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Creation of a global tide analysis dataset: Application of NEMO and an offline
objective analysis scheme
David Byrne , Jeff Polton and Colin Bell

National Oceanography Centre, Liverpool, UK

ABSTRACT
The accurate prediction of tides is vital for the operation of many industries, early warning of
coastal flooding and scientific understanding of ocean processes. In this paper, we describe the
creation method of a global dataset of tidal harmonics using NEMO (Nucleus for European
Modelling of the Ocean) for the first time and an offline objective analysis scheme. Data are
assimilated as part of a post-processing step, reducing the computational resources required. A
reduced ensemble of tidal harmonics is generated, where each member is run for a shorter
period of time than a central background state. This ensemble is used to estimate a single
background covariance state, which is used for analysis. Output is validated using an ensemble
of objective analyses. For each ensemble member, random selections of observations are
omitted and validation is performed at these locations. Improvements in both Mean Absolute
Error (MAE) and correlation coefficients (R2) are seen across all 6 of the largest diurnal and semi-
diurnal constituents. MAEs in amplitude and phase are reduced by up to 78% and 89%,
respectively, and correlations by as much as 0.14. In addition, the majority of locations (between
70 and 80%) see significant improvement.
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1. Introduction

Tides in the ocean are periodic movements due to the
interactions of the Earth, Sun and Moon system (Pugh
and Woodworth, 2014), often manifesting at the coast
as a once or twice daily approach and recession of the
ocean. Their prediction has a long history and many
applications, both practical and scientific. They are
vital for port operations, where ships and cargo must
safely manoeuvre waterways and harbours. Forecasts
of storm surges and resulting coastal inundation, such
as those made by agencies such as the UK Met Office,
rely heavily upon them, especially in regions with
large tidal ranges. Whether or not the tide is high or
low can make the difference between unnoticed changes
in sea level and life-threatening coastal flooding. Com-
mercial ocean operations such as oil drilling and coastal
engineering also require accurate predictions as part of
their working procedure.

Where there are long time series of observations
available, such as at a tide gauge, tidal predictions may
be created with relative ease using a harmonic analysis
(Foreman and Neufeld, 1991; Foreman, 1996; Pugh
andWoodworth, 2014). This procedure takes advantage
of the strong periodicity in the tidal signal and

decomposes it into the amplitudes and phases of its
sinusoidal components, known as tidal constituents.
Amplitudes and phases can then be used to reconstruct
a tidal time series into the future with high accuracy.
However, such methods are constrained by the avail-
ability of observations, both in time and space. Tidal
predictions may only be made at the same location
where the tidal signal was originally observed and in
many regions, appropriate observations are sparse or
none existent. Additionally, a long enough observed
time series, at the appropriate frequency, is required
in order to adequately resolve some constituents. In
areas where observations are lacking, numerical models
can instead be used to generate harmonics and sub-
sequent predictions. Such models may be prone to
errors, however. More accurate ‘analysis’ datasets can
be developed through the use of data assimilation tech-
niques to combine model data with observations.

The creation of global datasets of tidal harmonics
using numerical models, data assimilation and inverse
methods has been well studied (Pekeris and Accad,
1969; Schwiderski, 1979; Parke and Hendershott, 1980;
Ray, 1999; Egbert and Bennett, 1996; Arbic et al.,
2010). Prominent examples of existing up to date
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databases include TPXO9 (Egbert and Erofeeva, 2002),
FES2014 (Carrere et al., 2016) and HAM12 (Taguchi
et al., 2014). Stammer et al. (2014) give a comprehensive
review of global tide datasets and their accuracy. These
datasets contain varying numbers of harmonics based
on the assimilation of a variety of observations into a
numerical model.

In this paper, we investigate a lightweight method-
ology for the generation of a new assimilative global
dataset of tidal harmonics at a 1

12-degree resolution.
The dataset is created via the combination of harmo-
nic output from a numerical model and observations
from bottom pressure recorders and tide gauges. For
the first time, the NEMO (Nucleus for European
Modelling of the Ocean (Madec, 2008)) model is
used for this purpose. Data assimilation is performed
as a post-processing routine rather than during the
model simulation. Such a method is flexible enough
to allow for the dataset to be updated whenever
new harmonic data becomes available, without the
need to run new simulations. A reduced ensemble
approach is used, wherein an ensemble of model
harmonics is used to generate a single covariance
matrix, which is subsequently used for assimilation
of observations into a single, long model run. This
is a quicker and more lightweight approach than in
standard ensemble routines.

