
MethodsX 10 (2023) 102040 

Contents lists available at ScienceDirect 

MethodsX 

journal homepage: www.elsevier.com/locate/mex 

Method Article 

Annotating very high-resolution satellite imagery: A whale case 

study 

Hannah Charlotte Cubaynes a , ∗ , Penny Joanna Clarke 

a , b , Kimberly Thea Goetz c , 

Tyler Aldrich 

d , Peter Thomas Fretwell a , Kathleen Elise Leonard 

e , 

Christin Brangwynne Khan 

d 

a British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom 

b School of Engineering, The University of Edinburgh, Sanderson Building, Robert Stevenson Road, The King’s Buildings, Edinburgh, EH9 3FB, United 

Kingdom 

c Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, United States 
d Northeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Woods Hole, MA, United States 
e Protected Resources Division, Alaska Regional Office, National Marine Fisheries Service, NOAA, Anchorage, AK, United States 

a r t i c l e i n f o 

Method name: 

Satellite image annotation to create point, 

bounding boxes and image datasets to train 

automated systems. 

Keywords: 

VHR optical satellite image 

Wildlife 

Cetacean 

Labeling 

AI-ready data 

Machine learning 

a b s t r a c t 

The use of very high-resolution (VHR) optical satellites is gaining momentum in the field of 

wildlife monitoring, particularly for whales, as this technology is showing potential for monitor- 

ing the less studied regions. However, surveying large areas using VHR optical satellite imagery 

requires the development of automated systems to detect targets. Machine learning approaches 

require large training datasets of annotated images. Here we propose a standardised workflow to 

annotate VHR optical satellite imagery using ESRI ArcMap 10.8, and ESRI ArcGIS Pro 2.5., using 

cetaceans as a case study, to develop AI-ready annotations. 

• A step-by-step protocol to review VHR optical satellite images and annotate the features of 

interest. 

• A step-by-step protocol to create bounding boxes encompassing the features of interest. 

• A step-by-step guide to clip the satellite image using bounding boxes to create image chips. 
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Background 

The latest advancements of very high-resolution (VHR) optical satellite imagery (below 1 m spatial resolution) show tremendous 

potential for monitoring wildlife in recent trials [1–6] . There are also a few VHR satellites with synthetic aperture radar (SAR) sensor,

which can image in the dark and through clouds by returning an image of the surface roughness. However, SAR sensor applications

to wildlife surveys is at an early stage [4] . Therefore, in this study we focus on VHR optical satellites, and refer to them as VHR

satellites in the remainder of the text. 

VHR satellite imagery is currently being assessed as a complementary approach to traditional survey methods for monitoring 

whales, and is particularly beneficial for less studied regions and over large areas [3 , 7] . Monitoring whales is crucial, particularly

for estimating abundance and distribution, which is of broad interest to government agencies, academic, and commercial institutions 

around the globe. Some countries are legally required to monitor marine mammals inhabiting their national waters, such as the US

with the Marine Mammal Protection Act 1972 [8] , and Australia with the Environment Protection and Biodiversity Act 1999 [9] .

Whale abundance and trends are monitored to assess their status and recovery from commercial whaling and other anthropogenic

threats ( e.g. ship strike, entanglement in fishing gear, noise pollution) [10–12] . 

Research using VHR satellite images to monitor cetaceans has increased since Abileah (2002) [13] and Fretwell et al. (2014)

[14] pioneering studies, highlighting how VHR satellite imagery may help gather missing information about whales, and complement 

boat and aircraft surveys [3 , 15–23] . There have been developments in using this technology in remote regions to estimate whale

density [17] , detect strandings [21 , 24 , 25] , and count cetaceans [18] . Each study highlights the challenges that need addressing and

the further work required but agree on the opportunity this technology offers for monitoring whales in remote regions. 

Among the challenges to scale this technology to its full potential, is the need to analyze the imagery efficiently using automated

systems, with machine learning approaches being presented as most suitable for wildlife [15 , 26–28] . In machine learning, models are

trained to recognize and classify visual objects through an iterative process, where many examples of the target object are fed into

model training [29 , 30] . Machine learning models require a large annotated dataset of the target species and sometimes confounding

features to train and test the algorithms. Initially, these datasets need to be created by humans manually annotating imagery, until

automated or semi-automated systems can accurately identify the target feature. Such datasets, openly accessible, are few, with 

Cubaynes and Fretwell (2022)[31] dataset, which include point, and bounding box annotations, and image chips; and Charry et al.

(2021)[18] dataset, which include point annotations. Ideally, the creation of such a dataset would be a collaborative innovative effort

using similar protocols and data formats [31] . 

