
IEEE TRANSACTIONS ON PLASMA SCIENCE 1

Space Plasma Physics: A Review
Bruce T. Tsurutani , Gary P. Zank , Veerle J. Sterken , Kazunari Shibata , Tsugunobu Nagai ,

Anthony J. Mannucci , David M. Malaspina , Gurbax S. Lakhina , Shrikanth G. Kanekal ,

Keisuke Hosokawa , Richard B. Horne , Rajkumar Hajra , Karl-Heinz Glassmeier ,

C. Trevor Gaunt , Peng-Fei Chen , and Syun-Ichi Akasofu

Manuscript received 15 April 2022; revised 27 July 2022; accepted
2 September 2022. This work was supported by the Jet Propulsion Labo-
ratory, California Institute of Technology, under Contract with NASA. The
work of Gary P. Zank was supported in part by the Parker Solar Probe
under Contract SV4-84017 and in part by NSF Established Program to
Stimulate Competitive Research (EPSCoR) RII-Track-1 cooperative agree-
ment under Grant OIA-1655280 and Grant OIA-2148653. The work of
Veerle J. Sterken was supported by the European Union’s Horizon 2020
Research and Innovation Program under Grant N 851544. The work of
Gurbax S. Lakhina was supported by the Indian National Science Academy
(INSA), New Delhi, through the INSA-Honorary Scientist Scheme. The
work of Richard B. Horne was supported by NERC Highlight Topic (Rad-
Sat) under Grant NE/PO1738X/1 and in part by NERC National Public
Good Activity under Grant NE/R0164451. The work of Rajkumar Hajra was
supported through the Ramanujan Fellowship by the Science and Engineering
Research Board (SERB), a statutory body of the Department of Science and
Technology (DST), Government of India, under Grant SB/S2/RJN-080/2018.
The work of Peng-Fei Chen was supported by the National Key Research and
Development Program of China under Grant 2020YFC2201200. The review
of this article was arranged by Senior Editor F. Taccogna. (Corresponding
author: Bruce T. Tsurutani.)

Bruce T. Tsurutani and Anthony J. Mannucci are with the Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
(e-mail: bruce.tsurutani@gmail.com).

Gary P. Zank is with the Center for Space Plasma and Aeronomic
Research, and the Department of Space Science, The University of Alabama
at Huntsville, Huntsville, AL 35805 USA.

Veerle J. Sterken is with the Department of Physics, ETH Zürich,
8093 Zürich, Switzerland.

Kazunari Shibata is with the School of Science and Engineering, Doshisha
University, Kyotanabe 610-0394, Japan, and also with the Kwasan Observa-
tory, Kyoto University, Yamashina 607-8471, Japan.

Tsugunobu Nagai, retired, was with the Department of Solar System
Sciences, Institute of Space and Astronautical Science (ISAS), Sagamihara,
Kanagawa 252-5210, Japan. He resides in Tokyo 164-0013, Japan.

David M. Malaspina is with the Department of Astrophysical and Planetary
Sciences and the Laboratory for Atmospheric and Space Physics, University
of Colorado at Boulder, Boulder, CO 80305 USA.

Gurbax S. Lakhina is with the Indian Institute of Geomagnetism, Navi
Mumbai 410218, India.

Shrikanth G. Kanekal is with the NASA Goddard Space Flight Center,
Greenbelt, MD 20771 USA.

Keisuke Hosokawa is with the Graduate School of Informatics and Engi-
neering, The University of Electro-Communications, Tokyo 182-8585, Japan.

Richard B. Horne is with the British Antarctic Survey, Cambridge CB3 OET,
U.K.

Rajkumar Hajra is with the Indian Institute of Technology Indore, Indore
453552, India.

Karl-Heinz Glassmeier is with the Institute of Geophysics and Extrater-
restrial Physics, Technische Universität Braunschweig, 38106 Braunschweig,
Germany.

C. Trevor Gaunt is with the Department of Electrical Engineering, University
of Cape Town, Cape Town 7700, South Africa.

Peng-Fei Chen is with the School of Astronomy and Space Science, Nanjing
University, Nanjing 210023, China.

Syun-Ichi Akasofu is with the International Arctic Research Center,
Fairbanks, AK 99775 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TPS.2022.3208906.

Digital Object Identifier 10.1109/TPS.2022.3208906

Abstract— Owing to the ever-present solar wind, our vast
solar system is full of plasmas. The turbulent solar wind,
together with sporadic solar eruptions, introduces various space
plasma processes and phenomena in the solar atmosphere all
the way to Earth’s ionosphere and atmosphere and outward
to interact with the interstellar media to form the heliopause
and termination shock. Remarkable progress has been made
in space plasma physics in the last 65 years, mainly due to
sophisticated in situ measurements of plasmas, plasma waves,
neutral particles, energetic particles, and dust via space-borne
satellite instrumentation. Additionally, high-technology ground-
based instrumentation has led to new and greater knowledge
of solar and auroral features. As a result, a new branch of
space physics, i.e., space weather, has emerged since many of
the space physics processes have a direct or indirect influence
on humankind. After briefly reviewing the major space physics
discoveries before rockets and satellites (Section I), we aim to
review all our updated understanding on coronal holes, solar
flares, and coronal mass ejections, which are central to space
weather events at Earth (Section II), solar wind (Section III),
storms and substorms (Section IV), magnetotail and substorms,
emphasizing the role of the magnetotail in substorm dynamics
(Section V), radiation belts/energetic magnetospheric particles
(Section VI), structures and space weather dynamics in the
ionosphere (Section VII), plasma waves, instabilities, and wave-
particle interactions (Section VIII), long-period geomagnetic
pulsations (Section IX), auroras (Section X), geomagnetically
induced currents (GICs, Section XI), planetary magnetospheres
and solar/stellar wind interactions with comets, moons and
asteroids (Section XII), interplanetary discontinuities, shocks and
waves (Section XIII), interplanetary dust (Section XIV), space
dusty plasmas (Section XV), and solar energetic particles and
shocks, including the heliospheric termination shock (Section
XVI). This article is aimed to provide a panoramic view of space
physics and space weather.

Index Terms— Geomagnetic storms, ionosphere, magneto-
sphere, solar radiation, solar system, space missions.

I. SPACE PHYSICS BEFORE ROCKETS AND SATELLITES

WILLIAM Gilbert, who was Queen Elizabeth I of the
U.K.’s personal physician, established that the Earth

had a large, global magnetic field [1]. Magnetic surveys and
changes in Earth’s magnetic field at that time and before
were keen subjects during this period of history. When sailing
was the main means of exploration of the world, many coun-
tries established magnetic observatories. In 1675, the British
established the Royal Observatory Greenwich, London, U.K.
In 1817, a separatebuilding was erected for magnetic observa-
tions as part of the observatory. As part of the British empire,
a Colaba Observatory was built in Mumbai, India, in 1827
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(this will be discussed further in Section IV). The calibration
for the Grubb magnetometer that was installed there [2] did
not contain a schematic of the instrument, indicating that the
U.K. wished to keep its technology secret from its European
competitors.

A correlation between ground magnetic field variations and
auroras was noticed by Hiorter [3]. Later, the famous nat-
uralist Alexander von Humboldt performed an experiment in
1806 and found that magnetic needles oscillated when auroras
were overhead. When the auroras disappeared, so did the
magnetic needle oscillations. Von Humboldt named this phe-
nomenon “magnetische ungewitter” or “magnetic storms” [4],
a term we use today. Barlow [5] performed an experiment that
showed that railroad telegraph magnetic needles were deflected
when auroras were overhead. Barlow gave us evidence for
geomagnetically induced currents (GICs) in conductors on
Earth. GICs are of great concern today in this era of high
technology and will be discussed in Section XI.

On September 1, 1859, both Carrington [6] and Hodgson [7]
saw a brief solar flare on the Sun. Carrington noted that a
magnetic storm occurred at Earth some ∼17 h and 40 min
later, but he reported “one swallow does not make a summer.”
Kelvin [8] who did not believe there was a connection between
the Sun and Earth said the magnetic storm on Earth must have
been a “mere coincidence.”

Maunder [9] reported that geomagnetic activity sometimes
reappeared with ∼27-day intervals, the same period as the
rotation of the Sun. This is the same Maunder who reported
that auroras were exceedingly rare from ∼1645 to 1715
(recently named the “Maunder Minimum”). It was not until
Chree [10], the director of The King’s Observatory, Rich-
mond, U.K., proved that Maunder’s ∼27-day quasiperiodic
results were statistically significant, giving us the “Chree
superposed epoch” statistical analyses, a method widely in
use today. Although these periodic geomagnetic activities at
Earth were substantiated by Chree, no identifiable optical
features causing them were apparent on the visible Sun. Chap-
man and Bartels [11] called these solar regions “M-regions”
for magnetically active regions. It was not until soft X-ray
images of the Sun were available from the Skylab satellite
that it was realized that high-speed solar winds came from
dark or low-temperature regions not visible in optical wave-
lengths [12]. The M-regions were renamed “coronal holes.”
Coronal holes and related geomagnetic activity will be dis-
cussed in Sections II and IV.

Following the idea of Birkeland [13], Chapman and Fer-
raro [14] considered the solar wind coming from the Sun. This
plasma impact would form the magnetosphere. Biermann [15]
studied the ion tails of comets to deduce from ground observa-
tions that there was a solar wind emanating radially from the
Sun. The densities and speed estimates were high and those
numbers were later revised downward with in situ information.

The ionosphere was well known to exist before the space
age. Gauss [16] suggested that a conducting region of the
atmosphere could explain some observed variations of Earth’s
magnetic field (see [17] for an English translation of the
Gauss paper [16]). Appleton and Barnett [18] proved that an
ionosphere exists by experiments launching waves from the

Fig. 1. Schematic of the basic features of an Alfvén wave with its transverse
magnetic b⃗ and electric E⃗ perturbations are driven by transverse polarization
or inertial J⃗ P and field-aligned currents j||. The figure is taken from [24].

ground at an angle relative to the zenith. From the ground
interference patterns, the height of the reflecting layer (the
ionosphere) was deduced.

Cosmic rays consist of high-energy protons and other
atomic nuclei which originate from outside our galaxy. When
they impact Earth’s atmosphere, they create a “shower” of
secondary and tertiary particles. The existence of cosmic rays
was proven by Hess [19] who used balloon experiments to
show that radiation increased with increasing balloon altitude.
Forbush [20] discovered rapid decreases in the observed
galactic cosmic ray intensities on Earth. These decreases are
now known to be caused by solar/interplanetary high magnetic
field events from which mirror cosmic rays coming toward the
Earth. Forbush made this discovery using ionization chambers.
Today these cosmic ray decreases are known as Forbush
decreases. Simpson [21] invented neutron monitors which are
standardly used today to monitor cosmic ray intensities on the
ground.

The concept of electromagnetic hydromagnetic “Alfvén”
waves was introduced before the space age. A short Nature
article was published in 1942 [22]. The existence of electro-
magnetic waves in an electrically highly conducting medium
was a ground-breaking theoretical idea, experimentally proven
by Lundqvist [23]. The Alfvén wave, with its transverse
magnetic b⃗ and electric E⃗ perturbations, is driven by trans-
verse polarization or inertial J⃗ P and field-aligned j|| cur-
rents in a plasma (Fig. 1). The electric and magnetic field
components are in-phase and perpendicular to each other.
Thus, the electromagnetic Poynting vector is aligned with
the local background magnetic field. This Alfvén mode is
of paramount importance for the electromagnetic momen-
tum and energy coupling between different space plasma
regimes.

We have mentioned in the abstract that new miniaturized
instrumentation developed during the space age has enor-
mously increased our knowledge of space plasma physics
since 1958. However, it is not possible nor the intent of
this article to review space plasma instrumentation here. But
at the request of a referee of this article, we mention a
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NASA book entitled “Small Instruments for Space Physics”
[909] that was the culmination of a weeklong workshop
that was held in Pasadena, CA, USA, for the purpose of
developing miniaturized instrumentation for the Parker Solar
Probe mission. It should also be mentioned that our laboratory
plasma colleagues were also developing instrumentation and
unique plasma devices to help study space plasma phenomena
in parallel with space mission studies. Two excellent reviews
are [25] and [26].

II. CORONAL HOLES, SOLAR FLARES, AND
CORONAL MASS EJECTIONS

Our Sun is a main sequence star, with its interior composed
of three layers, i.e., the core (0–0.25 RS), where the hydrogen
fusion powers the whole star, the radiation zone (0.25–0.7 RS)

where energy is transferred outward via radiation, and the
convection zone (0.7–1 RS), where energy is transferred out
via convection. The turbulent convection in the rotating vol-
ume has many crucial consequences: under the Coriolis force,
it produces differential rotation, i.e., the equator rotates faster
than the poles [27]. It also produces the global circulation,
i.e., the meridional flows. More importantly, the turbulent
convection works as an effective dynamo, generating magnetic
fields. The amplified magnetic fields in the convection zone
emerge up through the solar surface into the solar atmosphere.
With the everlasting mixing of the solar surface motions and
the continual pumping of magnetic fields [28], the corona is
heated to 1–2 MK (in contrast to the 6000 K solar surface),
forming the solar wind. Moreover, sporadic eruptions are
driven in the background solar wind, such as solar flares
and coronal mass ejections (CMEs). The resulting coronal
holes, solar flares, and CMEs are the three main sources of
geomagnetic activities on Earth.

A. Coronal Holes

The Sun has an atmosphere with four layers, which are,
from inside to outside, the photosphere with a thickness of
∼500 km and a temperature around 6000 K, the chromosphere
with a thickness of ∼1500 km or more and a temperature
up to 20 000 K, and the transition region with a thickness of
∼100 km and the corona with a temperature of 1–2 MK [27].
As demonstrated by Parker [29], the coronal pressure is so
high that solar gravity cannot hold the corona in a hydrostatic
equilibrium state, leading to continuous solar wind in the
corona and in interplanetary space. It has recently been argued
that solar wind is also inevitable since both gravity and
magnetic tension force cannot provide sufficient centripetal
force for a hydrostatic equilibrium [30]. Still, some parts of
the corona are trapped by relatively stronger magnetic fields
which exit the surface and go back into the surface, forming
coronal loops [31]. Therefore, the low corona is naturally
divided into: 1) the portions trapped by closed magnetic
fields and 2) the portions threaded by an open magnetic field
with the solar wind. Since the trapped portions correspond
to stronger magnetic fields, implying stronger heating and
more chromospheric evaporation, they are brighter not only
in white-light images but also in EUV and X-ray images.

