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Abstract. Recent extreme weather events have had severe impacts on UK crop yields, and so there is concern
that a greater frequency of extremes could affect crop production in a changing climate. Here we investigate
the impacts of future climate change on wheat, the most widely grown cereal crop globally, in a temperate
country with currently favourable wheat-growing conditions. Historically, following the plateau of UK wheat
yields since the 1990s, we find there has been a recent significant increase in wheat yield volatility, which is
only partially explained by seasonal metrics of temperature and precipitation across key wheat growth stages
(foundation, construction and production). We find climate impacts on wheat yields are strongest in years with
compound weather extremes across multiple growth stages (e.g. frost and heavy rainfall). To assess how these
conditions might evolve in the future, we analyse the latest 2.2 km UK Climate Projections (UKCP Local): on
average, the foundation growth stage (broadly 1 October to 9 April) is likely to become warmer and wetter, while
the construction (10 April to 10 June) and production (11 June to 26 July) stages are likely to become warmer
and slightly drier. Statistical wheat yield projections, obtained by driving the regression model with UKCP Local
simulations of precipitation and temperature for the UK’s three main wheat-growing regions, indicate continued
growth of crop yields in the coming decades. Significantly warmer projected winter night temperatures offset
the negative impacts of increasing rainfall during the foundation stage, while warmer day temperatures and drier
conditions are generally beneficial to yields in the production stage. This work suggests that on average, at
the regional scale, climate change is likely to have more positive impacts on UK wheat yields than previously
considered. Against this background of positive change, however, our work illustrates that wheat farming in the
UK is likely to move outside of the climatic envelope that it has previously experienced, increasing the risk of
unseen weather conditions such as intense local thunderstorms or prolonged droughts, which are beyond the
scope of this paper.

1 Introduction

Globally, wheat is the most widely grown cereal crop by area,
with more than 214 ×106 ha harvested and an annual produc-
tion of about 730 × 106 t (FAO, 2018). In the UK, wheat is
the most prevalent arable crop, with an annual planting of ap-
proximately 1.7 ×106 ha (DEFRA, 2018a). The UK climate

has historically been well suited to growing wheat (Reynolds,
2010), partly due to technology and investment in the agri-
cultural sector (as can be seen from the increasing trend in
Fig. 1a as technological and agronomic innovations were in-
troduced) but also due to the UK climate, which is suitable to
temperate species when autumn-sown (Harkness et al., 2020;
Reynolds, 2010). UK yields are of approximately 8 t ha−1
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(Fig. 1a and b) compared to a global average of 3.5 t ha−1

(FAO, 2018). However, recent climate extremes such as the
UK hot summer of 2018 and wet autumn of 2019 had sub-
stantial negative impacts on farm businesses, with significant
reductions in crop yields. This climate-mediated reduction
in yields is supported by evidence from the UK government
(DEFRA, 2018b, 2019), the farming industry (AHDB, 2020),
and real-time precision yield monitoring (Hunt et al., 2019).

Observed, direct impacts of climate change on crop yields
are emerging globally (Brisson et al., 2010; Grassini et al.,
2013; Hochman et al., 2017; Rigden et al., 2020), slowing
the growth in global agricultural productivity (Ortiz-Bobea
et al., 2021), and altering patterns of global food production
(Ray et al., 2019). Rising temperatures under anthropogenic
climate change are often detrimental to agricultural produc-
tivity (Ortiz-Bobea et al., 2021) and compound heat-drought
impacts may directly affect crop growth: for instance, maize
and soil yields are historically worse in places with strong as-
sociations between low rainfall and high temperature (Lesk
et al., 2021). Cool and wet growth phases have also been
linked to poor yields because it is hard to warm the surface
when soils are wet and hard to dry wet soils during cooler pe-
riods. Thus it remains to be seen how warming and precipita-
tion interact and whether future warming may help offset the
increased precipitation by drying out waterlogged soils. This
interaction depends on how the link between precipitation
and soil moisture may evolve in the future (a topic drawing
increasing attention in both climate and crop science, enabled
by the rise in satellite-derived soil moisture observations).
Combined with the nutrition demands of a rapidly growing
global population, there is an urgent requirement to estimate
these effects on future crop yields. Breeding and evaluating
new wheat varieties tolerant of hotter, drier summers may
take decades (Zheng et al., 2012) and it is unclear whether
advances in agronomy are occurring fast enough to miti-
gate the impacts of any accelerating frequency of extreme
climatic events (Chen et al., 2021). Changing climatic con-
ditions may also affect yields indirectly by constraining the
ability of farmers to undertake key management actions of
tillage, sowing, and harvest or by causing damage to natural
capital, such as soil erosion. These new constraints on yields
may overtake any gains from physiological and phenological
advances obtained through plant breeding.

In order to assess this risk to future food production, there
is a critical need to understand how climate extremes are
likely to evolve during the seasonal growth phases that are
most relevant to the farming industry. Observational evidence
has revealed changes in the intensity, frequency, duration,
and extent of weather extremes, such as heavy rainfall events
and hot days, across certain regions and continents (Rahm-
storf and Coumou, 2011; Slater et al., 2021). There has been
much research relating weather indices to potential crop vari-
ability or projected damage (Harkness et al., 2020; Iizumi
and Ramankutty, 2016; Rosenzweig et al., 2001; Trnka et
al., 2014), but most work has described weather extremes

by using seasonal or annual metrics rather than focussing
on the periods most relevant to crop growth (Frich et al.,
2002; Zhang et al., 2011). There is also increasing research
focus on compound weather extremes (Zscheischler et al.,
2020) occurring simultaneously or in close succession, such
as very warm temperatures in the late autumn followed by
abnormally wet conditions in spring (Ben-Ari et al., 2018)
and their impacts on crop yields. Of the total annual crop
losses in world agriculture, many are due to direct weather
and climatic effects such as drought, flash floods, heavy rain-
fall in otherwise dry periods, frost, hail, and storms (Ray et
al., 2019; Sultan et al., 2019). High temperatures and heat
stress lead to stomatal closure and therefore reduced pho-
tosynthesis due to restricted CO2 diffusion (Chaves et al.,
2003), offsetting potential yield gains that might otherwise
occur with greater fertilization in a CO2-enriched environ-
ment (Ainsworth and Long, 2021). In some regions of the
mid- and high latitudes, water excess may prove more detri-
mental to wheat yields than drought (Zampieri et al., 2017).
However, for crops such as maize and soy yields, it has also
been shown that heavy rainfall of up to 20 mm h−1 may even
prove beneficial, highlighting the benefits of rainfall inten-
sification in a warming climate (Lesk et al., 2020). Overall,
there is thus a need to investigate historical data to elucidate
the linkage between extreme temperature and rainfall over
the agricultural phases of relevance to crop growth. Climate
models may then be employed to explore how such linkages
might evolve as the climate warms.

This work thus investigates (1) whether statisti-
cally significant associations exist between observed
temperature/precipitation metrics and historical wheat
yields during the three crop growth stages, in the three
main wheat-growing regions of the UK, and (2) the extent
to which projections of compound temperature and pre-
cipitation extremes under a high-emission scenario may
impact future crop yields. To assess future changes in
precipitation and temperature extremes, we employ state-
of-the-art UK Climate Projections Local (UKCP 2.2 km)
convection-permitting simulations, which constitute a step
change in resolving small-scale processes in the atmosphere.
These climate projections are considered the most reliable
simulations presently available in terms of their ability to
project future changes in meteorological extremes over the
UK.

