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Summary

� Mature temperate woodlands are commonly dominated by ectomycorrhizal trees, whereas

understory plants predominantly form arbuscular mycorrhizal associations. Due to differences

in plant–fungus compatibility between canopy and ground layer vegetation the ‘mycorrhizal

mediation hypothesis’ predicts that herbaceous plant establishment may be limited by a lack

of suitable mycorrhizal fungal inoculum.
� We examined plant species data for 103 woodlands across Great Britain recorded in 1971

and in 2000 to test whether herbaceous plant species richness was related to the proportion

of arbuscular mycorrhizal woody plants. We compared the effect of mycorrhizal type with

other important drivers of woodland plant species richness.
� We found a positive effect of the relative abundance of arbuscular mycorrhizal woody

plants on herbaceous plant species richness. The size of the observed effect was smaller than

that of pH. Moreover, the effect persisted over time, despite many woodlands undergoing

marked successional change and increased understorey shading.
� This work supports the mycorrhizal mediation hypothesis in British woodlands and suggests

that increased abundance of arbuscular mycorrhizal woody plants is associated with greater

understory plant species richness.

Introduction

Temperate forests and woodlands are significant repositories of
biodiversity, which is currently in decline due to human activity
and climate change. Within woodlands, a greater diversity of tree
species has been shown to buffer the negative effects of drought
(Gazol & Camarero, 2016; Aussenac et al., 2019) and increase
tree productivity (Fichtner et al., 2017), whilst plant diversity
more broadly is an essential component of ecosystem health, pro-
ductivity, and resilience to multiple types of disturbance (Hector
et al., 1999; Loreau et al., 2001; Loreau & Hector, 2001; van der
Plas, 2019). Therefore a major goal in ecology is to understand
the mechanisms that determine the diversity and composition of
plant communities and their stability over time.

Plant community structure and diversity are linked by complex
plant–soil feedback (PSF) mechanisms (Bever et al., 1997; van
der Heijden et al., 1998; van der Heijden & Horton, 2009) that
influence both above and belowground assemblages of organisms
(Hartnett & Wilson, 2002; Wardle et al., 2004; Johnson
et al., 2005; van der Putten et al., 2013; Kardol et al., 2015; Ke
et al., 2015; Tedersoo et al., 2020). For example, tree species that
acquire pathogenic root fungi at a greater rate than mutualistic
fungi are more likely to suffer from negative density dependence
(Chen et al., 2019). An important trait that influences PSFs is the
mycorrhizal type of plants (Moora, 2014).

Mycorrhizas are an ancient association between plants and
mycorrhizal fungi (Lutzoni et al., 2018; Strullu-Derrien
et al., 2018) in which host plants provide the fungi with photo-
synthate in exchange for access to soil nutrients and other services
(van der Heijden et al., 2015). An increasing number of different
mycorrhizal types are now recognised (Kariman et al., 2018), but
temperate trees and other woody plants are typically either ecto-
mycorrhizal (EM) hosts (colonised by EM fungi), or arbuscular
mycorrhizal (AM) hosts (colonised by AM fungi), although some
plant species can associate with both (dual-mycorrhizal; Teste
et al., 2019). Many of these fungi can colonise multiple individ-
ual plants, forming a common mycorrhizal network (CMN)
(Leake et al., 2004; Simard & Durall, 2004; Simard et al., 2012)
capable of transferring nutrients and defence signals, and poten-
tially providing other benefits such as drought tolerance (Finlay
& Read, 1986; Gorzelak et al., 2015; Gehring et al., 2017; Pickles
& Simard, 2017). These CMNs mediate plant community struc-
ture (Booth, 2004; McGuire, 2007; Simard, 2009) by increasing
seedling survival through access to compatible mycelia growing
on adjacent conspecific or heterospecific host trees (Simard
et al., 1997, 2012; Selosse et al., 2006; McGuire, 2007; van der
Heijden & Horton, 2009; Liang et al., 2020).

