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Abstract
Developing spatially-targeted policies for farmland in the European Union (EU) requires
synthesized, spatially-explicit knowledge of agricultural systems and their environmental
conditions. Such synthesis needs to be flexible and scalable in a way that allows the generalization
of European landscapes and their agricultural potential into spatial units that are informative at any
given resolution and extent. In recent years, typologies of agricultural lands have been substantially
improved, however, agriculturally relevant aspects have yet to be included. We here provide a
spatial classification approach for identifying archetypal patterns of agri-environmental potential
in Europe based on machine-learning clustering of 17 variables on bioclimatic conditions, soil
characteristics and topographical parameters. We improve existing typologies by (a) including
more recent biophysical data (e.g. agriculturally-important soil parameters), (b) employing a fully
data-driven approach that reduces subjectivity in identifying archetypal patterns, and (c) providing
a scalable approach suitable both for the entire European continent as well as smaller geographical
extents. We demonstrate the utility and scalability of our typology by comparing the archetypes
with independent data on cropland cover and field size at the European scale and in three regional
case studies in Germany, Czechia and Spain. The resulting archetypes can be used to support
spatial stratification, upscaling and designation of more spatially-targeted agricultural policies,
such as those in the context of the EU’s Common Agricultural Policy post-2020.

1. Introduction

Current land management dynamics are driven
by social, economic and political changes (Stoate
et al 2009, Batáry et al 2015, Lomba et al 2015),
which are putting European agroecosystems under
an immense pressure and leading to land-use intensi-
fication (to achieve higher cost-effectiveness) in some
areas and land abandonment in others (Plieninger
et al 2016). Given that nearly half of the land in
the European Union (EU) is used for agriculture

(Castillo et al 2018), sustainable management of
agro-ecosystems is key to preventing further degrad-
ation of farmland and the ecosystem services they
provide, and to achieving the EU’s environmental and
climate objectives (Rega et al 2020). At the same time,
Europe’s agricultural landscapes are highly diverse
due to climatic, biophysical and socioeconomic dif-
ferences typically encountered at continental scales.
Past agricultural policies have commonly been criti-
cized for oversimplifying the inherent complexity of
Europe’s agricultural systems and trying to impose
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one-size-fits-all solutions for subsidization and reg-
ulation of the EU’s agricultural sector (e.g. Bureau
et al 2012, PBL 2012). Indeed, policies and actions
have different outcomes depending on the type of
agricultural system targeted, the type of farming and
land use, or local socio-economics (Ziv et al 2020).
Developing policies that overcome these shortcom-
ings and are tailored to fit national, regional or even
local scales could be supported by spatially-explicit
typologies that capture archetypal patterns of agri-
environmental systems. Such typologies need to be
flexible and scalable in a way that allows the classific-
ation of agricultural landscapes into spatial units that
are informative at any given scale and extent.

Great efforts have been devoted in recent years to
developing methods to identify and map archetypal
patterns of agricultural systems, particularly in
Europe (e.g. Andersen 2017, Levers et al 2018, Rega
et al 2020). In addition to such continental-scale
archetypes, others have mapped land system arche-
types at smaller scales (e.g. Janík and Romportl 2016,
Malek and Verburg 2017, Dittrich et al 2019). How-
ever, most of these archetypes have been prepared
for specific applications (e.g. for mapping crop-
management systems, exploring changes in land-
use intensities, or understanding bundles of ecosys-
tem services), often relying on data that are difficult
to obtain and share (e.g. census data on individual
crops or data from the Farm Accountancy Data Net-
work). In contrast, more general characterizations
of agricultural landscapes, that rely mostly on bio-
physical factors such as topography, climate, or land
cover, have proved to be highly useful for upscaling of
regional findings across the continent, for the selec-
tion of representative case studies, or as frameworks
formodeling land use and policy impacts (Hazeu et al
2010, Mücher et al 2010, Metzger et al 2013, Václavík
et al 2016). We here aim to bridge these approaches
by providing a novel and freely accessible base map
of agri-environmental potential in Europe, which can
be adapted and scaled to fit the requirements of other
study contexts (e.g. socio-economic studies, behavi-
oral studies, species distribution modeling).