2 Methods

2.1 Wheat yield data

Geographically, we focus on the three main wheat-growing
regions outlined using the EU “NUTS” classification (Euro-
pean Commission, 2010). These three regions are (i) north-
eastern Scotland, eastern Scotland, and the north-east En-
glish region (SNE); (ii) the East Midlands, Yorkshire, and the
Humber region (EMYH); and (iii) the south-east and eastern
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Figure 1. UK national and regional wheat yields. (a) National wheat yields are shown as grey circles and locally weighted scatterplot
smoothing (loess) curve as a red line. Green labels indicate examples of years with anomalously high yields; brown labels indicate examples
of years with anomalously low yields. Panel (b) same as (a) for three main wheat-growing regions (data only available for 1990–2020 at the
regional scale). (c) Anomalies of wheat yields computed by subtracting the Loess moving mean from the annual values. (d) Map of the three
wheat-growing regions. Green indicates north-eastern Scotland, eastern Scotland, and the north-east English region (SNE); blue indicates
the East Midlands, Yorkshire and the Humber region (EMYH); red indicates the south-east and eastern region (SEE).

region (SEE; Fig. 1d). These three regions account for over
80 % of total UK wheat production by tonnage (DEFRA,
2020) and correspond with the yield reporting boundaries of
available data. The regional wheat yield data were obtained
from the UK Department for Environment, Food and Rural
Affairs (Defra; DEFRA, 2020). The data are drawn from the
England Cereals and Oilseeds Production Survey and Scot-
land Cereal Production and Disposal Survey, part of an an-
nual survey of the UK agricultural industry. For full details of
the survey methodology, see DEFRA (2018b). The data were
summarized by Defra to average yield at the national (1885–
2020) and regional (1990–2020) levels, resulting in 136 and
31 years of data, respectively.

The dates for the foundation, construction, and produc-
tion growth stages are taken from benchmarks in the UK’s
“Wheat growth guide”, in Table 1 (AHDB, 2018). Prior
knowledge on the effects of climate in different growth stages
guides our choice of climate variables in the study (Table 1).
Absolute anomalies of wheat yields were computed by fitting
a locally weighted scatterplot smoothing curve (LOESS) to
obtain the running mean (red lines shown in Fig. 1a and b),
and subtracting this running mean from each annual value
(resulting anomalies shown in Fig. 1c). We perform this
calculation to remove the trend and thereby isolate annual
anomalies, which we expect to be related to inter-annual cli-
mate variability rather than other factors such as long-term

technological improvements, increasing atmospheric carbon
dioxide, or climate warming.

2.2 Historical precipitation and temperature reference
data

For historical climate data we employ the HadUK gridded
5 km observational data from the National Climate Informa-
tion Centre (NCIC; Hollis et al., 2019). Provisional HadUK
data were employed for the year 2020, produced as per pre-
vious years (Hollis et al., 2019); provisional data may have
very small differences at regional scales compared with the
final published dataset, available later in the year. Observed
precipitation and temperature data were checked for com-
pleteness: any incomplete climate data during each of the
crop growth stages (i.e. a foundation phase with less than
187 d of data; a construction phase with less than 60 d, or a
production phase with less than 46 d) were removed, to en-
sure consistency and comparability across years.

To investigate the association with crop yields, we com-
puted climate metrics within each geographical region and
wheat growth stage (Table 2) using region-averaged val-
ues of temperature (◦C) and precipitation (mm). Specifi-
cally, for temperature, we derived the maximum, mean, and
minimum of the region-averaged maximum daily tempera-
ture (max_maxT, mean_maxT, min_maxT), of the mean daily
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Table 1. Three standardized wheat growth stages, modified by 1 d to avoid overlap across stages (AHDB, 2018).

Growth stage Benchmark
start date

Benchmark
end date

Potential climate impacts on the crop

Foundation phase 1 October 9 April Crop is germinating and growing
slowly. Susceptible to waterlogging and
frost damage

Construction phase 10 April 10 June Crop is green and growing rapidly.
Needs adequate light; can be affected
by late frosts

Production phase 11 June 26 July Period of post-flowering to harvest;
grains fill and ripen. Susceptible to
drought and waterlogging

temperature (max_meanT, mean_meanT, min_meanT) and
of the minimum daily temperature (max_minT, mean_minT,
min_minT). For example, max_maxT indicates the day with
the hottest (maximum hourly) temperature, and max_minT
indicates the day with the warmest nighttime (minimum
hourly) temperature, during a given growth stage. We also
create metrics representing the daily variability in temper-
ature (var_dailyT) and its seasonal variability (var_maxT,
var_meanT, var_minT). For instance, var_maxT indicates the
difference between the highest/lowest daily values of maxi-
mum hourly temperature in a season.

For precipitation, we computed metrics representing
the total region-averaged daily precipitation within a
growth stage (total_P) and its quantiles (max_dailyP or
mean_dailyP), where max_dailyP is the maximum total daily
precipitation within a growth stage. We also considered
the variability in daily precipitation across a growth stage
(varP_Q0.95−Q0.05); the number of heavy rainfall days
where precipitation exceeds 10 mm (days_P> 10 mm); and
the number of dry days where precipitation is less than
0.01 mm (days_P< 0.01 mm; Table 2). The heavy precipi-
tation threshold is chosen based on the historical wheat yield
literature for the UK (Thomas et al., 1989); other thresholds
may be more relevant elsewhere. For instance, Lesk et al.
(2020) found extreme rainfall impacts only at especially high
intensities> 50 mm h−1 for US maize and soy; others have
used more holistic distributional measures like the wet-day
Gini coefficient (Shortridge, 2019), a measure of daily rain-
fall variability.

2.3 UKCP Local (2.2 km) projections

The UKCP Local simulations have a spatial resolution of
just 2.2 km – providing exceptional detail in local rainfall
changes. Importantly, such high resolution allows the cli-
mate model to explicitly represent convective precipitation
events on the model grid (see Kendon et al., 2019, 2020,
for details), thus providing credible projections of future
changes in short-duration precipitation extremes and in par-

ticular for summer months. The UKCP Local simulations
were initially released in September 2019 (Kendon et al.,
2019) but were then updated in July 2021 after correction
of an error in the representation of graupel (soft ice pel-
lets; Kendon et al., 2021). Here we use the new updated Lo-
cal 2.2 km projections. The local 2.2 km model (HadREM3-
RA11M) spans the UK and is nested within the 12 km re-
gional model (HadREM3-GA705), which is in turn driven
by the 60 km global model (HadGEM3-GC3.05; Andrews
et al., 2019; Williams et al., 2018). The 2.2 km projections
are available for three 20-year periods of 1981–2000, 2021–
2040, and 2061–2080. Known atmospheric greenhouse gas
(GHG) concentrations are prescribed as forcings to the his-
torical 20-year period. For the second and third periods, the
projections employed follow the RCP8.5 scenario, which as-
sumes substantial on-going human burning of fossil fuels.
The 2.2 km projections consist of an ensemble of 12 mem-
bers (Table 3), each of which can be regarded as a plausible
realization of the climatic response to rising GHG levels. The
local members are driven by different members of the global
coupled model ensemble and corresponding regional model
ensemble, created by perturbing uncertain parameters in the
model physics within their bounds of uncertainty. Thus, the
range of the 2.2 km projections provides an estimate of the
uncertainty in future changes due to natural variability while
additionally accounting for uncertainty in the physics of the
driving global climate model. We computed regionally av-
eraged UKCP temperature and precipitation projections for
each of the three regions shown in Fig. 1d and for each of the
crop growth stages indicated in Table 1. For a detailed discus-
sion of modelling assumptions and limitations see Sect. 2.6.