A growing body of evidence indicates that mycorrhizal associa-
tions and CMNs tend to produce different responses in their
hosts, with EM associations commonly generating positive to
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neutral PSFs and AM associations neutral to negative PSFs (van
der Heijden & Horton, 2009; Bennett et al., 2017; Teste
et al., 2017; Kadowaki et al., 2018). Haskins & Gehring (2005)
demonstrated that pinyon pine (Pinus edulis) seedlings, an EM
host, were less colonised by EM fungi when growing near AM
type trees. In other words, the sources of EM fungal inoculum
were limited in soil in which AM type hosts were dominant. Sim-
ilarly, the successful colonisation of AM-dominated grasslands
(Thiet & Boerner, 2007) and heath (Collier & Bidar-
tondo, 2009) by EM type seedlings may be limited by low levels
of EM fungal inoculum. Weber et al. (2005) demonstrated that
AM type trees (western redcedar; Thuja plicata) could be
excluded from forest areas dominated by EM type trees due to a
lack of AM fungal inoculum. Kovacic et al. (1984) found a lack
of AM fungal inoculum under live EM type pines (ponderosa
pine; Pinus ponderosa) compared with dead pines and observed a
higher abundance of AM type understorey plants beneath dead
rather than live pines. Similarly, Barni & Siniscalco (2000) found
that AM fungal inoculum was reduced in sites that had succeeded
to predominantly EM type trees. Notably, they found that AM
fungal inoculum was still high in the early stages of succession
when AM type trees were abundant. Therefore the establishment
of plants can be influenced by the supply of compatible AM or
EM fungal inoculum, with the potential to affect range dynamics
of trees over sufficient timescales (Pither et al., 2018).

The ‘mycorrhizal mediation hypothesis’ proposed by Vere-
soglou et al. (2017) suggests that AM-associated woody plants
will facilitate the establishment, and therefore potentially increase
the species richness, of AM-associated herbaceous plants. The
relationship between AM trees and herbaceous plant species rich-
ness was first explored over 30 yr ago. Newman & Reddell (1988)
found a strong positive correlation between the relative abun-
dance of AM trees and the species richness of herbaceous plants
in a study of plant communities in the Great Smoky Mountains,
Tennessee (USA). More recently, Veresoglou et al. (2017) specu-
lated that this positive relationship was due to mycorrhizal medi-
ation through inoculum supply. Using data from 77 mixed
broadleaf woodlands in north-western Germany, they found that
the richness and abundance of herbaceous plants was positively
correlated with the abundance of AM trees and woody shrubs. In
a subset of the same woodlands, increasing AM tree cover (%)
was not found to be related to the diversity of AMF soil commu-
nities (Gr€unfeld et al., 2021), but did appear to influence the
colonisation rate of understory AM plant species (Gr€unfeld
et al., 2019). This suggests that mycorrhizal mediation between
trees and herbaceous plants may be an important driver of herba-
ceous plant species richness in woodlands.

Most broadleaved woodlands in Great Britain are dominated
by EM rather than AM hosts (please refer to Supporting Infor-
mation Fig. S1). According to the National Forest Inventory
(NFI), only a quarter of broadleaved tree cover in 2011 was pro-
vided by AM hosts (National Forest Inventory, 2012). Much of
this (44%) was formed by ash (Fraxinus excelsior), which is cur-
rently in decline due to the invasive emerald ash borer (Agrilus
planipennis) and Chalara ash dieback (Hymenoscyphus fraxinus).
Therefore, if herbaceous plant species richness is related to AM

tree cover, this may have important consequences for woodland
ecology and management in Britain.

Here we provide the first comprehensive examination of the
mycorrhizal mediation hypothesis in British woodlands using the
Bunce survey (Wood et al., 2015). The Bunce survey has so far
taken place twice, in 1971 and again in 2000. The data set has
been thoroughly reviewed elsewhere (Kirby et al., 2005; Smart
et al., 2014) and much is already known about the change in Bri-
tish woodlands over the past 70 yr (Hopkins & Kirby, 2007;
Keith et al., 2009). For example, a lack of management has tended
to change the structure of woodland into more mature high forest
with an increase in tree basal area, a reduction in the number of
trees with small stems, and a homogenisation of plant species. In
other words, a smaller number of shade-loving species has
increased, and a much larger number of light-loving species has
been lost, with increases in understory trees such as holly (Ilex
aquifolium) that shades out the understory and can lead to a reduc-
tion in diversity. A noticeable exception to this trend was the 1987
storm in the southeast of the UK, which introduced open areas
and resulted in increased herbaceous plant species richness (Smart
et al., 2014). However, overall, understorey species richness
decreased between the surveys. Soil pH has also tended to increase
between the surveys in line with national trends due to reduced
sulphur deposition (Kirk et al., 2010). No changes were found in
mean soil organic matter, although some sites saw significant
increases and fewer plots showed low levels of soil organic matter.