We present a spatial classification approach for
identifying archetypal patterns of agri-environmental
potential in Europe. We define archetypes as recur-
rent patterns in variables and processes that shape
land and social-ecological systems and can be
expressed as typologies of cases (sensu Oberlack et al
2019). In order to support spatial targeting of agricul-
tural policies, upscaling and transferability of regional
findings and other application domains (figure 1), we
provide a development beyond existing typologies by
(a) including more recent biophysical data that have
become available, including agriculturally-important
soil parameters which have not been included in
previous archetypal classifications (Hengl et al 2017),
(b) employing a fully data-driven approach to define

rules for creating archetypes, which allows more flex-
ibility when adapting the archetypes to specific study
requirements and (c) providing an easy way to adjust
the archetypes by defining the number of spatial
clusters that allows scalable results suitable both for
the entirety of Europe as well as smaller geographical
extents and fits best to the specific study purpose.
We demonstrate the utility, flexibility and scalability
of our approach by comparing the archetypes with
independent data on cropland cover and field size at
the continental (European) scale and at the regional
scale in three regional case studies in Germany, Cze-
chia and Spain. The resulting archetypes can be used
to support decision-making and designation of more
spatially targeted agricultural policies, especially in
the context of the EU Common Agricultural Policy
post-2020 and the EU Biodiversity Strategy towards
2030.

2. Methods

2.1. Data and variable selection
This study’s extent is Europe, covering approxim-
ately 6.63 million km2 (figure 2). The input datasets
(table 1) that we used to identify agri-environmental
archetypes were chosen to cover the biophysical vari-
ation of agri-environmental systems in Europe, espe-
cially in terms of climate, soil and topographical para-
meters. However, we did not restrict our analysis to
agricultural land only. We adopted a broader view of
agri-environmental archetypes, referring to them as
spatial units with similar biophysical characteristics
related to land suitability and potential agricultural
production. Our variables reflect the basic determin-
ants ofmodern agricultural production capacity, sim-
ilarly as in the case the Agro-Ecological Zones (Hazeu
et al 2010), controlling what agricultural systems have
the potential to be in a certain location in the absence
of human decisions, political history, market struc-
tures, implementation of the Common Agricultural
Policy, etc.

First, we included 19 bioclimatic variables from
the WorldClim database v2 (Fick and Hijmans
2017; www.worldclim.org), which contains long-
term global climate and bioclimatic variables at 1 km
resolution. Bioclimatic indicators provide a useful
basis for environmental stratification. They describe
seasonal conditions and climate extremes and, thus,
they are considered to be more agriculturally relev-
ant than monthly climate observation (Galdies and
Vella 2019). To include a variable reflecting the length
of agricultural production, we calculated growing
degree days (GDD) using the summed temperature of
all months with an average temperature higher than
5 ◦C multiplied by the number of days.

Soil properties are important determinants of
farming systems, and so, second, we acquired the
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Figure 1. Conceptual framework showing the scalable approach for identifying archetypes of agri-environmental potential and
their application domains. These include spatial tailoring of policies to fit national or regional needs; stratifying regions for
selection of research sites or assessing geographical representativeness; providing a modeling framework for investigating the
interactions between farming and biodiversity in agro-ecosystems, for assessing bundles of ecosystem services, or for modeling
the complexity of decision making and behavior of agents in the agricultural sector; assessing the transferability of place-based
research to other regions with similar agri-environmental characteristics; and upscaling of land-use models and management
recommendations developed in regional case studies to larger geographical extents.

SoilGrids database of 15 global gridded and harmon-
ized soil variables at the 250 m resolution (Hengl
et al 2017; www.isric.org/explore/soilgrids).We selec-
ted a soil depth of 30 cm (most relevant for farm-
ing) and transformed all raster datasets to Lambert
azimuthal equal area projection, warping them with
bilinear resampling warp method to a resolution of
1 km to form a spatially consistent basis of input data.
Third, topographic variation underlies most patterns
and processes in land systems and is key to under-
standing spatial variation in land use and agricultural
activities. To express the main topographical charac-
teristics, we extracted elevation and terrain rugged-
ness index (TRI) from the Global Multi-resolution
Terrain Elevation Data (GMTED) available from the

EarthEnv database (Amatulli et al 2018) at a 1 km
resolution.