In contrast, the open field portions are less heated and the
plasma keeps flowing away from the Sun, therefore they are
much fainter in white-light images, as well as in EUV or X-ray
images, manifested as relatively dark regions known as coronal
holes.

When observed in EUV or soft X-rays on the solar disk,
coronal holes are seen as intensity-depleted areas surrounded
by either quiet Sun or active regions. Above the solar
limb, they are seen as intensity depletion regions bounded
by ∼ten times brighter streamers. The above-limb coronal
holes should have already been observed during total solar
eclipses for centuries prior to the space age. Maunder [9] noted
a strong ∼27-day recurrence in geomagnetic activity at Earth
(see also [10]) and speculated that some “invisible” feature on
the Sun was causing this. Though not seeing any feature on the
Sun, Bartels [32] suggested that the periodic storms are pro-
duced by unseen “M-regions” on the Sun. Coronal holes above
the limb were first quantitatively measured by Waldmeier [33]
with the imaging observations in Fe XIV 5303 Å. In the space
age starting from the 1960s, coronal holes were observed as
discrete dark patches on the solar disk in UV, EUV, or X-ray
[34], [35]. As expected, coronal holes are brighter than the
quiet Sun in He I 10830 Å [36].

The ratio of the total coronal hole area to the total solar
disk varies from near zero at solar maxima to ∼0.25 at solar
minima [37]. During solar minima, coronal holes are mainly
confined near the poles, with latitudes above 60◦. These polar
coronal holes may exist for ∼seven years around solar minima
and are absent for ∼1–2 years around solar maxima when the
polar magnetic fields reverse their signs. After solar maxima,
small polar holes appear and merge together to grow into a
large one [38], [39]. When there are active regions on the
solar disk, coronal holes might appear in low latitudes, with a
lifetime of 1–2 years.

Coronal holes are nearly indistinguishable in the photo-
sphere and low chromosphere from the quiet solar images
(although there are subtle differences in the spectral profiles
of some chromospheric lines, such as the Ca II H and K
lines [40]. Coronal holes become eminent in the emissions
above 105 K. Interestingly, the coronal holes in UV or X-rays
rotate almost like a rigid body, with the rotation rate faster than
other features [38], [41]. It might be due to their magnetic field
being rooted in the deep interior [42] or due to interchange
reconnection between the open field in the coronal holes and
the closed field nearby [43]. Another remarkable difference
between coronal holes and other areas is the so-called first
ionization potential (FIP) effect, i.e., in quiet Sun and active
regions, the elements with a low FIP are significantly enhanced
in the corona compared with the solar surface. In contrast, the
element abundance in coronal holes is the same between the
corona and the solar surface [44], [45].

Large polar coronal holes may contain many ray-like
structures called polar plumes [46] and sporadic jets. The
plumes were proposed to be generated via the interchange
reconnection between the open field and ephemeral bipolar
magnetic field, the same mechanism as that for coronal
jets [47], although the jets are more impulsive and more
energetic [48], [49]. Compared with the interplume regions,
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plumes are 2–3 times brighter, their kinetic temperature is
lower [50], and their outflows are slower [51]. It was shown
that at heights around r ≈ 2 RS, polar coronal holes are com-
prised of about 25% plume and 75% interplume plasma [52].
A plume decays after the minority-polarity flux is canceled on
a ∼one-day timescale of the supergranular convection [46].
The sporadic jets, due to impulsive interchange reconnection
especially near the edge of coronal holes, may become narrow
CMEs [53], [54].

Photospheric magnetograms indicate that coronal holes are
more unipolar than other regions [46], [55], and the potential
field source surface (PFSS) model revealed that they corre-
spond to open magnetic fields, hence, are the source of the
solar wind [12]. It was found that when the source surface is
assumed to be located at r ≈ 2.5 RS, the open field in the
PFSS model can best match the coronal holes [56].

The Ulysses mission indicated that there exist two
types of the solar wind, i.e., the steadier fast wind
(∼750–800 km s−1) originating from coronal holes and the
slow wind (∼350–400 km s−1) originating from a region
around the Sun’s equatorial belt that is known as the “streamer
belt.” Now, there is accumulating evidence to show that fast
solar wind comes from the core region of large coronal
holes, whereas slow solar wind comes from the edge of
large coronal holes and small coronal holes around active
regions [57], [58], [59], [60], [61]. Note that the edges of
coronal holes correspond to the boundaries of helmet streamers
or pseudostreamers, where interchange reconnection happens
frequently. There are solar wind speeds between the above
two values. These are from the outskirt of the large coronal
holes and small coronal holes around active regions. In the
low corona, the fast solar wind has a lower temperature,
whereas the slow wind has a higher temperature. Beyond the
heliocentric radius r ≈ 1.5 R⊙, the fast wind temperature
becomes higher than that of slow wind, and the wind speed
is positively correlated with the in situ temperature. While
some authors have claimed that fast solar wind and slow solar
wind are accelerated by different mechanisms, e.g., Alfvén
waves for the former and reconnection for the latter, it seems
that the expansion factor of the flux tube plays a key role
in determining the terminal velocity, i.e., radially or slightly
super-radially expanding flux tubes result in the fast solar
wind, the hyperradially expanding flux tubes result in the
slow solar wind [46]. The empirical correlation technique in
this framework has become ready for real-time prediction of
solar wind speed [62], [63], [64], [65]. We argue that the
acceleration of solar wind involves nonlinear mode conversion
of Alfvén waves [66], [67], Alfvénic turbulence [68], and
magnetic reconnection. Here, the latter two processes are
nearly inseparable in the corona, i.e., a turbulent magnetic field
induces reconnection and reconnection generates turbulence.
On the other hand, it should be pointed out that kinetic
processes are responsible for some properties of the solar
wind [69], since minor ions, e.g., O5+, have a strong tempera-
ture anisotropy (T⊥ ∼ 10T//) with T⊥ up to 200 MK and their
outflows are faster than the proton wind by the local Alfvén
speed [70]. Besides, 3He/4He, O7+/O6+, and Fe/O ratios are
often much larger in the slow wind than in fast wind (it is

not surprising that the kinetic properties of some slow wind
streams are the same as those of fast wind in the case that the
slow wind is due to hyperradial expansion of the flux tubes).
Tsurutani et al. [71] have recently reviewed kinetic processes
in the solar wind with discontinuities, magnetic reconnection,
and possible intermediate shocks playing important roles.

When fast wind streams catch up with slow wind, their
collision forms corotating interaction regions (CIRs: [72]).
As the coronal holes rotate along with the Sun, fast streams
and occasional shock waves at the CIRs hit Earth’s magne-
tosphere, producing recurrent storms with Dst ≥ −100 nT in
most cases [73], [74].

It is mentioned in passing that when a CME happens,
sometimes we can observe twin dimmings around the source
region, which are called transient coronal holes [75]. They
were believed to correspond to the footpoints of an erupting
flux rope [76].

B. Solar Flares

Solar flares are transient brightening phenomena in the solar
atmosphere, observed in all electromagnetic spectrums ranging
from radio to gamma rays [77]. Their typical energies are
1029–1032 erg, and time scales are a few minutes to a few
hours, although there are no actual characteristic energies and
time durations for flares. The flare frequency statistics show
that the number of flares N increases with decreasing flare
energy E with a power-law distribution: dN /dE ∝ E−α , where
α = 1.6–2.0 [78].

Solar flares are often associated with mass ejections, such
as jets, filament (prominence) eruptions, and CMEs. The
largest mass ejections, CMEs [54], play a fundamental role
in generating geomagnetic storms and will be described in
detail later in this article. Solar flares also emit solar energetic
particles (SEPs), and especially fast-mode shocks ahead of
CMEs are known to be an important source of SEPs.

The recent progress of space-based solar observations in
the last few decades has revolutionized solar flare research,
and it has been established at least phenomenologically that
solar flares are caused by magnetic reconnection (the release
of magnetic energy stored in the solar atmosphere: [79]).
Historically, it has sometimes been discussed that the origin of
CMEs is different from that of flares [80], but there is increas-
ing evidence that at least major CMEs and flares are simply
different aspects of the same magnetohydrodynamic (MHD)
phenomena ([54], see discussions on CME mechanisms later).

The first solar flare that human beings observed was a
white light flare observed by Carrington [6] and Hodgson [7].
This flare induced the largest geomagnetic storm in the recent
200 years and caused several problems in human civilization
even in the infancy of electromagnetic technology [81]. Tele-
graph systems, the high technology of the day, went down
and fires were started in telegraph stations [82]. It has been
considered that the Carrington flare was one of the most
energetic flares (with an energy of the order of 1032 erg)
observed so far [83].

Recently, Maehara et al. [84] discovered that many
solar-type stars have created superflares with energies
of 1033–1035 ergs (10–1000 times more than the Carrington-
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Fig. 2. From top left to bottom right, a time sequence of images of a CME coming from the Sun. Note that the CME has three intrinsic parts. The figure
is taken from [97].

class flare). This suggested that our Sun has the possibility
of generating such superflares. Although the frequency is low,
once in a few 100 to a few 1000 years for a 1033

− 4 ×

1034 erg superflare [85]. The consequences for humankind
from some extreme events could be disastrous. Evidence of
SEPs from solar extreme superflares 1000–9000 years ago
has been found from 14C in terrestrial tree rings and ice core
data [86], [87], [88], [89].

In 2003, there were flares that were so intense that their
X-ray emission saturated the NOAA 1–8 Å GOES detectors.
As a reference point, an X10-class solar flare is estimated
to be approximately a 1032 erg flare. To approximate the
saturated flare intensities, NOAA extrapolated the flare light
curves to obtain a value of X28 for November 4, 2003, flare
and X17 for the October 28, 2003, flare. On the other hand,
Thomson et al. [90] estimated the November 4 flare as having
an X45 ± 5 intensity (using an ionospheric radio technique).
Tsurutani et al. [91] noted that on October 28, 2003, the flare
was double the intensity of the November 4 flare in EUV
wavelengths (the most intense EUV flare in recorded history),
so it is possible that the total energy of the October 28 flare
was even greater than the November 4 event if one integrates
over the whole flare spectrum. It, therefore, is possible that
some solar flares have already approached the lower end of
superflare intensities (see also [92]). However, the effects on
humankind have not been particularly bad so far.

C. Coronal Mass Ejections

CMEs were discovered in the early 1970s [93], [94], which
were initially called coronal transients. The white-light emis-
sion is due to the Thomson-scattering of the almost-constant
solar photospheric light by the free electrons in the corona.
In 1976, the phenomenon was coined CMEs [95]. According
to the early definition [96], CMEs are observable as discrete
changes in the coronal structures moving outward.

A typical CME consists of three parts: a bright frontal loop,
a cavity, and then a bright core at the center, as shown in
Fig. 2 bottom left panel [97]. The “cavity” is filled with high-
intensity magnetic fields and low-density plasma [98], and
thus, the “magnetic cloud” (MC)/cavity [99] causes magnetic
storms at Earth if the magnetic fields of the cavity are
directed southward [100]. It is noted that not every CME
clearly manifests all these three components in the white-
light images, presumably due to the projection effects or the
contamination from the surrounding corona. A piston-driven
shock wave is believed and sometimes observed straddling the
CME frontal loop. However, even if a shock is not detected
along with the frontal loop, a shock will form as the CME
propagates further from the Sun where the local magnetosonic
wave speed decreases [101]. It is the cavity plasma/MC,
which serves as the piston that drives the formation of the
shock.

The CME occurrence is intimately related to magnetic activ-
ity at the Sun; hence, their occurrence rate follows the sunspot
cycle, with an average of ten events per day during solar
maximum, and slightly less than one event per day during solar
minimum. As a result, ∼19 835 CMEs were observed in
solar cycle 23 and ∼15 685 CMEs in solar cycle 24 [102].

The central position angle is the angle between the central
propagation direction of a CME and the solar north, measured
counterclockwise. It reflects the propagating direction of the
CME projected onto the plane of the sky, or the latitude.
It was found that CMEs are concentrated near the equator
(mostly within ±30◦ in latitude) during solar minimum, and
can appear at any latitude (mainly within the latitude range
of ±60◦) during solar maximum [103].

The angular widths of CMEs range from several degrees
to 360◦. Those events with an angular width < 20◦ are often
called narrow CMEs [53], those events between 20◦ and 120◦

are called normal CMEs, and those wider than 120◦ but
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Fig. 3. Schematic models to describe the eruption of narrow CMEs (a) and normal CMEs (b). (a) is from [54], and (b) is taken from [105].

smaller than 360◦ are called partial halo CMEs [103], [104].
CMEs encircling the solar disk are called halo CMEs. It was
found the average angular width increases from 47◦ near
the solar minimum to 61◦ near the early phase of the solar
maximum [103]. As illustrated in Fig. 3, narrow CMEs and
other normal CMEs might have significantly different mag-
netic environments.

The CME mass distribution covers a wide range, down
to 1012 g or even 1010 g depending on the threshold of
identification [102]. However, most CMEs fall in the mass
range of 3 × 1013–1016 g.

A CME generally starts with a slow rising motion, which
is accelerated in the impulsive phase, reaching a relatively
constant eruption speed [106]. The impulsive acceleration
generally happens within an altitude of 1 RS. The acceler-
ation is about several hundred m s−2, sometimes reaching
7300 m s−2 [106]. The final speed, which is also the apparent
one, ranges from tens of km s−1 up to 4300 km s−1. The CME
final speed has a log-normal distribution [107], which peaks at
250–300 km s−1. During propagation into interplanetary space,
faster CMEs tend to decelerate and slower CMEs tend to
accelerate. With the measurements of CME mass and centroid
speed, the CME kinetic energy can be estimated as well, which
has a log-normal distribution ranging from 1026 to 1032 erg,
averaging 2.3 × 1029 erg [108].

