
(rubbling) (Fig. 1).

Storage conditions, including humidity, sealing
and temperature, alongside manual handling, will
also impact core condition. Each of these factors
will influence not just the core condition but also
the ongoing capacity of that core to be used for
research and sampling. For example, if required to
sample a 20 ×50 mm plug for triaxial testing, it
may involve examining tens to hundreds of metres
of core in order to find core pieces of sufficient
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size and quality to enable the taking of viable sam-
ples. In some highly heterogeneous lithologies
there may not be an appropriate core section avail-
able to take viable samples (Fig. 1).

Issues with core condition also present a problem
for acquisition of non-destructive analyses of core
and core scanning techniques. Certain cores or sec-
tions of cores may be too broken to allow taking of
plugs or thin sections. This reduces the type of ana-
lytical work that can be undertaken.

Core scanning allows for consistent and rela-
tively rapid core property measurements, including
geophysical, geochemical and structural analysis.
The application of core scanning data is manyfold
and data can underpin various geological disciplines,
including mineral exploration studies (e.g. Tappert
et al. 2011; Fresia et al. 2017), petroleum geology
(e.g. Blunt et al. 2013; Zhang et al. 2019), geotech-
nics and geohazards (e.g. Kuras et al. 2016; Harra-
den, et al. 2019), nuclear waste management (e.g.
Smith et al. 2020), and environmental studies (e.g.
Frisia et al. 2012; Ruhl et al. 2016). However,
some of these core scanning techniques, such as
hyperspectral and X-ray fluorescence (XRF), only
investigate the top few millimetres of the core.
These techniques can be influenced by changes in
core surface condition from core breaks to core sam-
ples, which leads to a reduction in signal and

unreliable results that must be removed from the
final analysis (Fig. 2).

An example of this is the work undertaken by the
BGS Core Scanning Facility (Damaschke et al.
2023). The core scanning facility is co-located with
the NGDC at the BGS Keyworth site, and allows
for the collection of large quantities of images,
physical and chemical property data from the legacy
core archive. A description of the facility and its
applications can be found in Damaschke et al.
(2023).

Fig. 1. Image of a 50 cm section from three legacy
cores selected to show core in poor condition from
three different boreholes stored in the National
Geoscience Data Centre. Two of these cores (centre and
right) have degraded significantly since acquisition
making it difficult to undertake certain types of
research. The left-hand core is still suitable for some
research, but it would not be possible to obtain a core
plug from. Source: contains British Geological Survey
materials © UKRI 2022.

Fig. 2. Image showing how surface profile core
scanning (in this example X-ray fluorescence) is
affected by core condition. The highlighted core plugs
and associated loss of material result in a significant
reduction in signal (recorded in total counts per
second). Left: depth in core scan section. Centre left:
total raw unprocessed counts from XRF surface profile.
Centre right: optical image. Right: highlighted features
that have an impact on quality of core scan data. HP,
horizontal plug; VP, vertical plug; CB, core break.
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When undertaking core scanning BGS currently
uses a simple visual assessment of suitability for sur-
face profile scanning. Cores are graded from 0 to 4,
with grade0 considered as representing the best quality
surface for profiling data and grade 4 being unsuitable
for surface profile scanning (Fig. 3) This methodol-
ogy is further discussed in Damaschke et al. (2023).

Existing methods for assessing core condition are
largely based on the Rock Quality Designation
(RQD) originally proposed in 1968 (Deere 1968)
and reviewed in 1989 (Deere and Deere 1989).
RQD specifically provides a mechanism of assessing
rock quality at a drill site shortly after its recovery. It
is based on the number of natural discontinuities and
core loss measurement to calculate an index that
expresses core condition from 0% (very poor) to
100% (very good).

The minimum unit of core used by RQD is 10 cm
in length and is bounded by natural discontinuities.
Induced fractures caused by the drilling and handling
of core are not factored into the RQD calculations.
Where these features fragment thecore, theyare ignored
and the core length ismeasured between the two closest
natural discontinuities (Deere and Deere 1989).

To be representative of the in situ condition of the
rock, RQDmust also be collected on site shortly after
the core is drilled as certain lithologies, such as clays,

and shales often break up. Because of this RQD rep-
resents a snapshot of core condition; in some clay
lithologies RQD may shift from 100% to 0% within
hours or days due to post-acquisition core fragmen-
tation (Deere and Deere 1989).

As a result, despite the extensive applications
of RQD in engineering geology, it cannot be applied
to legacy cores due primarily to fragmentation
through drying, core fragment size andminor impacts
from disturbance by transport, handling, and storage.
A new method of assessing legacy core condition is
proposed in order to improve user interaction with
the physical material in the NGDC.

