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Key Points: 

 Ex-situ studies typically find size to be a strong predictor of sinking velocity; strong 

correlations are rarely observed in situ however. 

 Increased homogeneity of other particle characteristics ex situ (e.g. density, composition) 

are responsible for this discrepancy. 

 Results suggest importance of these other factors when predicting particle sinking 

velocities and fluxes using size-scaling relationships. 
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Abstract 

Sinking particles are important in delivering carbon to the deep ocean where it may be stored out 

of contact with the atmosphere. Whilst particle sinking velocities are known to be influenced by 

a multitude of factors, size-based parameterisations remain common in biogeochemical models 

and in the methods used to determine particulate fluxes from autonomous platforms. Here we 

carried out an extensive literature review (62 datasets) into the size-sinking velocity relationship, 

and find the relationship is much weaker for studies examining particles in situ (median R2 = 

0.03) compared with ex situ studies (median R2 = 0.35). This discrepancy may be because 

particles examined in the laboratory have more uniform properties than those studied in situ. Our 

review highlights the shortcomings of using a simple relationship between size and sinking 

velocity to calculate sinking particulate fluxes in the ocean; considering additional particle 

characteristics will enable more accurate calculations of particulate fluxes. 

Plain Language Summary 

Sinking particles are important in delivering carbon to the deep ocean where it may be stored out 

of contact with the atmosphere. Sinking particle speeds are an important control on sinking 

particle fluxes, and are known to be influenced by many factors. However, methods used to 

study particle fluxes from particle image datasets commonly place size as an important 

determinant of sinking speed. Here we carried out an extensive literature review into the size-

sinking speed relationship, and find the relationship is much weaker for studies measuring 

particle sinking speeds in the ocean (in situ studies) compared with studies measuring sinking 

speeds in the laboratory (ex situ studies). This may be because other particle characteristics that 

can also influence particle sinking speeds are more constant in ex situ studies, allowing size to 

exert a stronger control on particle sinking speed. These results have implications for the use of 

novel in-situ imaging methods to calculate sinking particle fluxes, highlighting that it is 

important to incorporate information about particle characteristics as well as size when using 

these methods. 

1 Introduction 

In the ocean, the production, transfer to depth, and remineralization of organic particles provide a 

major pathway for the export of carbon from the ocean’s surface to the ocean interior (Volk & 
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Hoffert, 1985). Collectively termed the Biological Carbon Pump (BCP), these processes act to 

maintain atmospheric CO2 approximately 200 ppm lower than they would otherwise be (Maier-

Reimer et al., 1996; Parekh et al., 2006). Although several processes contribute to the BCP, the 

gravitational settling of organic particles are thought to result in ~1000 Pg of ocean carbon 

storage (Boyd et al., 2019), up to 90% of the carbon sequestered by the BCP (Boyd et al., 2019; 

Buesseler et al., 2020; Sarmiento & Gruber, 2006). 

  As particulate organic carbon (POC) sinks, proportions of this downward flux are 

reworked by metazoans such as zooplankton, and eventually remineralised back into CO2, 

through both microbial and zooplankton respiration (Giering et al., 2014; Steinberg et al., 2008; 

van der Jagt et al., 2020). As a result of this particle remineralisation and reworking, sinking 

POC fluxes are observed decrease with depth. The rate of flux attenuation (and hence the 

proportion of sinking carbon reaching the deep ocean) is determined by the balance between 

particle sinking velocities and remineralisation rates (Bach et al., 2019; Marsay et al., 2015). 

Since particle sinking velocities determine the length of time in which a particle is exposed to 

metazoan and microbial remineralisation, sinking velocity is a crucial determinant in the degree 

of attenuation of POC fluxes and BCP efficiency (Laurenceau-Cornec et al., 2015) (Fig. 1).  