Filaments on the solar disk are called prominences when
appearing above the solar limb. Their eruptions are intimately
related to CMEs. Roughly over 70% of CMEs are accom-
panied by filament eruptions, and also over 70% of filament
eruptions are accompanied by CMEs [109], [110]. There is
an even stronger relationship between CMEs and solar flares.
Most CMEs are accompanied by solar flares, albeit some
flaring brightness is too faint to be recorded by the GOES
SXR light curves. However, the vice versa is not true. For
example, from 1975 to 2011, more than 338 000 flares of
all different levels were detected in the GOES SXR light
curves [78], implying more than 100 000 flares per solar cycle.
The CME association of solar flares increases with the flare
brightness [102], [111].

The energy density of a CME, i.e., the kinetic energy
divided by the volume, ranges from 10−2 to 10 J m−3, whereas
the density of both coronal thermal energy and potential
energy is smaller than 5 × 10−2 J m−3 [54], [105]. This
renders it the only possibility that all CMEs, except the
extremely weak ones, are driven by the coronal magnetic field,
whose energy density is ∼40 J m−3. Based on the strong
correlation among CMEs, filament eruptions, and solar flares,
the classical standard flare model, i.e., the CSHKP model
[112], [113], [114], [115], was later extended to explain the
eruption of CMEs. According to this model (see schematic
in [116]), a filament supported by the core magnetic field is
initially held in equilibrium with overlying closed magnetic
field lines (i.e., the envelope magnetic field). Somehow the
filament loses its equilibrium and starts to rise slowly. As a
result, the field lines overlying the filament are stretched
upward, and a current sheet is formed below the filament
between the upward and downward field lines. The magnetic
reconnection inside the current sheet leads to the flaring loops
below the reconnection region and the fast eruption of the
filament and the overlying closed field lines, forming the
three-components of a CME.

While the standard model catches the essence of the
eruptions, it should be mentioned that it is much simplified
compared with real observations. It is a descriptive framework,
and many details need to be supplemented [117] and care
should be taken. More importantly, it should be kept in mind
that the standard CME/flare model does not account for the
preeruption structure and how such a structure is triggered to
rise.

A missing piece in the standard model is: What is the
preeruption structure (or progenitor for short)? Considering
that the magnetic field at the solar surface changes little after
a CME, it is generally believed that the required magnetic
energy has already been stored in the corona. A magnetic
structure with sufficient free energy must be either strongly
sheared or even twisted as a flux rope. Whereas it is widely
accepted that a flux rope exists in most normal CMEs during
the eruption, a long-standing debate is whether the CME
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Fig. 4. Magnetic reconnection causes solar wind energy input into Earth’s nightside magnetosphere. The schematic shows how ionospheric ions become
part of the ring current. The figure is adapted from [134].

progenitor is always a flux rope or it can also be sheared
arcades.

An indirect method was proposed to distinguish between
sheared arcades and flux ropes in the CME progenitor [118].
While a lot of papers were devoted to confirming the existence
of a flux rope before the eruption, a statistical study using the
indirect method of Chen et al. [118] indicated that flux ropes
exist in 89% of the CME progenitors, and sheared arcades
exist in 11% of the CME progenitors [119].

With both emerging magnetic field and surface motions,
magnetic free energy is accumulated in the corona along with
the quasi-static evolution of the coronal structures [54]. At a
certain stage, the core magnetic field of the CME progenitor
might be triggered to rise significantly, paving the way for
the current sheet formation and reconnection described in the
standard CME/flare model. The triggering mechanisms fall
into two types, reconnection type, and ideal MHD type.

The reconnection-related mechanisms include: 1) the tether-
cutting model, where strongly sheared arcades in the core
field reconnect, and the upper postreconnection field pushes
the core field to rise up [120]. A similar mechanism is
the magnetic cancellation model [121], where positive and
negative magnetic polarities cancel each other at the solar
surface below the core field. One effect of such magnetic
reconnection is the increase of the poloidal magnetic flux,
which was demonstrated to be able to trigger the flux rope to
rise [122], [123]; 2) the breakout model, where a magnetic null
point exits above the core field [124]; and 3) the emerging flux
trigger mechanism, where newly emerging bipolar magnetic
field reconnects with the envelope magnetic field, causing the
envelope field along with the core field to rise [125]. The
ideal MHD mechanisms include: 1) kink instability [126] and
2) torus instability or catastrophe model [127], [128].

III. SOLAR WIND

The existence of solar wind was first inferred by Biermann
from comet tail analyses [15]. Observational hints about
the solar wind existence were provided by Gringauz [129]
and it was first directly measured from spacecraft in situ

measurements by Neugebauer and Snyder [130]. For a more
detailed description of the history of solar wind concepts see
Obridko and Vaisberg [131]. The solar wind is found to be a
more general concept of stellar dynamics with stellar winds
being a very common feature, e.g., [132].

It is now known that there are two basic types: a slow
solar wind and a fast solar wind [130], [133]. The slow solar
wind is believed to originate near or at helmet streamers at
the Sun and has a speed of ∼300–400 km s−1, a density
of ∼5 electrons cm−3, and proton and electron temperatures
of ∼0.5 × 105 K and ∼1.0 × 105 K and magnetic field
intensity of ∼5 nT at 1 au. The fast solar wind originates
from coronal holes [12] and has a speed of ∼750–800 km s−1

at 1 au. The proton density is ∼3 cm−3, and the proton and
electron temperatures are ∼2.8 × 105 K and ∼1.3 × 105 K,
respectively. The embedded magnetic fields have an intensity
of ∼5 nT at 1 AU.

High-speed streams overtake the slow solar wind and form
CIRs [72]. CIRs have density and magnetic fields ranging
from ∼15 to 30 cm−3 and ∼20 to 30 nT, respectively, at 1 AU.

Interplanetary CMEs (ICMEs) have speeds ranging
from ∼300 to 3000 km s−1 at 1 au. Their proton temperatures
are ∼0.1 × 105–1.2 × 105 K, densities are ∼1–10 cm−3,
and embedded magnetic fields are ∼5–50 nT. Fast CMEs
form an upstream shock. The sheaths behind the shocks have
temperatures of ∼0.5 × 105–3.0 × 105 K and densities
of ∼5–25 cm−3. The magnetic field strengths inside sheaths
are ∼10–30 nT.

IV. STORMS AND SUBSTORMS

Knowledge of magnetic storms was present well before
the space age. The great naturalist Alexander von Humboldt
noticed that magnetic needles oscillated as long as auroras
were overhead from his home in Berlin, Germany [4]. In his
paper, he called this a “magnetische ungewitter” or a magnetic
storm.

Magnetic storms are caused by the reconnection of inter-
planetary southward magnetic fields with Earth’s dayside
magnetopause magnetic fields (see Fig. 4) as first proposed
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by Dungey [134]. Echer et al. [135] have shown this to be
the case for all 90 magnetic storms that occurred in the
solar cycle 23. The magnetotail magnetic reconnection causes
convection of ∼100 eV to 1 keV plasma sheet plasma into the
nightside magnetosphere. The electrons, protons, and Helium
ions get energized to ∼10–100-keV ring current energies by
adiabatic compression [136]. Depending on the strength of the
convection electric fields (and storm intensity) the ring current
particles can be injection in as far as L =∼ 2.

At first, it was believed that the ions in the ring cur-
rents were all protons. But Shelley et al. [137] showed
that singly charged oxygen ions were present as well.
Daglis [138] showed that during intense magnetic storms,
O+ became the dominant ion in the ring current. Although
such low-charge state ions clearly must come from the iono-
sphere, Fok et al. [139] have argued from a computer simu-
lation experiment that the oxygen ions come from the plasma
sheet. However, local oxygen ion acceleration through auroral
zone double layers and then magnetospheric compression by
the storm electric field cannot be ruled out in contributing to
the ring current.

Today we know that magnetic storms have to do with ener-
getic ∼30–300-keV ion and electron injection into the magne-
tosphere, causing an enhanced particle ring current [100]. The
electrons’ gradient and curvature drift from midnight through
dawn and then continuously around the Earth. Because the
ions drift in the opposite direction, the energetic particles
form a ring of current extending from L ∼ 2–7 shells (the
McIlwain L parameter is the radial distance in RE at the mag-
netic equator for a dipole approximation of Earth’s magnetic
field: [140]). This diamagnetic ring current causes decreases
in Earth’s surface and near-equatorial magnetic fields. The
decreases in the horizontal component of the field measured
by ground magnetometers are recorded as a Dst (hourly)
or SYM-H (minute resolution) index. It has been shown
theoretically that the decrease in the magnetic field is related
to the total energy of the injected energetic electrons and
ions [141], [142], [143].

Fig. 5 shows two types of magnetic storms, one due to an
ICME (top panel) and the other due to a CIR and following
HSS. In the top panel, the shock ahead of a fast ICME
creates a sudden increase in the Dst index. This is due to
the compression of the magnetosphere and a sudden impulse
(SI+) on the ground. The storm’s main phase is caused by
the southward magnetic fields and magnetic reconnection,
leading to an increase in the radiation belt flux (ring current).
This southward IMF can occur in either the sheath or the
following MC. The bottom panel shows a magnetic storm
caused by a CIR. The magnetic storm’s main phase is caused
by southward IMF components within the CIR. The following
HSS contains large-amplitude Alfvén waves whose southward
components pump more energy into the outer magnetosphere
through sporadic magnetic reconnection. This latter region,
called “high intensity long-duration continuous AE event”
or HILDCAA, is not really a storm recovery phase proper
since more energy is being injected into the magnetosphere
during this interval. The HILDCAA interval can last days
to weeks.

Fig. 5. Two types of magnetic storms identified in the ground-based
Dst(/SYM-H) indices. The top panel shows a schematic of a magnetic storm
caused by an ICME. This type of storm is most prevalent during the maximum
sunspot phase of the solar cycle. The bottom panel shows a magnetic storm
caused by a CIR and the following high-speed stream. The latter geomagnetic
activity is called a HILDCAA. The figure is taken from [144].

There has been a recent focus on an optical solar flare
occurring on September 1, 1859, that was observed by two
London scientists, Carrington [6] and Hodgson [7]. In partic-
ular, there was a large magnetic storm on Earth that occurred
some ∼17 h 40 min after the flare event. It is now recognized
as one of the largest magnetic storms that have occurred
in recorded history [11], [81], [145]. Part of the reason for
this renewed interest in this ancient magnetic storm is that
there were strong GIC effects observed on the ground [82].
It is realized that if such an intense magnetic storm occurred
today, the GIC effects would be far more damaging in our
highly technological society [146]. Substorms were originally
defined by a sequence of auroral forms where their evolution
occurred over ∼30 min to an h in the midnight sector
of the auroral zone (∼60◦–70◦ geomagnetic latitude). This
morphology was first identified by Akasofu [147] using all-sky
camera data. Substorms are now known to also involve plasma
and magnetic field dynamics within the magnetosphere and
magnetotail [136], [148]. Substorms were so named because
they were thought to constitute a fundamental subelement of
a magnetic storm. Substorms can occur as isolated events
as well [149]. They can also occur in HILDCAAs that can
last for days to weeks [150], [151]. It has also been shown
that under certain circumstances, magnetic storms can occur
without substorms [152]. Tsurutani and Gonzalez [153] have
suggested that the convection systems of storms and substorms
are separate and can at times be superimposed.

V. MAGNETOTAIL AND SUBSTORMS

Earth’s magnetotail exists as a coherent structure until
at least 240 RE in the antisunward direction (see review
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by Tsurutani et al. [154]). Southward interplanetary magnetic
fields (IMFs) connect to Earth’s magnetopause magnetic fields
to form “open” magnetotail magnetic fields [134]. When these
magnetic fields are convected antisunward by the solar wind,
they form the magnetotail lobe fields. The magnetotail consists
of the northern and southern low β tail lobes and a high β

plasma sheet sandwiched between the two lobes. At ∼240 RE

downtail, the north-south magnetotail dimension is ∼55 RE ,
and the east-west dimension ∼45 RE . The plasma sheet in
the center has a north–south size of ∼12 RE [155], [156].
The near-Earth plasma sheet is approximately the same
size [157], [158] whereas the near-Earth lobes are slightly
smaller.

The near-Earth plasma sheet contains hot (typically >

100 eV) electrons and protons whose enhanced energy density
stretch across the magnetotail from the dusk to the dawn
borders with flaring near the borders [159]. The crosstail
current through the plasma sheet (and closing currents over
the lobes) sustains the antiparallel magnetic fields of the tail.
The plasma sheet also contains the neutral sheet.

The most dynamical phenomenon in the magnetotail is
produced by sporadic magnetic reconnection in the near-Earth
magnetotail leading to a substorm [149], [160]. The mag-
netosphere and the ionosphere are strongly coupled with
field-aligned currents (electric currents along the magnetic
field lines). Visible and dynamic auroras are the result of
intense 1–10-keV electron precipitation into the auroral zone
atmosphere. These aurora-producing electrons are accelerated
in the electric field parallel to the magnetic field lines called
“double layers” [161], [162].

There are believed to be many scenarios for substorms.
We will focus on only one here. We will discuss magnetic
reconnection that occurs in the near-Earth tail within 30 RE

of the Earth [163], [164], [165]. The IMF turns southward and
enhanced magnetic reconnection occurs at the dayside magne-
topause. Although it appears that magnetic reconnection on the
nightside can start at any timing during the “loading process,”
substorms have been detected in time as short as 20–40 min
from the dayside reconnection process [149], [166]. Examples
of the immediate response of substorms to interplanetary
southward magnetic fields impinging onto the magnetosphere
are shown in Fig. 6. The accumulated field lines and the
plasmas in the northern and southern tail lobes are transported
to the equatorial plane forming inflows for tail magnetic recon-
nection. Magnetic reconnection proceeds explosively with the
X-line geometry of the magnetic field and produces high-speed
plasma outflows near the equatorial plane [167], later called
plasmoids [168], [169], [170]. After the expansion phase of
the substorm, the magnetosphere and ionosphere return to
the presubstorm condition during a period referred to as the
recovery phase.