Due to the volume of material currently held in
the NGDC this method must be automated. One can-
didate for such automation is the BGS core photog-
raphy archive, which contains over 125 000 images
of core and is detailed below.

British Geological Survey core photography
dataset

Procedures for the acquisition of core photography in
BGS were set up during the transfer of core from
Edinburgh to Keyworth during the closure of the Gil-
merton Core Store in 2010 (Howe 2011). In order to

Fig. 3. Example showing how surface profile core scanning intervals are adjusted based on core condition using
visual grading system from Damaschke et al. (2023). As core quality reduces, surface profile scanning can only be
collected over smaller areas of the core. Rank 4 core has not been included as it is not possible to collect surface
profile data on such cores (Fig. 1).
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demonstrate that the move did not disrupt the core, a
decision was taken to photograph the core before
transportation and upon arrival for a subset to assess
whether any damage had been caused.

This resulted in the creation of an archive of
125 000 images over an 18-month period. Since
2012 core photography has continued in a less inten-
sive fashion, with newly accessioned core being
prioritized.

The core photographs are taken using a Phase
One 645DF camera fitted with the Schneider ‘Blue
Ring’ 55 mm f/2.8 lens and the Phase One P45+
digital back. The coreboxes themselves are placed
in custom-fabricated plastic trays supported on a
custom-built roller table. A ledge at the back of the
table supports any required scale or colour calibra-
tion bars, as well as the 7″ LCD screen, which dis-
plays the core and depth information (Fig. 4). For
more detailed information on core photography
acquisition, see Howe et al. (2012).

The use of the plastic trays means that each pho-
tograph can contain 1–6 m of core (c. 3–18 ft),
depending on core diameter and configuration of
the containing corebox. As a result, the original
125 000 images contained 175 000 coreboxes. This
gives a maximum core length of 175 000 m, though
some coreboxes will hold less than 1 m of core due to
losses during drilling and the end of core runs. Fol-
lowing acquisition, the images are processed and
converted into JP2 images and JPEG thumbnails.
These are then made publicly available through the
BGS Photographs and Images webpage (BGS 2021).

The core photographs are a valuable research
resource in themselves, but the consistent nature of

the acquisition and the large number of images
make them an ideal candidate for automated analysis
(Martin et al. 2021). The number of images also pro-
vides information on a wide range of lithologies and
types of core, providing opportunities to assess addi-
tional factors impacting core condition (Fig. 1).

Image analysis

Any automated system designed to assess core con-
dition from image data alone must be capable of dis-
tinguishing between individual core fragments.
Traditional approaches that could have been used
include segmenting based on pixel values or the
use of an edge/line detection algorithm. However,
such approaches are unlikely to yield accurate results
for the following reasons.

Pixel-based segmentation requires pre-defining a
series of ‘rules’ that classify an individual pixel
based on the red–green–blue (RGB) colour values
of that pixel. Unfortunately, the wide variety of sam-
ples in the core images leads to a wide variety of
valid pixel values between individual core frag-
ments. This means any predefined pixel values can-
not be used to reliably distinguish core fragments
from image to image. For example, the shaded area
in an image of a lighter colour rock, may match the
unshaded region in a dark rock.

More fundamentally, pixel-based segmentation
considers only individual pixels in isolation. Much
of the information stored in an image is contained
in the spatial context, i.e. the relationship between
a given pixel and those around it. By considering

Fig. 4. Example of a core photograph from the BGS core photography collection. Source: contains British Geological
Survey materials © UKRI 2022.
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individual pixels, but not those in the nearby vicinity,
such a rules-based approach excludes much of the
available information. While it would be possible
to extend the rules-based approach to include nearby
pixels, additional pre-processing would still be
required to normalize rock shades between images,
leading to an ever more complex manually defined
set of rules.

The challenges with edge/line detection algo-
rithms associated with the core images is that it is dif-
ficult to distinguish edges between core fragments,
background and shadows, as they are visually dis-
similar. In addition, fragments themselves tend to
contain edges between light and dark areas, which
may lead to an edge detection algorithm identifying
one core fragment as two (or more) fragments.

Traditional line detection algorithms also require
the user to specify a number of parameters that con-
strain the sensitivity of the detection. In the case of
the core images, it is difficult to determine the correct
level of sensitivity due to the range of interfaces
between surfaces. Finally, the most prominent
edges within the photographs are those of the
boxes the core is stored in (AlZayer 2019). All of
these factors mean that it is not possible to predefine
an algorithm with a single set of parameters that
define an edge.