Our aim is to share a detailed step-by-step workflow for annotating VHR satellite images and for creating datasets of annotations

as points, bounding boxes, and image chips in a png format, which will facilitate collaboration across research groups towards the

development of an operational system for marine animal detection in VHR satellite imagery. Here we provide a general outline of

the steps required to annotate satellite images, and create datasets, alongside detailed protocols for ESRI ArcMap 10.8 (Supplemental

1) [32] and ESRI ArcGIS Pro 2.5 (Supplemental 2) [33] , as used by several studies detecting wildlife in VHR satellite imagery

[3 , 17 , 19 , 26 , 31] but with more details to allow reproducibility and transferability. We use cetaceans as a case study to explain the

steps, which are transferable to other objects that can be individually labelled in VHR optical satellite imagery. We also provide

guidance on ways to differentiate species of cetaceans in VHR satellite image (Supplementary material 3), as well as assessing the

certainty of the detection (Supplementary material 5). 

Method details 

Step 1: Image acquisition 

The first step to detecting or counting whales in VHR satellite imagery is to acquire the image (step 1 of Fig. 1 ). Images can

be delivered in different formats. Most VHR satellites capture a panchromatic image (one band, greyscale image, highest spatial

resolution) and a multispectral image (multi bands, usually four or eight bands, colored image, lower spatial resolution than the

panchromatic image), except for the WorldView-1 satellite, which only captures a panchromatic image. 

The main operators of VHR satellites are Airbus, Maxar Technologies, and Planet. Table 1 shows the sensors in orbit for each

of these operators, as well as the planned future missions. Due to the commercial nature, VHR satellite imagery is expensive, with

discounts available for education and research. We recommend contacting the separate companies to get quotes. 

VHR satellites do not continuously capture images; they attempt to collect imagery over target locations when tasked to do so.

The success of tasking satellite image acquisition is influenced by the satellite schedule, cloud cover, and competing priorities. Once

images have been acquired, the images then get added to the archive where they are available for anyone to purchase. Purchasing

archival imagery is more affordable than requesting a custom tasking of image collection for a specific time and location. 
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Fig. 1. Workflow highlighting the main steps needed to build a dataset of annotated whales from satellite images. 

 

 

 

Step 2: Pre-processing 

Before annotating an image, there are a few pre-processing steps that may be needed depending on the type of product acquired

(step 2 of Fig. 1 ). The type of product varies between satellites, operators, but tend to be a variation on whether images are projected,

or pansharpened ( Table 2 ). Other pre-processing, such as correcting for the top of atmosphere may be needed depending on the

survey goals. 
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Table 1 

List of VHR satellites with the company operating them and the type of images available. The spatial resolution for each satellite refers to the 

panchromatic spatial resolution, which is higher than the multispectral image. 

Satellite operator Satellite Spatial resolution Type of image acquisition 

Airbus Pleaides (two satellites) 0.5 m Archive and tasked 

Pleiades Neo (constellation of four satellites) 0.3 m Archive and tasked 

Maxar 

Technologies 

GeoEye-1 (one satellite) 0.41 m Archive and tasked 

Ikonos-2 (one satellite) 0.82 m Archive 

Quickbird-2 (one satellite) 0.65 Archive 

Wolrdview-1 (one satellite) 0.50 m Archive and tasked 

WorldView-2 (one satellite) 0.46 m Archive and tasked 

WorldView-3 (one satellite) 0.31 m Archive and tasked 

WorldView-4 (one satellite) 0.31 m Archive 

WorldView-Legion (constellation of six satellites) 0.31 m No images available yet, launch anticipated for 2023 

Planet Skysat (constellation of 21 satellites) 0.5 m Archive and tasked 

Pelican (constellation of up to 32 satellites) 0.3 m No images available yet, launch planned for 2023 

Table 2 

List of product type for the main VHR satellite imagery providers, Airbus [34] , Planet [35] and Maxar Technologies 

[36] . 

Satellite operator Product name Mapping projection 

Airbus Primary Coordinate Reference System: WGS84 

Map projection: None 

Projected Coordinate Reference System: WGS84 

Map projection: UTM 

Ortho Coordinate Reference System: WGS84 

Map projection: UTM 

Maxar Technologies System-Ready (Basic) 1B 

System-Ready Stereo (Basic) 1B 

Coordinate Reference System: WGS84 

Map projection: None 

View-Ready (Standard) OR2A 

View-Ready Stereo (Standard) OR2A 

Coordinate Reference System: WGS84 

Map projection: UTM 

View-Ready (Standard) 2A Coordinate Reference System: WGS84 

Map projection: UTM 

Map-Ready (Ortho) 1:12,000 Coordinate Reference System: WGS84 

Map projection: UTM 

Planet SkySat Basic Scene Coordinate Reference System: WGS84 

Map projection: None 

SkySat Ortho Scene Coordinate Reference System: WGS84 

Map projection: UTM 

SkySat Ortho Collect Coordinate Reference System: WGS84 

Map projection: UTM 

 