To avoid collinearity and redundancy in the input
information, we inspected Pearson correlation coef-
ficients between all variables (figures A1–A3), using
r = |0.7| as a conservative threshold of collinear-
ity (Dormann et al 2013). If two variables were
correlated, only one was kept for further analysis,
giving preferences to those with more direct agro-
environmental relevance. For example, GDD was
highly correlated with Annual mean temperature,
therefore only the temperature variable was retained.
However, we made two exceptions: (a) sand, clay and
silt are the building blocks of soil, therefore correlated
but still individually important for agriculture; and
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Figure 2. The main study area (Europe) and three regional case studies in Germany, Czechia and Spain. The case study regions are
shown in purple on the main map and in the map insets on the right. The maps show field sizes (Lesiv et al 2019) with categories
defined as: very large (>100 ha), large (16 ha–100 ha), medium (2.56 ha–16 ha), small (0.64 ha–2.56 ha) and very small
(<0.64 ha) following the GEOGLAM framework. Maps in Lambert azimuthal equal area projection.

(b) elevation andTRI, which had the correlation coef-
ficient slightly above 0.7 but express different charac-
teristics of topography. Our final set of input indic-
ators included 17 variables (table 1). Only cells that
had no missing values were used for further analysis.
Therefore, 4% of cells (267 184 km2) were removed,
scatteredmostly over Scandinavia and theAlps, where
no soil information was available.

2.2. Spatial classification of agri-environmental
archetypes
We used self-organizing maps (SOMs; Kohonen
2001) to cluster the selected multi-dimensional
data into archetypal patterns of agri-environmental
potential. SOMs are based on artificial neural net-
works following a competitive learning algorithm
with an input layer (input variables) and an out-
put layer (clusters). The method allows visualiza-
tion of complex data by reducing their dimension-
ality to a predefined two-dimensional output space
(map) of k neurons (or nodes), clustering observa-
tions (e.g. grid cells) based on their similarity. SOMs
are becoming a common approach for identifying
archetypes as typologies of cases (Sietz et al 2019)
and have been used in several recent studies mapping

archetypes of land and social-ecological systems
(Václavík et al 2013, Levers et al 2018, Dittrich et al
2019).

First, since the input data had to be standard-
ized to allow for a relatively equal influence of weight
vectors (Kohonen 2001), we used z-score normaliz-
ation to scale all variables to zero mean and stand-
ard deviation of 1. Then, we determined the size of
the two-dimensional output space. This size is selec-
ted prior the classification procedure, with a small
number of output nodes forcing the SOM to behave
solely as a clustering technique, and a very large num-
ber of nodes (exceeding the number of input obser-
vations) enabling the emergence of fine-scale pat-
terns (Delmelle et al 2013). To assess the utility of
our approach at multiple scales, we aimed to find an
appropriate number of k clusters for both regional
and continental applications. Using the heuristic
equation approach (Vesanto and Alhoniemi 2000)
with a two-stage clustering method (Park et al 2014,
Cracknell et al 2015, Li et al 2019) on a very large SOM
(112 by 112) showed that the Within-cluster sum of
squares (WCSS) of the resulting second-stage Hier-
archical agglomerative clustering (HAC) was optimal
for 20 clusters (figure A4).
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Table 1. Final selection of 17 variables used for classification of agri-environmental archetypes: seven climate derived fromWorldClim
v2 (Fick and Hijmans 2017), eight soil-related variables originating from the SoilGrids dataset (Hengl et al 2017), and two topographic
parameters derived from the Global Multi-resolution Terrain Elevation Data (Amatulli et al 2018). All variables collated at 1 km
resolution.

Origin Variable name (unit) Description

Worldclim Annual precipitation (mm) Annual sum of precipitation
Worldclim Precipitation warmest quarter (mm) Precipitation variable that corresponds with the peak solar

radiation and highest growth potential
Worldclim Mean Diurnal temp. range (◦C) Mean of monthly temperature ranges, providing

information on temperature fluctuation
Worldclim Annual mean temp (◦C) Basic temperature variable with influence on crop cultivation
Worldclim Annual temp. range (◦C) Displays the range of extreme temperature conditions and

serves as a proxy for continentality/oceanicity
Worldclim Mean temp. wettest quarter (◦C) Basic temperature variable in the wettest quarter of the year
Worldclim Precipitation seasonality (%) Variation in monthly precipitation over the course of the year
SoilGrids Coarse Fragments (%) Volumetric fraction of coarse fragments
SoilGrids SOC concentration (g kg−1) Soil organic carbon concentration
SoilGrids Sand content (%) Proportion of sand particles (>0.05 mm) in the fine earth

fraction
SoilGrids Bulk density (kg m−3) Bulk density of the fine earth fraction
SoilGrids PH KCl (index ∗10) Soil pH
SoilGrids Clay content (%) Proportion of clay particles (<0.002 mm) in the fine earth