In the following sections, the generation and vali-
dation of the dataset are detailed and discussed. In Sec-
tion 2, all aspects of the generation of our data are
described, including the numerical model configur-
ation, the analysis scheme used, selection of obser-
vations and harmonic analyses. Following on from
this in Section 3, an attempt is made to validate the
analysis through the creation of a pseudo-analysis.
Such a validation is necessary to give us confidence
that the analysis scheme works. In this section, our data-
set is also compared visually to another prominent glo-
bal tide dataset.

2. Methods

2.1. Overview

The dataset discussed in this study is generated by com-
bining harmonic output from a numerical model and
observations using data assimilation techniques. The
order of operations used to do this is as follows:

(1) Run a numerical global ocean model to obtain fields
of sea surface height (SSH).

(2) Analyse model output to obtain fields of harmonic
amplitudes and phases.

(3) Select and analyse observations to obtain harmonic
amplitudes and phases.

(4) Combine the observed harmonics and model har-
monics using an ensemble optimal interpolation
scheme (OI).

In this section, details on each aspect of the dataset
generation are given: the choice of numerical model,
the data used, the assimilation scheme and decisions
on harmonic analysis. There are number of datasets dis-
cussed in this study. For later reference, their names and
descriptions may be found in Table 1.

2.2. Numerical model

Background fields (see Section 2.4) are generated
using a harmonic analysis of sea surface height
(SSH) output from a numerical model, specifically
NEMO (Nucleus for European Modelling of the
Ocean) (Madec, 2008). The configuration used is simi-
lar to GO6 (Storkey et al., 2018), with a 1/12-degree
ORCA Arakawa-C grid (Madec and Imbard, 1996)
over a global domain. The grid is curvilinear and tri-
polar, allowing for the whole globe to be modelled.
Physics are modelled using a finite difference inte-
gration scheme over 10 terrain-following vertical levels
to resolve depth varying currents. Self-attraction and
loading (see Farrell (1973) and Ray (1998)) are mod-
elled using a scalar approximation scheme such that
suggested by Accad and Pekeris (1978), with
b = 0.94. Tidal forcing is applied barotropically to
the ocean as a pressure-like force. This forcing is
determined from an estimation of the equilibrium
tide amplitude and phase for each constituent, based

Table 1. Reference table for names and descriptions of the
datasets discussed in this study.
Name Description

Raw model Unadjusted harmonic output from the NEMO model.
Bottom friction and SAL parameters are chosen to
be at the centre of the values used for the
ensemble.

Linearly adjusted
model

Raw model harmonic that has been linearly adjusted
such that errors contain no offset and no trend. This
is used as the background variable for assimilation.

Analysis Blending together of linearly adjusted model and all
observations using data assimilation techniques.
Also referred to in this paper as GTM

Validation analysis Harmonic dataset derived from an ensemble of
analyses. Each member is an analysis for which a
random 1

3 of observations is omitted from the
assimilation procedure. Dataset is created by taking
the ensemble average, but only when locations
were omitted.

Observations Harmonic observations from tide gauges and bottom
pressure recorders used for assimilation and
validation.
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on work by Cartwright and Taylor (1971). A set of 31
constituents are used for this purpose (henceforth
‘forcing’ constituents).

In all model runs, the ocean-free surface and currents
begin at rest. Temperature and salinity are included in
the model but are initially the same everywhere. All
temperature and salinity fluxes into the ocean are set
to zero for the duration of each run, keeping these vari-
ables constant. This homogeneity and constant density
means that internal waves will not be well (or at all) rep-
resented by the model. However, the dissipation of bar-
otropic tidal energy due to internal wave drag has been
shown to be important in the open ocean (Egbert and
Ray, 2000) and therefore must be parameterised in
our configuration. This dissipation is modelled using
the scale relation suggested by Jayne and Laurent
(2001). The NEMO code was modified for this study
to allow for this scheme. The modelling of ice is omitted
from this version of the dataset, which will undoubtedly
lead to some inaccuracies towards polar regions. This
must be kept in mind when validating and assimilating
observations in these areas.

A number of input datasets are used. Bathymetry is
developed from the GEBCO dataset (GEBCO Compi-
lation Group, 2020), for which the minimum depth is
constrained to 23 m. This is not ideal, especially in shal-
lower coastal areas and for nonlinear constituents, but is
done to ensure long-term model stability.