 In recent years, the use of in situ optical methods has emerged as an important tool in the 

study of the BCP (Giering et al., 2020a). Increasingly able to be deployed autonomously 

(Lombard et al., 2019; Picheral et al., 2022), these methods can provide far greater 

spatiotemporal resolution and coverage than traditional ship-based sampling methods (Giering et 

al., 2020a; Lombard et al., 2019). Given also the considerable effort that has focused on 

improving the utility of in situ imaging devices, in situ cameras are now capable of providing 

quantitative particle information on particles from 1 – 10,000 μm in diameter (Lombard et al., 

2019). Using the particle size distributions obtained by in situ imaging methods, particle fluxes 

within a given size class can be calculated if sinking velocities of particles within the size class 

can also be estimated (McDonnell & Buesseler, 2010; 2012), or, more commonly, through 

directly relating particle size to flux via an empirical relationship (Guidi et al., 2008; Iversen et 

al., 2010). A robust understanding of the factors that govern particle sinking rate is therefore 
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crucial in the implementation of these cutting-edge methods for estimating particulate fluxes and 

studying the BCP. 

 

 

Figure 1: Schematic illustrating factors posed to influence particle sinking velocity, their relation 

to size (red) or density (green) as described in Stokes’s law, and the effect of fast and slow sinking 

particles on particulate flux attenuation rates and particles fluxes reaching depth. Illustrative flux 

attenuation curves are shown for fast-sinking (left) and slow-sinking (right) particles. Fast sinking 

particles experience slower rates of flux attenuation due to decreased duration of exposure to 

remineralisation whilst they sink. 

 

  Whilst the use of particle size spectra provide the means to calculate particulate fluxes 

with unprecedented resolution, the prevailing methods used to empirically relate size to fluxes 
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assume that mass and sinking velocity as functions of particle size remain constant (Guidi et al., 

2008; Iversen et al., 2010). Further, relying on a single relationship to describe sinking velocity 

in terms of particle size implies that larger particles should always sink faster than smaller ones 

(McDonnell & Busesseler, 2010). Although several studies have observed size to exert a strong 

control on sinking velocities (Alldredge & Gottschalk, 1988; Iversen et al., 2010), considering 

size as a key predictor of sinking velocity assumes relative constancy of other particle properties 

such as particle composition, porosity and biomineral content. In recent years, empirical studies 

have indicated this assumption of constancy can not be applied in situ (Iversen & Ploug, 2010; 

Laurenceau-Cornec et al., 2020; Ploug et al., 2008) and that size alone is often a poor predictor 

of sinking velocity (Diercks & Asper, 1997; Iversen & Lampitt, 2020). Nevertheless, size-based 

methods remain a commonly used approach to estimate fluxes from in situ image data (Cram et 

al., 2022; Fender et al., 2019; Guidi et al., 2016; Kiko et al., 2017; 2020; Ramondenc et al., 

2016), and size-based parameterisations of vertical carbon fluxes remain common in 

biogeochemical models (Aumount et al., 2015; Kriest & Oschlies, 2008; Leung et al., 2021; 

Swart et al., 2019; Yool et al., 2021). 

Here we first outline the theoretical basis underpinning commonly used size-based approaches. 

We then highlight the lack of evidence suggesting size can represent a strong predictor of marine 

particle sinking velocities in situ, and assess the reasons for differences between studies. We 

recommend avenues for further study that will facilitate improved mechanistic understanding of 

particle sinking velocities and broaden the applicability of in situ image-based estimations of 

particle flux. 

2.1 The theoretical basis for size-based methods 

In recent decades, derivations such as Stokes’s law have been widely used to estimate particle 

sinking velocity (Laurenceau-Cornec et al., 2020). Assuming that particle drag coefficients can 

be calculated as a simple function of Reynolds number for low Reynolds numbers (in laminar 

flow conditions), and balancing drag and gravitational forces on a particle, these derivations pose 

size to be a key determinant of sinking velocity. Stokes’s Law says that 

 