A new era emerged for detailed kinetic observations of sub-
storms using the Geotail spacecraft [171]. Various aspects of
Hall physics in the ion-electron decoupling region of magnetic
reconnection were revealed [172], [173]. At the center of the
magnetic reconnection site, an intense electron current layer is
formed with dawnward-moving electrons (the electric current
is duskward), which sustain the antiparallel magnetic fields.

Fig. 6. Southward interplanetary magnetic field impingement onto the
magnetosphere and the short delay times before the start of intense auroral
(substorm) activity. The figure is taken from [149].

In the current layer, earthward and tailward electron jets [173]
are produced as outflows from the magnetic reconnection.
Since the electron current layer is thin relative to the ion
Larmor radius, the ions exhibit meandering motion [174].
In the thin antiparallel magnetic field configuration, an ion
cannot perform a full Larmor (gyro) motion. A macroscopic
feature of Hall physics is the formation of the Hall current
system [175]. Fig. 7 shows a schematic of the Hall current
system and the electron dynamics in the vicinity of the X-line
in the magnetic reconnection site. In the separatrix layer,
electrons flow into the X-line creating outward-flowing electric
currents. In the equatorial plane, the difference in the electron
jet speed and the ion flow speed creates inward-flowing electric
currents. Therefore, one current loop forms in each quadrant
of the magnetic reconnection site meridian, and the four loops
can produce the significant dawn–dusk (By) component of
the magnetic field, the Hall magnetic field. The latter has
a quadrupole structure (By >0 in the northern hemisphere
earthward of the magnetic reconnection site), and it is easily
detected in space.
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Fig. 7. Schematic of electron motion in the vicinity of the X -line for the Hall current system illustrated in the 2-D xz plane. Inflowing Hall electrons produce
almost field-aligned currents flowing out of the diffusion region, while outflowing high-speed electrons produce currents flowing into the diffusion region.
These electron motions make the four-loop Hall current system, which results in a quadrupole magnetic field structure. The magnetic field configuration
inevitably becomes 3-D, and the central region should be located inside the plane. This figure is adopted from [176].

The electron diffusion region, which is situated at the
center of the above-mentioned electron current layer, has
been explored by the MMS mission [177], [178]. The MMS
spacecraft approached the X-line as close as one electron
inertial length of approximately 30 km during the July 11,
2017, substorm [179].

There are other scenarios for substorms, possibly hun-
dreds of them. We mention just a few: [180], [181], [182],
[183], [184], [185], [186], [187]. There may be many different
types of substorms fitting these different scenarios (Akasofu,
personal communication, 2018). Interplanetary shocks are
known to trigger substorms within a few minutes after initially
reaching the magnetopause [188], [189]: the mechanism for
this is still not well understood. It has recently been shown
that super-substorms (SML < −2500 nT) triggered by inter-
planetary shocks may not have the dominant energy deposited
in the midnight sector [190]. In one case, such a super-
substorm occurred primarily on the dayside at ∼10 A.M. local
time [191]. Thus, substorm onset mechanisms are becoming
even more complex with time.

VI. RADIATION BELTS/ENERGETIC
MAGNETOSPHERIC PARTICLES

Earth’s magnetosphere is filled with charged particles with
energies in the range of a few keV to hundreds of MeV [192].
They are comprised predominantly of protons and electrons,
and smaller amounts of alpha particles and oxygen ions.
Most of the particles are stably trapped in the magnetosphere
between ∼1.1 and 9.5 RE , and gradient and curvature drift
around the closed magnetic field lines, ∼8.0 RE ; however,
transient populations, such as SEPs, may be present for periods
ranging from days to months (see [193], [194]). The main
sources of these particles are galactic cosmic rays, magnetic
storm and substorm energetic particle injections, acceleration
of terrestrial ionospheric (thermal) plasma, and solar wind
particles. The magnetospheric energetic particles are lost by
several physical processes, including charge-exchange,

Coulomb collisions, wave-particle interactions, convection
out the front side of the magnetopause, and outward radial
diffusion [195].

Discoveries of Earth’s radiation belts [192], [196] by
Explorer 1 and Sputnik 2, respectively, were the most impor-
tant discoveries at the beginning of the space age. The present
understanding of Earth’s radiation environment is a “two-belt”
structure popularly known as the “Van Allen radiation belts”
where energetic particles are organized by the McIlwain L
parameter. The two radiation belts are located approximately at
1.1 < L < 2, called the “inner belt,” and at 3 < L < 8, called
the “outer belt.” The two belts are separated by a “slot region,”
where there is a minimum of energetic particles. This is gen-
erally located around L of ∼2.5. Tsurutani et al. [197] have
suggested that the electron slot is created by the interaction of
relativistic (∼MeV) electrons with a coherent electromagnetic
plasmaspheric hiss. The two belts are significantly different in
particle population and variability.

The inner belt has a stable population of ∼10–100-MeV
protons. The higher energy tail of the protons is produced by
cosmic ray albedo neutron decay (CRAND: [198]). In this pro-
duction process, the incoming galactic cosmic rays collide with
the nuclei of atmospheric atoms and molecules creating albedo
neutrons. The neutrons undergo β-decay, transferring most
of their kinetic energy to the daughter protons (∼100 MeV)
and lesser energy to the electrons (<1 MeV) (see [199]).
A secondary source of the inner zone protons, particularly
at the lower energy tail of the spectrum (<50 MeV), is solar
energetic protons from production at solar flares and ICME
shocks [200], [201], [202], [203]. These protons become
trapped as they enter the inner zone and get scattered owing
to their gyroradii being larger than the local magnetic gra-
dient scale-lengths. Although the inner belt comprises pre-
dominant protons, recent studies [204], [205] have shown
that CRAND also produces energetic electrons of ∼200–
800 keV that is trapped near the inner edge of the inner
belt.
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The ring current which is co-located with the highly
variable outer belt is comprised of ∼10–100-keV electrons,
∼10–300-keV protons, and ∼10–300-keV singly charged oxy-
gen ions (O+) during geomagnetically active periods. The
enhanced storm-time ring current is created by the injection
of ∼100 eV to ∼1 keV magnetotail plasma sheet parti-
cles into the midnight sector of the magnetosphere [136].
As these particles are convected into the magnetosphere
to as low as L = 2, they are adiabatically compressed
(conserving the first two adiabatic invariants; [206], [207]),
energizing the electrons and ions to their full ring current
energies. Energetic electrons gradient and curvature drift
in the opposite direction from the energetic ions to form
the diamagnetic current system or ring current. The ring
current causes the magnetic field magnitude depressions at
the equatorial surface of the Earth [11], [141]. This mag-
netic depression signature is one feature of a “geomagnetic
storm” [4], [100].

The existence of ring current protons was experimen-
tally confirmed by the Orbiting Geophysical Observatory
(OGO) 3 satellite observations [208], [209], [210] for the
first time. This was followed by several other missions like
Active Magnetospheric Particle Tracer Explorer (AMPTE),
Combined Release and Radiation Effects Satellite (CRRES),
and IMAGE, contributing significantly to the current under-
standing of the ring current particles and their variabil-
ity ([211], [212], [213], [214], and references therein).
While ∼10–300-keV protons carry the majority portion of the
ring current particle energy, the 10–300-keV O+ ions, accel-
erated from the ionospheric thermal population plus adiabatic
compression effects, are known to be an important part of
the ring current particles [211], particularly during intense
geomagnetic storms [212], [215].

Highly variable relativistic (∼MeV) electrons constitute the
outer zone or the outer radiation belt [216], [217], [218],
[219], [220]. The MeV electrons are currently believed to
be predominantly locally accelerated in the outer radiation
belt through wave-particle interaction with electromagnetic
chorus waves [221]. Radial diffusion also plays an important
role [222], [223], [224], [225]. Measurements over seven years
of the Van Allen probes have established the complex nature
of electron energization in the outer radiation belt [226].

Wave-particle interactions may be stochastic, resonant, and
nonlinear (for reviews see [227], [228], [229], [230], [231].
The mechanism may be broadly described as follows: temper-
ature anisotropy of ∼10–100-keV electrons leads to plasma
instabilities generating whistler-mode chorus waves (fre-
quency range of ∼100 Hz to ∼10 kHz) in the magneto-
sphere [232], [233], [234]. Cyclotron resonant interaction of
the ∼100-keV electrons with chorus waves leads to ∼MeV
electron acceleration, in a “bootstrap” mechanism from lower
to higher energy [235], [236], [237]. It is to be noted that
wave-particle interactions also result in the loss or removal
of energetic electrons by pitch angle scattering into the loss
cone [231]. Direct observations of pitch angle scattering have
been made both by the Van Allen Probes [238] and the Arase
missions [239].

A. Energetic Particle Space Weather and Extreme Events
As discussed earlier, a significant part of the (outer) magne-

tospheric energetic particle (protons) enhancements are asso-
ciated with geomagnetic storms. Magnetic reconnection [134]
between the southward IMFs and northward (dayside) geo-
magnetic fields is the primary mechanism for magnetic
storms [100], [135]. MC portions of the ICMEs and upstream
sheaths are sometimes characterized by intense southward
IMFs with hours duration [240], [241]. During such events,
the plasma injection is deeper into the magnetosphere and the
particles get energized to ∼50–500 keV, which constitute the
enhanced ring current particle population.

High-speed (∼550–800 km s−1) solar wind streams (HSSs)
emanate from solar coronal holes [12], [242]. Embedded in
these streams are nonlinear Alfvén waves [71], [133]. The
waves (and plasma) are strongly compressed as the HSSs
interact with the upstream slow solar wind, forming CIRs [72],
[243], [244], leading to both intense southward and northward
IMFs. The southward IMF components within CIRs cause
magnetic storms of limited intensities [245].

The HSS Alfvén waves also cause geomagnetic activity, but
of a different nature. Magnetic reconnection due to the south-
ward component of the Alfvén waves causes substorms [147]
and DP2 events [246] for several days to weeks with only
moderate ring current particle injections. These are classified
as high-intensity long-duration continuous auroral electro-
jet (AE) activities (HILDCAAs; [150]). While HILDCAAs do
not contribute much to the ring current protons, long intervals
of ∼10–100-keV electron injections during the events lead to
the acceleration of MeV electrons through the wave-particle
acceleration process. As a result, a one-to-one association of
HILDCAAs with radiation belt relativistic electron fluxes has
been reported [237], [247]. The schematic in Fig. 8 relates
interplanetary HPSs, CIRs, and HSSs to variations in rel-
ativistic electron fluxes in Earth’s outer radiation belt. The
impingement of a high-density HPS onto the magnetosphere
compresses it, depleting the relativistic electrons. The mecha-
nism is as follows: compression of the preexisting, anisotropic
10–100-keV protons in the magnetosphere generates coherent
EMIC waves. The waves cause a rapid loss of relativistic elec-
trons. The magnetospheric compression also causes the escape
of relativistic electrons out of the dayside magnetopause due to
magnetopause shadowing [248]. The impingement of the CIR
and HSS causes sporadic substorms and DP2 events and the
generation of chorus waves. The chorus accelerates ∼100-keV
substorm electrons to relativistic energies, repopulating the
magnetosphere with equal or even higher fluxes of relativistic
electrons from values prior to the depletion event.

Interplanetary shocks can inject energetic electrons deep
into the magnetosphere; these electrons may be extremely
energetic as in the case of the famous March 1991 event [200]
which resulted in electrons of up to 50 MeV at L shells as low
as 2. More recently Kanekal et al. [249] and Foster et al. [250]
have reported on multi-MeV electrons injected into the outer
zone magnetosphere within a few minutes. While these
recent events have not been of the same magnitude as the
March 1991 event, the phenomenon of shock injection is
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Fig. 8. Schematic of CIR and HSS solar wind impacts on the magnetosphere and their associated geomagnetic and radiation belt effects. From top to bottom,
the panels show the solar wind plasma density Nsw, the IMF magnitude B0, the solar wind plasma speed Vsw, the IMF Bz component, the auroral electrojet
index AE, the ring current index Dst, and the relativistic (MeV) electron flux at geosynchronous orbit. The dashed vertical line is the heliospheric current
sheet (HCS), and the density associated with it is the heliospheric plasma sheet (HPS). The CIR is shown by gray-shaded region. The schematic is adopted
from [74].

clearly important, especially during current times when human
reliance on space-based technologies has increased vastly
[e.g., Global Positioning System (GPS) navigation]. Further-
more, these events can result in GICs which can cause power
system failures.

VII. IONOSPHERE

The ionosphere is a thin layer of lightly ionized plasma
that extends from ∼80 km above the surface of the Earth
to ∼1000 km. This electrically conducting layer in the atmo-
sphere was conjectured by Gauss [16] (see English translation
by Glassmeier and Tsurutani [17]). Arthur Edwin Kennelly
introduced the idea of an ionosphere in more detail. The
ionosphere was finally experimentally shown to exist by
Appleton [18]. The primary cause of the ionosphere is the
photoionization of atmospheric atoms and molecules by solar
UV to X-radiation that occurs when that portion of the
ionosphere is exposed on the dayside [251]. As the Earth
rotates and the ionosphere is no longer exposed to solar radi-
ation, much of the plasma recombine back into neutral atoms
and molecules, although significant ionization remains at
night.

An important driver of the ionosphere and its variability is
the chemical composition and thermodynamics of the neutral

component of the upper atmosphere known as the thermo-
sphere. Seasonal variations of the ionosphere are generally
attributed to seasonal changes in the composition of the ther-
mosphere [252]. The fraction of thermospheric atomic (e.g., O)
to molecular species (e.g., N2) is a significant determining
factor for the ionosphere. The molecular species generally
have higher ion recombination rates than atomic species, and
thus, a larger fraction of N2 relative to O will tend to reduce
the plasma density. Since the thermosphere is influenced by
the lower atmosphere through upward propagating waves, the
ionosphere can be strongly influenced by lower atmospheric
conditions such as those associated with sudden stratospheric
warmings [253].