Atmospheric forcing is applied using a bulk for-
mulation as outlined by Large and Yeager (2004).
The forcing files themselves are hourly averages gen-
erated using 30 years of ERA5 atmospheric data.
This will allow for the influence of the atmosphere
on some constituents whilst smoothing out extreme
events such as storm surges. As previously men-
tioned, all surface heat and salinity fluxes are set to
zero – only wind and atmospheric pressure forcing
is applied at the ocean surface to preserve constant
density.

2.3. Observations

For assimilation and validation, harmonic data from
bottom pressure recorder and tide gauges are used.
These harmonics are derived from analyses of bottom
pressure and sea surface height time series. Data from
bottom pressure recorders are obtained from the
IAPSO (Cartwright and Zetler, 1979), GLOUP [CITE]
and PSMSL (Permanent Service for Mean Sea Level,
2019; Holgate et al., 2013) databases. Tide gauge records
are obtained from the GESLA (Woodworth et al., 2017)
database. The locations of these observations can be
seen in Figure 2. Spatial coverage is good in many

coastal areas, including the Northwest European Shelf
and the coastlines of the USA and Japan. However,
observations are sparse in polar regions, especially in
the Arctic Ocean and South Pacific. The treatment
and harmonic analysis of these observations is described
in Section 2.5.

2.4. Assimilation scheme

2.4.1. Overview
Data assimilation techniques are used to blend together
SSH harmonics from the model and observed harmo-
nics (discussed further in Section 2.4.2). Henceforth,
the dataset of combined observations and model har-
monics will be referred to as the ‘analysis dataset’,
which is distinct from the harmonic analysis discussed
in Section 2.5. Amplitudes and phases are not directly
used in this scheme due to the periodicity of phase
and strictly positive nature of amplitude. These charac-
teristics create difficulties when applying modifications
to the model (e.g. adjusted amplitudes must never be
negative) and in ensuring that errors are normally dis-
tributed: a necessity for many assimilation schemes.
Instead, z1 and z2 are used, defined here as:

z1 = a cos g, (1)

z2 = a sin g, (2)

where a and g are the amplitude and phase, respectively,
of a given constituent. These are the cartesian (or com-
plex) analogue of amplitude and phase, and both lie in
the set of real numbers, R. This also aligns well with
comments made by Xu (2018) on the interpolation of
harmonic information. It is important to note that
only the assimilation of SSH is discussed in this study.
Options for extending this to currents are discussed in
Section 4.

2.4.2. Ensemble optimal interpolation
To create the analysis dataset, with observations assimi-
lated into the model simulation dataset (hereafter the
‘analysis’), Ensemble Optimal Interpolation (EnOI) is
used (Oke et al., 2002; Evensen, 2003). As the name
suggests, this is an ensemble version of Optimal Interp-
olation (Lorenc, 1986; Daley, 1991), where the analysis
xa is obtained by solving the linear system:

xa = xb + K(y −Hxb), (3)

where xb is the background variable, y is a vector of
observations,K is the gain matrix andH is a linear oper-
ator which transforms variables in the background
space to the observation space (often just interpolation).
For this study, xb is harmonic analysis output for

JOURNAL OF OPERATIONAL OCEANOGRAPHY 3



modelled SSH, linearly adjusted such that errors have no
offset or trend (henceforth ‘linearly adjusted model’).
The y is a vector of tide gauge and bottom pressure ana-
lyses as detailed in Section 2.3. The term y −Hxb is the
innovation; a measure of the difference between the
model and the observations. The K matrix describes a
set of weights designed to minimise the error variance
in the analysis and is determined using:

K = BHT(HBHT + R)−1, (4)

where B is the background error covariance matrix and
R is the observation error covariance matrix. For this
study, the background error covariance matrix B is esti-
mated as the Schur product of a correlation function ρ
and a covariance matrix B′ (Houtekamer and Mitchell,
2001):

B = r⊙ B′, (5)

where B′ is the covariance matrix obtained from the
ensemble of model-like variables x′i:

A′ = {x′1, . . . , x
′
N}. (6)

The variables x′i are model anomalies obtained by sub-
tracting the ensemble mean from an ensemble, A, of
model states xi:

x′i = xi − A, (7)

where,

A = {x1, . . . , xN} (8)

For this study, the correlation function ρ is intended to
‘localize’ the assimilation increment, i.e. limit the spatial
extent of an observations influence. If ρ is chosen cor-
rectly then the product in Equation (5) retains the
required properties of a covariance matrix. Gaspari
and Cohn (1999) suggested a number of functions suit-
able for this purpose. We have chosen a simple single-
variable Gaussian type function:

r(r) = e−
r2
s , (9)

where r is a great arc distance between two points and σ
is a constant to be chosen. The function is isotropic and
decreases with distance with a rate dictated by σ, which
is defined globally and tuned independently for each
constituent by minimising mean absolute errors in z1
and z2. This means that the localisation is homo-
geneous, which may not completely represent different
length scales in the open ocean and coastal regions.
However, it does preserve the required symmetry and
positive semidefinite property of the covariance matrix
(Gaspari and Cohn, 1999).