 

 

 

 

 

 

 

 

 

 

Projection 

Projection is the process of mathematically transforming the coordinate system from a sphere to a flat surface. Several coordinate

systems exists with some better suited to represent data for different geographic locations. When a satellite captures an image of the

Earth surface, it will show some distortions, as the image is a flat surface and the Earth a sphere. This distortion needs to be corrected

by assigning the appropriate coordinate system to the image ( Fig. 2 ). If the imagery acquired is not already projected in WGS 1984

with the relevant UTM zone, projecting the image is required before annotation. 

Pansharpening 

Pansharpening is the process by which the pixels of the panchromatic image are combined with the pixels of a multispectral image,

to produce a new image with the high spatial resolution of the panchromatic image and with the additional color information from the

multispectral image ( Fig. 3 ). We highly recommend this step for manually annotating VHR satellite images, as it improves the ability

to discriminate objects in the image. Using only the panchromatic image is possible but the color adds confidence in detection. Images

that have already been pansharpened can be acquired from the imagery provider. Detailed pansharpening protocols are outlined in

Supplementary material 1 for ESRI ArcMap 10.8 and Supplementary material 2 for ESRI ArcGIS Pro 2.5. 

Atmospheric correction 

If the aim of the project is to compare the spectral reflectance of whales between different images, then the images need to

be corrected for atmospheric effects. Atmospheric correction removes atmospheric effects, such as scattering and absorption from 

gas and aerosols present in the atmosphere, this is dependent upon the composition of the atmosphere and the geometry of the

collected parameters of the data. Two types of atmospheric corrections exist to obtain spectral reflectance, top-of-atmosphere, and 

bottom-of-atmosphere [37] . 
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Fig. 2. Projecting a panchromatic (top) and multispectral (bottom) satellite images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top-of-atmosphere correction requires parameters based upon the mean solar spectral irradiance, solar zenith angle, and spectral 

radiance at the sensor’s aperture. These are available from the imagery metadata and can almost always be applied to VHR satellite

imagery [38–40] . The bottom-of-atmosphere (sometimes referred to as full atmospheric correction) will give the spectral reflectance of

the feature as it would be if measured at the surface of the earth. It will allow true comparison of the spectral of pixels between different

satellite images, taken at different times with different atmospheric conditions. However, this full atmospheric correction requires 

knowing the accurate composition in gas and aerosols of the atmosphere at a given time. This is difficult to estimate accurately, as

it varies among regions, days and time of day, requiring in situ measurements, or use of atmospheric composition models accurate

for the location studied [37] . These are rarely available at field sites. Therefore, when comparing whale spectra between images, at

minimum the top-of-atmosphere correction should be applied. This can be done in ENVI, similar to Cubaynes et al. (2019) [3] , or

other available software. In ArcGIS Pro, the Apparent Reflectance function allows to correct the top-of-atmosphere for the following

VHR satellites: IKONOS, QuickBird, GeoEye-1, RapidEye, DMCii, WorldView-1, WorldView-2, SPOT 6, and Pleiades [41] . 

Step 3: Systematic scanning 

To ensure that the whole image is reviewed for the presence of cetaceans, systematic scanning is necessary (step 3 of Fig. 1 ). A

grid needs to be overlayed on top of the satellite image to review it in a systematic pattern from the top to the bottom of the image,

scanning left to right, then right to left, etc. We recommend reviewing the image at a scale of 1:1500 for large cetaceans (animals

between 9 and 20 m long) and zooming in as needed. For the larger whale species (above 25 m long) such as fin whales ( Balaenoptera

physalus ) and blue whales ( Balaenoptera musculus ) a scale of 1:2000 is sufficient, and for smaller cetaceans (less than 9 m long) we

recommend using a scale of 1:1250 [3 , 17 , 18] . As some images can cover a large area (more than 500km 

2 ), it could take days to

review it fully; therefore, we recommend keeping track of the grid cells that have been reviewed by following the steps outlined in

Supplementary material l 1 for ESRI ArcMap 10.8 and Supplementary material 2 for ESRI ArcGIS Pro 2.5. 

Step 4: Annotating 

Annotating consists of labeling your imagery by placing points or bounding boxes on the object of interest, in this case whales

(step 4 of Fig. 1 ) and filling in the relevant information needed for your machine learning model, such as the species name ( Table 3 ).

In ESRI ArcMap and ESRI ArcGIS Pro, points can be stored in a shapefile, which retains the coordinate information of the points,

alongside any associated metadata. An important aspect of annotating is assessing the confidence in the detection of the target object.