fraction
SoilGrids Cation exchange capacity (cmol kg−1) Cation exchange capacity of the soil
SoilGrids Silt content (%) Proportion of silt particles (⩾0.002 mm and⩽0.05 mm) in

the fine earth fraction
GMTED Elevation (m) Mean elevation in meters above sea level
GMTED Terrain Ruggedness (m) Sum of absolute change in elevation between the grid cell

and its eight neighbors

To find a number of clusters for the regional
application, we investigated the quantization error
(QE) of differently sized SOMs, from k = 9 to
k = 2500. QE is a quality measure of the classific-
ation procedure, calculated as the distance of each
observation to the cluster centroid. It indicates how
homogeneous the clusters are: good classifications
should show relatively small distances formost obser-
vations.We selected k= 400 as the optimal number of
clusters using the ‘ElbowMethod’ (Kassambara 2017,
figure A5).

We used the Geospatial Data Abstraction Library
3.0.2 (GDAL/OGR contributors 2019) for the prepar-
ation of all input variables. All other processing and
visualization were done in the statistical program-
ming language R 3.5.0 (R Core Team 2019). SOM
clustering was implemented with the kohonen 3.0.1
package (Wehrens and Kruisselbrink 2018).

2.3. Comparison to agricultural data
To demonstrate the utility of our typology we com-
pared the outcomes of the SOM clusters with inde-
pendent data on mean cropland cover and field
size. We assumed that identified agri-environmental
archetypes, despite not being restricted to agricul-
tural land, should reflect the biophysical conditions
that drive some of the variation in agricultural
data, e.g. locations with high TRI and temperat-
ure extremes co-occurring with small field sizes. At
the same time, we assumed that individual input
datasets would not be significantly associated with

agricultural data; we tested this assumption by cal-
culating Pearson’s correlation coefficients between
each input variable and cropland cover and field size,
respectively, using 1% of randomly selected pixels to
avoid spatial autocorrelation (table A1).

To compare the k20 clustering approach, we used
the global maps of mean cropland cover and agricul-
tural field size developed by International Institute for
Applied Systems Analysis-International Food Policy
Research Institute (IIASA-IFPRI) at 1 km resolution
(figure A6, Fritz et al 2015). The product defines cro-
pland as the sum of arable land and permanent crops,
following the definition of the Food and Agricul-
ture Organization. The field size map (figure 2) from
Lesiv et al (2019) defines field size categories as: large
(>16 ha), medium (2.56 ha–16 ha), small (0.64 ha–
2.56 ha) and very small (<0.64 ha). In this dataset,
a field is defined as an enclosed agricultural area,
including annual and perennial crops, hayfields and
fallow but, in contrast to the cropland cover product,
also permanent pastures.

To test the applicability of the k400 clustering
approach, we acquired data on cropland cover and
field size for three case study regions that are part
of the European Commission-funded research pro-
ject BESTMAP (Ziv et al 2020): the Saxonian part of
theMulde river basin in Germany, the SouthMoravia
region in the south-eastern part of Czechia, and Cata-
lonia in Spain (figure 2). For the German case study,
we obtained field parcel geometries from the InVeKoS
database of Saxony (InVeKoS Sachsen—SMEKUL
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Figure 3. SOM k20 cluster map of the study area with color-coded clusters. Right side SOM k20 clusters in the regional case
studies. At this scale, the case study regions were divided into five, six, and five clusters for Czechia, Spain and Germany,
respectively.

2020) that is part of the Integrated Administration
and Control System. We selected ‘arable land’ field
parcels, excluding parcels with permanent grassland.
The Czech field information was extracted from the
public Land Parcel Identification System (LPIS) of the
Ministry of Agriculture of the Czech Republic, com-
bining the categories ‘arable land’ and ‘grassland on
arable land’. For Spain, the LPIS data provided by the
Centre for Ecological Research and Forestry Applica-
tions was restricted to the ‘arable land’ category. All
three datasets were rasterized, first to a 10 m spatial
resolution (to preserve finer detail) and subsequently
aggregated to a 100 m resolution. Concurrently, the
SOM had to be disaggregated from 1 km to 100 m
resolution using the disaggregate function from the R-
package raster.