EnOI is closely related to the popular Ensemble Kal-
man Filter (EnKF) method (Evensen, 1994; Burgers
et al., 1998), which has been used extensively in oceanic
and atmospheric applications. It uses a covariance
matrix which is stationary in time, applying a derived
increment to a single deterministic model state. On
the other hand, EnKF updates the covariance model
by updating each member of the covariance ensemble
at each application. As a result, EnKF is approximately
N times more computationally expensive than EnOI.
For our purposes, EnOI is sufficient, seeing as assimila-
tion is done only into a single harmonic state, negating
the need for an updated error covariance matrix (Oke
et al., 2010).

2.4.3. Implementation
The ensemble used is comprised of 18 members, each
being a harmonic analysis of a different model run. Bot-
tom friction and β (used to model self-attraction and
loading, see Section 2.2) are varied in each member in
order to generate an appropriate spread in the resulting
ensemble. More specifically, bottom friction is varied
linearly 5% either side of the central value and β
between 0.085 and 0.103. These two variables are highly
influential in the generation and propagation of global
tides in a barotropic model, and therefore the correct
choice of value represents a significant portion of the
error. For this study, the ensemble used is not expected
to be optimal and there will be able to be improved. We
discuss this further in Section 4.

In many ensemble assimilation methods (e.g. EnKF),
the result is an ensemble of analyses. However, in this
study, the ensemble is used only to generate an estimate
of the background error covariance matrix B. Each
member of the ensemble is generated from a model
run of 3 months. Observations are assimilated into a
single ‘central’ background state, which is generated
from a longer harmonic analysis of 1-year. The values
used for bottom friction and β in this model run are
those that lie in the centre of the ensemble values.
This methodology allows us to estimate the background
error covariance matrix with less expense than perform-
ing the full-length run for each ensemble member. It
also allows us to perform the assimilation step just once.

For assimilation purposes, errors in z1 and z2 are
assumed to be independent of each other (zero corre-
lation). Though a strong assumption, preliminary tests
showed it gave better results than allowing for cross-
variable correlation. Assimilation is then done indepen-
dently for each harmonic constituent.

The linear problem detailed in Equation (4) becomes
very large for a global domain. A parallel routine was
developed to overcome this problem. The routine
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works by splitting the global domain into smaller sub-
domains and an analysis is created independently for
each. All available innovations from the global domain
are used for each subdomain to ensure solutions are
the same as the full problem. The background covari-
ance matrix B is never constructed explicitly. Instead,
only BHT and HBHT , as required for K (Equation
(4)), are calculated, consuming less memory.

2.5. Harmonic analysis

For both validation and the assimilation procedure, it is
imperative that the harmonics from the model and
observations are comparable. When using an assimila-
tion scheme, the background and observed variables
must represent the same quantity as best as possible.
Therefore, a number of decisions and assumptions
have been made in choosing a model harmonic analysis
and selecting data for assimilation.

Model harmonics are obtained froma harmonic analy-
sis of hourly sea surface height data. The diaharmmodule,
packaged with NEMO, is used for this purpose. One year
of model data is analysed for the final dataset, enough to
resolve most major constituents, included those with
longer periods. All forcing constituents are included in
the analysis along with five nonlinear constituents. The
choices of harmonic analyses of observed SSH varies per
dataset and, in the case of bottom pressure recorders
especially, per location. Observations to be included in
the analysis are chosen based primarily upon the analysis
length and available constituents. Specifically, only
locations where K2 can be resolved (approximately six
months or more (Foreman, 1996)) are chosen.

The period of time used for harmonic analysis of
model data is different from that used for the observed
data (which also varies from location to location).
Therefore, by using this type of data, an assumption is
made that the tidal harmonics are not changing signifi-
cantly over the timescale of 20–30 years. It is likely that
the tides are changing due to climate change (Pickering
et al., 2017) ; however, these changes are likely to be
small enough such that this assumption is not important
in this context.