2.4 Bias correction

Given that the driving parent model of each UKCP Local
simulation comes from a perturbed physics ensemble, each
ensemble member is typically regarded as a different model
and therefore is independently bias-corrected. UKCP Local
simulations of area-averaged precipitation and temperature
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Table 3. Bias correction factors for region-averaged total daily precipitation and minimum/mean/maximum daily temperature for each of the
three regions (columns) and each of the 12 UKCP ensemble members (rows) relative to HadUK observed data. These are the complete data
(ensembles 02, 03, and 14 do not exist in the UKCP Local dataset). Bias correction is performed using daily data over the common historical
period 1 December 1980 to 30 November 2000. The bias correction factors are multiplicative for precipitation and additive for temperature.

Precipitation Minimum temperature Mean temperature Maximum temperature

Ensemble EMYH SEE SNE EMYH SEE SNE EMYH SEE SNE EMYH SEE SNE

01 0.82 0.88 0.88 −0.30 −0.54 0.17 0.35 0.18 0.73 0.97 0.89 1.38
04 0.79 0.80 0.91 0.12 −0.12 0.54 0.82 0.69 1.11 1.47 1.47 1.75
05 0.84 0.91 0.9 −0.14 −0.28 0.17 0.57 0.51 0.76 1.24 1.27 1.43
06 0.87 0.96 0.92 −0.03 −0.22 0.35 0.57 0.42 0.88 1.18 1.06 1.53
07 0.88 0.95 0.94 0.13 −0.10 0.62 0.69 0.51 1.08 1.25 1.14 1.65
08 0.81 0.85 0.86 −0.51 −0.70 −0.17 0.08 −0.05 0.37 0.64 0.59 0.97
09 0.97 1.06 0.97 0.26 0.10 0.68 0.69 0.55 1.05 1.13 1.02 1.55
10 0.87 0.95 0.92 0.03 −0.18 0.39 0.47 0.29 0.78 0.91 0.75 1.28
11 0.80 0.84 0.89 −0.13 −0.36 0.26 0.58 0.42 0.86 1.22 1.15 1.52
12 0.89 1.00 0.93 1.08 0.75 1.73 1.66 1.42 2.21 2.27 2.10 2.84
13 0.85 0.94 0.87 −0.67 −0.87 −0.27 −0.13 −0.31 0.24 0.39 0.26 0.82
15 0.82 0.89 0.85 −1.14 −1.36 −0.7 −0.6 −0.79 −0.16 −0.13 −0.27 0.39

Mean 0.85 0.92 0.90 −0.11 −0.32 0.31 0.48 0.32 0.83 1.05 0.95 1.43

were bias-corrected against the 5 km area-averaged observed
daily HadUK data (Hollis et al., 2019) for each geographi-
cal region, using the entire the historical period of December
1980 to November 2000 (Table 3). The bias correction scal-
ing factors were identified and applied with the “hyfo” (Xu,
2020) package written in the software R. This bias correc-
tion approach is a simple scaling method which is additive
for temperature and multiplicative for precipitation (one cor-
rection factor per ensemble, per region), so it preserves an
absolute or relative trend, respectively. The UKCP data have
30 d in each month; therefore, to perform the bias correction
we added calendar days for each of the three 20-year periods
(e.g. from 1 December 1980 to 30 November 2000 with only
30 d in each month) and merged the historical period with
observed data, removing any non-matched days (e.g. drop-
ping the 31st of the month from the observed data, or drop-
ping 29–30 February from the projections). This produced
two overlapping time series of equal length over the period of
December 1980 to November 2000 to perform the bias cor-
rection. We make the assumption these present-day biases are
likely to extend into the future periods, a key caveat of any
bias correction method. The bias correction factors are rela-
tively small, which suggests the simulations are well-aligned
with the historical observations:×0.89 on average for precip-
itation for the three regions (individual factors for each mem-
ber and region are shown in Table 3);−0.04 ◦C for minimum
daily temperature,+0.54 ◦C for mean daily temperature, and
+1.14 ◦C for maximum daily temperature. We apply the bias
corrections to the two future UKCP periods (December 2020
to November 2040 and December 2060 to November 2080,
recalling these are for the RCP8.5 scenario). The bias correc-
tion performs well at the annual scale (Fig. 2) but may differ

across specific growth stages and regions (e.g. in the founda-
tion phase, median precipitation is slightly overestimated in
EMYH and SEE regions; Fig. 3). Bias-corrected projections
inevitably contain some uncertainty and should be regarded
as providing general directions of change.

2.5 Statistical approach

We first assess the association between climate metrics and
crop yield by using pairwise two-variable Pearson correla-
tions (expressed as annual crop yield versus each individual
seasonal climate variable). The magnitudes of the correlation
coefficients and their p values are provided in Table 2.

Second, to assess the additive or offsetting effects of dif-
ferent climate conditions across crop growth stages, we de-
velop a multiple linear regression model between regional
crop yields and climate (Eq. 1). We develop one model per
region, with different observed temperature and precipitation
variables for each region. Using Table 2, we purposely select
just two continuous variables per growth stage to develop the
model (one temperature-based metric and one precipitation-
based metric), thereby avoiding correlated metrics. The equa-
tion used to fit the observed data for a given region is formu-
lated as

y = β0+β1x1+β2x2+β3x3+β4x4+ ε, (1)

where y represents the wheat yields (t ha−1); x1 is
foundationmax_minT (◦C), x2 is foundationtotal_P (mm), x3 is
productionmax_maxT (◦C), and x4 is productiontotal_P (mm);
β0 is the intercept; β1 to β4 are the regression slope coeffi-
cients for each of the explanatory climate variables; and ε
is the error. The model statistics and coefficients are pro-
vided in Table 4 for each region. Although the model is
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Figure 2. Bias correction of each UKCP 2.2 km ensemble member, for (a–c) the minimum, mean, and maximum daily temperature
(mean_minT, mean_meanT, and mean_maxT), respectively, and (d) total precipitation (total_P), in each year, for each of the three re-
gions (top row: SNE; middle row: EMYH; bottom row: SEE). Red (blue) boxplots and rectangles indicate the range of observed temperature
(precipitation) over the first period (1981–2000), based on the HadUK dataset. Grey boxplots indicate projections (1 for each of the 12 UKCP
Local ensembles) for three periods (historical – 1981–2000; future – 2021–2040; 2061–2080) using RCP8.5. Boxplot hinges represent 25th
and 75th percentiles, and the horizontal bar indicates the median. Whiskers extend to the largest value no further than 1.5 times the interquar-
tile range (distance between 25th–75th percentiles) from the hinge.

significant (p < 0.05) in EMYH, SEE, and NAT (national
scale), the predictability is relatively low (Predicted R2 of
0.09 for NAT). Alternative metrics could also be selected,
such as var_dailyT or var_maxT in the production phase,
days_P > 10 mm in either phase, or additional variables re-
flecting, e.g., precipitation intensity. These variables have not
been tested and should be evaluated in future research, fur-
ther developing the statistical crop model. Our model is a
proof of concept that could be refined to improve the predic-
tive skill if further data become available. The construction
phase is not included in the regression model as it shows no
consistent associations with wheat yields (Table 2). The mul-
tiple regression describes the “extremeness” of climate inde-
pendently for each crop growth stage and so may account for
compound positive and negative climate impacts on wheat
yield across a year. For instance, detrimental climate condi-
tions may have a cumulative impact on wheat yields if occur-
ring across multiple growth stages, such as heavy precipita-
tion events during the foundation phase (foundationtotal_P ),
followed by meteorological drought during the production
phase (productiontotal_P ). Conversely, poor conditions in
one stage may be mitigated by good conditions or agronomic
interventions in another stage (e.g. wet weather leading to
increased incidence of fungal disease can be mitigated by
subsequent increased use of fungicides), and this would be
reflected by the regression model.