3. Results

3.1. Continental application—SOM k20
The identified archetypes of agri-environmental
potential showed a relatively even geographical distri-
bution and their coverage ranged from 1.0% (Cluster
20 with 62 000 km2) to 10.1% (Cluster 10 with
640 000 km2) of European land (figure 3). The largest

clusters, 4 (542 000 km2) and 10 (640 000 km2), were
in Northern Finland and Russia, suggesting that there
is a relatively homogenous space of environmental
conditions over a large area, althoughmuch of it with
low agricultural potential. The highest QE was found
in clusters 19 and 20 (figure 4), located along the
coast of Norway and the northern UK, and also at
the coast of Spain, Portugal and the Alpine region.
These archetypes were the most heterogeneous, clus-
tering agri-environmental potential with awide range
of conditions, especially elevation and precipitation
(figure A7).

An important output of the SOM procedure is
so-called heatmaps (or component planes), which
are depictions of the relative contribution of each
input variable to the overall ordering of the SOMout-
put space (figure 4). Comparing multiple heatmaps
reveals non-linear and partial correlations between
variables, providing a cross-sectional view of our 17
input variables. For example, elevation and terrain
ruggedness showed a similar pattern of high values
towards the top of the plane (especially cluster 19),
descending towards low values in the bottom part
of the plane. Conversely, archetypes associated with
high values of soil bulk density or clay content at the

6
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Figure 4. Heatmaps of input variable distribution across the SOM k20 grid, showing the relative contribution of each input
variable to the overall ordering of the self-organizing map.

left part of the plane and decreasing values to the right
showed the opposite pattern in terms of soil organic
carbon or sand content.

The comparison of the identified archetypes with
independent agricultural data (IIASA field sizes and
mean cropland cover) showed that even coarse-
scale clustering may have a meaningful agricultural
relevance (figure 5). For example, the ordering of
identified agri-environmental archetypes captured a
pattern of decreasing field sizes going from the bot-
tom to the top portion of the SOM grid and decreas-
ing cropland cover going from left to right. All cat-
egories of field sizes tended to occur in archetypes
with higher cropland cover but archetypes with a high
proportion of no fields only partly coincided with low
cropland cover, likely because the global field size data
also included permanent pastures.

3.2. Regional application—SOM k400
Unsurprisingly, the regional application clustered
European land into 400 smaller and more homogen-
eous agri-environmental archetypes than in the case
of SOM k20 (figure 6). The sizes of clusters ranged
from 2230 km2 (0.04% of the study area) for cluster
381–34 000 km2 (0.5% of the study area) for cluster
184, with a median of 15 068 km2, which is close to
1/400 of the total study area. Smaller clusters tended

to be less heterogeneous (lower QE), but the over-
all cluster quality was uniformly distributed across
Europe and higher than in the case of k20 (figures 7
and 8). A correlation of input variables with the
clusters’ mean QE (figure A9) showed that QE was
positively associated with annual precipitation, soil
coarse fragments, terrain ruggedness and elevation.
Therefore, agri-environmental potential with high
values of these variables, located along the coast of
Norway, Northern UK and the Alpine region, were
also more heterogeneous and thus less likely to form
homogeneous archetypes.

SOM heatmaps exhibited much more distinct-
ive patterns and many fewer correlations between
input variables than in the k20 case, suggesting the
k400 clustering provided a more detailed typology of
agri-environmental systems. However, some patterns
were consistent as in the continental application. For
example, elevation, terrain ruggedness and precipit-
ation show a pattern of high values towards the top
of the plain, while several soil characteristics, such as
bulk density, clay content, or soil organic carbon show
a left-to-right distribution of values.

The SOM k400 clustering was also able to better
capture the spatial pattern in the independent agri-
cultural data than in the k20 case (figure 8). The field
sizes tended to increase when going from the bottom

7
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Figure 5. SOM k20 node grid with cluster distributions of IIASA field size areas and mean cropland cover.

Figure 6. SOM k400 node grid with color-coded cluster numbers. Nodes with red outlines correspond to the clusters found in the
Czech case study area, green in Spain and blue in Germany while disregarding clusters that covered less than 1% of the total case
study area. The color code for the actual map (left) can be found on the right side. It was color-coded in a four-way gradual color
scheme, to emphasize that clusters close to each other share similar characteristics, due to the topological nature of SOMs.

to the top in the SOM grid, following similar pat-
tern as in several input variables, e.g. elevation, terrain
ruggedness and soil coarse fragments. The regional-
scale application also captured a clearer pattern in

the cropland cover distribution in Europe, with agri-
environmental archetypes identified on the left of the
SOMgrid having low cropland cover, but those on the
right having a high cropland cover.
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Figure 7. Heatmaps of input variable distribution across the SOM k400 grid.