     𝑤 = (𝜌𝑝 − 𝜌𝑓)
𝑔𝐷2

18𝜇
      (2), 
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where w is the sinking velocity of a sphere (m s−1), ρp and ρf are the sphere and fluid densities (kg 

m−3), g is the acceleration due to gravity (9.81 m s−2), D is the sphere diameter (m) ,and μ is the 

fluid dynamic viscosity in kg m−1s−1. Power law functions based on Stokes’s Law have been 

used to relate particle size to sinking velocity for decades (Alldredge & Gotschalk, 1988; 

Smayda, 1970) and more recently to parameterise modelled particle sinking velocities (Aumont 

et al., 2015; DeVries et al., 2014; Kriest & Evans, 1999; Leung et al., 2021). Other 

biogeochemical models simply incorporate size through discrete size classes, with a large, fast-

sinking fraction, and a small, slow-sinking fraction (Aumont et al., 2015; Swart et al., 2019; 

Yool et al., 2021). The lack of mechanistic understanding as to how well size constrains sinking 

velocity has resulted in a variety of size-sinking relationships in earth system models, which 

yield up to order of magnitude differences in sinking velocity for particles of the same size, and 

introduce uncertainty into flux prediction and biogeochemical models (Cael et al., 2021; 

Niemeyer et al., 2019). Since plankton models additionally suggest a decrease in cell size with 

warming, constraining sinking velocities in an accurate mechanistic fashion is of importance for 

the accurate modelling of climate change projections (Cael et al., 2021; Finkel et al., 2010). 

 

Power law functions have more recently also been used to directly estimate particulate fluxes 

from particle size distributions. Since both sinking velocity (w) and particle mass (m) and hence 

flux for a given particle i (Fi) can be expressed as power law functions of the form (y = axb), 

their product can be expressed in the same form: 

                          𝐹𝑖 = 𝑤𝑚 =  𝐴𝐷𝐵       (3), 

 

where D is particle diameter, and A and B are constants (Guidi  et al., 2008) . If A and B are 

known, size spectra can be used to calculate total mass fluxes, F. A and B may be estimated 

through a minimisation procedure (Cram et al., 2022; Fender et al., 2019; Guidi et al., 2008; 

Iversen et al., 2010; Nowald et al., 2015) if alternative measurements of particulate fluxes can be 

made, and assuming that mass and particle size as a function of depth are constant for all depths 

(Iversen et al., 2010). Alternatively, when additional flux measurements have not been made 

(such as on autonomous deployments on moorings, gliders, or floats), prior studies can be used 

to estimate global values for A and B (Guidi et al., 2008; 2016; Kiko et al., 2020; Ramondenc et 
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al., 2016). The above approaches assume that particle mass and sinking velocity as functions of 

size are constant with depth and, in the latter instance, universally constant; hence both methods 

represent size as a strong control of sinking velocity.  

 

2.2 Empirical evidence on the size-sinking velocity relationship  

To direct our discussion in the most constructive fashion towards particle characteristics 

commonly discussed in the literature, we focused our analysis on four of the most commonly 

studied characteristics. It should however be noted that the frequency with which characteristics 

are discussed in the literature does not necessarily indicate that they are the most important four 

drivers of sinking velocity. To identify these characteristics, we carried out a literature search 

into studies measuring particle sinking velocity and associated particle characteristics using both 

in situ and ex situ methods, and commonly used keyterms to describe marine particle 

characteristics (“Size”, “Ballast”, “Morphology”, “Composition”, “Type”, “Shape”, 

“Compactness”, “Fractal” [Dimension]).  Restricting results to within Earth and Planetary 

Sciences, we searched for abstracts, titles, and keywords containing the words “Particle” and 

“Sinking” and “Velocity” as well as a given particle characteristic. Size returned the greatest 

number of studies (79), followed by parameters relating to chemical and taxonomic composition 

(Composition: 37; Type: 22; Ballast: 18). Searches relating to other morphological properties 

typically returned the fewest results (“Shape”: 17; “Fractal” [Dimension]: 5; “Compactness”: 1; 

“Permeability”: 1; “Morphology”: 1). 