Rather than predefining parameters and using
them to segment images into core fragments, a
more pragmatic approach is to use an algorithm
capable of automatically learning the parameters
necessary to segment images. Such algorithms are
broadly defined as ‘machine learning’ (ML). Most
ML approaches trade off the necessity to predefine
parameters for a relatively large, representative train-
ing set. For this reason, the problem presented here is
an ideal candidate for an ML-based solution.

Workflow summary

ML algorithms can be divided into ‘supervised’ and
‘unsupervised’. Supervised algorithms require a
labelled dataset, where a label refers to a desired out-
put for every data point. A ‘data point’ in this case
refers to a single pixel from a core image. An unsu-
pervised algorithm would take the data with no
labels and attempt to extract underlying patterns, typ-
ically by clustering similar data points together.
Although this could be conceptually useful, the
aim of this study was to automatically label pixels
so a supervised approach was necessary and this
choice largely dictated the designed workflow.

Supervised algorithms require, at minimum, a
training set and a distinct testing set. Every data
point (X) in both the training and testing sets requires
a corresponding label (Y). For image segmentation
problems, the algorithm is initiated with randomly
assigned parameters and makes predictions on a

batch of training set images. These predictions are
compared to the labels for those images, and the
internal parameters are adjusted to minimize the dif-
ference between the prediction and actual values.
This process is repeated across the entire training
set. To assess model performance, the now trained
model is used to predict outputs for the testing set
and these are compared to the test set labels.

For this project, the data consist of 29 core
images, a subset of the original 125 000 core images.
This subset was split into 25 training images and 4
test images. For most ML algorithms, such a small
number of distinct images would be too few for
meaningful training. However, in this case, the indi-
vidual images were of relatively high resolution
(4784 × 7107px). This meant the dataset contained
a sufficient amount of information to train up a clas-
sifier when given the appropriate choice of algo-
rithm. Five additional unlabelled images were also
available for qualitative model evaluation. These
were manually selected from the core library as
images that would be difficult to segment manually
due to poor core condition.

To provide labels for each image, a mask was
produced. This consisted of an array identical in
size to the original image. The array consisted of val-
ues from 0 to 5, where each value represented the
class of the corresponding pixel on the original
image. The classes were: void, rock fragment,
paper, core plug, text and box. The open source
tool, label-tool (Kim and Veulemans 2021), was
used to perform the labelling, allowing users to
draw polygons around appropriate regions of each
image and label them accordingly (Fig. 5). The labels
were saved as .json files and converted into the image
masks in .png format.

Following the labelling exercise, a decision was
made to combine the labels for Rock Fragment 1
and Rock Fragment 2 (Fig. 5). The initial decision
for the use of two categories was to distinguish if a
photograph had multiple cores in. Every photograph
will have at least one core present, though its position
in the image may vary. Splitting the rock into two
categories that were only valid for specific sections
of the image reduced the impact of the training
data. To mitigate this after the labelling process,
the workflow converts Rock Fragment 1 and Rock
Fragment 2 into a single category.

Algorithm choice and architecture

The chosen algorithm for image segmentation was a
U-Net. U-Nets are a sub-class of convolutional neu-
ral networks (CNNs), which are a family of neural
networks designed for image analysis. A U-Net
was specifically chosen as this architecture is
designed for image segmentation and performs
well on training datasets with a limited number of
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relatively high-resolution images (Ronneberger et al.
2015). This is in contrast to more general CNN archi-
tectures that tend to require a large number of rela-
tively low-resolution training images (Krizhevsky,
et al. 2017).

U-Nets consist of an encoder and a decoder. The
encoder repeatedly increases the image dimensional-
ity by applying 2D kernels. This results in a growing
‘stack’ of 2D ‘filters’, which are trained to identify
distinctive features in the image as the kernel param-
eters are adjusted. The decoder reverses this process;
progressively reducing the dimensionality of the
stack until a 2D image is output. Using an appropri-
ate loss function, the network seeks to minimize the
error between this output and the corresponding
mask for the image.

The U-Net utilized in this study used the
Resnet34 architecture for the encoder–decoder lay-
ers, as the resnet family have a long history of
good performance for image classification problems

and are easy to implement (He et al. 2015). In this
case, Resnet34 was available as a pre-built architec-
ture in the FastAI library (Howard et al. 2018) which
was used to build and train the U-Net. The code used
is available at the project github repository (Walsh
et al. 2021).