We have built a workflow to help assess species identification ( Fig. 4. ; see Supplementary material 3 for more details) and assign a

certainty level (see Supplementary material 5). Detailed instructions to annotate VHR satellite images are outlined in Supplemental 

1 for ESRI ArcMap 10.8 and Supplementary material 2 for ESRI ArcGIS Pro 2.5. 
5 
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Fig. 3. Process of pansharpening. 

Fig. 4. Species decision tree for cetaceans previously observed in VHR satellite imagery. 
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Table 3 

List of fields recommended to include in the attribute table for annotating cetaceans in VHR satellite images, although these may vary with project 

goals. 

Field Description 

Observer Name of person reviewing the image. 

location Name of the location where the satellite image was captured. 

Satellite Name of the satellite that captured the image. 

Ground sampling distance The ground sampling distance (the distance between the center points of each pixel), which can be found in the metadata, by 

right clicking on the panchromatic file and selecting “Properties ”, then “Source ” and “Raster Information ”. 

Image id Unique identification that the satellite imagery provider assigns to each image. With Maxar, this corresponds to the catalog ID. 

Image date Date the image was captured. 

Image time Time the image was captured. 

Product type The product type indicates the level of pre-processing an image has gone through when it was acquired from the satellite 

imagery provider, such as projection. See Table 1 for the various product type offered by the main VHR satellite imagery 

providers. 

Sea state Sea state adapted from Fig. 4 in Bamford et al. [17] 

1 = Good (minimal swell, no white caps, no wavelets) 

2 = Moderate (minimal swell, sparse white caps, few wavelets) 

3 = Average (slight swell, intermittent wavelets, no or very few white caps) 

4 = Sub-average (medium swell, apparent waves, several white caps). 

5 = Poor (significant swell, directional surface wind, large wave, several white caps) 

Cloud coverage Cloud cover for the whole image, using the aviation system: 

0 = SKC (sky clear) 

1-2 = FEW (traces) 

3-4 = SCT (scattered) 

5-7 = BKN (Broken) 

8 = OVC (Overcast) 

Cloud thickness Cloud thickness for the clouds present in the image 

1 = Thin (can see fairly well through the cloud) 

2 = Medium thin (can see through but no clear view of the sea) 

3 = Thick (can’t see through) 

4 = mix of thin, medium, thick clouds 

Glare Proportion of glare in the whole image: 

0 = None 

1 = Mild 

2 = Moderate 

3 = Severe 

Turbidity Qualitative estimations of the level of turbidity: 

1 = Non-turbid 

2 = Moderate 

3 = Turbid 

4 = mix of turbid and non-turbid waters 

Other environment Other environmental conditions that the observer thinks might limit the visibility of whales ( e.g. dark image for polar regions 

from autumn to spring) 

Latitude Latitude of the whale detection 

Longitude Longitude of the whale detection 

Geographical coordinate 

system 

Geographical coordinate system, it can be found in the metadata 

Projection Projection applied to the image to remove distortion 

Species code Species code for the species or the next higher taxonomic level, see Supplementary material 3 to help you decide, and 

Supplementary material 4 for the code to use 

Certainty Certainty of the assignment of the species or the next higher taxonomic level. See Supplementary material 5 to help you decide. 

1 = Definite : you are confident in your species determination (90-100% confidence) 

2 = Probable : you think that your species determination is likely but you are not sure (60-90% confidence) 

3 = Possible : you think that your species determination is possible but it is hard to tell (10-60% confidence) 

Body color Body color of the whale when at the surface (dorsally when viewed in VHR satellite imagery) 

Body shape Overall shape of the body excluding fluke and flippers 

Body length Maximum visible length between the tip of the head and the fluke with values ranging from calf size to maximum adult length 

Body width Body width, it is measured at the widest part of the body and perpendicular the body length 

Flipper Forelimb used to stabilize and turn 

1 = Yes 

2 = No 

3 = Maybe 

Long flipper Species specific – Humpback whale have long flippers, which are one third of the body length 

1 = Yes 

2 = No 

3 = Maybe 

Fluke Tail used to generate thrust 

1 = Yes 

2 = No 

3 = Maybe 

( continued on next page ) 
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Table 3 ( continued ) 

Field Description 

Head callosities Species specific – white head callosities for the species of the genus Eubalaena. White patches on top of the head 

1 = Yes 

2 = No 

3 = Maybe 

White lower jaw Species specific – white right lower jaw for fin whales 

1 = Yes 

2 = No 

3 = Maybe 

After breach Large white area left after a whale breached, or lobtailed, flipper-slapped 