Using the four most commonly studied particle attributes from our literature search (size, particle 

type, ballast, and shape), we identified 62 dataset from 38 studies and examined the degree of 

correlation between sinking velocity and each of the above attributes (Fig. 2). A full description 

of methods is provided in the Methods section. Briefly, for particle type, ballast, and shape, R2 

(proportion of variance in sinking velocity explained by size) were calculated from linear 

regressions for continuous variables, or from analyses of variance (ANOVAs) for categorical 

variables.  To assess the degree of variation in sinking velocity explained by particle size in each 

study, a power law function was fitted to the data, and R2 of this power law function calculated 

using a linear regression on the log-log plot of size against sinking velocity. A power law 

fucntion was chosen over a linear relationship since sinking velocity is thought to scale with 

particle diameter according to a power law function according to Stokes’s Law and empirically 
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modified versions incorporating porosity (Guidi et al., 2008; Laurenceau-Cornec et al., 2020; 

Xiang et al., 2022). 

Despite particle size having received the most interest, our review suggests the dependency of 

sinking velocity on size is not well constrained (Fig. 2). Size explains between 0-88% in the 

variation in particle sinking velocity (as determined by the coefficient of determination ‘R2’) 

with a median value of 31%. The strongest correlation between size and sinking velocity was 

observed for intact salp faecal pellets from the Southern Ocean (Iversen et al., 2017). However, 

in 26% of the datasets, particle size was observed to be a poor predictor of sinking velocity, 

explaining less than 10% of variation in particle sinking velocity (Fig. 2). Particle size did not 

appear to be a stronger predictor of sinking velocity than particle type or particle ballast content 

(Wilcoxon rank tests,  p > 0.8). The median percentage of variance in sinking velocity explained 

by particle type and ballast content were 26% and 30%, respectively. It is noteworthy however 

that only four ex situ datasets examined the influence of particle type (i.e. differences in both 

taxonomic composition, i.e. aggregates made of different phytoplankton species, or particle 

shape, e.g. faecal pellets vs aggregates) or ballast content. Likewise for particle shape, only one 

ex situ (Laurenceau-Cornec et al., 2015) and one in situ (Iversen & Lampitt, 2020) study directly 

measured a particle shape characteristic (aspect ratio) and sinking velocity, with neither of these 

studies finding sinking velocity to be explained by particle shape alone. 

For the datasets focussing on particle size as a predictor, we found strong differences between 

measurements made in situ and ex situ. R2 values were significantly higher for ex situ studies 

than in situ studies (Wilcoxon rank test, p < 0.01), suggesting that the strength of the size-sinking 

velocity relationship may be influenced by whether measurements are made in or ex situ.  While 

weak correlations between size and sinking velocity were observed in both situ and ex situ 

datasets, strong dependencies of sinking velocity on particle size were only observed ex situ. 

However, when combining all ex situ datasets, a clear lack of a ‘global’ size-to-sinking velocity 

relationship becomes apparent (n = 4138, p = <0.001, R2 = 0.193);Fig. 3a; though note that these 

studies used different method, which may forego a direct comparison (Giering et al. 2020b).  For 

in situ datsets (n = 12), size explained less than 30% of variability in sinking velocity in all but 

two studies which respectively examined flocs from meltwater discharge plumes and 

resuspended near-bottom sediment. For in situ particles, the median percentage of variance in 
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sinking velocity explained by particle size was 3%, contrasting with 35% for particles measured 

ex situ. Overall these findings suggest that the strong relationships observed ex situ between 

individual particle characteristics and sinking velocity rarely hold true in situ. As such, the 

methodological biases outlined below should be taken into consideration before extrapolating 

relationships observed in ex situ studies to natural marine particles in situ. 

 

 

 

Figure 2: Boxplot comparing proportion of variance in sinking velocity explained by particle 

characteristics. Coefficients of determination (R2) from linear models and analyses of variance 

(ANOVAs) performed between particle characteristics (size, type, ballast content, shape) and 

sinking velocities directly measured in previous studies (see text, Supplementary Table S1). 