Energetic ∼1–100-keV electron precipitation also creates
ionospheric plasma. This precipitation which forms auroras
occurs primarily on the night side at high auroral (65◦–70◦)

magnetic latitudes in both the northern hemisphere (aurora
borealis) and southern hemisphere (aurora Australis). The
most energetic electrons deposit their energy at ∼80–85 km,
whereas the ∼1-keV electrons deposit their energy at higher
altitudes, ∼110–130 km [254].

The intensity of solar radiation varies with the activity of the
Sun [255] and influences ionospheric densities. In particular,
during solar maximum (the interval around the maximum
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Fig. 9. Earth’s magnetosphere as viewed from above the North Pole.
The Sun is on the left out of view. The solar wind is flowing from the
left to the right. Associated with the magnetic reconnection process are
dawn-to-dusk directed electric fields. The magnetic reconnection in Earth’s
magnetotail leads to earthward convection of the plasma sheet plasma into the
nightside magnetosphere. During magnetic storms, this magnetotail electric
field also penetrates into the nightside and dayside equatorial and midlatitude
ionospheres. On the dayside, the E × B convection lifts up the F-region
ionosphere to higher altitudes and latitudes. The figure is taken from [259].

number of sunspots during the ∼11-year solar cycle), active
regions (clusters of sunspots) cause many flares per day.
On October 28, 2003, the most intense EUV flare in recorded
history occurred [91]. Using a relatively newly developed sci-
entific tool, GPS dual-frequency wave transmissions detected
with ground-based receivers [256], it was ascertained that the
EUV portion of the solar flare spectrum caused the near-
equatorial ionosphere to increase in total vertical electron col-
umn density by ∼30% in a matter of minutes! The enhanced
ionization lasted for ∼3–4 h, far longer than the duration of the
flare. The long duration was caused by the slow recombination
rates at high altitudes.

Ionospheric coupling to the magnetosphere strongly influ-
ences the ionosphere from the poles to subauroral latitudes.
Magnetospheric antisunward flow, driven by the solar wind,
causes large-scale noon-to-midnight motion of ionospheric
plasma over the geomagnetic polar cap via electrodynamic
coupling [257]. At subauroral latitudes, sunward “return” flow
of the ionosphere associated with earthward convection of the
inner magnetosphere leads to plasma structuring at the inter-
face regions between antisunward and sunward flows [258].

Although it was discovered in 1968 that near polar iono-
spheric current systems were connected to equatorial current
systems [246], [260], [261], it was not until fairly recently
that it was found that this connection could have profound
effects on the near-equatorial ionosphere. During magnetic
storm main phases, prompt penetration electric fields (PPEFs)
cause an uplifting of the dayside ionosphere to heights well
above 400 km [259], [262], [263], the height where many
polar orbiting spacecraft fly. A schematic of this mechanism
is shown in Fig. 9. For one storm case, significant oxygen ion
densities were found at over ∼850-km altitude [264]. The cur-
rent worry is that if an extreme magnetic storm occurred [265],
satellite drag effects could cause many polar-orbiting satellites
to be lost to tracking radar for days to weeks, and possibly
lose significant altitude and orbiting lifetime.

Fig. 10. Integrated electron content (TEC) measured above the CHAMP
satellite (400-km altitude) during the geomagnetic storm of October 30, 2003.
Ground tracks of the CHAMP satellite for the three dayside tracks are shown
in the upper right inset. The blue curve is TEC above CHAMP prior to the
storm. The red and black curves are the TEC values during the first and second
passes after storm onset. The figure is taken from [262].

Fig. 10 shows the impact of a PPEF during the October 30,
2003, magnetic storm. The blue trace shows TEC above
the CHAMP satellite (orbiting at ∼400-km altitude) before
storm onset. The two peaks at ±10◦ geomagnetic latitude are
persistent daytime ionospheric structures known as equatorial
ionization anomalies (EIAs). Just after the storm onset the
red trace shows the TEC above CHAMP for the dayside
pass. The EIA peaks are located at ∼±20◦ with a peak value
of ∼200 TECU. On the next dayside pass (the black trace), the
EIAs are at ∼±30◦ with the peak TEC values near 300 TECU.

VIII. PLASMA INSTABILITIES, WAVES, AND
WAVE-PARTICLE INTERACTIONS

In the 1950s, the field of plasma physics grew considerably.
It was driven by the goal to achieve controlled nuclear fusion
with the aim of providing almost limitless energy for human
society. Attempts to achieve nuclear fusion were plagued
by the problem of plasma instabilities where the plasmas
were lost to the walls of the confinement devices. In space,
plasma instabilities excite plasma waves that react back on the
particle distribution leading to acceleration and loss. One very
positive effect of space plasma instabilities and wave-particle
interactions is they create the diffuse aurora, including 5–15-s
optical and X-ray pulsations [266]. More on this topic can be
found in Section X.

A. Adiabatic Invariants

To understand how wave-particle interactions operate in
space it is important to understand particle motion in the
geomagnetic field and the three adiabatic invariants [206].
Electrons have three types of cyclic motion, cyclotron motion
around the magnetic field, bounce motion along the field
between two mirror points in the northern and southern
hemispheres of the Earth, and drift motion around the Earth
caused by the gradient and curvature of the magnetic field.
The period of each motion depends on location and energy,
but for a 1-MeV electron at L = 4 the cyclotron, bounce, and
drift periods are a few milliseconds, a few seconds, and several
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minutes, respectively. Provided changes in the system are slow
compared with each period there is an invariant (conservation
law) associated with each periodic motion. Wave-particle inter-
actions break the first, and hence, all three adiabatic invariants
allow the efficient exchange of energy and momentum.

B. Doppler-Shifted Cyclotron Resonance

Doppler-shifted cyclotron resonance is of central importance
in wave-particle interactions. It arises out of kinetic theory and
weak turbulence theory [227], [230], [267].

The classic example is for a circularly polarized whistler
mode wave traveling along the geomagnetic field where the
wave frequency ω lies below the electron cyclotron frequency
� = 2π fce. Resonance is possible when the frequency is
shifted by the phase velocity ω/kz of the wave relative to
the electron velocity vz along the magnetic field so that the
electron and wave electric field rotate around the background
field in unison. Equation (1) gives the relation, where γ is the
Lorentz factor and n is an integer

ω −
n�

γ
− kzvz = 0. (1)

For cyclotron resonance with circularly polarized whistler
mode waves traveling exactly along the magnetic field, the
waves and the resonant electrons must travel in opposite
directions. Cyclotron resonance is also possible between
whistler mode waves and ions, but the ions must travel
in the same direction and overtake the waves (anomalous
cyclotron resonance). For oblique waves, there are multiple
harmonic resonances. Cyclotron resonance breaks the first
invariant and leads to particle scattering in pitch angle (the
instantaneous direction of the particle velocity relative to the
ambient magnetic field) and energy [228], [268]. A discussion
of particle pitch angle and energy diffusion with broadband
of incoherent whistler mode waves is given by Gendrin [269].
Lakhina et al. [270] discuss wave-particle interactions with a
narrowband of coherent waves.

C. Plasmaspheric Hiss

Plasmaspheric hiss is a seemingly structureless electro-
magnetic whistler mode wave observed primarily inside the
high-density plasmasphere (L < 6) as a broadband set of
wave emissions with frequencies below the electron cyclotron
frequency [232], [271], [272]. Weak turbulence theory shows
that hiss waves are responsible for electron precipitation into
the atmosphere and the formation of the so-called slot region
between the inner and outer electron radiation belt [273].
As a result, it was suggested that the quiet-time two-zone
structure of the electron radiation belts was formed by two
processes: inward radial diffusion across the geomagnetic field
from a source in the outer magnetosphere; and electron loss by
plasmaspheric hiss closer to the Earth [274]. This basic idea
remained in place until the late 1990s when it was recognized
that other waves play an important role during active times.

The origin of plasmasphere hiss is a topic of considerable
debate. One idea is that plasmaspheric hiss is generated by
plasma instability near the geomagnetic equator [271]. The

waves would grow as they propagate along the geomagnetic
field and reflect to fill the entire plasmasphere. Data analysis
suggested that wave growth by this mechanism was sufficient
to explain the observations [275].

Santolik et al. [276] and Bortnik et al. [277], [278] sug-
gested that hiss originated from chorus waves generated out-
side the plasmasphere (6 < L < 10). In this scenario [277], the
chorus first propagates to high latitudes and then gains access
to the plasmasphere by penetration through the high latitude
plasmapause. Furthermore, although the magnetic local time
distribution (MLT) of hiss extends further into the afternoon
sector than the chorus, ray tracing showed that the MLT dis-
tribution can be explained by wave refraction from azimuthal
density gradients [279]. Tsurutani et al. [197], [280] have
provided additional support for the idea of the chorus being the
origin of plasmaspheric hiss. They have shown that plasmas-
pheric hiss is composed of ∼3–5 cycles of coherent emissions,
similar to that of chorus subelements [281]. Furthermore,
Tsurutani et al. [197] predicted that with plasmaspheric hiss
being coherent, the electron slot will be formed within days
and not months. However, observational confirmation has not
been obtained yet.

Plasmaspheric hiss is a possible important loss process
for the radiation belts inside the plasmasphere for electron
energies up to a MeV or more [282]. The wave properties are
used to calculate the parasitic pitch angle and energy diffusion
rates and electron loss timescales for energies between a few
hundred to several MeV assuming incoherent waves [283].
Electron pitch angle and energy diffusion by hiss is now
essential component of global radiation belt models.

Energetic ∼10–100-keV anisotropic electrons injected dur-
ing magnetic substorms [136] increase wave instability which
then reacts back on the particle distribution causing more
precipitation [227]. By balancing wave growth against wave
energy transported out of the unstable region a limit on the
trapped flux can be obtained. This idea has been used to assess
the electron spectrum and maximum electron flux during active
times [284]. The method has also been used to assess the
electron energy spectrum at the magnetized planets [285]. The
method has an important modern application, for example,
to help assess the maximum flux and the risk of satellite
charging for a severe space weather event [286].

Plasmaspheric hiss has been observed at the magnetized
planets. At Saturn, studies show that there are regions where
the plasma density is sufficiently small that hiss can actually
accelerate electrons and contribute to the Saturnian radiation
belt [287].

D. Chorus Waves

Chorus waves are electromagnetic whistler mode waves,
which consist of a repeated series of intense, short-lived
(∼0.1–0.5 s) rising frequency tones [232], [233], [288].
A repeated train of chorus emissions can last for hours,
essentially as long as the dispersive ∼10–100-keV substorm
anisotropic pitch angle electron cloud lasts [289]. Very often
satellite observations show that the chorus is split into two
bands, one below and one above half the electron cyclotron
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Fig. 11. Chorus waves detected at Halley, Antarctica, in 2012. The strong rising frequency elements are chorus whereas hiss waves are a weaker background
of broadband waves near 2–3 kHz. The vertical lines are impulsive signals from lightning.

frequency [288]. The signals became known as “dawn chorus”
as the signals, when converted into sound, resemble the
chirping of birds at dawn [290]. They were first detected by
ground-based radio equipment with an occurrence rate that
tends to peak near dawn. However, the waves are generated
in space by natural plasma instabilities which are highly
nonlinear in nature and require special conditions to propagate
to the ground [291]. An example of rising tone chorus waves
recorded at Halley, Antarctica, is shown in Fig. 11. The chorus
comes out of a weak background of hiss waves.

Chorus is one of the strongest sets of plasma waves observed
in the magnetosphere and perhaps the most important one.
The characteristic rising frequency elements indicate that these
waves are generated by nonlinear wave-particle interactions.
The basic interaction is via Doppler-shifted cyclotron reso-
nance between waves and electrons propagating in opposite
directions, but propagation effects and other nonlinear aspects,
such as energetic electron phase bunching, are required to
explain the change in frequency and the limited duration of
each chorus element. The main aspects of the interaction
were shown in an early series of plasma simulations [292]
and numerous other studies, notably by scientists at Kyoto
University, Kyoto, Japan [236], [293], [294], have addressed
nonlinear effects. One possible scenario can be summarized
as follows. Waves are excited below the electron cyclotron
frequency, typically around ∼0.2–0.3 fce, by a temperature
anisotropy in the electron distribution. The waves grow ini-
tially with a linear and then nonlinear growth rate, such that a
narrowband of frequencies dominates the spectrum. The waves
react back on the electrons and cause the nonlinear phenomena
of phase bunching whereby electrons become grouped with a
particular phase with respect to the wave electric field. The
initial bandwidth is important as phase bunching can only
take place if a narrowband of waves dominates (the chorus
subelements); otherwise; the phase becomes randomized. The
phase-bunched electrons now form a resonant current that

rotates around the background magnetic field. That part of the
resonant current in phase with the wave electric field enables
wave growth while the component in phase with the magnetic
field modifies the wave dispersion and causes a change in the
frequency [293]. As the wave propagates along the background
field the nonhomogeneity of the plasma enables a second-order
resonance that leads to rising (or falling) tones characteristic
of the chorus [294].

An alternative idea is the backward wave oscillator mech-
anism [295]. In this idea, a step function in the velocity
distribution is assumed to form because of interactions with
noise-like waves, e.g., hiss. A monochromatic wave is excited
near the equator and serves as a trigger for higher frequency
waves as it propagates along the geomagnetic field. Measuring
such a steep shoulder to test this idea is beyond present
capability.

Chorus wave-particle interactions involve phase bunching
and trapping which is omitted in the quasi-linear approach
of Kennel and Petschek [227]. Currently, a full modification
of the Kennel–Petschek [227] theory for coherent chorus
with monochromatic subelement frequencies needs to be
developed [296].

Several studies have surveyed the occurrence and distri-
bution of chorus. Early work showed that chorus occurred
outside the plasmapause after local midnight in association
with substorms [234], [288]. Observations also indicate two
main source regions, one near the magnetic equator and two
at higher latitudes on the dayside of the Earth, in the northern
and southern hemispheres, where the geomagnetic field has
a minimum due to solar wind compression. In general, the
chorus is strongest just outside the plasmapause but extends to
L = 10, where it becomes much weaker. It is observed from
midnight through dawn to just after noon in magnetic local
time [297], [298]. The waves are most intense at latitudes
a few degrees above (below) the geomagnetic equator and
have a very small wave normal angle [299], [300] indicating
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propagation along the geomagnetic field. Wave power extends
to at least 40◦ in latitude but becomes weaker with higher
latitude. Wave properties, such as power, frequency banding,
polarization, the direction of the wave normal angle, latitude,
MLT distribution, as well as dependences on thermal plasma
density and background magnetic field strength are essential
for determining the effectiveness of the waves for electron
precipitation and acceleration. Several models assuming a
variety of these properties have been developed [301].