Model training and testing

The U-Net was initialized with weights and biases
from a Resnet34 model pre-trained on the ImageNet
dataset (Deng et al. 2009). Using a pre-trained model
reduced overall training time as, although ImageNet
contains 1000 classes that have no relation to the
core segmentation problem, many of the resulting
filters were expected to correspond to important
features within our images. Training was carried
out on a NVidia Quadro RTX 4000 over 100 epochs,
requiring 45 min in total. Binary cross-entropy
between the prediction and the mask was used as a

Fig. 5. Example of a labelled image used in the machine learning (ML) workflow. Human operators traced round
each core fragment to create a series of labelled polygons known as a mask. This was then input to the processing
workflow to train the model. Source: contains British Geological Survey materials © UKRI 2022.
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loss function, where the model sought to maximize
the number of pixels in the prediction and the mask
with identical values. Pixel accuracy was also
recorded as a training metric.

Of the 25 images in the training set, 3 were used
for validation to calculate model training metrics.
Therefore, 22 images were used to train the model,
3 to validate and 4 to test. The trained model was
then used to predict masks for the test set. These pre-
dictions were compared to the actual masks for the
test set images to obtain an overall pixel accuracy
for the model.

Results

The progression of model loss and accuracy over the
training epochs are plotted in Figure 6. As expected,
training loss fell asymptotically with the number of
epochs as the model was able to distinguish between
increasingly fine features. Unusually, the validation
loss was generally lower than the training loss.
This is probably due to the small number of underly-
ing images forming the validation set – just 3 raw
images. As the training set contained more variety,
it is reasonable to assume that prediction on the val-
idation set in this case was relatively easy.

Performance of the model on the test set images
is shown qualitatively in Figure 7. In addition, predic-
tions for the unlabelled images, whichwere character-
ized as ‘difficult’ to manually label by the project,
are shown in Figure 8. In both cases the predictions

clearly exhibit an ability to distinguish between
core fragments as well as other image artefacts.

Overall predictive accuracy over the test set was
97.3%. This meant the model correctly predicted
the class of 97.3% of pixels in the test set images.
Model accuracy on predicting the rock classification
was considered separately as identifying rock frag-
ments is the most important application for the
model. For the test set, rock prediction accuracy is
summarized as follows:

• The precision was 87.7%, meaning 87.7% of pix-
els in the test set images that were labelled as
‘rock’ were correctly classified as such.

• The false positive rate was 5.7%,meaning 5.7% of
pixels in the test set images that were predicted to
be ‘rock’ were incorrectly classified as such.

• The false negative rate was 2.3%, meaning 2.3%
of pixels in the test set images that were predicted
not to be rock were actually rock.

The false positive and false negative predictions are
shown in Figure 9. In general, the relatively high
false negative rate appears to be due to the model
misidentifying areas with few surface features as
card. Many of these rock areas have a similar colour
to the card in the background, so this is unsurprising.

Another contributor to the false negative rate is
the model correctly identifying rock plugs as ‘non-
rock’ areas. These predictions are actually correct
but were mislabelled by the human operators in the
masks. So, these areas actually artificially increase
the false negative rate in this case.

The false positive rate is largely derived from the
model being unable to distinguish the core breaks
between individual fragments. Although the rate is
relatively low, correct identification of these areas
is crucial for the proposed applications as inferring
core breaks is the only reliable means to automati-
cally count the number of distinct core fragments.
This led to a model which does appear to predict
core condition metrics proportional to the actual val-
ues, but is not able to reliably state the number of
fragments in a highly fragmented core. Future
improvements may be possible through more exten-
sive training on a training dataset that contains more
of these highly fragmented core images. However, a
balance may have to be struck between high model
sensitivity for core breaks and higher rate of false
positives for other artefacts that may appear superfi-
cially similar to core breaks.

The edges of core samples (i.e. the interface
between the core and the box) also contribute to
both the false positive and false negative rate. This
is possibly due to the presence of shadows in these
areas. Errors in these areas are of less concern for
automating core condition assessment.

The pixel accuracy is only an indicator of the
model’s ability to distinguish correctly between

Fig. 6. Progression of model loss and accuracy values
over the course of the training run. The accuracy score
is the number of correct predictions made on the
training dataset. The loss is the difference between the
desired target state (training data) and the current model
output. As the model begins to correctly identify core
fragments, the training accuracy increases, i.e. more
core fragments are correctly identified. There is no sign
of an accuracy loss discrepancy, i.e. the loss continues
to fall, while the accuracy remains the same. If the
model was over trained, a single wrong prediction
would lead to a significant difference in loss, with no
change in accuracy.
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different types of material in the image. It does not
directly produce an indication for degree of fragmen-
tation. In order to do this, a number of metrics were
derived from the pixel values in the prediction
masks. The prediction masks were used to derive
the following metrics for each image:

• Relative Rock Area: the proportion of the image
taken up by rock.

• Total Rock Perimeter: the total perimeter of all
rock regions in pixels. More fragmented cores
are expected to have a higher perimeter.