Third, to assess future changes in crop yields, we drive the
same multiple regression model with the bias-corrected pro-
jections of the same variables, computed from the 12 mem-

bers of the UKCP Local simulations (i.e. we employ a hybrid
approach; see Slater et al., 2022). This approach allows us to
fuse together the data-driven regression model with the mete-
orological simulations for higher greenhouse gas emissions.
We use the model results to understand how multivariate cli-
mate change could lead to compensating or compounding
impacts on future crop yields.

2.6 Assumptions and limitations

One of the advantages of the empirical data-driven approach
herein is that there are fewer assumptions than in a process-
based model approach. However, such an approach makes
some key assumptions nonetheless, listed here.

1. To assess the impact of extreme weather on crop yields,
we assume that the crop yields are affected by weather
within the pre-defined crop growth stages described in
Table 1. We employ fixed-in-time growth stages for
practicality, but in reality these growth stages may be
weather dependent from year to year, as plant vulner-
abilities to extreme temperatures or precipitation may
differ, e.g. from one July to another July. We did not
use the 99 detailed physiological growth stages (AHDB,
2022) but rather the high-level growth stages which are
defined over long time periods to split the year into key
stages of wheat growth.

2. A major assumption in our regression-based approach
is that wheat responses to climatic variables in the past
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Figure 3. Bias correction of each UKCP 2.2 km ensemble member, for (a–c) the minimum, mean, and maximum daily temperature
(mean_minT, mean_meanT, and mean_maxT), respectively, and (d) total precipitation (total_P), within each phase, for each of the three
regions (SNE, EMYH, SEE). Columns indicate the foundation, construction, and production phase, respectively. Red (blue) boxplots and
rectangles indicate the range of observed temperature (precipitation) over the first period (1981–2000), based on the HadUK dataset. Grey
boxplots indicate projections (1 for each of 12 UKCP Local ensembles) for three periods (historical – 1981–2000; future – 2021–2040;
2061–2080) using RCP8.5. Boxplot hinges represent 25th and 75th percentiles, and the horizontal bar indicates the median. Whiskers extend
to the largest value no further than 1.5 times the interquartile range (distance between 25th–75th percentiles) from the hinge.
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Table 4. Statistics of the multiple linear regression model (Eq. 1) for each region and nationally (historical observed data, 1990–2020). The
low R2 values can be explained by the fact that climate is only one of the mechanisms driving crop yields alongside agronomic management,
as discussed in Sect. 3.3. Significance of the coefficients is indicated with stars (∗∗∗ indicates p < 0.01, ∗∗p < 0.05, ∗p < 0.10). We use
these model fits to drive climate-based projections of future crop yields using the UKCP Local ensemble simulations (Fig. 6), assuming no
future changes in agronomic management practices. The predictions issued by the regional models are similar to those issued by the national
model (Fig. 6).

n p value R2 Adjusted β0 β1 β2 β3 β4
years R2 (intercept) (foundation (foundation (production (production

t ha−1 max_minT ) total_P ) max_maxT ) total_P )
t ha−1 ◦C−1 t ha−1 mm−1 t ha−1 ◦C−1 t ha−1 mm−1

EMYH 31 0.032 0.324 0.220 5.9990∗∗∗ 0.1066 −0.0013 0.0513 −0.0031
SEE 31 0.043 0.306 0.199 3.8128∗∗ 0.1480∗ −0.0001 0.0753 −0.0014
SNE 31 0.506 0.116 −0.020 5.3988∗∗∗ 0.0703 0.0006 0.0661 −0.0013
NAT 31 0.010 0.390 0.296 3.9199∗∗ 0.1404∗∗ −0.0001 0.0921∗ −0.0015

are a reliable predictor of responses in the future. One
important uncertainty that we do not consider is how
wheat growth and water use might respond to increases
in atmospheric CO2 (Ewert et al., 2002; Swann et al.,
2016).

3. Spatially, we average the climate metrics over the three
regions. This aggregation to regional scales may mask
variation in the weather conditions occurring in indi-
vidual grid cells (or farms) – for instance the regional
average could show little change, but this could hide
large local changes (such as less frequent but more in-
tense bursts of rain), or contrasting directions of change
within the region. Other spatial metrics, such as extract-
ing the highest rainfall event within each region, may be
worth testing in future work.

4. The multiple regression model describes the impact of
compound climate effects in different growth stages
on wheat yields but not that of antecedent conditions
(memory effects). Compound effects are captured well
by our model, e.g. frost conditions during the founda-
tion phase and heavy waterlogging during the produc-
tion phase might combine to produce poor conditions
across the whole year. However, the model cannot as-
sess whether the climatic impacts during the production
phase are the same irrespective of “memory” impacts
from the climatic conditions in the earlier plant devel-
opment stages (for example, the antecedent effects of a
warm winter and wet spring in leading to a crop failure,
e.g. Ben-Ari et al., 2018).

5. For the future projections of altered meteorological con-
ditions, the UKCP18 HadGEM3 climate model simula-
tions (in which the UKCP Local 2.2 km simulations are
nested) were only performed for the RCP8.5 pathway
for atmospheric greenhouse gas concentrations, and we
do not address emissions uncertainty from other scenar-
ios. While the likelihood of such high on-going emis-

sions is now considered low (Chen et al., 2021; Haus-
father and Peters, 2020), the RCP8.5 scenario is com-
monly used to facilitate detection of climate signals in
future projections above natural variations in the climate
(due to the large changes projected) and was deliber-
ately chosen as the configuration for UKCP Local sim-
ulations to maximize the signal to noise. Using a high-
emission scenario also has the advantage that one can
make estimates of climate changes for lower-emission
scenarios using scaling approaches.

6. Our analysis employs one single model, the UKCP
Local (2.2 km) climate projections. As described in
Sect. 2.3, the UKCP Local simulations are driven by
a perturbed physics ensemble (PPE) of a single forc-
ing Earth system model (ESM), i.e. the parameters
within the physics of the driving ESM are perturbed
within their bounds of uncertainty. Thus, the 12 mem-
bers of the high-resolution ensemble describe both in-
ternal climate variability and the climate modelling un-
certainty in the driving model (i.e. they have wider un-
certainty than is typically represented in one single cli-
mate model). The trends of the UKCP Local simula-
tions therefore at least partially cover the range of un-
certainty and trends that would occur in the ESMs de-
veloped by other climate research centres. However,
the climate modelling range of uncertainty is likely
to be underestimated since the UKCP Local ensem-
ble lacks information from other international climate
models. In winter, the UKCP Local simulations show
some higher-precipitation responses compared to the
full CMIP5 ensemble due to the improved represen-
tation of winter-time convective showers in the Local
2.2 km model (Kendon et al., 2020). UKCP Local pro-
jections also project relatively high temperature changes
compared with other climate models (see, e.g., https:
//interactive-atlas.ipcc.ch/regional-information, last ac-
cess: 22 September 2022). Changes in summer precip-
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itation show a considerable drying in the UKCP Lo-
cal projections, whereas the CMIP5 (and hence likely
also CMIP6) simulations indicate that outcomes with
more modest reductions or small increases should also
be considered (Kendon et al., 2021).