High altitude balloon observations of bremsstrahlung
X-rays [302] and an auroral rocket flight with energetic elec-
tron detectors [303] have detected short duration ∼0.1–0.5-s
energetic electron precipitation events. These short burst
events have been named “microbursts.” More recently
Lorentzen et al. [304] have observed microburst events in
the magnetosphere measured by low-altitude satellite particle
detectors. Hosokawa et al. [305] have detected optical pulsa-
tions with the same time scale (see Section X). The time scale
of the microbursts and chorus elements are approximately
the same. Tsurutani et al. [306] and Lakhina et al. [270] have
shown that microburst precipitation can only occur by wave-
particle interactions involving coherent waves and not by
incoherent waves. By comparing the trapped content of the
radiation belts with the precipitation flux, it is estimated that
chorus-induced microbursts could deplete MeV electrons in
the outer radiation belt over a period of 1–2 days [307].
However, Tsurutani et al. [308] have shown that MeV-trapped
electrons at L = 6.6 “disappear” within 1 h after the magne-
tosphere is compressed by high plasma density phenomena,
such as a heliospheric plasma sheet or an interplanetary
shock [309]. At this time, it is not known if this rapid loss rate
is due to precipitation associated with interaction with coherent
EMIC waves generated by the magnetospheric compression,
magnetopause shadowing (the relativistic electrons exiting out
the dayside magnetopause: [248]), or both.

Chorus has grown in importance due to its role in radiation
belt dynamics. By the late 1990s, satellites had shown that the
electron flux in the outer belt can vary by orders of magnitude
on timescales of hours to days [309]. The theory at the time
applied to the equilibrium structure of the radiation belts but
could not explain these rapid variations. As a result, two
leading ideas emerged, one on chorus wave acceleration and
the other on acceleration by enhanced radial diffusion driven
by ULF waves. Only the former is discussed here.

The suggestion that the chorus could be responsible for
electron acceleration in the radiation belts was put forward
in 1998 [221], [310]. Using a satellite survey of chorus wave
power [297] and quasi-linear theory to calculate electron dif-
fusion coefficients, it was shown that electron energy diffusion
by chorus was very effective at large pitch angles and could
extend up to several MeV [311]. Furthermore, the process was
more efficient in regions of low density (more accurately low
fpe/ fce), such as just outside the plasmapause [312], [313].
Using chorus observations in different MLT sectors it was
shown that the MeV electron flux could increase by an order
of magnitude or more over a timescale of a day or so [311].

Horne and Thorne [314] showed that in the scheme of
wave-particle interactions with quasi-linear theory, electrons

with large pitch angles are diffused in energy to even higher
energies and remain trapped in space. The effect of pitch angle
diffusion is a transfer of energy from many electrons at low
energies to the waves which then accelerate a fraction of the
trapped population to relativistic energies.

Global models of the radiation belts solve the
Fokker–Planck equation using diffusion rates that are based on
a quasi-linear approach. They show that chorus can generate a
peak in the electron phase space density inside geostationary
orbit [315], [316], [317], [318], [319], [320], [321]. Evidence
for a peak in the phase space density that grows with time has
been found in RBSP data [322]. Such a growing peak cannot
be formed by radial diffusion alone as radial diffusion acts to
remove peaks. The growing peak is clear evidence to support
local wave acceleration. Simulations also show that chorus
wave acceleration should form a characteristic electron pitch
angle distribution [323] which has been found experimentally
in satellite data [324]. Chorus electron acceleration now plays
a central role in the formation of Earth’s radiation belts and
has transformed ideas, which have been held for 40 years or
more [325].

Chorus waves are now used in global models to forecast
Earth’s electron radiation belts for space weather applications.
They have moved from a challenging theoretical problem to
an important practical application, namely, to help protect
satellites in orbit from harmful electron radiation [326], [327].

Chorus waves have also detected at Jupiter [328], [329]
and Saturn [330], [331]. At Jupiter, the chorus has been
suggested as providing the missing acceleration needed to
produce 50-MeV electrons that emit synchrotron radiation
from the planet [332]. At Saturn, similar wave acceleration
processes involving chorus [333], Z mode waves [334], and
hiss [287] are now suggested to play a key role in the origin
of the Saturnian radiation belt.

Chorus waves also play an important role in certain types
of aurorae, such as pulsating aurora (see Section X). Tsurutani
and Smith [288] showed that lower band chorus often occurred
in ∼5–15 second “trains” of bursts. These bunches of chorus
elements with gaps of 5–15 s could cause wave-particle inter-
actions with precipitation giving rise to the ∼5–15-s optical
pulsations. Recent observations of optical pulsations [335] are
in agreement with this assessment. However, at this time,
there is no explanation for the bunching of chorus elements
noted above. Tsurutani and Smith [288] did not find 5–15-s
micropulsations in the equatorial plane, which could modulate
the electron pitch angle distributions as suggested by Coroniti
and Kennel [336]. A mechanism suggested by Davidson [337]
remains a possible explanation.

E. Magnetosonic Waves

Magnetosonic waves were first called equatorial noise
[338], [339] but now with greater wave diagnostics, they are
known for what they are, magnetosonic waves. Extremely
low frequency (ELF)/very low frequency (VLF) magne-
tosonic waves are linearly polarized waves having mag-
netic oscillations parallel to the ambient magnetic field and
electric components orthogonal to the ambient magnetic
field [265], [340], [341], [342], [343], [344]. Magnetosonic
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waves have become very important as they can accelerate
electrons to relativistic energies both inside and outside the
plasmapause and contribute to electron radiation belts [345].
These waves propagate across the geomagnetic field at fre-
quencies between the harmonics of the proton cyclotron
frequency below the lower hybrid resonance frequency. The
waves have peak amplitudes within about ±5◦ of the mag-
netic equator but have been detected as far away as ±60◦

MLAT [346].
Electron diffusion is mainly by Landau resonance and as a

result, the waves resonate with relatively large pitch angles.
They do not diffuse electrons into the loss cone on their
own, but when combined with other wave modes, such as
plasmaspheric hiss, they can contribute to electron loss over a
wider range of pitch angles [347].

Magnetosonic waves are generated by a proton ring
distribution where the ring speed exceeds the Alfvén
speed [341], [348]. The waves propagate across the geomag-
netic field [341]. Near the plasmapause ray tracing shows that
these waves can be refracted to change their MLTs [349].
Since the waves are generated by protons in the ring current
and parasitically interact with the electrons in the radiation
belt, they couple the ring current and electron radiation belts
together [348].

F. VLF Transmitters

After the First World War, electromagnetic VLF signals
were used to communicate with submarines. The advantage
of this frequency range is that it can penetrate seawater to
a greater depth than waves at higher frequencies. Signals
from VLF transmitters can travel halfway around the Earth
or more due to propagation in a waveguide mode existing
between the conducting Earth (and sea) and the ionosphere (for
more information, see the introduction in [350]). While it was
realized that these signals could also leak out into space and
cause electron precipitation [351], it was only in the late 1990s
that their importance for the radiation belts was established.

Abel and Thorne [352], [353] showed that VLF transmitter
waves caused a major reduction in electron lifetimes in the
radiation belts between L = 1.5 and 2.5. Gamble et al. [354]
measured the electron flux when the VLF station in Western
Australia was transmitting compared with when it was not
(down for maintenance). Gamble et al. [354] found definitive
evidence for electron pitch angle diffusion into the drift
loss cone when the transmitter was on. Observations by the
Demeter satellite also showed a characteristic energy time sig-
nature of particle precipitation due to the transmitter. Research
confirmed that as electrons drift around the Earth they are lost
primarily over the south Atlantic anomaly region where the
bounce loss cone is larger due to the weaker magnetic field in
the southern hemisphere [355].

VLF transmitters have been invoked to explain the so-called
“impenetrable barrier,” that is, during the Van Allen Probes
satellite era (2012–2019) radiation belt electrons at relativistic
energies have not been observed inside approximately L = 2.5.
It has been suggested that transmitter signals suppress the

growth of chorus waves and hence the acceleration of electrons
to relativistic energies and are therefore responsible for both
electron precipitation and the impenetrable barrier [356]. How-
ever, careful modeling of the transmitted frequencies shows
that VLF signals do not resonate with MeV electrons and
therefore cannot be responsible for electron loss at MeV
energies [357]. It should also be noted that the idea of an
impenetrable barrier is somewhat misleading as relativistic
electrons have been observed at lower L during very active
periods prior to the Van Allen Probes mission [358], [359].

The idea of using transmitters to remove radiation and pro-
tect space assets is also known as radiation belt remediation.
Electron loss by ground-based transmitters prompted the idea
of controlled precipitation by transmitters on satellites [360].
The DSX satellite was launched in 2019 to test this idea
and will provide new opportunities to test theory against
experiment.

G. ECH Waves

Electrostatic electron cyclotron harmonic (ECH) waves
were first observed in the magnetosphere in the early
1970s [361], [362]. The waves are electrostatic in that the
k vector of the wave is almost perpendicular to the ambient
magnetic field and along the wave electric field. The waves
are observed between the harmonics of the electron cyclotron
frequency in multiple bands up to the upper hybrid frequency,
and sometimes above it. For this reason, they are known as
(n + 1/2) fce emissions [363]. The cold plasma density effec-
tively controls how many bands can be excited [364]. They
occur at almost all local times outside the plasmapause [365]
and resonate with typically 1–10 keV electrons injected from
the plasma sheet during substorms.

Johnstone et al. [366] suggested that the chorus could be
responsible for the diffuse aurora. Thorne et al. [367] used the
remnant shape of the pitch angle distribution to further argue
that the chorus is the most important for creating the diffuse
aurora. Where we presently stand is that both ECH waves and
upper band chorus contribute to the diffuse aurora depending
on the particular energy of the electrons being precipitated into
the atmosphere [368].

Electrostatic ECH waves also play a role as a source of elec-
tromagnetic waves emitted from the Earth and planets [369].
However, the method by which energy is converted from
ECH into electromagnetic O and X mode waves remains
unresolved. In the linear mode conversion theory [370], [371]
ECH waves refract in the large density gradient at the edge
of the plasmapause and mode convert into O mode waves at
the so-called radio window. The radio window is where the
refractive indices of two dispersion branches are the same. Ray
tracing in a hot plasma shows that wave growth and refraction
are possible without significant damping if the density gradient
is large [372]. Other theories suggest that energy is converted
via a nonlinear three-wave interaction [373]. Mode conversion
between ECH and free space O and X mode waves has also
been suggested to explain radiation emitted from Jupiter [371]
and Saturn [374].
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H. EMIC Waves

Electromagnetic ion cyclotron (EMIC) waves are propagat-
ing waves below the proton cyclotron frequency [as opposed
to field-line resonances (FLRs)]. In an electron-hydrogen
plasma, the waves are left-hand circularly polarized, or more
generally left-hand elliptically polarized for propagation at an
angle to the background field. In a multiion plasma, such as
the magnetosphere, there are stop bands where no left-hand
polarized waves are possible and bands where the waves are
right-hand or right-hand elliptically polarized [375]. More
details concerning EMIC waves can be found in Section IX.

Several studies have shown that EMIC waves can heat
heavy ions, at the second harmonic of the oxygen cyclotron
frequency [376], and at the biion resonance frequency [377].
The waves are also very effective in heating up-flowing oxygen
from low altitudes [378], [379] and trapping the ions in the
magnetosphere.

EMIC waves resonate with high-energy (MeV) electrons
and are important in radiation belt dynamics due to the
relatively high amplitudes and effectiveness in pitch angle
diffusion and precipitation [380], [381]. Typically, the energy
range is 1–10 MeV for typical cold plasma densities found
in the magnetosphere [382]. One of the recent objectives has
been to determine the lowest energy electrons these waves can
precipitate which may be as low as ∼400 keV [383]. Pitch
angle diffusion is energy dependent such that the distribution
that remains trapped in space becomes increasingly narrow
and peaked near 90◦ with increasing energy [384], [385].

EMIC waves are responsible for the precipitation of ultra-
relativistic electrons [386] and the separation of the outer
radiation belt into two regions where the inner one is known as
the storage ring and may persist for many days. These waves
are now an essential part of any global radiation belt model.

IX. ELECTROMAGNETIC PULSATIONS

A. Definition of Pulsations

Electromagnetic pulsations are defined as short-period fluc-
tuations in the geomagnetic field in the range of 0.2–600 s.
This unique type of perturbation of the terrestrial magnetic
field has been interpreted as MHD waves [387], [388], a low-
frequency wave type suggested by Alfvén [22]. Such short-
period variations in the geomagnetic field are driven either
directly or indirectly by the solar output and sometimes are
called magnetic pulsations or micropulsations. The frequencies
of magnetic pulsations fall in the range of ultralow-frequency
(ULF: ∼0–30 Hz) electromagnetic waves. The amplitudes of
the magnetic pulsations are found to increase as their time
periods increase (or their frequencies decrease), varying over
a large range, from several hundreds of nT at the longest time
periods (∼600 s) to fractions of an nT at the shortest time
periods (∼0.2 s). The electromagnetic pulsations are detected
on the ground by dc magnetometers. In the magnetosphere
of the Earth, they are recorded by magnetic and electric
field sensors onboard spacecraft. Fig. 12 shows a figure that
combines both ground and satellite observations.

It is not that ULF waves are observed only on the Earth,
these waves are present in other planetary magnetospheres

Fig. 12. ULF wave recordings at a ground station in Northern Scandinavia
and the GEOS 2 spacecraft. H and D denote the two horizontal components
of the ground magnetic field variation, Er and Eφ the radial and azimuthal
electric field vector components in the equatorial region at geostationary orbit
(adapted from [24]).