Figure 8. SOM k400 node grid with cluster distributions of IIASA field size areas and mean cropland cover.

9
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Figure 9. Frequency of field sizes per SOM k400 clusters in the three regional case studies. Only clusters larger than 1% of the total
case study area are shown.

3.3. Regional case studies
The regional-scale clustering was better suited to
identifying detailed agri-environment archetypes in
the case study regions. While the k20 classification
identified 4–5 archetypes in each region, typically
capturing the main climate and elevation gradi-
ents, the k400 classification identified 13–17 arche-
types in each region (disregarding the few clusters
that covered less than 1% of the total case study
area) (figure 6). Because of the small area of the
Czech region, a large fraction of clusters shared rel-
atively similar environmental characteristics. How-
ever, clusters with different proportions of large- and
medium-size fields versus no field coverage were still
well distinguished (figure 9). Similarly, the 13 dis-
tinct clusters in the Spanish case study showed a
clear differentiation of cropland frequencies. In con-
trast, the German case study had the majority of land
used as cropland and the clusters showed a relatively
equal distribution of large and medium fields within
clusters. The only exceptions were the archetypes in
the very south of the case study that had a lower pro-
portion of cropland and a higher proportion of per-
manent grassland. The archetypes in the German case
study were driven largely by the strong north-south
gradient of elevation, climate and soil conditions that
did not coincide with field size distribution.

4. Discussion

This study provides an illustrative, data-driven
approach for identifying and mapping arche-
types of agri-environmental potential in Europe.
Our work extends previous efforts creating agri-
environmental typologies in that it (a) considers
recent, agriculturally-important, biophysical vari-
ables that have not been previously available at
the European extent and (b) is based on a fully
data-driven, unsupervised clustering approach that
eliminates potential biases typically associated with
expert-driven or supervised techniques used to define

classification thresholds. By applying this method to
17 key indicators at two spatial scales (k20 and k400),
we demonstrate the scalability of our approach to
generalize the complexity of environmental con-
ditions relevant for agriculture at European and
regional scales, respectively. We gained insight into
the agricultural relevance of identified archetypes by
comparing them with independent data on cropland
cover and field size across Europe but especially in
three regional case studies in Germany, Czechia and
Spain.

The spatial classification of agri-environmental
archetypes presented here includes four main bio-
physical and climatic determinants of agricultural
production capacity; precipitation, temperature,
topography and soil characteristics. Climate and
weather exert significant influence on agricultural
production and by extension decisions on land use
and distribution of agricultural activities. In Europe,
approximately 60%–70%of annual yield variation for
major crops (i.e. wheat, sugar beets) can be attrib-
uted to weather conditions (Trnka et al 2016). Soil
properties have driven the decisions where different
types of agriculture are implemented andwhere land-
use change occurs, both historically (e.g. Ellenberg
1990) and until the present day (e.g. van Vliet et al
2015, Meyer and Früh-Müller 2020). At the same
time, soils are also heavily influenced by climatic
factors, geology and agricultural activities (Hengl
et al 2017). Therefore, the omission of soil informa-
tion from the classification of agricultural typologies
could be seen as a potential shortcoming of previ-
ous classification approaches. This may limit their
suitability for supporting decision-making within
the context of agriculturally used lands, although
direct comparison with our classification would be
needed to determine how substantial the difference
is. Our approach sought to overcome this limitation
by including recent, high-resolution soil information
(SoilGrids). Our analyses show that using these input
data allows for a good differentiation of cropland
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cover and field size both at continental and regional
scales. Nevertheless, using these environmental vari-
ables alone will not be sufficient since variables
like field size and cropland cover are also influ-
enced by socio-economic, historic and political
factors (e.g. Batáry et al 2017, Sroka et al 2019).
The spatial classification of agri-environmental
potential presented here seeks to represent the
fundamental, environmental background within
which any other land-use decision is embedded
and within which societal aspects influence land-use
decisions.