1 = Yes 

2 = No 

3 = Maybe 

Bubble net Species specific – bubble net for humpback whales. One white spiral formed of several white circular patches, or several white 

spirals nested together 

1 = Yes 

2 = No 

3 = Maybe 

Contour White line separating the part of the whale body that is above and below the sea surface ( e.g. , when a whale is rolling its back 

or surfacing to breathe) 

1 = Yes 

2 = No 

3 = Maybe 

Flukeprint White circle left after whale dove or while swimming [42] 

1 = Yes 

2 = No 

3 = Maybe 

Wake V-shaped white trail behind the animal 

1 = Yes 

2 = No 

3 = Maybe 

Blow Vaporous whitish patch next to a whale, like fog 

1 = Yes 

2 = No 

3 = Maybe 

Mudtrail Plume/cloud of substrate behind a whale 

1 = Yes 

2 = No 

3 = Maybe 

Surface active group Two or more whales rolling and touching at the surface 

1 = Yes 

2 = No 

3 = Maybe 

Travel group Two or more cetaceans traveling together in the same direction and less than a few meters apart 

1 = Yes 

2 = No 

3 = Maybe 

Mother-calf pair Mother-calf pair, observed when the calf is next to the mother. 

1 = Yes 

2 = No 

3 = Maybe 

Other group Other type of group, if not socializing or traveling. 

1 = Yes 

2 = No 

3 = Maybe 

Defecation 1 = Yes 

2 = No 

3 = Maybe 

Comment Any other comment the observer would like to make about the specific detection 

 

 

 

Step 5: Creating bounding boxes 

Although point shapefiles of annotated cetaceans may be useful to automate detection, particularly for approaches utilizing spec- 

tral signatures, bounding boxes are often desired for training machine learning models [15 , 26] . Similar to Cubaynes and Fretwell

(2022)[31], these boxes can be created from the point shapefile incorporating the metadata from the attribute table, so each bounding

box has a set of specific information attached to it, necessary for automation (step 5 of Fig. 1 ). We recommend making the bounding

box at least twice the size of the known adult size for the species of interest. 
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Step 6: Creating image chips 

Image chips can be created by using the bounding boxes to clip the satellite image into several image chips that contain cetaceans

(see details in Supplementary material 1 for ESRI ArcMap 10.8 and Supplementary material 2 for ESRI ArcGIS Pro 2.5; step 6

of Fig. 1 ). VHR satellite images have limited distribution due to licensing restrictions. Some licenses, such as the group license with

Maxar Technologies permits the sharing of subsets of the images as a png or jpeg format (with reduced spectral resolution and lacking

spatial reference, and reduced spectral resolution)[31]. Therefore, it is important to verify with the satellite imagery provider what

can be shared ( e.g. format, subset or whole image) and with whom (under certain licenses sharing the raw images with collaborators

is feasible). 

Methods validation 

The workflow for ESRI ArcMap 10.8 was developed and used by several studies [3 , 17 , 19 , 31] with updates for ArcMap 10.8. None

of these studies offered a step-by-step guide. The workflow for ESRI ArcGIS Pro 2.5 was adapted from the ArcMap workflow. 

Ethics statements 

This method does not involve work with human subjects, nor animal experiments, nor data collected from social media platforms.

Funding 

This work was supported by the Marine Mammal Commission (project MMC21-043 ). This study represents a contribution of the

Ecosystems component of the British Antarctic Survey, funded by the Natural Environment Research council (NERC). This work also

represents a contribution of the Geospatial Artificial Intelligence for Animals (GAIA) project. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to

influence the work reported in this paper. 

CRediT authorship contribution statement 

Hannah Charlotte Cubaynes: Conceptualization, Methodology, Writing – original draft, Visualization, Funding acquisition. 

Penny Joanna Clarke: Validation, Writing – review & editing, Resources. Kimberly Thea Goetz: Validation, Writing – review & 

editing, Resources, Funding acquisition. Tyler Aldrich: Validation, Writing – review & editing, Resources. Peter Thomas Fretwell: 

Validation, Writing – review & editing, Resources. Kathleen Elise Leonard: Validation, Writing – review & editing, Resources. 

Christin Brangwynne Khan: Validation, Writing – review & editing, Resources, Funding acquisition. 

Data Availability 

No data was used for the research described in the article. 

Acknowledgments 

We would like to thank Timothy White and Erin Murnane who have been instrumental in the creation of GAIA and supporters

of this work. The aerial images of cetaceans in supplementary material were collecting under the following permits: MMPA 17355,

MMPA 21371, MMPA 775-1875, MMPA 775–1600. The views expressed here are those of the authors and do not necessarily reflect

the views of the US National Marine Fisheries Service. 

Supplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.mex.2023.102040 . 