[389], [390], [391], [392]. Khurana et al. [391] found that
ULF wave power is maximum for the Earth and the amplitudes
decrease with greater distance from the Sun: Jupiter, Saturn,
and then Uranus.

ULF wave activity is also observed in the foreshock regions
of planetary magnetospheres [393], [394], [395], [396], [397],
[398], [399] as well as in the induced magnetospheres of
Mercury [400], [401], Venus [402], and Mars [403]. Smith and
Tsurutani [404] discovered heavy ion cyclotron waves inside
the magnetosphere of Saturn. ULF waves have been observed
near the magnetic pileup boundary of Comet 1P/Halley [405].
An excellent review of the ULF waves observed in the magne-
tospheres throughout the solar system is given in Glassmeier
and Epsley [392]. See also Sections VIII and XII.

ULF waves have also been detected upstream of interplan-
etary shocks [406], [407], [408]. Similar to Earth’s foreshock
case, ULF waves have speeds that are too low to propagate
upstream against the solar wind flow. Energetic particle beams
propagate into the upstream region and through a beam or
ring-beam instabilities, generate waves there.

B. Classification of Magnetic Pulsations

Magnetic pulsations observed on the ground can be clas-
sified into two broad types depending on the waveforms and
periods. Such a classification has formally been done by the
International Association of Geomagnetism and Aeronomy
(IAGA) [409]. Magnetic pulsations having quasi-sinusoidal
waveforms are called pulsation continuous (Pc), whereas those
with irregular waveforms are known as pulsation irregular
(Pi). Pis may possibly be caused by nonlinear distortions of
Pc waves. This has not been explored thoroughly, but the
discussion of interplanetary Alfvén waves has been examined
(see Section XIII). Each main class is further subdivided
into period (or frequency) bands that roughly characterize a
particular type of pulsation, as shown in Table I.

During periods of disturbed geomagnetic activity, such as
substorms and magnetic storms, giant magnetic pulsations,
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TABLE I
CLASSIFICATION OF MAGNETIC PULSATIONS

called Pc6 or Ps6, are observed with periods ranging
from ∼600–900 s.

Waves in the ULF frequency range can also be generated
by plasma instabilities. These waves are identified by different
names which will be discussed in the following.

C. Generation Mechanisms of Magnetic Pulsations

A variety of plasma processes occurring in the solar wind
and in Earth’s magnetosphere are responsible for the magnetic
pulsations that are observed on the ground or in near-Earth
space [410]. The fluctuations in the magnetospheric currents
as well as the presence of nonthermal charged particle distri-
butions existing in planetary magnetospheres can drive several
plasma instabilities that can lead to the generation of magnetic
pulsations [392], [411]. Therefore, changes in solar wind
parameters can produce dramatic effects on the type of waves
observed at a particular location on the Earth as well as in
planetary magnetospheres.

It has been observed that Pcs having the same frequency
range can have different characteristics, e.g., their harmonic
structure, polarization, or spatial location may not be the
same. These differences hint that there can be different gen-
eration mechanisms for Pc pulsations. For the long-period
(Pc3–Pc5) magnetic pulsations, two popular mechanisms have
been discussed in the literature. The first mechanism is based
on field-line resonance (FLR) theory. In the FLR mecha-
nism, a monochromatic surface wave is excited by some
plasma instability, such as the Kelvin–Helmholtz [412], [413]
and the drift mirror mode [414] instabilities, both possibly
occurring at the magnetopause. These instabilities resonantly
couple with a shear Alfvén wave associated with local field
line oscillations [415], [416], [417]. Archer et al. [418] have
provided unambiguous direct observational proof that the
magnetopause motion and magnetospheric ULF waves at
well-defined frequencies, excited during a rare isolated fast
plasma jet impinging on the magnetopause boundary, can
only be explained in terms of the magnetopause surface
eigenmode mechanism [417]. This resonant mode coupling
or FLR mechanism occurs quite commonly in planetary

magnetospheres [419]. The second mechanism is based on
cavity modes, where sudden impulses in the solar wind
excite global fast magnetosonic modes throughout the entire
magnetospheric cavity [411], [420]. The cavity modes couple
to the FLRs that drive currents in the ionosphere producing
magnetic pulsations. Shen et al. [421] analyzed the dayside
ULF wave event observed by THEMIS-A on January 11,
2010, and concluded that the ULF waves were excited by the
cavity mode mechanism [420]. Wang et al. [422] have shown
from a multispacecraft study that the quiet-time Pc five ULF
waves are driven by the combined effects of Kelvin–Helmholtz
instability and ion foreshock perturbations. In addition, some
daytime Pc3–Pc5 pulsations are believed to be driven directly
by solar wind pressure fluctuations [423].

Short-period continuous pulsations (Pc1 and 2) have
entirely different generation mechanisms, one being an elec-
tromagnetic ion cyclotron (EMIC) instability. EMIC waves
are generated by an anisotropic energetic proton distribu-
tion [227], [424], [425], primarily as left-hand elliptically
polarized waves as these have the lowest resonant ener-
gies [375], [426]. However, the waves can become linear or
even right-hand elliptically polarized because of propagation.
The presence of heavy ions leads to magnetospheric wave
reflection of EMIC waves [426], [427], [428]. Solar wind
pressure pulses can enhance the proton perpendicular tem-
perature anisotropy to generate EMIC waves in the dayside
outer magnetosphere as well [308], [382]. Remya et al. [382]
have shown that some EMIC waves are coherent and these can
play an important role in ion precipitation, ion heating in the
ring current, and in relativistic electron loss from the radiation
belts. Obliquely propagating EMIC waves acquire a large
parallel electric field that can damp the waves and accelerate
electrons leading to the excitation of the red aurora [429], also
known as stable auroral red (SAR) arcs. Furthermore, EMIC
waves can heat heavy ions, at the second harmonic of the
oxygen cyclotron frequency [376] and at the biion resonance
frequency [377].

Although, the preferred magnetospheric location for EMIC
wave growth is a region just inside the plasmapause, which
overlaps with the injection of protons during substorms, and
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many surveys of EMIC waves show the occurrence of these
waves in regions outside the plasmapause [430], near the
magnetopause [431], [432], and in the magnetosheath [433],
all excited by the EMIC instability. Kasahara et al. [349] have
observed EMIC waves well inside the plasmasphere, which
probably originate by mode conversion from magnetosonic
waves [434], rather than from the EMIC instability.

Tsurutani and Smith [435] identified electromagnetic pro-
ton cyclotron waves associated with substorms in the dis-
tant tail (X < −220 RE ) plasma sheet boundary layer.
Cowley et al. [436] identified energetic > 35-keV proton
beams launched from an x-line tail reconnection site earthward
of the spacecraft. Gary et al. [437] confirmed theoretically
that the waves were generated by proton beam instabil-
ity. In a joint work, Tsurutani et al. [438] concluded that
Cowley et al. [436] picture of a distant tail signature of sub-
storm magnetic reconnection earthward of the ISEE-3 satellite
location is correct. The energetic proton beams are accelerated
by the magnetic reconnection process and the beams generate
the ion cyclotron waves.

The largest proton cyclotron wave on record to date
is ∼14 nT (peak-to-peak) detected in Earth’s polar cap/polar
cusp boundary layer [379]. It was suggested that damping of
a nonlinear Alfvén wave was the mechanism for generating a
proton temperature anisotropy which then led to the generation
of the waves.

Low-latitude irregular magnetic pulsations (Pi2) are
believed to be generated mainly by the coupling of global
cavity modes excited by plasma injections from the magne-
totail with the low-latitude FLRs [439]. Most nighttime Pi1
and Pi2 pulsations are generated by earthward propagating
fast mode waves launched at substorm onset by large-scale
magnetic reconfiguration associated with cross-tail current
disruptions [440], [441].

Yumoto et al. [442], [443] have argued that Pc3 and Pc4
waves generated in Earth’s foreshock region can propagate/
be convected into the magnetosphere properly.

D. Mirror Modes and Planetary Magnetosheaths

Mirror modes are magnetic and plasma pressure fluctuations
that are driven by proton temperature anisotropy instabili-
ties [414], [444]. The wave magnetic pressure and plasma pres-
sure are 180◦ out of phase with each other so there is a total
pressure balance across the train of structures. Mirror modes
have been detected in planetary magnetosheaths of the Earth,
Jupiter, Saturn, and Venus [445], [446], [447], [448], [449],
[450], [451], [452], [453]. The mechanism for instability
is quasi-perpendicular shock compression of the solar wind
protons [454] and magnetic field line draping around the
planetary body [455].

Although mirror modes are the dominant identifiable wave
mode in planetary magnetosheaths, ion cyclotron waves can
dominate when the solar wind/magnetosheath plasma beta is
low [456].

Mirror modes have also been detected at comets [405],
[457], [458], in interplanetary space [459], and in the distant

downstream magnetosheath of the Earth [435]. Mirror mode
waves have also been detected upstream of the heliospheric
termination shock (HTS) in the heliosheath [460], [461].

Fig. 13 is an example of mirror modes in Earth’s magne-
tosheath. The top three panels are the magnetic field angles and
the magnetic field magnitude. The bottom five panels are wave
spectrum channel data with 311–31 Hz center frequencies.
The mirror mode structures are identified as the quasiperiodic
magnetic decreases (MDs) with little or no changes in the
magnetic field direction. Mirror modes are pressure balance
structures where plasma pressure supplants the decreased
magnetic pressure in the magnetic dips (not shown for brevity).
The plasma waves present in the magnetic dips are a parallel
propagating whistler mode wave known as lion roars [462].

E. Relationship Between Magnetic Pulsations and
Geomagnetic Activity

Magnetospheric magnetic field configuration and plasma
populations undergo drastic changes during geomagnetically
disturbed times, such as substorms and magnetic storms.
Therefore, all magnetic pulsations that are generated internally
are directly affected by geomagnetic activity. For example,
characteristics of Pc1 and Pc2 waves excited by the EMIC
instability, Pc3 and Pc4 driven by drift mirror instability,
and Pi1 and Pi2 associated with the formation of substorm
current wedges get modified during substorms and magnetic
storms. Pc6 magnetic pulsations are usually generated during
substorms and magnetic storms [463]. The IMF variations can
sometimes cause double substorm onsets and corresponding
two consecutive Pi2–Ps6 band pulsations. Planetary distri-
bution of Pc5 pulsations is also found to undergo changes
during magnetic storms [464], [465]. The frequency of long-
period pulsations, especially Pc5s, tends to decrease by the
injection of energetic oxygen ions into the magnetosphere
during magnetic storms. Generally, the ULF wave power gets
increased substantially during magnetic storms, and possibly
during storm recovery phases as well [466]. The occurrence
and characteristics of Pc3 pulsations at low latitudes are
found to undergo seasonal and solar cycle modulation [467].
In another study based on the data from Arase spacecraft
and ground-based stations, Takahashi et al. [468] proposed
that ULF waves can play an important role in accelerating
radiation belt electrons up to relativistic energies ([469]; see
earlier [470]). From a 3-D MHD model, Degeling et al. [471]
have found that the convection of plasma density controls the
accessibility of dayside ULF wave power to the radiation belt
region.

F. Present Status

Observations by several spacecraft, such as the Time His-
tory of Events and Macroscale Interactions during Substorms
(THEMIS), Van Allen Probes (VAP), Cluster, Magnetospheric
MultiScale (MMS) mission, and others, have advanced our
knowledge about the properties of ULF waves, their excitation
mechanisms, and their effects on the dynamics of energetic
particles in Earth’s radiation belt [472], [473], [474], [475],
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Fig. 13. Example of mirror mode structures detected in Earth’s magnetosheath. The large magnetic field magnitude dips are complemented by enhanced
plasma densities (not shown) so the entire mirror mode structures are in pressure balance. Electromagnetic plasma waves known as lion roars are detected in
the magnetic dips. The figure is taken from [445].

[476], [477], [478], [479], [480], [481], [482]. Using the
Cluster data, it is shown that poloidal mode ULF waves are
more efficient for the acceleration of electrons and ions in the
inner magnetosphere [478], [479].

Zhang et al. [483] have done a statistical study of the Pc 5–6
ULF waves in the magnetotail using eight years of THEMIS
data and found that the ULF waves are more frequently
observed in the postmidnight region and their frequency
decreases with increasing radial distance from Earth.

Claudepierre et al. [484] have done simulations of resonant
ULF waves using the Lyon–Fedder–Mobarry (LFM) global
MHD model. The inclusion of a plasmasphere leads to a
deeper (more earthward) penetration of the compressional
(azimuthal) electric field fluctuations, due to a shift in the
location of the wave turning points. Furthermore, it is found
that higher frequency compressional (azimuthal) electric field
oscillations penetrate deeper than lower frequency oscillations.

Li et al. [481] analyzed the ULF waves and low energy ion
fluxes observed by MMS on January 20, 2017. They report that
long wavelength ULF waves could drive low-energy ions to
drift in the direction normal to the plane defined by the electric
and magnetic fields. The maximum measured low-energy ion
energy flux peak agreed well with the theoretical calculation
of H+ ion E × B drift energy. Heyns et al. [485] identified
that long-period pulsations couple strongly with ground-based
power systems even in subauroral regions.

To conclude, electromagnetic pulsations form an important
component of space physics. They play an important role in
the transport of energy from one region of the magnetosphere
to another region. Magnetic pulsations can significantly affect
the dynamics of the inner magnetosphere and outer radiation
belt during geomagnetic storms. Ground-studies of magnetic
pulsations offer a unique and simple way of monitoring the
conditions in the magnetosphere and solar wind. Measure-
ments of magnetic pulsations can be utilized for geophysical
surveys to probe the subsurface conductivity structure of the
Earth.

X. AURORAS

Auroras are divided into two broad categories, discrete and
diffuse auroras [367], [486]. In this section, we summarize
the fundamental characteristics and generation processes of
discrete and diffuse auroras. In addition, we briefly describe
red auroras sometimes observed at high latitudes and at
midlatitudes (during intense magnetic storms: SAR arcs).