The presented typology was developed with
improving the spatial targeting of agricultural policy
and agri-environmental management in mind. Agri-
cultural policies, such as those derived from the
EU’s Common Agricultural Policy, tend to ignore
the complexity of Europe’s agricultural systems, lead-
ing to inconsistent and uncertain outcomes in differ-
ent locations (Ziv et al 2020). Addressing territorial
diversity by mapping archetypes with similar agri-
environmental conditions is a crucial step towards
tailoring policies that would fit national or regional
needs. For instance, our approach can assist in
deciding where specific agri-environmental schemes
or practices (e.g. no tillage) may be appropriate
and should therefore be subsidized, given the agri-
environmental potential in the area. However, we
envision our approach to be useful in many other
applications (figure 1). For example, our approach
can be used to stratify regions for selection of research
sites or to assess geographical representativeness and
spatial bias in existing research site networks (Wohner
et al 2021). Agri-environmental archetypes can also
serve as a modeling framework for investigating the
interactions between farming and biodiversity in dif-
ferent types of agricultural systems (Seppelt et al
2020, Jungandreas et al 2022), for assessing bundles
of ecosystem services (Cord et al 2017) or for mod-
eling the complexity of decision making and beha-
vior of different agents in the agricultural sector
(Will et al 2021). Thanks to its scalable charac-
ter, the approach is especially suited for upscaling
of land-use models and management recommend-
ations developed in regional case studies to larger
geographical extents and for assessing the transfer-
ability of place-based research to other regions with
similar agri-environmental characteristics (Václavík
et al 2016).

More broadly, our study contributes to the bur-
geoning field of archetype analysis in sustainability
research (Oberlack et al 2019, Eisenack et al 2021).
We used a machine-learning clustering (i.e. SOMs),
rated among the most promising techniques in the
methodological portfolio of archetype analysis (Sietz
et al 2019), allowing for the comparison of typical
variable combinations both in terms of similarity and,
when applied to spatial data, geographic proximity.
Such approach allows synthesizing general patterns

of land systems, and consequently building middle
range theories that stand between simplistic descrip-
tions of singular cases (e.g. case studies or grid cells
as in our study) and universal theories, providing a
pathway towards a more generalized knowledge in
land system science (Meyfroidt et al 2018, Rocha et al
2020). This typology of cases also enhances the treat-
ment of causality in archetype analysis (Sietz et al
2019), going towards ‘thick description’ (more quant-
itative insights into recurrent features) and ‘causal
factor configurations’ (insights into patterns of arche-
type determinants), as it is using high-dimensional
data and is applicable at multiple spatial or temporal
scales.

Besides being a typology of cases where each
case (land area, grid cell, etc) is classified as exactly
one archetype, archetypes can be also seen as build-
ing blocks of dynamic systems, representing causal
mechanisms that explain individual cases (Oberlack
et al 2019). A combination of both complement-
ary approaches has been recommended as a fruitful
avenue to follow (Eisenack et al 2021). For example,
our typology can be used as a starting point to identify
regions with similar agri-environmental potential
suitable for a certain policy, but government efforts
to implement the policy may be effective in cer-
tain socioeconomic contexts but less effective or even
counterproductive in others. Therefore, using data on
farmer characteristics, stakeholder demands or eco-
nomic background may allow identifying archetypal
causal mechanisms between policies and agricultural
sustainability, whichmay ultimately helpmore effect-
ively transfer policies across geographical and social
contexts.

Our results are limited by methodological
requirements of our approach. We assessed the qual-
ity of our classification procedure by calculating the
QE (i.e. the distance of each grid cell in the multi-
dimensional space of variables to the mean variable
values that characterize each archetype). It shows a
pattern of relatively short distances for most loca-
tions, indicating robust typology figures A7 and A8).
However, due to the methodological requirement to
draw the first initialization of weight vectors ran-
domly, the outputs of different SOM runs are never
fully identical. This is a known, potential problem
in the analysis of complex, high-dimensional data
(Mariette and Villa-Vialaneix 2016). A possible solu-
tion in the case of variable results between runs
is combining multiple runs while preserving the
topological properties of SOM, e.g. by bootstrap-
ping or hierarchical clustering techniques (Petrakieva
and Fyfe 2003, Mariette and Villa-Vialaneix 2016).
Another option is to obtain the initial weights and
position of prototype-nodes from the first two eigen-
vectors of a principal component analysis (PCA) per-
formed on the matrix of input variables (Ciampi
and Lechevallier 2000), but the abstract axes of
PCA hinder consequent interpretation of clustering
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results. While these possible variations between indi-
vidual runs do not impact the applicability of the res-
ulting outputs, they should be carefully considered
when developing typologies based on SOM.