• Average Fragment Perimeter: the average perime-
ter of every individually identified rock fragment,
where an individual rock fragment is a single con-
tiguous zone of ‘rock’ pixels (automatically enu-
merated by the regionprops function from the
scikit-image package).

• Number of Fragments: the total number of distinct
rock fragments distinguished by the model.

• Total Rock Area: the number of pixels identified
as rock.

• Perimeter Complexity: the total perimeter area
divided by the total rock area. Higher quality
cores would be expected to have a less complex
perimeter.

All predicted parameters are shown in Table 1.

Discussion

Neural network approaches have been applied to a
wide variety of Earth science projects in recent
years, from facies prediction (Martin et al. 2021)
through to forecasting of sea ice (Andersson et al.
2021). These types of approaches are favoured due
to the generation of reliable results from a small
amount of training data. Existing python libraries
such as fastai (Howard et al. 2018) and TensorFlow
(Abadi et al. 2015) also reduce the time taken to pro-
duce workflows to address this problem.

The machine learning-based approach demon-
strated here has the immediate benefit of near-instant
assessment of new images. The training set required
an average of 30 min per image to label; however,
complex images (e.g. Fig. 5) took several hours to
label precisely. Thus, the ML approach provides
clear time-saving benefits while producing consis-
tent predictions, which is not guaranteed with
human operators.

Direct time-saving comparisons between the ML
model and human operators is less relevant than the
performance of the model itself. However, in this

Fig. 7. Original test set images, shown with ground-truth masks and predictions from the trained model. Even with a
small training dataset the model can recognize the majority of core within the box. Left-hand panel: original core
image; centre panel: mask generated by human operator (Fig. 5); right-hand panel: prediction of core from trained
ML model when applied to the original image. Source: contains British Geological Survey materials © UKRI 2022.
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Fig. 8. Original images (left) and model predictions (right) for core identified as being in particularly poor condition.
Given the condition of the core, these images were not labelled by human operators due to the time required to
produce a mask. The ML model prediction captures a significant amount of the core variability even with a small
training dataset. Source: contains British Geological Survey materials © UKRI 2022.

Fig. 9. Visualization of the areas of test set images that were mislabelled for the ‘rock’ class. Left: original image;
centre left: mask produced by human operator; centre right: areas of the core where the model predicted core but the
human operator did not; right: areas where the human operator labelled the image as rock but the model did not. The
false negatives in the second image show the model recognizing core plugs even though these were not specifically
labelled in the training dataset. Source: contains British Geological Survey materials © UKRI 2022.
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case the resources required to undertake this work
using human operators is beyond what is practically
possible. This is a consequence of the number of
images held by BGS, currently 125 000. Manually
labelling these images would take, on average
62 500 h or approximately 21 years of a person’s
time working 8 h a day, 365 days a year. As a result,
this task could never be undertaken economically
without the use of ML methods, which in this case
required on the order of hours to train and provide
near real-time labelling. Non-ML automated meth-
ods such as those discussed in the ‘image analysis’
section would still require significant time from a
specialist to pre-determine a set of rules for segmen-
tation. By effectively shifting this learning onto the
training phase of the algorithm itself, the supervised
learning approach allowed a non-domain specialist
to produce viable predictions for rock presence.

Areas for model development

The chosen architecture for CoreScore required a rel-
atively small dataset for training compared to a more
generic CNN. This is unusual for ML models, but
was offset by the advanced image labelling required
to construct a dataset. Simpler image classification
problems tend to require single labels for an entire
image. In this case, producing polygons for every
relevant region in the image was the most time-
consuming aspect of the process. The polygons
themselves provided contiguous regions in the
images that the U-Net learned to recognize in new
images. Although the predicted outputs of the net-
work were simple pixel masks, it was relatively sim-
ple to extract contiguous zones of predicted rock in
order to compute the total number of fragments in
a given image. It is important to note that the algo-
rithm was not explicitly trained to compute the num-
ber of fragments – rather it was scored on its ability
to match individual pixels correctly. A further devel-
opment in the future could utilize a custom loss func-
tion to reward the learner for correctly predicting the
number of fragments; or a similar derived metric.

The nature of the solution presented here allowed
for an easy qualitative assessment of model perfor-
mance, in addition to the accuracy metric provided

by the model. Every prediction on the test set con-
sisted of a prediction mask which can be visualized
as an image. Viewing these predicted masks along-
side the original images not only allows an operator
to visually confirm the model is capable of making
sensible predictions but it may also allow for itera-
tive model improvement. For example, in the first
test set image (Fig. 7), we see rock regions that are
mislabelled as card. If similar misclassifications are
seen in many test set images, it may be possible to
address this in a future training run.