In general, climatic gradients are known to influence plant
richness, with a general trend towards increased species richness
in the south of the UK driven by energy-related variables (Albu-
querque et al., 2011), although these are likely to be modified by
local topographic effects (O’Brien, 2000). Whilst edaphic data
are part of the Bunce survey and are highly precise to the plots at
200 m2 resolution, climate data would be at a much lower resolu-
tion of 5 km grid squares and would not therefore be able to
explain any of the within-site, between-plot variation in the
response, possibly leading to a fatally underpowered analysis.
Moreover, soil pH and carbon content integrated many distal
effects including climate, topography, elevation and pollutant
deposition. Therefore, whilst climate would be a coarse estimate
that may be the same for several sites, edaphic variables are pre-
cisely aligned with the plant data.

We therefore asked whether the abundance of AM trees and
shrubs influenced herbaceous species richness, and whether this
effect was detectable over the 29 yr between surveys and across a
uniquely large-scale but fine-resolution sample of both less
shaded and more shaded, mature woodlands. Additionally, we
examined the additive and interactive effects of shading, soil
organic matter, and soil pH along with the relative abundance of
AM trees and shrubs to compare the effect size of the latter to
these other important predictors. Our primary aim was to deter-
mine whether the relative abundance of AM trees and shrubs in
British woodlands had a positive effect on herbaceous plant
species richness, using long-term, large-scale monitoring data
gathered across Great Britain in 1971 and again in 2001. If true,
this would provide an important and independent confirmation
of previous work on the mycorrhizal mediation hypothesis
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(Veresoglou et al., 2017; Gr€unfeld et al., 2019). Furthermore, our
approach would enable a novel exploration of the strength of any
mycorrhizal mediation between trees and herbaceous plants in
woodlands as a driver of herbaceous plant species richness, rela-
tive to other important factors, and whether any such effect per-
sists over time.

Materials and Methods

Sources of data

We used the Bunce survey (Wood et al., 2015), which recorded all
plant species in 16 randomly placed square permanent 200m2

plots in each of 103 broadleaved seminatural woodlands across
Great Britain. The Bunce survey is the only survey of its type in
the UK, incorporating long-term monitoring of multiple wood-
lands across England, Scotland and Wales. The survey includes
both biotic and abiotic data for 103 woodlands, originally selected
as being a representative subset of over 2000 sites and are therefore
considered to be characteristic of native British woodlands. The
herbaceous plant richness comes from the recording of ground
cover, which lists all plant species and seedlings of trees and shrubs
(defined as individuals below 25 cm in height). Tree species in
each plot are recorded separately with diameter at breast height
(DBH) and number of stems in each DBH class. Additionally, soil
organic matter content (SOM) and soil pH (pH) were measured
from a 59 15 cm soil sample removed from the centre of each
plot. The assignment of mycorrhizal type of the trees and woody
shrubs was made after thorough scrutiny of sources cited in avail-
able trait databases (Akhmetzhanova et al., 2012; Soudzilovskaia
et al., 2020) together with additional sources where data were
scarce or lacking for British species (please refer to Methods S1).
The mycorrhizal types are summarised in Table S1.