7. The UKCP Local projections provide high spatial-
resolution (2.2 km) downscaling of global climate
model projections specifically for the UK. Such high-
resolution simulations are able to at least partially re-
solve convective storms and do not require a parameter-
ization scheme to provide a representation of convec-
tion, which is a simplification of the real world and a
known source of model deficiencies. These simulations
are therefore considered more reliable for projecting fu-
ture changes in rainfall characteristics. However, there
is still uncertainty in the parameterization of UKCP Lo-
cal, and so it can be expected that as future research
groups also build convective-permitting models, differ-
ences will emerge that we are presently unable to ac-
count for.

3 Results and discussion

3.1 Historical increases in wheat yields and inter-annual
yield volatility

Since the late 1800s, and especially since the 1950s, there
has been exceptional growth in UK wheat yields due to rapid
advances in crop breeding, increasing farm mechanization,
and the availability of agrochemical inputs, such as fertil-
izers (Fig. 1a). Sustained increases throughout the 1980s–
90s reflect the development of farming technologies, vari-
eties, improved nutrient use efficiency and effective pesti-
cides and growth regulators. Available time series of crop
yields are much shorter when disaggregated to the regional
level (Fig. 1b) than at the national level (Fig. 1a). Of particu-
lar note, though, is that the EMYH and SNE regions exhibit
some levelling of wheat yields since 1990, mirroring the na-
tional trend, while the southernmost region, SEE, has seen
some continued increases (Fig. 1b).

In addition to increases in mean yields, the national yield
time series exhibits a visible increase in the variance of yields
in the last few decades (Fig. 1c). This increase in volatil-
ity is not solely driven by increases in the mean of the
time series. A comparison of the variance of crop yields be-
tween the periods 1885–1989 (105 years) and 1990–2020
(31 years) using both Levene’s test (p = 0.022) and the non-
parametric Fligner–Killeen’s test (p = 0.093) indicates that
there is a significant difference in the variance. The results
are even more significant when comparing periods of similar
length, 1960–1989 and 1990–2020 (30–31 years), for both
Levene (p = 0.002) and Fligner–Killeen (p = 0.003) or fo-
cussing on the last 2 decades, 1970–1999 and 2000–2020
(30–21 years); p < 0.001 for both tests. A question of no-

table interest, therefore, is understanding why the variance
of yields has significantly increased and whether it might be
associated with more frequent or intense weather extremes.

3.2 Association between climate extremes and wheat
yields in each crop growth stage

We assess the association between seasonal climate and crop
yields by using precipitation and temperature metrics during
the three crop growth stages. We expect the association be-
tween climate anomalies and wheat yields to differ regionally
due to a range of factors, including the resilience of the wheat
plant, husbandry practices of farmers and agronomists, bio-
physical conditions (e.g. soils, day length), and climatic dif-
ferences (e.g. rainfall tends to be more frontal in the north,
with orographic rainfall over high ground, and more convec-
tive in the south-eastern UK). Although only some of the as-
sociations between the seasonal climate metrics and annual
crop yields are statistically significant, we show all the asso-
ciations and their relative strength for full transparency (Ta-
ble 2). In Figs. 4 and 5, we focus on total_P, max_minT ,
and max_maxT in each growth stage, as these are some of
the most consistent metrics in the historical data (Table 2);
figures produced using max_maxT give very similar pat-
terns to max_meanT (not shown). These figures reveal the
climatic “space” generated by the interaction between pre-
cipitation and temperature in each growth stage: some of the
worst UK wheat yields in recent decades have occurred dur-
ing years with anomalously high/low seasonal rainfall or pro-
longed heat, an important indicator of crop heat stress (Arnell
and Freeman, 2021). The figures also indicate that tempera-
ture and precipitation are not independent from one another,
since the wet years with poor yields also tend to be relatively
cool (e.g. 2001, 2020 in the foundation phase) and the dry
years can sometimes be particularly hot (e.g. 1976, 2018 in
the production phase; Fig. 5).

From a crop physiology perspective, in the foundation
phase (October to early April; Table 1), prolonged water-
logging of the soil may suppress wheat yields by restricting
root development and plant growth (AHDB, 2018). We find a
significant negative association between crop yields and the
number of heavy rainfall days in the EMYH region (Table 2,
days_P > 10 mm), as can be seen in Fig. 5 (years 2001,
2020; Fig. 4a). The association between yields and total_P
days_P > 10 mm and yields is also negative in SEE and at
the national scale but not significantly so. In the winter of
2000/01, for instance, wet autumn and winter conditions re-
sulted in delayed sowing and poor seedbed conditions. Addi-
tionally, colder-than-usual conditions in the foundation stage
(e.g. year 2013, not shown) may delay or prevent crop tiller-
ing: frost can damage early drilled and fast-growing varieties,
while frost heave can kill seedlings. We find significant posi-
tive associations between yield and max_minT at the national
scale and in the EMYH region and with min_meanT and
min_minT in the SEE region (Table 2). The positive asso-
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Figure 4. Association between observed wheat yields and climate during the three wheat-growing phases. Anomalies of observed UK wheat
yields are shown for total area-averaged precipitation (total_P) and the maximum of area-averaged minimum/maximum daily temperature
within each phase (i.e. the metrics total_P, max_minT, and max_maxT, chosen for their associations with crop yields; Table 2), alongside
UKCP projections. (a) Foundation phase (1 October to 9 April); (b) construction phase (10 April to 10 June); (c) production phase (11 June
to 26 July). Yield time series are shown for the national scale here (longer than regional time series; see Fig. 1a vs. Fig. 1b) and are the
same in the three panels. Small green circles indicate positive yield anomalies for individual years; small brown circles indicate negative
yield anomalies for individual years. Large green crosses indicate the mean for all the years with positive wheat yield anomalies; large
brown crosses indicate the mean for all the years with negative wheat yield anomalies. Grey diamonds indicate UKCP Local projections of
temperature and precipitation for the historical (circle: 1981–2000) and future (square: 2021–2040; diamond: 2061–2080) periods, where
each symbol indicates 1 of the 12 ensemble members. Specific years mentioned in the main text are labelled.

ciations indicate that warming temperatures may benefit UK
wheat yields in a warming climate.

While crops are growing rapidly during the construction
phase (April to early June), both late frosts and dry weather
can reduce crop growth (Table 1). For this period in each
year, we find no significant associations between climate
characteristics and crop yields (Table 2). This is not necessar-
ily a contradiction, as reduced growth does not always carry
through to reduced yield. Both low yields (e.g. years 1976,
2001, 2020; Fig. 4b) and some high yields (1962, 1984)
have occurred during drier-than-average construction phases.
Overall, wheat yields seem to be more sensitive to climate
conditions during the foundation or production phases.