Correcting repeated misclassifications may
involve designing a pre-processing filter to accentu-
ate or remove such regions. Alternatively, a solution
may be applied at the model-level by applying a cus-
tom loss function, tailored to disproportionately
increase the loss value for the specific misclassifica-
tion (Ebert-Uphoff et al. 2021); this would make the
model more sensitive to these regions.

An important aspect of CoreScore that has not yet
been considered in detail is the balancing of the train-
ing dataset. The training images were selected at ran-
dom by a human operator from the full BGS core
image dataset. In initial model tests it was found
that performance was worse when applied to lighter-
coloured core material than with darker-coloured
material (Fig. 10). This is likely a result of lighter
cores being under-represented in the initial training
dataset. As the full dataset consists of a wide variety
of lithologies and rock types, representative samples
of many of these lithologies would probably be nec-
essary to train up a classifier capable of distinguish-
ing fragments in any core. It is difficult to predict
exactly how many training samples, and the variety
thereof that would be required to build a truly general
classifier that could predict on any unseen new sam-
ple; future studies could feasibly repeat the work of
this study with a test set of explicitly different sam-
ples to measure sensitivity of the model against train-
ing set variability.

However, dataset variability cannot be consid-
ered in isolation. An ideal dataset would contain dif-
ferent lithologies with the same relative frequency
we expect to encounter them in any new images.
The process of representing different classes of
data in the correct proportion is referred to as

Table 1. Predicted metrics for the test set images shown in Figure 7

Image Relative rock
area (pixels)

Total rock
perimeter
(pixels)

Average
fragment
perimeter

Number of
fragments

Total rock
area (pixels)

Perimeter
complexity

test set 1 0.16 8984.79 598.99 15 85 269 0.11
test set 2 0.15 5414.20 541.42 10 81 267 0.07
test set 3 0.15 10 695.59 1782.60 6 80 044 0.13

These parameters may be used as a summary for overall core quality.
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‘stratification’ and is not possible to achieve per-
fectly since we can never know how new unseen
data will be stratified. In addition, stratification
should be carried out based on other metrics such
as core condition. For example, a classifier trained
only on core in excellent condition would not be
able to segment poor quality core.

Ensuring that the training dataset for future runs
is well stratified may prove challenging as automat-
ically assessing these attributes in the existing data is
difficult without an existing model. Although the
model does not directly suffer from the nondetermin-
istic bias seen in human operators, it is susceptible
from bias derived from incorrectly stratified data.
To mitigate this, it is anticipated that future use of
this tool will require a new training set that propor-
tionally represents all rock types in the NGDC.

Another aspect which may artificially raise the
model accuracy is positional bias. All training photo-
graphs were of broadly the same format: split into
four horizontal sections. The top section housed
the colour reference card and background, the sec-
ond and third sections usually housed core, and the
bottom section was usually empty. A learner that
simply predicted ‘background’ for the top 25% of
the image, ‘rock’ for the middle 50% and ‘card’ for
the bottom 25%would score a reasonably high accu-
racy. Indeed, we see excellent predictive capability
for ‘card’ in the bottom section of all test set images.

To address the issue of positional bias in future
iterations, data augmentation through geometric
transformation will be necessary (Shorten and
Khoshgoftaar 2019). The simplest solution would
be to rotate training images in 90° increments and
duplicate to remove this positional context. Another
approach to this issue would be to slice the images
so that each section of core is separated and ‘back-
ground’/‘card’ areas are minimized. This may be a
more comprehensive approach, but the additional

investment required means that the simpler transla-
tional techniquewill be attempted and evaluated first.

The labelling of the training data may also have
introduced errors and artefacts in the model. In the
initial training phase five types of labels were used,
despite the principal interest being confined to the
presence or absence of core. Instructions were pro-
vided to interpreters but the authors now believe
that fewer labels should have been used in the initial
development of the tool. This would have improved
model performance through the reduction of false
negatives. However, some false negatives would
have persisted in cases where core plugs have been
taken from intact rock fragments (Figs 8 & 9).

One limiting factor on the use of Core Score is the
available hardware, specifically GPU memory. The
training set was small enough for the computational
time to train the model to not be a major concern.
However, the high resolution of the input images ini-
tially caused the model to exceed the available GPU
memory of 8Gb. The solution was to train with a
batch size of 1, which was appropriate due to the
small number of images. If higher-resolution images
are to be used in the future, or a batch size increase is
necessary, future implementations would require
either a higher performance GPU, or reduction of
input image sizes by slicing to only include the
relevant sections.