References 

[1] P.T. Fretwell, M.A. LaRue, P. Morin, G.L. Kooyman, B. Wienecke, N. Ratcliffe, A.J. Fox, A.H. Fleming, C. Porter, P.N. Trathan, An emperor penguin population

estimate: the first global, synoptic survey of a species from space, PLoS ONE 7 (2012) e33751, doi: 10.1371/journal.pone.0033751 . 

[2] H.J. Lynch, M.A. LaRue, First global census of the Adélie penguin, Auk 131 (2014) 457–466, doi: 10.1642/AUK-14-31.1 . 

[3] H.C. Cubaynes, P.T. Fretwell, C. Bamford, L. Gerrish, J.A. Jackson, Whales from space: four mysticete species described using new VHR satellite imagery, Mar.

Mammal Sci. 35 (2019) 466–491, doi: 10.1111/mms.12544 . 

[4] A.S. Fischbach, D.C. Douglas, Evaluation of satellite imagery for monitoring pacific walruses at a large coastal haulout, Remote Sens 13 (2021) 4266,

doi: 10.3390/rs13214266 . 

[5] I. Duporge, G.E. Finerty, F. Ihwagi, S. Lee, J. Wathika, Z. Wu, D.W. Macdonald, T. Wang, A satellite perspective on the movement decisions of African elephants

in relation to nomadic pastoralists, Remote Sens. Ecol. Conserv. 0 (2022) 1–14, doi: 10.1002/rse2.285 . 
9 

http://dx.doi.org/10.13039/100005199
https://doi.org/10.1016/j.mex.2023.102040
https://doi.org/10.1371/journal.pone.0033751
https://doi.org/10.1642/AUK-14-31.1
https://doi.org/10.1111/mms.12544
https://doi.org/10.3390/rs13214266
https://doi.org/10.1002/rse2.285


H.C. Cubaynes, P.J. Clarke, K.T. Goetz et al. MethodsX 10 (2023) 102040 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[6] M. LaRue, C. Brooks, M. Wege, L. Salas, N. Gardiner, High-resolution satellite imagery meets the challenge of monitoring remote marine protected areas in the

Antarctic and beyond, Conserv. Lett. 15 (2022) e12884, doi: 10.1111/conl.12884 . 

[7] C.E. Lennert-Cody, M.N. Maunder, M.D. Scott, S.T. Buckland, T. Gerrodette, J. Barlow, J.E. Moore, A. Webb, P.T. Fretwell, T. Kitakado, H.J. Skaug, Review of

potential line-transect methodologies for estimating abundance of dolphin stocks in the eastern tropical Pacific, J. Cetacean Res. Manag. 19 (2018) 9–21 . 

[8] R.R. Reeves, Conservation, in: B. Würsig, J.G.M. Thewissen, K.M. Kovacs (Eds.), Encycl. Mar. Mamm., 3rd ed., Academic Press, Amsterdam, 2018: pp. 215–229.

doi: 10.1016/B978-0-12-804327-1.00097-2 . 

[9] M. Bejder, D.W. Johnston, J. Smith, A. Friedlaender, L. Bejder, Embracing conservation success of recovering humpback whale populations: evaluating the case

for downlisting their conservation status in Australia, Mar. Policy 66 (2016) 137–141, doi: 10.1016/j.marpol.2015.05.007 . 

[10] J.M. van der Hoop, A.S.M. Vanderlaan, C.T. Taggart, Absolute probability estimates of lethal vessel strikes to North Atlantic right whales in Roseway Basin,

Scotian Shelf, Ecol. Appl. 22 (2012) 2021–2033, doi: 10.1890/11-1841.1 . 

[11] R.M. Pace, P.J. Corkeron, S.D. Kraus, State-space mark-recapture estimates reveal a recent decline in abundance of North Atlantic right whales, Ecol. Evol. 7

(2017) 8730–8741, doi: 10.1002/ece3.3406 . 

[12] J.G. Cooke, Eubalaena glacialis, IUCN Red List Threat. Species 2018 e.T41712A50380891, 2018 https://www.iucnredlist.org/species/41712/50380891 (accessed 

October 26, 2019) . 

[13] R. Abileah, Marine mammal census using space satellite imagery, U.S, Navy J. Underw. Acoust. 52 (2002) 709–724 . 

[14] P.T. Fretwell, I.J. Staniland, J. Forcada, Whales from space: counting southern right whales by satellite, PLoS ONE 9 (2014) e88655, doi: 10.1371/jour-

nal.pone.0088655 . 

[15] A. Borowicz, H. Le, G. Humphries, G. Nehls, C. Höschle, V. Kosarev, H.J. Lynch, Aerial-trained deep learning networks for surveying cetaceans from satellite

imagery, PLoS ONE 14 (2019) e0212532, doi: 10.1371/journal.pone.0212532 . 