3. Results

3.1. Validation of raw model

Before examining the analysis dataset, we take a look at
raw model output (no assimilation or adjustment) to
understand how well it performs. In this section, we per-
form a validation of the central background state
described in Section 2.4.3. We focus on three diurnal

and three semi-diurnal constituents. Q1, O1, K1 and
M2, S2 and K2. All available observations are used to
evaluate the raw model – more than used in the actual
assimilation or to validate the analysis in Section 3.2.

Figure 1 shows the observed amplitudes and phases
plotted directly against the modelled amplitudes and
phases at then nearest model grid point. The results of
a linear regression are also shown, along with the R2

of the fit. Ocean and shelf points have been defined as
a location where the bathymetric depth is deeper/shal-
lower than 200 m, respectively. These points are
shown by different markers in the figures. For all con-
stituents, the gradient of the data is good for both
phase and amplitude. The largest deviations of gradients
from unity are seen for Q1 and O1 amplitudes, reaching
1.07 and 1.06, respectively. Offsets are also generally
small, especially for amplitudes. R2 values are generally
good, exceeding 0.85 in most cases ; however, there is
some significant spread in some of the constituents. In
many cases, larger outliers are seen in – but not limited
to – points on the shelf. Larger errors in shallower/
coastal regions are to be expected due to the relatively
low resolution of the model and restrictions on depth
(see Section 2.2). Overall, however, the model performs
well, even in the absence of assimilation.

These errors can also be studied spatially. Figure 2
shows amplitude and phase errors on a geographic
plot at observations locations. Spatial patterns in these
errors vary considerably between the two constituents.
In general, the magnitudes of amplitude errors are lar-
ger in regions where the amplitude is also larger,
which is not surprising (see Figures 5 and 6 for ampli-
tude magnitudes). Many of these areas are also coastal
and/or have complex coastal geometry. For example
the Bay of Fundy (northeast coastline of the North
America) and some areas of the Northwest European
Continental Shelf. Strong regional patterns are present
in some areas. For instance, M2 amplitude is generally
overestimated in the eastern Atlantic but underesti-
mated in the Western Atlantic. The inverse of this is
true in some regions for K1 amplitude, e.g. the eastern
Atlantic and west coast of both Americas are underesti-
mated. An area which stands out as having particularly
large errors and also less of a consistent spatial pattern is
the Western Pacific. Here, many areas are shallow and
the complex island/coastal geometries are likely not
well resolved.

Consistent spatial patterns are also seen in phase. At
most locations, errors in M2 phase are below 30◦. Larger
errors are typically seen along coastlines or in more
enclosed areas such as the Baltic Sea and Gulf of Mexico.
Again, a different pattern of errors is seen for K1 phase,
with the largest errors being clustered in regions such as
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Figure 1. Scatter plots and lines of best fit for unadjusted modelled amplitude and phase against observed amplitude and phase for
six of the larger diurnal and semi-diurnal constituents. Model points are extracted using a nearest neighbour approach. Orange line
shows the best linear fit, black dots show ocean points (. 200m depth) and blue squares show shelf points (, 200m depth). The
dashed grey line denotes y=x.
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Figure 2. Amplitude and phase errors in the unadjusted model for M2 and K1 at available tide gauge and bottom pressure recorder
locations.

Figure 3. Mean absolute errors (MAE) for six harmonic constituents in the linearly adjusted model output (marker locations) and vali-
dation analysis dataset (arrow tips). The arrow shows the change in MAE when comparing the two datasets. For each constituent, two
arrows are shown. Those with circles around their marker corresponds to MAEs across shelf locations (depth , 200m) and those
without correspond to ocean locations (depth . 200m).

JOURNAL OF OPERATIONAL OCEANOGRAPHY 7



the eastern North Atlantic and western South Atlantic.
In some regions, phase can be very sensitive to the
exact location of an amphidromic point (point of zero
amplitude), where small changes can result in large
phase alterations.

3.2. Validation of analysis scheme

Validation can only be done at observation locations.
However, The analysis dataset cannot be directly com-
pared to observations as they have been incorporated
into the data, giving high accuracy at observation
locations. Instead of using the final analysis dataset,
we take an ensemble approach to validation. For each
constituent, a 120 member ensemble is created where
in each member an analysis is generated as before but
one third of observations, randomly chosen, are not
included in the assimilation procedure. This means
that in each ensemble member, we have a set of obser-
vations that can be used for validation. For this
approach, observations are first thinned such that the
minimum distance between any two points is 300 km.