Colours of boxplots indicate whether sinking velocity measurements were made in situ (dark 

grey) or ex situ (light grey), and how particles were generated (in situ: natural particles observed 

in situ or measured immediately ex situ without prior incubation; ex situ: cultured or incubated 
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ex situ prior to measurement. Shapes of the points indicate method used to measure sinking 

velocity. 

 

2.3 Ex situ vs in situ: methodological compromises 

Methodological differences between in situ and ex situ studies can explain both the 

predominance of ex situ studies examining the size-sinking velocity relationship, and why size is 

seen to more tightly constrain sinking velocities ex situ than in situ. 

In situ methods hold the major advantage of observing particles in their natural environment. 

Any measurements made are therefore acquired without the need for handling particles, 

decreasing (but not eliminating (Briggs et al., 2011; Cetinić et al., 2012)) the potential alteration 

and disturbance to particle properties (Giering et al., 2020a; Iversen & Lampitt, 2020), and thus 

maximising the realism of any interactions between sinking velocity and particle characteristics. 

However, a major drawback of in situ optical devices is that these methods lack the capability to 

provide direct information on a number of particle characteristics, such as particle density and 

composition (Giering et al., 2020b). These methods must hence rely on additional data or 

assumptions to estimate particle sinking velocities and calculate particulate fluxes. Given these 

uncertainties, the expensive nature of in situ camera systems, and a lack of standardization in 

analysis routines for in situ image datasets (Giering et al., 2020b), in situ studies into particle 

sinking velocities remain sparse compared with more traditional ex situ methods. In summary, in 

situ studies lack the capacity to study particle characteristics which may be measured ex situ, but 

maximise realism (Fig. 3b). 

Most studies into factors constraining sinking velocity involve incubating particles ex situ prior 

to or during measurements. By examining particles in a laboratory, detailed measurements of a 

wide number of particle characteristics can be made, such as chemical and taxonomic 

composition, removing the need for estimates of these parameters (Mantovanelli & Ridd, 2006).  

In addition, studies where particles are generated ex situ also allow for manipulation of particles 

characteristics, to test for effects of specific particle characteristics on sinking velocities (Giering 

et al., 2020a). However, ex situ particles are likely not reflective of in situ particle dynamics, 
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partly owing to ex situ particles being more homogenous. Three aspects contribute to this 

discrepancy: (1) Homogeneity in the ‘source’ particle pool; (2) homogenization of particles 

during particle collection; (3) homogenization of particles during the incubation for measuring 

sinking velocities. 

Firstly, particles for ex situ incubations are often sourced from “artificial”, laboratory-produced 

particles, e.g. incubating homogenous particle pools such as phytoplankton cultures in roller 

tanks, whilst in the natural environment a heterogenous pool of particles of varied age, 

composition, density, structure, and porosity exists (Alldredge, 1998; Alldredge & Gotschalk, 

1988; Iversen & Lampitt, 2020). The unnatural homogeneity of ex situ particles sourced in this 

way reduces the variability in sinking velocity introduced by factors other than size, thus 

allowing size to exert a dominant control over sinking velocity. 

An alternative approach to sourcing particles for incubations involves the collection of natural 

marine particles. Whilst this approach allows for collection of a more diverse particle pool, 

highly fragile marine aggregates are susceptible to damage, alteration, and compaction or 

disaggregation during sampling for ex situ incubations (Alldredge & Gotschalk, 1988; Alldredge 

& Silver, 1988; Giering et al., 2020a; Iversen & Lampitt, 2020; Kajihara, 1971; Takeuchi et al., 

2019). Particles measured in the laboratory are able to withstand higher turbulences than that 

observed in the ocean, (Alldredge et al., 1990; Riebesell, 1992), and also typically exhibit 

increased sinking velocities compared with measurements made in situ (Fig. 3a) (Alldredge & 

Gottschalk, 1988; Shanks & Trent, 1980). These observations indicate that, despite the more 

heterogenous nature of naturally occurring particles compared to cultured particles, sampling in 

this way has a tendency to alter particles (and/or particle populations) such that they are no 

longer fully representative of marine particles in situ.  