The clearest association between climate extremes and
crop yields seems to be in the production phase, which is
the time from post-flowering to harvest (summer: June and
July). It is during this phase that yields may be susceptible
to both drought and water logging (Table 1). We find a con-
sistently negative association between heavy rainfall (both
total_P and days_P > 10 mm) and crop yield in all three re-
gions. For total_P the association is significant in EMYH
and at the national scale and for days_P > 10 mm in EMYH
(Table 2). The association between low wheat yields and high
summer rainfall is apparent in specific years such as 2007 and
2012 (top left corner of Figs. 4c and 5c). For example, the
year 2012 witnessed exceptionally poor yields due to high

spring and summer rain, a high incidence of fungal disease
(e.g. Septoria tritici; DEFRA, 2012), and low sunlight dur-
ing the grain-filling period (i.e. the first part of the produc-
tion period, when the grain is swelling and requires sunlight
for photosynthesis). In contrast, good yield years are often
associated with warm summer temperatures and moderate
to low rainfall: this can be seen in the positive associations
between wheat yields and max_maxT or max_meanT which
are significant both nationally and in EMYH (Table 2). Ex-
amples are the years 2015 and 2019 (Figs. 4c and 5c). Dur-
ing the production phase, meteorological drought conditions
may also have negative impacts. Hot, dry weather shortens
the growth period, resulting in early canopy senescence and
reduced grain weight (Table 1). Indeed, some of the UK’s
poorest crop yields occurred during warm, dry summers (e.g.
years 2013, 2018 in SNE and SEE; Fig. 5c). The benchmark
grain-filling period is 45 d from flowering until maximum dry
weight in late July, but it can be as short as 28 d during severe
droughts (AHDB, 2018).

3.3 Explaining the association between crop yields and
climate extremes: compound impacts across growth
stages

It can be challenging to systematically identify the weather
conditions to which wheat yields are most vulnerable within
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Figure 5. Association between wheat yields and climate during the three wheat-growing phases and in each of the three UK wheat-
growing regions. Anomalies of observed UK wheat yields are shown for total area-averaged precipitation (total_P) and the area-averaged
minimum/maximum daily temperature within each phase (i.e. the metrics total_P, max_minT, and max_maxT, chosen for their associations
with crop yields; Table 2), alongside UKCP projections. Columns (a–c): same as Fig. 4. Rows: SNE, EMYH, SEE. Yield time series are
shorter at the regional scale than national (see Fig. 1b). Small green circles indicate positive yield anomalies for individual years; small brown
circles indicate negative yield anomalies for individual years. Symbology is the same as Fig. 4.

individual growth stages. Most of the correlations in the his-
torical data are not statistically significant (Table 2). The of-
ten relatively weak association between climate anomalies
and wheat yields at the level of individual growth stages can
be explained partly by the shortness of observational records,
the combined resilience of the wheat plant (i.e. physiological
reproductive mechanisms), and the husbandry skills of farm-
ers and agronomists in mitigating these impacts by adjust-
ing to climatic extremes. There is thus a role for agronomic

management in mitigating apparent relationships with cli-
mate: this role might not be as direct as irrigating in response
to drought, but farmers can dampen the effects of climatic
variation through crop management, for example, by chang-
ing fungicide regimes to respond to increased fungal disease
brought about by wetter conditions, changing the timing or
amount of inputs of nutrients, pesticides, and growth regu-
lators (Knight et al., 2012). The relatively intensive nature
of UK wheat production (Hillocks, 2012; Wesseler et al.,
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2015) may thus be sufficient to dampen crop responses to cli-
matic variation (Gagic et al., 2017). Farmers can also change
many other aspects of management, including wheat variety,
tillage, sowing date, sowing rate, or harvest date, in response
to forecast or current conditions. Wheat cultivars are bred
with a measure of resistance to certain climatic variables, so
a farmer can select a cultivar appropriate to local climatic
conditions (Kahiluoto et al., 2019).

Low correlations between climate and yield anomalies
over seasonal wheat growth stages may also reflect compen-
satory effects between growing phases. For instance, a less
than ideal foundation phase might be offset by a favourable
production phase or vice versa. It is equally important to
note that growing phases in real plants are determined by
their growth rather than calendar days. Thus a phase may
last longer, resulting in delayed crop growth but maintaining
the expected yield. Our calendar-fixed phases are a simplifi-
cation of this process.

Conversely, cumulative detrimental impacts of climate
across stages (e.g. accumulated rainfall and subsequent wa-
terlogging) may be one of the most damaging factors affect-
ing overall annual crop yields. In other words, the flexibility
and techniques farmers have at their disposal to adapt to cli-
mate variability are bounded. For instance, low yields in the
year 2018 were due to very dry conditions in the foundation
stage, followed by very hot and dry conditions in the con-
struction and production stage (DEFRA, 2018a). In contrast,
very low yields in the years 2001 and 2007 were caused by
a combination of high rainfall in the foundation and produc-
tion stages (Fig. 4). The exceptionally wet winter of 2019
(affecting the 2020 harvest in Fig. 4) also imposed severe
constraints on farming operations and resulted in a reduction
in the areas of autumn-sown crops. These examples illustrate
why a full understanding of projected changes to temperature
and precipitation across wheat growth stages is required.

To try to assess the offsetting or additive effects across
growth stages, we develop a simple multiple regression
model relating the observed wheat yields in each region
to just two metrics reflecting temperature and precipita-
tion conditions in the most important stages based on the
outcomes of Table 2: foundationmax_minT , foundationtotal_P ,
productionmax_maxT , and productiontotal_P . We find this
model is significant at the 95 % level (p < 0.05) for EMYH,
SEE, and the national scale but not SNE (Fig. 6, Table 4).
The lack of significance in SNE can be easily explained,
since the association between yields and foundationmax_minT
is weak there (R = 0.15) but good elsewhere (∼ R = 0.3
in SEE and EMYH). Similarly, the association between
foundationtotal_P and annual yields is negative in other re-
gions (∼ R =−0.2/− 0.28 in SEE and EMYH) but weakly
positive in SNE (Table 2). The multiple regression model
displays the best fit in the EMYH region, where the cli-
mate metrics display the strongest correlations with yields
(significant for foundationmax_minT , productionmax_maxT , and
productiontotal_P ). As expected, these model fits only ex-

plain a portion of yield variation (R2 ranges from 0.12 for
SNE to 0.32 for EMYH), since crop yields are only par-
tially explained by climate, as discussed above. However,
the models allow us to capture the multivariate impacts of
temperature (foundationmax_minT and productionmax_maxT ex-
hibit a positive association with crop yields) and precipita-
tion (foundationtotal_P and productiontotal_P exhibit a neg-
ative association with yields). Thus, the strongest associa-
tions between climate and yield anomalies may occur during
years with cumulative climate impacts across growth stages.
Cumulative impacts can be seen in the improved R2 in the
multiple regression compared to the pairwise correlations.
In other words, the model is capturing something individual
variable correlations do not, and this could be that compensa-
tion across phases. That said, whether this added explanatory
power is from inter-stage compensation or compensation be-
tween variables within a single stage is not clear from the
regression results alone.