This is to reduce the effect of areas of relatively dense
observations skewing the analysis.

Using the above ensemble, a new dataset is con-
structed by taking an ensemble at each observation
location, but only when data was not included in the
ensemble member. Henceforth, this dataset will be
referred to as the ‘validation analysis’. Figures 3 and
4 show results from this process, which are discussed
further below. Error statistics for the validation analysis
are compared to those from model data that has not
seen data assimilation. For this comparison, the line-
arly adjusted model output, as described in Section
2.4 and Table 1 is used. Tables 2 and 3 summarise
the results.

Figure 3 shows a comparison of Mean Absolute
Errors (MAE) in amplitude and phase of the linearly
adjusted model and validation analysis. Amplitude
MAE and phase MAE are plotted on different axes,
meaning that a movement towards the origin indicates
an average improvement in the validation analysis
when compared to the linearly adjusted model. Values
have been calculated separately for observations on
the shelf (depths shallower than 200 m) and in the

Figure 4. Correlation coefficients (R2) for six harmonic constituents in the linearly adjusted model output (marker locations) and vali-
dation analysis dataset (arrow tips). The arrow shows the change in R2 when comparing the two datasets. For each constituent, two
arrows are shown. Those with circles around their marker corresponds to R2 across shelf locations (depth, 200m) and those without
correspond to ocean locations (depth . 200m).
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open ocean (depth exceeding 200 m). In almost all cases,
amplitude and phase MAE are larger in the shallower
areas for both the linearly adjusted model and validation
analysis. The exception is O1, for which the shelf phase
error is slightly smaller than that in the open ocean. In
all cases, MAEs are at least 30% lower for the validation
analysis than the linearly adjusted model suggesting
that, on average, errors are indeed being reduced. As
can be seen in Tables 2 and 3, this reduction is as
much as 58% for amplitude and 71% for phase (both
for O1).

Figure 4 shows how well the linear adjusted model
and validation analysis correlate with observations
using the Spearman’s Rank correlation coefficient R2.
Similarly to Figure 3, amplitude and phase values are
plotted on separate axes. In this case, a movement
towards (1, 1) shows where the validation analysis had
a higher correlation coefficient than the linearly
adjusted model. Mirroring the MAE case, Correlations
are generally lower in shelf regions but still high in
most cases. For every constituent, the validation analysis
improves correlations for both amplitude and phase.
For some constituents, this improvement is modest,
for example, M2. Others see significant improvement
such as Q1 and O1 phase.

Improvements in MAE and correlations at locations
not included in the analysis show that, on the whole, the
analysis scheme is spreading innovations into the
domain realistically. The scheme is not perfect, how-
ever, which is demonstrated by the number of points
which do not see improvement and MAE/correlations
have room for further improvement. However, these
results give confidence in the analysis schemes ability
to blend observed data into the modelled harmonics.
This is especially true for the final analysis, which incor-
porates many more observations.

3.3. Analysis dataset

In this section, we visually compare the analysis datasets
generated for this study to another prominent tidal
dataset: FES2014 (Carrere et al., 2016). This comparison
allows for an inspection of large scale regions where the
datasets vary and to reason why. These comparisons are
shown in Figures 5 and 6 for M2 and K1, respectively.
Other constituents are not discussed here ; however,
the conclusions remain the same. For this section we
refer to our dataset as GTM (Global Tide Model). It is
important to note that in this section we do not intend
to make a direct comparison with FES2014 or to

Figure 5. A visual comparison of M2 in the dataset discussed in this paper (called GTM here) and FES2014.
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improve upon it ; however, we choose to use this dataset
as a broad check that our scheme works over large
scales.

Figure 5 shows amplitude and phase comparisons for
M2. The datasets compare well for both variables,
especially away from the poles. The locations of many
major amphidromes (identified as areas of strong phase
gradient and zero amplitude) are similar in many
regions, for example in the North Atlantic, Northeast

Pacific and Northwest Pacific. Even in some shallower
more coastally complex regions, such as the North Sea
and Caribbean Sea, these systems compare well. There
are also areas of notable difference. An amphidrome in
the FES2014Weddell sea ismissing (or perhaps degener-
ate) in the GTM dataset. This is likely due to differences
in domain extent, as the domain used for GTM does not
extend as far south as the FES2014 domain. Another
notable area of difference is the Southeast Pacific. This

Table 2. Summary of amplitude MAE and correlation coefficients for the linearly adjusted model (LAM) and the validation analysis
(VA).