Lastly, particles incubated ex situ are exposed to a far more limited set of processes influencing 

their formation and composition. In situ, a number of biological and physical processes 

contribute to the aggregation of particles. For physical processes, mechanisms such as Brownian 

motion, differential settling (in which which faster sinking particles scavenge slower sinking or 

suspended particles upon collision), and turbulent shear (McCave, 1984) influence aggreate 

formation, with the importance of these processes varying depending on particle size (Jackson, 
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1994; McCave, 1984; Takeuchi et al., 2019). By contrast, in roller tanks turbulent shear is 

negligible in aggregate formation once the initial spin-up period is over (Engel et al., 2009; 

Laurenceau-Cornec et al., 2015), whilst in Couette chambers the influence of shear is amplified 

relative to in situ (Jackson, 2015; Lick et al., 1993). Ex situ incubations also typically lack the 

diversity of biologically-mediated processes that aggregate or disaggregate particles. In situ, 

aggregation processes in situ can include compaction into faecal pellets, the accretion of particles 

onto mucous houses and other exuded exopolymers (Hamner et al., 1975; Hansen et al., 1996; 

Kiørboe, 2001), and aggregation due to organisms’ feeding currents (Fukuda & Koide, 2000). 

Particle disaggregation as a result of zooplankton feeding can also occur in situ, a process which 

may not be included in ex situ incubations (Dilling & Alldredge, 2000; Iversen & Poulsen, 

2007). Given that in situ studies cannot replicate the diversity of in situ processes involved in 

forming and transforming particles, it is unsurprising that  ex situ particle pools are more 

homogenous that those in situ, and hence exhibit stronger size-scaling relationships. Overall, ex 

situ studies favour the ability to measure and examine particle dynamics in detail, whilst 

sacrificing realism (Fig. 3b).  

 

Figure 3: (a) Particle size (equivalent spherical diameter, ESD) against sinking velocity for all 

particles in this study, from both in situ (blue) and ex situ (orange) studies.; (b) Relative 
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advantages of in situ and ex situ methods (blue and orange respectively) in terms of ability to 

measure particle characteristics and particle realism, when investigating the relationship between 

particle sinking velocity and particle characteristics. Position of each method relates to an 

assigned “Particle Realism score” and “Measurement Capability score” as described in 4.3 

Methodological Comparisons; explanations of assertions used for scoring these methods 

available in Supplementary Table S2.  

3. An outlook for the use of in situ methods 

This review highlights the discrepancy in the extent to which size controls sinking velocity 

between in situ and ex situ studies (Alldredge & Gotschalk, 1988) , and that - despite this 

discrepancy- size-based methods remain common for estimating fluxes from in situ data or 

representing marine particle particles in models.  

While there is clear merit in using simple size-to-sinking velocity relationships for autonomous 

methods (e.g. Fender et al., 2019; Guidi et al., 2008; Iversen et al., 2010), these approaches 

provide limited mechanistic understanding into the size-flux relationship, limiting the certainty 

with which relationships can be spatiotemporally extrapolated. As suggested by McDonnell & 

Buesseler (2010), taking into account particle types will increase the range of spatiotemporal 

scales over which size-scaling relationships can be applied. Recognising individual size-scaling 

relationships for varying particle types will enable more accurate sinking velocity and flux 

estimates for each particle type. In turn, considering the weighted contribution of each particle 

type will maintain the accuracy of optical methods even under varied ecological and 

biogeochemical settings, when contributions from each particle type may vary. Alternatively, the 

inclusion of additional particle characteristics, such as compactness or bulk particle composition, 

into a unified equation (e.g. Giering et al. 2020b) may provide more accurate predictions of 

particle sinking velocities. Some information of these characteristics can be obtained from 

optical measurements, such as porosity (Bach et al., 2019), bulk density (Neukermans et al., 

2012; Hurley et al., 2016), and bulk particle composition (inorganic/organic ratios, Twardowski 

et al., 2001; Loisel et al., 2007). 