Statistical analysis

The species richness (a-diversity) for the ground flora was calcu-
lated for each 200 m2 plot. The total woody canopy cover was
calculated as the sum over the DBH classes multiplied by the
number of stems in that class. This value was used as a proxy for
shading (shading: cm). The subset of AM type trees and shrubs
was extracted and the AM overstory cover was calculated. The
relative abundance of AM type trees and shrubs (RelAm: dimen-
sionless ratio) was then the AM cover divided by the total cover.
To estimate the inoculum potential of each plot, we use the cor-
relation between shoot and root biomass. In a meta-analysis of
over 786 studies a positive linear correlation was found between
shoot and root biomass in woodlands (Mokany et al., 2006). As
most fine roots will be colonised by mycorrhizal fungi, a larger
tree implies a larger fine root mass and a higher fungal colonisa-
tion. Therefore a larger tree has greater inoculum potential, that
is, it is more likely to have more fungal material to produce
propagules, whether those propagules are mycelia or spore-
containing bodies. In addition, larger trees are generally expected
to produce more carbon through photosynthesis and will be
more capable of supporting larger mycorrhizal fungal

communities. Therefore, based on these aboveground–belowground
links, we considered that the aboveground measure of DBH9 stem
count was a reasonable way of estimating the belowground contri-
bution of AM type trees to AM fungal inoculum potential. One
large tree may have the same inoculum potential as several smaller
shrubs, but will also increase shading and therefore may have a nega-
tive impact on plant richness, therefore our inclusion of the shading
term. Soil pH (pH: negative log of H+ activity) and SOM (% dry
matter lost on ignition) were also extracted from the data.

To account for the nested structure of the data of plots within
sites, mixed effects models were used (Gelman & Hill, 2007;
Zuur et al., 2009; Schielzeth & Nakagawa, 2013). The LME4
package in R (Bates et al., 2015) was used for generalised linear
mixed effects model (GLMM) analysis. We did not seek here to
create a model that incorporated all known effects as prediction
of woodland responses to a wider range of plausible drivers was
not our goal. Instead, our approach was to use the mixed model
to generate effect sizes to allow a comparison of a limited set of
important drivers.

Site was fitted as a random intercept with pH, shading, SOM,
RelAm and year as fixed effects. In a small number of cases (five
sites in year 1 and six sites in year 2) there were strong correla-
tions between explanatory variables when examined within
groups (Spearman correlation > ¦0.80¦). These sites were removed
from the analysis, which reduced the between variable correla-
tions to ¦0.26¦ (Fig. S2). As the response variable was count data,
a Poisson distribution and log link was initially used. However,
this resulted in an overdispersed model (Gelman & Hill, 2007;
Bolker et al., 2009) and therefore a negative binomial model was
used after confirming the lack of overdispersion. All possible
combinations of variables of a global model were explored
including interaction terms between (1) year and pH, shading,
and RelAm and (2) shading and RelAm. The ‘dredge’ function of
the MUMIN package (Barton, 2020) was used to extract the
model with the lowest Akaike Information Criterion (AIC). We
used the PERFORMANCE package (L€udecke et al., 2021) to extract
the conditional and marginal R2 (Nakagawa & Schielzeth, 2013;
Nakagawa et al., 2017) of the lowest AIC model. Regression coef-
ficients were standardised and used to assess variable importance
(Nakagawa & Cuthill, 2007; Gelman, 2008; Schielzeth, 2010).
Significant variables were those whose regression parameters had
95% confidence intervals that did not include zero. We also con-
sidered the square of pH as plant species richness has been shown
to have a unimodal response to soil pH in woodlands (Gould &
Walker, 1999; Peppler-Lisbach & Kleyer, 2009; and please refer
to Fig. S3). Holly (Ilex aquifolium) and hawthorn (Crataegus
monogyna) are two of the most common tree species found in Bri-
tish woodlands, and assignment of mycorrhizal type was consid-
ered weak for these plants. We therefore conducted a sensitivity
analysis in which the mycorrhizal type was varied between AM
and EM for hawthorn and AM and unknown for holly. In each
instance the modelling process described above was repeated.