Amplitude(cm) MAE R2

Ocean LAM VA Improvement Points Improved LAM VA

Q1 0.49 0.26 47% 71 % 0.93 0.95
O1 2.28 0.96 58% 75 % 0.97 0.97
K1 2.36 1.10 53% 80 % 0.96 0.98
M2 7.50 4.64 38% 73 % 0.94 0.94
S2 2.63 1.63 38% 72 % 0.93 0.96
K2 0.85 0.58 31% 74 % 0.87 0.94
Amplitude(cm) MAE R2

Shelf LAM VA Improvement Points Improved LAM VA
Q1 0.64 0.36 44% 71 % 0.91 0.97
O1 3.38 1.40 58% 74 % 0.94 0.97
K1 2.85 1.67 42% 68 % 0.94 0.96
M2 12.59 6.65 47% 73 % 0.91 0.96
S2 5.02 2.60 48% 78 % 0.91 0.94
K2 1.51 0.88 42% 76 % 0.86 0.91

‘Ocean’ locations refer to points where the bathymetric depth is deeper than 200 m and ‘Shelf’ locations to points shallower than this depth. Also shown is the
percentage improvement in MAE and the percentage of points that were improved (in the validation analysis) by the scheme.

Figure 6. A visual comparison of K1 in the dataset discussed in this paper (called GTM here) and FES2014.
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is an area where tide gauge and bottom pressure obser-
vations are sparse (see Figure 2).

Figure 6 shows comparisons for K1. Again the two
datasets compare well; however, the Southern Ocean
shows some large differences in both amplitude and
phase, especially in the South Pacific which, as already
noted, is an area of limited tide gauge and bottom
pressure observations. There are also some smaller
scale amplitude features seen in the FES2014 Wedell
and Ross Seas that are not present in the GTM dataset.
This is again most likely due to domain constraints and
the lack of ice modelling in our model. Overall, these
results suggest that our method works well – where
observations are available.

4. Discussion

In this study, the generation of a global dataset of tidal
harmonics was described and evaluated. The method
used data assimilation techniques to combine mod-
elled and observed sea surface height harmonics. A
full year of model data (from a NEMO configuration)
was used to obtain harmonic information which was
in turn combined with harmonic data from tide gauges
and bottom pressure recorders. The assimilation pro-
cedure is completely offline, i.e. data assimilation is
performed in a post-processing step rather than on a
time step basis within the model. In addition, an
ensemble is used only for covariance estimation, with
each member being a truncated, shorter version of
the full assimilative run. As a result, computation is
relatively inexpensive compared to online assimilation
or methods using an ensemble of full-length model
runs, and the system is flexible, allowing for fast

updates to the dataset whenever new simulated or
observed data becomes available.

The assimilation scheme was validated using a
specially constructed validation dataset, generated
from an ensemble of analyses. In each member of this
ensemble, one third of the observations were randomly
omitted and it is at these locations that the validation
was performed. This approach suggested that the assim-
ilation scheme was able to reduce MAEs and increase
correlation coefficients for both amplitude and phase
in regions where observations were sparse. When aver-
aged across all locations, improvements were seen in all
constituents. However, improvements were not seen at
all locations. Our validation analysis shows that in all
cases, a percentage of points saw no significant improve-
ment – approximately 20–30% for both amplitude and
phase. There are numerous reasons why this may be
the case, which we discuss in the following paragraphs.

The assimilation of z1 = a sin g and z2 = a cos g
means that only harmonic data may be used and there
are fundamental limitations associated with the offline
assimilation of harmonics, limiting the available obser-
vations to locations where time series are sufficiently
long. Increments are also constrained to regions near
observations. The lack of forward model in the assimila-
tion procedure means that increments will not propa-
gate dynamically from areas with observations to
those without, as would be the case for online assimila-
tion of sea surface height. Although spatial propagation
of information will be captured by the ensemble covari-
ance method, regions which have sparse observations
may see little improvement or gain a noisy character-
istic, as seen in Section 3.3 for the South Pacific. This
may partially explain why some regions do not see
any significant improvement.