Yet, at present, the uncertainties associated with these proxies are large or unconstrained. 

Simultaneous measurements of particle type (or characteristics), size and sinking velocity will 
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enable the development of these methods, and is likely to be expedited by advances in machine 

learning (Giering et al., 2020a; Iversen & Lampitt, 2020). Moving away from purely size-based 

velocity and flux relationships to incorporate these additional particle properties will not only 

facilitate improved mechanistic understanding of particle sinking and the BCP, but also promote 

increased spatio-temporal resolution of methods used to the study the BCP, through the use of 

autonomous platforms and in biogeochemical models. 

4 Methods 

4.1 Data compilation 

We compiled observations of particle sinking velocity and associated particle characteristics 

from 62 datasets from 38 studies (see Supplementary Table S1) . These data had previously been 

compiled by Cael et al. (2021) and Laurenceau-Cornec et al. (2015, 2020); all original datasets 

were validated and, if needed, redigitized using Plot Digitizer 

(https://automeris.io/WebPlotDigitizer/). Studies not relating to marine particles were excluded 

from this analysis. In the small number of cases where particle size and sinking velocity data had 

been fitted to a power law function in original studies (n = 10), published R2 values in the 

literature were used. Data were assigned to “in situ” and “ex situ” groups for measurement type, 

based on the method used to measure sinking velocity in each study. The particle types examined 

in each study were assigned to one of nine particle types (e.g., natural aggregates, mixed diatom 

culture; for full list Fig. 2, Supplementary Table S1), with method used to measure particle 

sinking velocities also described through one of nine groups (e.g., Scuba photography, Vertical 

flow system; for full list see legend of Fig. 2, Supplementary Table S1). 

4.2 Sinking velocity/Particle characteristic analyses 

To assess the variability in sinking velocity explained by a particle size in each study, a power 

law function (in form w = AdB, where w is the sinking velocity, d the diameter, and A and B are 

scaling coefficients) was fitted to the data.  

 For particle type, ballast, and shape, R2  were recorded either from performing linear regressions 

or analyses of variance (ANOVAs), depending on whether the particle characteristic was 

described in terms of continuous or categorical data. For example, in some studies particle type 
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was analysed as a categorical variable with discrete groups such as S. costatum or E. huxleyi 

aggregates, and sinking velocity was compared between these groups by means of an ANOVA. 

In another study, particle type was expressed as a percentage of aggregate composition of one 

diatom morphotype (Laurenceau-Cornec et al., 2015). In this case, a linear regression was 

performed between percentage of total composition and particle sinking velocity. Lastly, having 

failed both Levene’s and Shapiro Wilk tests, a Wilcoxon rank sum test with continuity correction 

was performed to assess whether R2 coefficients differed significantly between in situ and ex situ 

studies. 

4.3 Methodological comparison 

To represent the advantages and disadvantages of in situ and ex situ  methods for sinking 

velocity measurement, methods were ranked in terms of their ability to measure particle 

characteristics, and in terms of particle realism. Although these assertions are subjective 

rankings, a scoring system was devised to standardise rankings and criteria by which methods 

were judged. For measurement capability score, particle characteristics (Size, Ballast, 

Taxonomic composition/Particle type, Chemical composition, Shape, Dry weight, Porosity, 

Fractal dimension, Density, and Sinking velocity) were assigned a score from 0 to 4, describing 

the comprehensiveness with which a particle characteristic could be studied with a given method 

(0 lowest, 4 highest; see Supplementary Table S2). Measurement capability scores of individual 

characteristics were summed to give an overall score. Where a range of measurement score was 

given for a particle characteristic, the mean value was used when summing scores to calculate 

(e.g. 2-3 scored as 2.5). 

 For the particle realism score, each method was assigned a score from 0 to 4, based on 

the extent to which the particles measured had been influenced by sampling and measurement 

procedures, i.e. the extent to which particle communities measured could be expected to reflect 

natural marine particle communities in situ. A brief explanation for assigned scores and evidence 

supporting these assertions are outlined in Supplementary Table S2). 
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