Spatial autocorrelation was tested by examining spline correlo-
grams of the fitted model Pearson residuals (Bjørnstad & Fal-
ck, 2001; Zuur et al., 2009). The residuals showed no increase in
spatial autocorrelation at short distances (Fig. S4).
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Results

Effect of canopy mycorrhizal type on understory
herbaceous species richness

The AIC ‘best’ model (lowest AIC) of understory herb a-
diversity contained pH, RelAm, SOM, year and the interaction
between year and pH (Fig. 1); details of all six models with
DAIC ≤ 2 are provided in Table S2. The relative abundance of
AM trees and shrubs (RelAm) had a significant positive effect on
understory herb species richness, as did the soil pH, whereas the
effect due to SOM was not significant. The effect of year, and the
interaction between year and pH were both negative and signifi-
cant. In the set of six candidate models (models within DAIC ≤ 2
of the AIC ‘best’ model) the same effects and interaction term
were always significant, and neither SOM nor shading were sta-
tistically significant (Table S2). Using the transformation of pH
to pH2 did not decrease AIC or increase R2 in any model. The
effect size for the random effect of site was larger than that of the
explanatory variables (3.24� 0.042), indicating that unknown
site-specific factors explained variation in understorey richness in
addition to the fixed effects. Sensitivity analyses revealed that the
models were not sensitive to changes in the mycorrhizal status of
Ilex aquifolium or Crataegus monogyna, and changes in the mycor-
rhizal type did not alter the variable set in the model with the
lowest AIC (Table S3).

Discussion

We asked whether the proportion of AM type trees and woody
shrubs affected herbaceous plant species richness in British
broadleaved woodlands. We found that, in agreement with the
mycorrhizal mediation hypothesis (Veresoglou et al., 2017), the

proportion of AM type trees and shrubs had a positive effect on
herbaceous plant species richness. An important outcome of our
approach was that it revealed the temporal consistency of this
positive effect over the three decades between surveys. We were
also able to show, for the first time, how the strength of the effect
due to woody plant mycorrhizal type compared with other factors
known to influence herbaceous plant species richness.

In this analysis we considered shading, SOM content and soil
pH. Soil pH had the strongest effect, and a negative interaction
with year. The positive effect of soil pH is seen because wood-
lands tend to have a lower pH, which is optimal for plant rich-
ness. In the Bunce woodlands, for example, the median soil pH is
c. pH 4.75, whereas maximum plant richness is seen at between
pH 5.5 and 6.0. Therefore, any increase in soil pH would corre-
late with an increase in plant richness. The negative interaction
with year indicated that the positive effect of soil pH decreased
across the 2 yr of the survey. This is probably due to increased
shading in the woodlands. As woodland shading increases, the
plant community shifts to more shade tolerant species. Therefore,
any richness response to soil pH occurs within this limited com-
munity. This could have the effect of supressing herbaceous
plants response to pH variability.

The significant negative effect of year on understory plant
species richness was expected and reflects the general reduction in
herbaceous richness seen in these woodlands between the 2 Bunce
survey years. In our models, the interaction terms between the
relative abundance of AM type trees and soil pH, year or shading,
were either not contained in or were not significant in any models
within DAIC ≤ 2, demonstrating that the RelAm effect was
robust, despite the successional changes in these woodlands. In
previous explorations of the mycorrhizal mediation hypothesis, a
significant positive correlation between AM type woody plants
and herbaceous species was found in mature ancient woodlands

Fig. 1 Effect of key explanatory factors on
the understory richness of herbaceous plants
using standardised regression coefficients
with 95% confidence intervals. The
explanatory variables were centred such that
1SD change in the variable results in the
effect size change in the response (SD
pH = 1.22, SD relative abundance of AM
type trees and shrubs (RelAm) = 0.34). The
relative abundance of arbuscular mycorrhizal
(AM) trees and shrubs has a significant
positive effect, as does soil pH. The effect of
soil organic matter (SOM) is not significant.
The effect of year, and the interaction
between year and pH are negative.
Conditional R2 0.492, marginal R2 0.114.
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(Veresoglou et al., 2017). We found that the effect of the mycor-
rhizal type of the canopy was more important than shading, in
both mature and less mature woodlands, suggesting that mycor-
rhizal mediation affects understory richness of both shaded and
unshaded plant communities.