[16] E. Guirado, S. Tabik, M.L. Rivas, D. Alcaraz-Segura, F. Herrera, Whale counting in satellite and aerial images with deep learning, Sci. Rep. 9 (2019) 1–12,

doi: 10.1038/s41598-019-50795-9 . 

[17] C.C.G. Bamford, N. Kelly, L. Dalla Rosa, D.E. Cade, P.T. Fretwell, P.N. Trathan, H.C. Cubaynes, A.F.C. Mesquita, L. Gerrish, A.S. Friedlaender, J.A. Jack-

son, A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey, Sci. Rep. 10 (2020) 12985,

doi: 10.1038/s41598-020-69887-y . 

[18] B. Charry, E. Tissier, J. Iacozza, M. Marcoux, C.A. Watt, Mapping Arctic cetaceans from space: a case study for beluga and narwhal, PLoS ONE 16 (2021)

e0254380, doi: 10.1371/journal.pone.0254380 . 

[19] P.J. Clarke, H.C. Cubaynes, K.A. Stockin, C. Olavarría, A. de Vos, P.T. Fretwell, J.A. Jackson, Cetacean strandings from space: challenges and opportunities of

very high resolution satellites for the remote monitoring of cetacean mass strandings, Front. Mar. Sci. 8 (2021) 650735, doi: 10.3389/fmars.2021.650735 . 

[20] A.A. Corrêa, J.H. Quoos, A.S. Barreto, K.R. Groch, P.P.B. Eichler, Use of satellite imagery to identify southern right whales ( Eubalaena australis ) on a Southwest

Atlantic Ocean breeding ground, Mar. Mammal Sci. 38 (2022) 87–101, doi: 10.1111/mms.12847 . 

[21] C. Höschle, H.C. Cubaynes, P.J. Clarke, G. Humphries, A. Borowicz, The potential of satellite imagery for surveying whales, Sensors 21 (2021) 963,

doi: 10.3390/s21030963 . 

[22] E.A. Ramos, L. Santoya, J. Verde, Z. Walker, N. Castelblanco-Martínez, J.J. Kiszka, G. Rieucau, Lords of the Rings: mud ring feeding by bottlenose dolphins in a

Caribbean estuary revealed from sea, air, and space, Mar. Mammal Sci. 38 (2022) 364–373, doi: 10.1111/mms.12854 . 

[23] M. Hodul, A. Knudby, B. McKenna, A. James, C. Mayo, M. Brown, D. Durette-Morin, S. Bird, Individual North Atlantic right whales identified from space, Mar.

Mammal Sci. 39 (2022) 220–231, doi: 10.1111/mms.12971 . 

[24] V. Häussermann, C.S. Gutstein, M. Beddington, D. Cassis, C. Olavarria, A.C. Dale, A.M. Valenzuela-Toro, M.J. Perez-Alvarez, H.H. Sepúlveda, K.M. Mcconnell,

F.E. Horwitz, G. Försterra, Largest baleen whale mass mortality during strong El Niño event is likely related to harmful toxic algal bloom, PeerJ 5 (2017) e3123,

doi: 10.7717/peerj.3123 . 

[25] P.T. Fretwell, J.A. Jackson, M.J. Ulloa Encina, V. Häussermann, M.J. Perez Alvarez, C. Olavarría, C.S. Gutstein, Using remote sensing to detect whale strandings

in remote areas: the case of sei whales mass mortality in Chilean Patagonia, PLoS ONE 14 (2019) e0225209, doi: 10.1371/journal.pone.0222498 . 

[26] F.P. T. E. Bowler, G. French, M. Mackiewicz, Using deep learning to count albatrosses from space: assessing results in light of ground truth uncertainty, Remote

Sens 12 (2020) 2026, doi: 10.3390/rs12122026 . 

[27] I. Duporge, O. Isupova, S. Reece, D.W. Macdonald, T. Wang, Using very-high-resolution satellite imagery and deep learning to detect and count African elephants

in heterogeneous landscapes, Remote Sens. Ecol. Conserv. 7 (2020) 369–381, doi: 10.1002/rse2.195 . 

[28] E.N. Rodofili, V. Lecours, M. LaRue, Remote sensing techniques for automated marine mammals detection: a review of methods and current challenges, PeerJ

10 (2022) e13540, doi: 10.7717/peerj.13540 . 

[29] Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–444, doi: 10.1038/nature14539 . 

[30] G.R.W. Humphries, D.R. Magness, F. Huettmann, Machine Learning For Ecology and Sustainable Natural Resource Management, 1st ed., Springer, Cham,

Switzerland, 2018, doi: 10.1007/978-3-319-96978-7 . 