One challenge when applying machine learning
techniques to the BGS photography collection is
that the photographs were not collected with ML
techniques in mind. This results in some artefacts
in the processing in particular caused by shadows
at the edges of each core box (AlZayer 2019;
Fig. 10). In similar projects, this has not posed
major issues, especially when the photography is
carried out under controlled conditions (Hall et al.
2021). A sufficiently well-trained classifier would
be able to identify these artefacts and account for

Fig. 10. CoreScore model performance and artefacts on an unseen image. Ovals highlight the effect of paper on the
model. Shadows on the core caused by the edge of the corebox are highlighted by the white rectangle. The white
polygons show an area of lighter core that is not well identified by the model and is likely the result of lighter
material being under-represented in the training dataset. Source: contains British Geological Survey materials ©
UKRI 2022.
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them. However, artefact removal via pre-processing
is preferred where applicable. A pre-processing step
would be particularly beneficial to the U-Net
approach since the training set consists of a small
number of high-resolution images, so artefacts will
be seen relatively few times during training.

In addition to this there are also many other arte-
facts in the images introduced from items within the
Coreboxes themselves. This includes: Paper Labels
(Fig. 10); Sub Sampling (Figs 2 & 10); Plastic/wrap-
pers (Fig. 1), resin and spacers (an object inserted
where a section of core is removed. All of these fea-
tures will impact the performance of the tool, reduc-
ing the accuracy of the predictions. The overall result
may make CoreScore more suitable for reconnais-
sance level characterization.

The capability of the model to automatically
identify areas of rock allowed for direct computation
of parameters that may be used for core assessment.
Ideally, the total number of distinct fragments iden-
tified in each image would be used as a direct
proxy for core condition. This method would likely
automatically downgrade finely laminated cores
with planes of weakness which may open post-
drilling. These cores may have an increased value
from a geological perspective, so user requirements
need to be considered as part of the process. In addi-
tion, discriminating between areas of rock and core
breaks was the main contributor to false positive val-
ues in the predictions. This led to a model that strug-
gled to accurately identify the pixels in ‘transitional
zones’ between fragments. When deriving core qual-
ity metrics from these pixel predictions, there was a
tendency for smaller fragments to become single
larger contiguous zones which were labelled as a
single fragment.

However, the total perimeter of rock in each
image was also computed and appears to be propor-
tional to fragment count. This is visually demon-
strated in Figure 7 where we see a core with many
fragments that are falsely identified as a few large
sections of rock. The prediction is still able to trace
out a relatively large perimeter around these collec-
tions of individual fragments. Future iterations of
this methodology may seek to better differentiate
between individual fragments, or alternatively seek
to characterize core using a single parameter derived
solely from the core area and total perimeter.

All of these factors have an impact on attempts to
calculate a single core quality index from CoreScore
outputs. If the tool was run on a closed dataset where
the training images were representative of the core as
a whole then a normal distribution could be fitted to
calculate a relative core index (AlZayer 2019). Such
an index can be valuable for specific use cases but the
development of CoreScore is currently geared
towards a single tool which can be applied irrespec-
tive of core condition. As such, a universal index

is not currently the target for immediate development.
BGS also continues to acquire new core photographs
as part of its Digital Collections programme.
These new images will be incorporated into the
tool, initially on a borehole-by-borehole basis. It
remains a target of the project to introduce core-
condition categories based on the outputs of the
tool. It is intuitive that a core with fewer core breaks
and higher total rock area will be in a better condition
than one with more breaks and a lower rock area.
Though at this stage the model has only been run on
a small number of images so a proposed classification
would not bemeaningful beyond this specific dataset.

Another method to assess core condition would
be to examine core fragmentation and fragment
size for different core diameters and lithologies to
create an index by rock type. It is, for example,
expected that clay- or mud-rich lithologies will have
degraded while in storage (Deere and Deere 1989)
so may have larger numbers of core breaks. Further-
more it is anticipated that non-geological parameters
such as core diameter or whether the core was
archived in whole round or slabbed state will also
impact core condition. These parameters are not cur-
rently stored in machine-readable formats and the
data extraction will be a time-consuming process.
However, it remains the authors’ ambition to capture
this information and incorporate it into the tool.

CoreScore applications

The initial concept for developing CoreScore was to
improve efficiency in the BGS Core Scanning Facil-
ity by not scanning core that was too broken to gen-
erate reliable data. However, there are a number of
legacy cores that are of sufficient quality to be
scanned but their condition may still impact the scan-
ning data (e.g. Fig. 2). It is difficult to quantify the
magnitude of this impact due to the lack of publicly
available hard rock datasets from core scanning
alongside there being no method of quantifying leg-
acy core condition in a consistent manner.

The impact of core condition on core scanning is
also dependent on the purpose of collecting core scan
data. If there is a large contrast in rock properties,
such as an interbedded sequence of evaporites and
muds, volumetric measurements are likely to iden-
tify this variation unless the core has rubbled. How-
ever, if the user would like to look at chemical
changes that can indicate variations in cement type
down core then even small fractures can have an
impact on the dataset.