Changes to the numerical model could result in bet-
ter background data and a more representative ensem-
ble used to generate the background error covariance.
For example, higher resolution in coastal areas, a
relaxed restriction on bathymetric depth and the
inclusion of ice into the model. Physical parameterisa-
tions could be further tuned, improved or even replaced.
For example, in this study the scalar approximation
method was used to parameterise self-attraction and
loading; however, other methods with better accuracy
are available (Ray, 1998; Stepanov and Hughes, 2004)
such as iterative methods (Accad and Pekeris, 1978)
and Green’s Function methods (Hendershott, 1972; Far-
rell, 1973). These methods can be computationally
costly, however, and were beyond the scope of this
work. The dissipation of barotropic tidal energy in the
open ocean is also very important for global tide mod-
elling (Jayne and Laurent, 2001; Simmons et al., 2004).

Table 3. Summary of phase MAE and correlation coefficients for
the linearly adjusted model (LAM) and the validation analysis
(VA).

Phase(deg) MAE R2

Ocean LAM VA Improvement Points Improved LAM VA

Q1 26 12 52% 82% 0.84 0.97
O1 25 7 71% 89% 0.84 0.98
K1 17 8 55% 74% 0.94 0.98
M2 16 10 34% 71% 0.96 0.96
S2 20 10 52% 75% 0.93 0.97
K2 25 11 54% 79% 0.91 0.98
Phase(deg) MAE R2

Shelf LAM VA Improvement Points Improved LAM VA
Q1 27 14 48% 77 % 0.92 0.95
O1 23 11 55% 83 % 0.89 0.97
K1 19 12 39% 72 % 0.88 0.97
M2 24 19 20% 71 % 0.92 0.94
S2 27 19 28% 70 % 0.91 0.93
K2 32 21 31% 73 % 0.86 0.89

‘Ocean’ locations refer to points where the bathymetric depth is deeper than
200m and ‘Shelf’ locations to points shallower than this depth. Also shown
is the percentage improvement in MAE and the percentage of points that
were improved (in the validation analysis) by the scheme.
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The parametrisation used for this work is a simple scale
relation and could be improved. Full modelling of
internal physics could also be done if vertical density
profiles were not homogeneous (and a higher resolution
model was used).

The ensemble used for estimation of the background
covariance matrix in this paper is not optimal and could
be improved. Future work is required to iterate upon it
and improve its representation of the model error, lead-
ing to innovations being spread from the observation
point into the domain in a more realistic fashion. The
ensemble used in this paper is not optimal and This
may mean improving the physical model or the statisti-
cal decisions made when designing the ensemble itself.
The ensemble used for this study was small (18 mem-
bers) and limited. Despite this, however, our scheme
worked well and improved the model at the majority
of locations.

The construction of the covariance matrix itself may
also benefit from further iteration. In this paper, it is con-
structed from the combination of the ensemble covari-
ance and a Gaussian localisation function. Although
this worked for our purposes, this could be improved.
For example, the localisation function uses haversine dis-
tance as a parameter, whichmay not be the best choice in
the presence of complex coastlines and islands. Signals
propagate around coastal boundaries, not through
them as implied by such a distance metric. For future
work, other methods are available, such as shortest-
path methods (see Byrne et al. (2021)), which calculate
distances around coastal boundaries, although these
methodsmay be costly on a global domain. TheGaussian
function used also assumed spatial homogeneity and iso-
tropy. Although these assumptions simplify the analysis
procedure, investigations into using different lengths
scales in different regions (e.g. open ocean and on the
shelf) may improve the methodology further.

An important limitation to note is that of the var-
iance in harmonic analyses used for both the obser-
vations and model. It was mentioned in Section 2.5
that the observed and modelled tidal harmonics were
all derived from different time periods of data. In
addition to this, however, these were also calculated
using different analysis parameters: analysis length,
analysis period, constituent sets and software choice.
This may result in some representativity error when
comparing model harmonics with the observations,
which will subsequently find its way into the analysis
dataset. The alternative is a vastly reduced observation
dataset due to the lack of original time series and the
need to run the model for a limited period. For this
study, we accept this uncertainty but it will require
further study in the future.

Finally, creating dynamically consistent barotropic
currents can be a challenge, although options are avail-
able. SSH harmonics can be inverted using a method
such as that outlined by Ray (2001). Such a method,
however, means having to solve very large systems of
equations on a global domain. Alternatively, SSH-cur-
rent covariances can be determined from an ensemble
and used to adjust currents within a multivariable
assimilation scheme such as those by Lorenc (1981),
Courtier et al. (1998), and Lorenc et al. (2000).

The limitations of the simulation physics provide a
greater challenge for the offline assimilation scheme
that is presented here. Nevertheless the scheme is
demonstrated to improve Mean Absolute Errors and
correlation coefficients across the largest diurnal and
semi-diurnal constituents.
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