3.4 Annual projections of future climate conditions and
implications for crop yields

At the annual scale, projections of future maximum hourly
temperature are available for the periods 2021–2040 and
2061–2080 from the UKCP Local simulations. The in-
terquartile range of projected temperature for 2021–2040
lies well above the median of historical extremes (Fig. 2a–
c). Future high-temperature conditions generally fall be-
yond the bounds of annual variability experienced in the
contemporary period for all three wheat-growing regions
(Fig. 2c). As expected, changes are largest for the later
modelled period 2061–2080, corresponding to higher atmo-
spheric greenhouse gas concentrations. This exceedance of
historical thresholds by temperature projections is true for
all 12 UKCP Local ensemble members, independent of un-
certainty in changes in the large-scale conditions sampled by
perturbing parameters in the Hadley Centre global climate
model. However, it is important to note that the 12 climate
model members (Table 3) do not sample the full range of un-
certainty, evident in differences between all available global
climate models (Kendon et al., 2021); see Sect. 2.6 for a dis-
cussion.

For total annual precipitation (Fig. 2d), the projections do
not indicate a very obvious increase or decrease in any of the
three regions relative to the historical period, although SNE
may seem very slightly wetter and SEE very slightly drier
on average (comparing medians) in the later period (2061–
2080). This lack of trend in yearly data may be explained
by the opposing changes in the different seasons: in general
the winter season is projected to become wetter and the sum-
mer drier (Kendon et al., 2021). Importantly, there are also
changes in the underlying intensity and frequency of pre-
cipitation (e.g. significant increases in days_P > 10 mm and
var_P in the foundation phase, Fig. 7), which are not evident
from simply looking at trends in annual mean precipitation.
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Figure 6. Temporal trends in wheat yields (t ha−1): observations and future projections. The observations (black circles, 1990–2020) are
the same as in Fig. 1. The projections (grey circles; 12 members per year) are obtained by forcing a multiple linear regression model (Eq. 1;
Table 4) obtained for each region with the UKCP Local projections of the same climate variables in each growth stage (see Sect. 2.5). Grey
lines indicate the linear regressions between the ensemble of projected values and time (the regression equation, adjusted R2, and p value
are indicated in each panel).

3.5 Seasonal projections of future wheat-growing
conditions and crop yields

When considering UKCP Local projections by wheat growth
stages (instead of at the annual scale), clearer patterns be-
come apparent (Fig. 3). We expect to find spatial differences
in the climate projections, as they exhibit north–south gradi-
ents in changes across the UK. Even in a single ensemble,
there are gradients in the future changes in rainfall which
differ from present-day climatology and relate to regional
differences in increases in moisture availability as well as
changes in circulation patterns. The question of compound
climate change – i.e. the joint impacts of temperature and
rainfall or moisture availability – is important for future crop
yields.

Contrary to global expectations of declining yields under
climate change, the multiple regression model indicates that
projections of future temperature and precipitation change
are likely to contribute to a continued growth of future wheat
yields in the UK (Fig. 6). These projections rely on broad es-
timates of changing night/day temperature extremes as well
as total rainfall in the foundation and production stages. It is
possible that more data may provide greater information on
changing water availability, atmospheric vapour demand, and
plant stress; however with the existing observations our data-
driven approach highlights that a changing climate may not
be entirely negative for wheat yields. This can be explained
as follows.

For the foundation phase (October to early April), all re-
gions can expect to see progressively warmer, wetter con-
ditions in the coming decades according to the UKCP
simulations. Significant projected increases in max_minT ,
max_maxT , and total_P are evident in all three regions
(Fig. 7). Such conditions might not necessarily adversely af-
fect wheat production (Fig. 4) and are likely to be benefi-
cial in decreasing the risk of frost damage (Table 2). When

considering max_minT and total_P, the projections indicate
that there is a good chance of seeing more temperate win-
ters similar to the one preceding year 2015, where founda-
tion conditions were warm and not too wet, resulting in high
crop yields (Fig. 4a); however, the significant projected in-
creases in total rain, heavy rain, and rainfall variability (to-
tal_P, days_P > 10 mm and var_P; Fig. 7) in all three re-
gions may equally prove problematic beyond certain thresh-
olds. In very wet years, the UK may also experience winters
more like those of 2001 and 2020, which led to low yields
across the UK (Fig. 4a), especially in EMYH/SEE (Fig. 5a).

Projections for the construction phase (mid-April to mid-
June) are not included in the multiple regression model, due
to the lack of significant associations between climate and
wheat yields (Table 2). During this phase, the projections in-
dicate significant decreases in total_P in EMYH and SEE
but not SNE (Fig. 7). There are no evident changes in heavy
rain (days_P > 10 mm; Fig. 7), and we find considerable
overlap with both good and poor yields in the historical
data (Fig. 4b). These findings suggest that the construction
phase may not necessarily be the most at-risk in terms of the
impacts of changing UK climate on crop yields. Although
precipitation may not change much, there is still warming,
which will increase atmospheric vapour demand (all else
being equal). Thus, understanding the effects of compound
change such as heat waves and drought (Zampieri et al.,
2017) or the evaporative role of temperature (Lobell et al.,
2013) is important to help provide more robust conclusions
about the future.

In the production phase (mid-June to end of July), UKCP
simulations project both much warmer and drier conditions
(Figs. 3 and 7). The drying signal is relatively similar across
the three regions and becomes more apparent in the later sim-
ulations towards the end of the century. It is important to note
that the UKCP Local projects stronger drying than CMIP5-
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Figure 7. Trends in key climate metrics for the three growth stages (columns) and three regions (rows). Metrics are selected from (and defined
in) Table 2: max_minT, max_maxT, var_dailyT, var_maxT, total_P, days_P > 10 mm, and var_P. Dark grey circles indicate observations;
colour ribbons are the 12 UKCP Local members (5th–95th percentile in orange, 25th–75th percentile in red, and the median as a white line).
Linear trend lines for the UKCP simulations are shown as dashed black lines, along with the regression equation and p value in each panel.

6 models. Projected trends also indicate significant, strong
increases in max_minT , max_maxT , and equally in temper-
ature variability (var_dailyT and var_maxT; Fig. 7). A sim-
ple analogue approach suggests we may see more production
phases similar to the years 2006, 2015, and 2019 in the EMY-

H/SEE regions, conducive to high yields (Fig. 5c). Both the
national and the regional data suggest all regions may benefit
from a warmer and drier production phase (Figs. 4c and 5c).
The projected trends reveal significant decreases in rainfall
total and variability (total_P and var_P) in all three regions
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but no apparent decreases in heavy rain (Fig. 7). However,
individual anomalous years with poor yields and warm dry
conditions remain plausible, such as the year 1976 at the na-
tional scale (Fig. 4c) and 2013 in the SNE and SEE areas
(Fig. 5c). Because the projected high-temperature conditions
are outside those experienced in the historic period, there is
also a risk that the positive association between hotter, drier
production phases and enhanced yield found in the histori-
cal observations will no longer hold. This is especially true
since temperature could have non-linear impacts (e.g. steril-
ity or abortion of formed grains) through the physiological
effects of frost and heat shock (Barlow et al., 2015). Droughts
and heatwaves severe enough to have a substantial impact on
yield are rare in the historic data (Knight et al., 2012), and
so we have few data by which to determine at what thresh-
olds temperature and dryness cease to be beneficial for wheat
and begin to have negative impacts. However, the anoma-
lous years (e.g. 1976 and 2013) suggest that this can occur,
and recent research indicates that days exceeding heat stress
temperatures for wheat are likely to increase under climate
change (Arnell et al., 2021).