[31] H.C. Cubaynes, P.T. Fretwell, Whales from space dataset, an annotated satellite image dataset of whales for training machine learning models, Sci. Data. 9 (2022)

245, doi: 10.1038/s41597-022-01377-4 . 

[32] ESRI, ArcGIS Desktop: Release 10.8, (2020). 

[33] ESRI, ArcGIS Pro: Release 2.5, (2020). 

[34] Airbus, Pleiades Imagery User Guide, (2022) 114. https://www.intelligence-airbusds.com/en/8718-user-guides . 

[35] Planet, Planet Imagery Product Specifications, (2022) 101. https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf . 

[36] Maxar Technologies, Core Imagery Product Information, (2022) 1. https://securewatchdocs.maxar.com/en-us/Orders/Orders_ProductInfo.htm#CoreImagery 

ProductInformation . 

[37] W.G. Rees, Physical Principles of Remote Sensing, 3rd ed., Cambridge University Press, Cambridge, 2013 . 

[38] J.V. Martonchik, D.J. Diner, B. Pinty, M. Verstraete, R. Myneni, Y. Knjazikhin, H. Gordon, Determination of land and ocean reflective, radiative, and biophysical

properties using multi-angle imaging, IEEE Trans. Geosci. Remote Sens. 36 (1998) 1266–1281, doi: 10.1109/36.701077 . 

[39] J.V. Martonchik, C.J. Bruegge, A.H. Strahler, A review of reflectance nomenclature used in remote sensing, Remote Sens. Rev. 19 (2000) 9–20,

doi: 10.1080/02757250009532407 . 

[40] J.G. Masek, E.F. Vermote, N.E. Saleous, R. Wolfe, F.G. Hall, K.F. Huemmrich, F. Gao, J. Kutler, T.-.K. Lim, A Landsat surface reflectance dataset for North America,

1990–2000, IEEE Geosci, Remote Sens. Lett. 3 (2006) 68–72, doi: 10.1109/LGRS.2005.857030 . 

[41] ArcGISApparent Reflectance Function, 2022 . 

[42] R. Levy, D. Uminsky, A. Park, J. Calambokidis, A theory for the hydrodynamic origin of whale flukeprints, Int. J. Non. Linear. Mech. 46 (2011) 616–626,

doi: 10.1016/j.ijnonlinmec.2010.12.009 . 
10 

https://doi.org/10.1111/conl.12884
http://refhub.elsevier.com/S2215-0161(23)00028-6/sbref0007
https://doi.org/10.1016/B978-0-12-804327-1.00097-2
https://doi.org/10.1016/j.marpol.2015.05.007
https://doi.org/10.1890/11-1841.1
https://doi.org/10.1002/ece3.3406
https://www.iucnredlist.org/species/41712/50380891
http://refhub.elsevier.com/S2215-0161(23)00028-6/sbref0013
https://doi.org/10.1371/journal.pone.0088655
https://doi.org/10.1371/journal.pone.0212532
https://doi.org/10.1038/s41598-019-50795-9
https://doi.org/10.1038/s41598-020-69887-y
https://doi.org/10.1371/journal.pone.0254380
https://doi.org/10.3389/fmars.2021.650735
https://doi.org/10.1111/mms.12847
https://doi.org/10.3390/s21030963
https://doi.org/10.1111/mms.12854
https://doi.org/10.1111/mms.12971
https://doi.org/10.7717/peerj.3123
https://doi.org/10.1371/journal.pone.0222498
https://doi.org/10.3390/rs12122026
https://doi.org/10.1002/rse2.195
https://doi.org/10.7717/peerj.13540
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-319-96978-7
https://doi.org/10.1038/s41597-022-01377-4
https://www.intelligence-airbusds.com/en/8718-user-guides
https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf
https://securewatchdocs.maxar.com/en-us/Orders/Orders_ProductInfo.htm\043CoreImageryProductInformation
http://refhub.elsevier.com/S2215-0161(23)00028-6/sbref0037
https://doi.org/10.1109/36.701077
https://doi.org/10.1080/02757250009532407
https://doi.org/10.1109/LGRS.2005.857030
http://refhub.elsevier.com/S2215-0161(23)00028-6/sbref0041
https://doi.org/10.1016/j.ijnonlinmec.2010.12.009

	Annotating very high-resolution satellite imagery: A whale case study
	Related research article
	Background
	Method details
	Step 1: Image acquisition
	Step 2: Pre-processing
	Projection
	Pansharpening
	Atmospheric correction

	Step 3: Systematic scanning
	Step 4: Annotating
	Step 5: Creating bounding boxes
	Step 6: Creating image chips

	Methods validation
	Ethics statements
	Funding
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary materials
	References