In our study we quantified the amount of AM type woody
plants to link above ground plant abundance with belowground
AM fungal inoculum potential, and thereby build on previous
work to address the mycorrhizal mediation hypothesis (Vere-
soglou et al., 2017). However, if the abundance of woody plants
does indeed imply greater abundance of AM fungi, it may in
turn imply greater AM fungal richness, assuming richness is
positively correlated with abundance. AM plant diversity has
been shown to correlate with AM fungal diversity through dif-
ferential resource acquisition (van der Heijden et al., 1998; Ker-
naghan, 2005). For example, grassland plant richness has been
found to be positively correlated with AM fungal richness
(Hiiesalu et al., 2014). We note that this effect is not consistent,
other studies have found no relationship between aboveground
plant richness and AM fungal diversity ( €Opik et al., 2008) or
found a significant relationship with plant diversity rather than
plant richness (Mirzaei & Moradi, 2017). Alternatively, a nega-
tive relationship between plant richness and mycorrhiza forma-
tion has been found in temperate grasslands (Leon et al., 2022).
Plant responses to AM fungi vary, so any plant diversity
response may depend on soil conditions and AM fungal species
identity (Vogelsang et al., 2006). We could not ascertain in this
work whether the PSF mechanism driving understory richness
was inoculum potential through AM fungal abundance or niche
exploitation through AM fungal richness, therefore future work
could examine empirical data on both AM fungal richness and
inoculum potential and explore the correlations between AM
woody plant cover and AM fungal richness. Interestingly,
Mirzaei & Moradi (2017) measured spore density and found a
significant relationship between AM fungal spore density and
plant diversity, but not plant richness. In that work, plant rich-
ness was only significantly correlated with AM fungal colonisa-
tion, which could also be considered as a measure of inoculum
potential.

In our analysis, the effect size for the random intercept was
greater than that of any of the fixed effects, suggesting that histor-
ical legacies and local landscape scale effects are likely to have
been important drivers of woodland plant species richness. The
importance of these factors in British woodlands has been
demonstrated by several authors. For example, Peterken &
Game (1984) found that ancient woodlands in Lincolnshire, in
the east of England, had greater understorey species richness, as
did newer woods connected to ancient woodlands, whereas iso-
lated newer woodlands were species poor. Woodland species tend
to have poor dispersal characteristics (Kimberley et al., 2014),
implying that, unless habitat connectivity is high, these species
may fail to colonise new woodlands. Similarly, Petit et al. (2004)
found that woodland plant species richness in England is corre-
lated with woodland patch size; however, the authors also found
that this effect did not persist for upland woods, where light and
soil pH were more important. Other factors known to influence

woodland plant richness include disturbance (Boch et al., 2013)
or windthrow (Smart et al., 2014), nitrogen deposition, shading,
habitat heterogeneity and land use around the woodland
(Dzwonko & Loster, 1988; Petit et al., 2004; Brudvig et al., 2009).
All these factors will increase the between-site variance and
contribute to the effect size of the random intercept.

The positive effect of the proportion of AM trees and shrubs
on herb species richness supports previous findings (Newman &
Reddell, 1988; Veresoglou et al., 2017) and further strengthens
the case for the mycorrhizal mediation hypothesis by demon-
strating this effect for the first time across over 100 British
woodlands and 30 yr. The importance of identifying tree myc-
orrhizal type as a driver of understory species richness is that,
unlike edaphic or climatic properties for example, it is a factor
over which we can exert control in woodland management. If
management plans depend on natural regeneration, then in a
fragmented landscape and in woodlands dominated by a low
diversity of EM type trees, AM type trees could be excluded
with a negative effect on herbaceous plant species richness. This
work suggests that the relatively straightforward practice of
interplanting AM type hosts may be a tractable approach to
increase woodland biodiversity. Or, when planning to plant
new woodlands, the proportion of AM type and EM type hosts
could be considered from the perspective of their influence on
understory plant biodiversity.

We have shown that herb species richness is positively associ-
ated with the proportion of AM type trees and shrubs in British
woodlands, and for the first time we show that this effect is robust
across 30 yr of woodland succession. Our study builds on and
expands previous work that has shown a link between overstorey
mycorrhizal type and understorey species richness (Newman &
Reddell, 1988; Veresoglou et al., 2017; Gr€unfeld et al., 2019).
Finally, our results demonstrate that the effect due to AM type
trees and shrubs is significant when compared with other impor-
tant drivers of woodland plant species richness across a large-scale
national gradient of climate, soil and woodland type.
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