Information on core condition is needed to make
sense of core scanning data. For example, the dataset
from UKGEO’s Glasgow shows that within sections
of poor core condition, scan data cannot be collected
(Fig. 3). However providing a single grade for a box
does not distinguish sections of intact core, sections
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of missing core and sections of core too fragmented
to scan. Thus, outputs from CoreScore could be used
to qualitatively assess core scanning outputs and
identify if data gaps are associated with missing
core or broken core.

CoreScore utilization has implications for meth-
odologies for core preservation and sampling in a
Core Store environment. Currently users taking
destructive samples from core held at BGSKeyworth
must either access core photographs or attend site in
person to identify sample locations in conjunction
with the chief curator or conservator. Where there is
a significant section of core (e.g. a hundred metres)
this process can involve a lot of physical effort and
time to retrieve the cores and lay them out in viewing
bays. CoreScore will streamline this process by pre-
screening core to identify sections where there is suf-
ficient intact rock to allow for sampling. This will
minimize unnecessary core handling, decreasing
both risks of damage to corematerial andmanual han-
dling injuries to the repository staff. This objective
remains an aspiration that is yet to be realized, but
CoreScore represents progress toward this aim.

CoreScore can also promote core preservation.
Take, for example, the case where two boreholes
are drilled near to each other and sample the same
stratigraphy. One borehole is mentioned in a publica-
tion and has been heavily sampled but the other has
not. CoreScore could identify this and be used to
direct users to the second core, allowing preservation
of the first borehole while improving the type and
quantity of samples a user can take. It could also
flag where samples had been taken, allowing individ-
uals to investigate what historical data may be
available.

The ability to automatically generate simple met-
rics to assess core can be used to improve the visual-
ization of long stretches of core. Due to hardware and
performance considerations it can be impractical to
load hundreds of metres of core images into visuali-
zation software. The text outputs of CoreScore allow
users to present core condition over hundreds of
metres but then load high-resolution photography
for sections of interest. In addition to this, if a section
of fresh core was repeatedly photographed over time
then CoreScore could also be used to assess the
speed of core degradation in different lithologies
and to inform future curation best practice.

Conclusions

Project CoreScore has demonstrated that ML meth-
ods and workflows can be used to rapidly assess
core condition from images alone. This methodology
has been demonstrated to perform with a high degree
of accuracy (over 95%) and precision (87.7%) when
compared to a manually labelled image.

CoreScore represents an opportunity to change
how users interact with physical core material
stored in the NGDC. This has implications for all
users of the NGDC, from a PhD student taking a
single sample from a core to large basin-scale
multi-well characterization studies by industry
or consortia.

The utilization of existing U-Net algorithms has
allowed this to be achieved with a minimal training
dataset. This has not only reduced the time spent
compiling training datasets but also means that the
model can be easily adapted to focus on lithologies
not currently represented in the dataset, initially on
a project-by-project basis.

However, the content and collection of the train-
ing dataset has implications for the deployment of
the tool. Results suggest that model performance
would be replicated in lighter lithologies, such as
limestones or darker lithologies, such as shales. As
a result, ongoing tool development will require the
collection of training data from areas of interest,
either spatially or stratigraphically.

The model has been shown to segment images
that humans would find difficult or time-consuming
to manually assess. It also provides a consistent
methodology which would be difficult to achieve
with human operators. It is worth noting that eco-
nomically it would be difficult for humans to inter-
pret the existing core photography dataset within
BGS based on size alone. As a result, ML tools rep-
resent one of the few options of unlocking informa-
tion from this photography dataset.

Scaling up the existing prototype to the full data-
set (125 000+ images) would require rapid assess-
ment of new images and require enhanced
computing power. We cannot yet conclude that
such a model would be able to achieve high segmen-
tation accuracy on new data from the full range of
lithologies housed in the NGDC. However, by scal-
ing up our current implementation of an image pro-
cessing pipeline and U-Net, we hope to extend the
predictive capability of this model across a compre-
hensive range of core samples.

The workflows utilized in this project have been
applied to a number of geoscience problems. This
demonstrates the versatility of these types of
approaches, particularly to consistent datasets of
images, and even legacy datasets where factors
impacting machine learning were not considered at
the time. An example of this is the performance of
CoreScore on core images where items such as plas-
tic and paper obscure sections of the core.

Full utilization of the CoreScore outputs will
depend on integration with other processes that
involve legacy core, such as core scanning. There
are, however, many other potential use cases and dis-
cussions with future stakeholders will be critical to
the development of CoreScore.
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