Our typology is also limited by the selection of
input variables. In total, we used 17 variables that
cover the range of biophysical variation of agricul-
tural systems in Europe but all have different levels
of uncertainties associated with them, depending on
the origin and scale of the data. While alternat-
ive databases exist with potentially higher resolu-
tion, e.g. EU-digital elevation model (DEM) for elev-
ation or land use/cover area frame statistical survey
(LUCAS) Topsoil for soil properties, they are lim-
ited in their geographic coverage or in their consist-
ency across European countries. Additionally, while
extreme events like droughts and frosts are highly rel-
evant for agricultural systems, no Europe-wide data-
sets are available on the probability of extreme con-
ditions at resolutions below 0.25 degrees (e.g. E-OBS
dataset from the Copernicus Climate Change Ser-
vices). Potentially, this lack of data can be alleviated by
using phenology indices that capture variation in the
vegetation period. Indeed, we created the GDD vari-
able as a proxy for the vegetation period but it was not
selected due to its strong correlation (r = 0.98) with
the mean annual temperature. However, such correl-
ation may not be present at different spatial scales
or for more specific phenological indices produced
from direct phenological observations (Chmielewski
and Rötzer 2001). Therefore, spatially-explicit data
that may arise from a harmonized phenological sur-
vey across all of Europe (COST action 725), which led
to the Pan European Phenology Database (PEP725l;
Templ et al 2018), have a high potential for future
improvements of agri-environmental typologies.

5. Conclusion

This study has identified spatially-explicit archetypes
of agri-environmental potential in Europe, focusing
on two spatial scales: a continental scale and a regional
scale. The two typologies captured the main bio-
physical variation of agriculture systems in Europe
thanks to the SOMs’ capability to visualize multidi-
mensional data, thus fostering the interpretation of
their agricultural relevance. However, our approach

can be adapted and scaled to fit the requirements
of other scales and study contexts. In addition to
serving as a spatial framework for tailoring agri-
cultural policies and management, we see the main
application domains in site selection and stratific-
ation, modeling of interactions between agriculture
and ecosystem services, and in assessing the transfer-
ability of agriculture-relevantmodels to other regions
and across scales. The recently started war in Ukraine
has further highlighted the need for Europe’s agri-
cultural sector to be able to respond quickly and in
a spatially targeted manner to mitigate crises and
ensure food security. Future efforts could also recre-
ate agri-environmental archetypes with climate scen-
arios instead of historical climate data. Predicting the
potential spatial change of agri-environmental pat-
terns can help anticipate how agricultural policies
may need to be adapted in the future due to climate
change.
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Appendix

Figure A1. Pearson correlation matrix for the climate and location variables. The selected variables were used in the clustering
process.

Figure A2. Pearson correlation matrix for the soil and topographic variables. The selected variables were used in the clustering
process.
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Figure A3. Pearson correlation matrix for final input variables used in the clustering process.

Figure A4.Within-cluster sum of squares (WCSS) for differently sized HAC clusters of the SOM outputs.
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Figure A5.Mean quantization errors for multiple runs of differently sized SOM clustering results.

Table A1. Pearson’s correlation coefficients between each input variable and the agricultural data (cropland cover and field size,
respectively). The calculation is based on 1% of randomly selected pixels to avoid spatial autocorrelation.

Variable name (unit) Cropland cover Field size

Annual precipitation (mm) −0.11 0.09
Precipitation warmest quarter (mm) −0.22 −0.19
Mean Diurnal temp. range (◦C) 0.35 0.34
Annual mean temp (◦C) 0.54 0.61
Annual temp. range (◦C) −0.12 −0.31
Mean temp. wettest quarter (◦C) 0.31 0.14
Precipitation seasonality (%) −0.08 −0.09
Coarse Fragments (%) −0.25 −0.03
SOC concentration (g kg−1) −0.55 −0.49
Sand content (%) −0.47 −0.41
Bulk density (kg m−3) 0.62 0.56
PH KCl (index ∗10) 0.67 0.43
Clay content (%) 0.48 0.49
Cation exchange capacity (cmol kg−1) −0.05 −0.11
Silt content (%) 0.26 0.13
Elevation (m) −0.12 −0.02
Terrain Ruggedness (m) −0.17 0.05
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Figure A6. IIASA-IFPRI cropland percentage map with a 1 km resolution.
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Figure A7. The SOM k20 quality map of quantization error (QE), i.e. the distance for each grid cell to its corresponding cluster
centroid.
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Figure A8. The SOM k400 quality map of quantization error (QE), i.e. the distance for each grid cell to its corresponding cluster
centroid.

Figure A9. Pearson correlations of all data points in the input variables with the quantization errors for both cluster sizes (k20 and
k400).
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