Overall, projections of future temperature and precipita-
tion conditions suggest a continued increase in future wheat
yields when relying on max_minT , max_maxT , and total_P
(Fig. 6). The higher yields are found in the far-future pe-
riod (2061–2080) partly due to the effect of warming con-
ditions and thus reduced frost risk in the foundation phase.
These beneficial impacts may however be offset by the sig-
nificant increases in heavy rainfall (and rainfall variability)
projected in the foundation phase and enhanced meteorolog-
ical drought conditions in the production phase (Fig. 7). The
offsetting between climate effects, e.g. the interactions be-
tween temperature and precipitation, is an important mecha-
nism and uncertainty both in the climate and in terms of their
implications for crops. For instance, very hot conditions in
the UK can often only be reached with a dry land surface
(visible as apparent negative temperature–precipitation cor-
relations during the production stage, Figs. 4 and 5). Drought
and heatwaves are believed to self-intensify and propagate
due to feedbacks between the land and atmosphere (Miralles
et al., 2019). Cool and wet conditions could also be linked
physically (e.g. production phase in 2007 and 2012), with
implications for crop yields. This raises questions about joint
heat and moisture impacts and how their interdependence
might evolve into the future as greenhouse gases rise.

Lastly, the impact of rising atmospheric CO2 on crop wa-
ter use is an important uncertainty which is hard to model
via our statistical approach and likely to impact future crop
growth (Ewert et al., 2002; Swann et al., 2016) but is not
considered herein. Overall, our approach suggests that, on
average, climate change is likely to have more positive im-
pacts on UK wheat yields than previously considered. How-
ever, against this background of average positive change, our
work illustrates that we are likely to move outside of the cli-
matic envelope which wheat farming in the UK has previ-

ously adapted to. Thus, the new weather conditions gener-
ated by the effects of rising temperatures (including intense
local thunderstorms) are only likely to increase the degree to
which farmers may struggle to mitigate against climate im-
pacts.

4 Conclusions

Mean UK crop yields saw a rapid growth in the 1950s fol-
lowed by a plateau in the 1990s and then substantial increases
in the inter-annual variability in yields. This acceleration has
been challenging for UK wheat farmers, since crop yields
over the past 2 decades (2000–2020) have been significantly
more volatile than over the previous century (Fig. 1).

A first question is thus our ability to explain such changes,
and assess whether statistically significant associations exist
between observed temperature/precipitation metrics and his-
torical wheat yields during the three crop growth stages, in
the three main wheat-growing regions of the UK. While the
plateau in yields can be explained by a variety of technologi-
cal and agronomic factors (Knight et al., 2012), we find some
evidence that yields over the last 30 years can be partially ex-
plained by climate metrics such as warm night temperatures
and heavy rainfall days in the foundation phase (principally
in the EMYH region) or maximum daily temperatures, daily
temperature variability, and total precipitation in the produc-
tion phase (Table 2; with correlation strength and signifi-
cance varying regionally). Significant statistical associations
are found principally in the foundation and production phases
and for regions EMYH and NAT. Yields are more fully ex-
plained when considering a multiple regression model char-
acterizing additive and offsetting impacts of climate across
growth phases (e.g. detrimental impact of very cold temper-
atures in foundation phase followed by very high precipita-
tion in the production phase). However, it is unclear whether
the added explanatory power of the regression model is from
inter-stage compensation or compensation between variables
within a single growth stage. This would be an area for fur-
ther research. The data-driven regression could additionally
be refined by including various thresholds (e.g. considering
the beneficial impacts of a warm and dry production phase
only up to certain limits relevant to plant stress). We find the
association between historical climate and crop yields is most
evident in years which saw compound extremes (Zscheis-
chler et al., 2020), i.e. climate anomalies across multiple
growth stages (e.g. 2007, 2012, 2020, Figs. 4 and 5), “es-
caping” the ability of farmers to adapt through agronomic
means. Outside these combined extremes, the data indicate a
strong inter-annual resilience of wheat production, implying
that at present farmers can, and do, successfully utilize crop
husbandry to maintain yield levels.

Our second question seeks to understand how projections
of compound temperature and precipitation extremes might
impact future crop yields under a high-emission climate sce-
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nario. Overall, the data provide a surprisingly favourable out-
look of climate conditions for future crop yields. During the
foundation phase, high seasonal values of night temperatures
(max_minT) are correlated positively and significantly with
crop yields in EMYH and nationally (Table 2), suggesting
that the significant future increases projected by the UKCP
Local simulations (Fig. 7) are likely to provide more bene-
ficial growing conditions during the winter. These positive
temperature impacts may be offset by the significant pro-
jected increases in rainfall total, heavy rainfall, and rainfall
variability in all three regions (total_P, days_P > 10 mm,
and var_P, Fig. 7), since heavy rainfall is detrimental to
wheat yields (in EMYH especially; Table 2). Later in the
year during the production phase, when high day tempera-
tures are significantly and positively associated with wheat
yields in EMYH and nationally (Table 2), the UKCP lo-
cal simulations also project significantly warmer and drier
mean conditions (Fig. 7), which may be conducive to posi-
tive yields, similar to the years 2015 and 2019 (Fig. 4). Since
high rainfall totals in the production phase adversely affect
growing and production conditions (total_P is negatively and
significantly associated with crop yields in EMYH and na-
tionally, Table 2), the projected significant decreases in future
rainfall (which are stronger in UKCP Local than in CMIP5
and 6) could equally be beneficial to wheat yields (total_P,
Fig. 7). Future anomalous years similar to 2020, with a wet
crop foundation phase and a much drier construction phase
that significantly suppressed yields (Fig. 4), are a possibil-
ity (Fig. 7). It seems plausible that the farming community
may also face increased inter-annual variability in the future,
e.g. a sequence of dry years (similar to 2019) followed by
very wet years (2001, 2012) against a backdrop of warmer
and wetter/drier conditions. Further analyses could equally
assess whether the optimal time and place to grow wheat is
changing or the effects of changes in rainfall patterns at the
local (rather than regional) scale.

In summary, this work provides evidence that wheat yields
over the last 30 years are associated with combined temper-
ature and precipitation extremes, especially across the crop
foundation and production phases, in the EMYH region and
nationally (Table 2). Although the climate projections pro-
vide a generally positive outlook for future yields across the
UK, it is important to note that the relationships between past
wheat yields and historic climatic conditions may not be ad-
equate guides to the risks associated with projected future
conditions, as future temperature extremes and rainfall lie
outside the range of conditions that UK agriculture has so
far experienced. Further, this work studies climate extremes
at the regional scale but not local changes in rainfall inten-
sity and variability, which are beyond the scope of the paper
(e.g. drier average regional conditions may hide less frequent
but more intense local thunderstorms). Out of caution, there-
fore, a priority is to continue developing agricultural sys-
tems resilient to emerging climate patterns, as the global de-
mand for wheat and other crops has been projected to double

from 2005 to 2050 (Tilman et al., 2011). As higher-resolution
crop yield data become available, further research into robust
process-based or AI-informed crop models, alongside im-
proved collaboration across spatial, governance, and supply-
chain scales (Holman et al., 2021), will be required to help
farmers adapt to evolving climate conditions and maintain
the security of wheat production.
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