A. Discrete Auroras

Discrete auroras are characterized by regions of emis-
sion showing sharp boundaries [486]. They are generally
brighter than diffuse auroras (>1 kR at 557.7 nm in most
cases). The most common type of discrete aurora is a “quiet
arc” [486], a thin structure mostly elongating in the east–west
direction [487]. The statistical characteristics of quiet arcs
(width, length, and brightness) are summarized in a review
by Karlsson et al. [488]. Quiet arcs are typically seen in the
growth phase of auroral substorms [489]. The cause of the
quiet discrete arcs has been attributed to electron acceleration
by a quasi-static electric potential structure existing above
the aurora [490], [491], [492], [493]. An upward-directed
parallel electric field in its central part accelerates electrons
downward up to several keV leading to the formation of quiet
discrete arcs [162], [494], [495]. Measurements inside the
electrostatic “double layers” were made by the Fast Auroral
Snapshot (FAST) Explorer satellite [496]. A more precise
description of the acceleration mechanism is given in a review
by Lysak et al. [497].

Discrete auroras sometimes show highly structured shapes
whose scale sizes are ∼1 km or less [498], [499], [500].
Such thin arcs often behave more dynamically (i.e., not quasi-
static), some of which is closely related to time-varying
magnetic field-aligned electric fields associated with dispersive
Alfvén waves [501], [502], [503], [504]. Details of the small-
scale dynamic discrete aurora can be found in the review
of Kataoka et al. [505]. The above-mentioned types of the
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discrete aurora (quasi-static arc and small-scale dynamic arc)
are mainly observed within the main auroral oval (see [506,
Fig. 1]). However, discrete auroras are often observed at higher
latitudes near the dayside cusp as a manifestation of direct
energy input from the solar wind through magnetic recon-
nection at the dayside magnetopause ([507] and references
therein). Discrete auroras are also observed within the polar
cap (poleward of the auroral oval) during quiet intervals (north-
ward IMF conditions) as reviewed by Hosokawa et al. [305].

B. Diffuse and Pulsating Auroras

Here, we discuss the optical characteristics and drivers of
diffuse auroras, in particular “pulsating auroras” which is one
of the outstanding features within the diffuse aurora category.
Pulsating auroras are the end result of pitch angle scattering
of ∼5–30-keV energetic electrons through interaction with
electromagnetic chorus waves in the outer magnetosphere.
It has been known that from a global perspective, there is more
energy deposition in the diffuse aurora than in the discrete
aurora [367].

C. Optical Characteristics of Diffuse and Pulsating Auroras

Diffuse auroras are characterized by regions of relatively
dim (a few hundreds of R to ∼10 kR at 557.7-nm emission)
auroras that do not contain any shear or rotational motion of
the features [508], [509]. The occurrence of diffuse auroras is
higher in the postmidnight sector [510], [511]. The majority of
diffuse auroras have been detected in the morning sector, espe-
cially during the recovery phases of substorms. Quasi-periodic
intensity variations of diffuse auroras are called pulsating auro-
ras ([512], [513], [514], [515], [516], and references therein).
See Tsurutani et al. [266] for a review of X-ray pulsations, the
higher energy portion of optical pulsations. Unlike static and
less structured diffuse aurora [508], pulsating auroras appear as
patches having irregular shapes whose horizontal extent ranges
from 10 to 200 km [509], [514], [517], [518]. Pulsating auroras
occur near the equatorward boundary of intense auroras [519].

It has been known that two characteristic periodicities are
seen in the time-series of pulsating auroras, summarized in
Hosokawa et al. [335]. The most prominent/outstanding one
is called the “main pulsation” whose period ranges from
a few to a few tens of seconds [509]. This is the long
quasi-periodic component of diffuse auroral pulsations. The
other quasi-periodicity has been called an “internal modula-
tion” which is subsecond luminosity fluctuations embedded
in the bright phase of the main pulsations. The periodicity
of the internal modulation is ∼3 Hz [518], [520]. In balloon
X-ray observations these are called “microbursts” [302], [521].
These ∼3-Hz fluctuations are detected in more than 50% of
all pulsating auroras in the midnight and morning sectors,
and the amplitude of modulation using panchromatic imaging
is as large as 20% [518]. Recent studies have suggested
the existence of even faster modulation at ∼15 Hz [522]
and ∼54 Hz [523]. These latter features may be associated
with pitch angle scattering of the energetic electrons associated
with chorus subelements. Studies concerning this possibility
are currently being undertaken.

The color of pulsating aurora is dominated by the green
oxygen emission at 557.7 nm, but a blue/violet 427.8-nm
color from molecular nitrogen ions is sometimes noted
at the lowest altitude (the bottom) of pulsating patches.
When this occurs, relatively higher energy precipitating
electrons must be present [524]. The altitude of pulsating
aurora has also been studied since the 1970s using stereo-
scopic observations [525]. Recent stereoscopic observations by
Kataoka et al. [526], [527] have demonstrated that the altitude
of pulsating auroras is 85–95 km, slightly lower than that of
the other types of auroras. This tendency was confirmed by
incoherent scatter radar observations of enhanced ionospheric
ionization [528], [529], [530], [531]. In some cases, ionization
down to an altitude of 65 km has been noted.

Pulsating auroras are almost always observed in the post-
midnight sector during the recovery phases of auroral sub-
storms [532]. After a substorm expansion phase, dim patches
of diffuse aurora occur. After a few tens of minutes, these
diffuse patches start pulsating. These pulsations can be present
for ∼1–3 h [511]. During magnetic storms, pulsations can be
present for as long as ∼15 h [533].

D. Mechanisms Causing Optical Pulsations

The ultimate source of the precipitating electrons is the
plasma sheet in Earth’s magnetotail. The ∼100 eV to 1 keV
plasma sheet electrons are convected into the midnight sec-
tor outer magnetosphere by substorm convection electric
fields. As the electrons are convected into higher magnetic
field strengths, they conserve their first two adiabatic invari-
ants [206] and become energized to ∼10–100-keV energies.
The electrons are not only convected inward to lower L but
also gradient and curvature drift toward local dawn [136]. The
pitch angle anisotropy of the energetic electrons generated by
the inward convection [534] leads to plasma instability [227]
and the generation of electromagnetic chorus waves [288]. The
chorus waves’ pitch angle scatters the electrons into the loss
cone. The precipitating energetic electrons lose their energy
by both excitations of atmospheric atoms, molecules, and
ions. The excited atoms, molecules, and ions decay giving off
their characteristic auroral light. When the energetic electrons
pass close to atmospheric nuclei, bremsstrahlung X-rays are
created. The X-rays can be observed by high-altitude balloons.

Besides auroral zone high-altitude balloons flown in the
1960s and 1970s and more recently by the Balloon Array for
Radiation Belt Relativistic Electron Losses (BARREL) pro-
gram [521], several rocket observations showed that pulsating
auroras are produced by temporal variations of precipitating
electrons whose energies range from a few keV to ∼100 keV
(e.g., [303], [535], [536], [537], [538]; see also a recent review
of nanosat and balloon measurements by Sample et al. [539]).
Wave-particle interactions through cyclotron resonance lead
to losses of magnetospheric ∼10–100-keV electrons into the
atmosphere and the occurrence of diffuse aurora [367].

The quasi-periodic ON–OFF switching of the pulsating
aurora, i.e., the main pulsation, can be explained by peri-
odic groupings of chorus wave bursts causing periodic
scattering of energetic electrons into the atmospheric loss
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Fig. 14. Case of pulsating aurora detected in Soldankyla, Finland, on March 29, 2017. (a) Time–series of optical intensity along the south-to-north cross
section of the all-sky camera images. (b) Frequency-time diagram of the chorus E-field power spectral density taken by the conjugate Arase satellite. The
figure is taken from [335].

Fig. 15. Two cases of a direct comparison between the ∼3-Hz modulation of pulsating aurora and chorus elements. (a) Optical image of the pulsating
aurora and (b) corresponding plasma waves (the single chorus burst structure). (c) and (d) same as (a) and (b), however, there are discrete structures noticed
in (c) and (d). This figure is taken from [335].

cone [288], [540]. Nishimura et al. [541] employed THEMIS
spacecraft and ground-based all-sky camera data to confirm the
one-to-one correspondence between the temporal variations of
chorus intensity in the magnetosphere and optical pulsations
at the magnetic (ionospheric) footprint of the satellite. More
recently, Kasahara et al. [239] reported in situ magnetospheric
observations showing a one-to-one correspondence between
the electron flux in the loss cone and the amplitude of the cho-
rus. During these in situ observations, pulsating auroras were
detected at the magnetic footprint of the satellite. The optical
intensity of the ionospheric pulsations was well correlated with
that of the magnetospheric loss cone energetic electron flux.
This result further confirms that the electron scattering by the
chorus is the main driver of pulsating aurora. Fig. 14 shows an
example of the correlation between the “main pulsation” and
a successive burst of chorus [335] obtained from recent conju-
gate ground/satellite observations. During this 5-min interval,
one-to-one correlations were noted between the brightness
of auroras observed from the ground [Fig. 14(a)] and the

intensity of chorus waves at the magnetospheric counterpart
[Fig. 14(b)].

Pulsating auroras also exhibit ∼3-Hz luminosity fluctuations
embedded within the main pulsation. It has been suggested
that such subsecond fast variations are caused by intermitted
electron precipitation triggered by the fundamental chorus
feature, known as chorus “elements” [233], [288], [291], [542].
Fig. 15 shows recent auroral pulsation images and correspond-
ing plasma wave data. Conjugate observations demonstrated a
one-to-one correspondence between the successive appearance
of chorus elements in the magnetosphere and ∼3-Hz opti-
cal modulation at the ionospheric magnetic footprint [335],
[543], [544]. See Fig. 15(c) and (d) for an example of this
correlation. Hosokawa et al. [335] demonstrated that when
the chorus contained multiple chorus elements, ∼3-Hz optical
modulation was clearly detected at the footprint of the satellite.
In contrast, when the chorus is less discrete (i.e., unstructured),
pulsating aurora did not exhibit obvious signatures of sub-
second scintillations [see Fig. 15(a) and (b)]. “Unstructured”
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chorus can either be hiss-like emissions or overlapping tones
(see [288] for example and [266] for discussion). From these
recent studies employing conjugate satellite and ground-based
observations, it was concluded that the temporal variations
of pulsating auroras are almost perfectly controlled by the
intensity variations of chorus waves in the corresponding
region in the magnetosphere.

It should be noted that in 2003 a new feature of the
chorus was discovered. Santolik et al. [281] noted that cho-
rus elements contained substructures called subpackets or
subelements. Tsurutani et al. [306] noted that such chorus
subelements were coherent. Without this feature of the chorus,
the ∼3 Hz modulation/microbursts could not be explained
theoretically [270]. Also, such cyclotron resonant interactions
of energetic electrons with the coherent chorus subelements
might explain the super-high-frequency oscillations (higher
than ∼3 Hz) mentioned previously.

The altitude profiles of the optical emission and ion-
ization during pulsating aurora have suggested that the
energy of pulsating aurora electrons is higher than that
causing other types of auroras [531]. Recent observations
reported that subrelativistic electrons are sometimes observed
within patches of pulsating aurora [545], [546]. Turunen et
al. [308] have implied that low altitude ionization caused
by such precipitation can cause enhancement of NOx /HOx

and consequent decrease of O3 at the mesospheric altitudes.
Tsurutani et al. [308] have suggested that relativistic electron
precipitation might modify atmospheric wind patterns. In this
sense, diffuse/pulsating auroras are phenomena connecting the
magnetospheric plasma environment with the middle and even
lower atmosphere.

E. Red Auroras

Red-color auroral emission, the 630.0-nm emission from
metastable atomic oxygen, is usually seen in the top part of
discrete auroral features at altitudes from 200 to 300 km [547].
Such red auroral “fringes” are caused by the precipitation of
the <1 keV portion of the energetic electron spectrum. Red
auroras are more prominent than green aurora at 557.7 nm
in the dayside cusp or within the polar cap because those
regions are dominated by relatively soft electron precipitation
(see reviews of [305], [507]).

Red auroras are sometimes seen from low-latitude regions
during the main phase of magnetic storms which is called
“low-latitude aurora” [548], [549], [550], [551], [552]. One
of the causes of the low-latitude red aurora is the electron
precipitation in a broad range of energy from ∼30 eV to
30 keV seen at the subauroral latitudes [553].

SAR arcs are often seen at subauroral latitudes during
magnetic storms [554], [555]. SAR arcs are composed of
“purely” reddish emission at 630.0 nm from atomic oxygens
excited by ambient heated electrons. They occur from altitudes
of ∼800 down to 200 km, the typical central altitude being
∼400–600 km [556], [557], [558]. The temperature of ambient
electrons can be enhanced by the heat conduction or low-
energy (<10 eV) electron precipitation in a region where the
ions of storm time ring current interact with plasmaspheric

electrons in their overlapping region [555], [559], [560].
Because of the bloody color of SAR arcs, red auroras have
been omens for war and bloodshed in ancient times.

XI. SPACE WEATHER

“Space weather” is a relatively new name for a very old
topic, the effect of dynamic features of our Sun affecting
interplanetary space, planetary magnetospheres, ionospheres,
and atmospheres which are of concern to humankind and
society. Space weather is, therefore, a subset of Space Plasma
Physics. See Fig. 16 for the many space plasma physics topics
that are concerned for space weather. Many of the topics
covered in other sections of this article are also space weather
issues. For a nearly comprehensive review of space weather
and future space weather problems, we refer the reader to
Buzulukova and Tsurutani [561] and Tsurutani et al. [562].
We will only mention a few space weather topics in the
following.

A. Geomagnetically Induced Currents

The biggest focus of space weather features has been on
those that can and have affected human society, e.g., humans
on the ground or satellites and humans in space. Concerning
the former, Loomis [82] reported that fires were set by arcing
from currents induced in telegraph wires during the September
1 and 2, 1859 “Carrington” magnetic storm [6], [81]. The
telegraph was the high technology of its day. It has been shown
that magnetic storms of substantially greater intensities than
the Carrington event can occur [265]. In a world increasingly
reliant on electrical technology and space communication,
extreme space weather endangers power grids, pipelines, rail-
way systems, and satellite communications, with enormous
consequences for humankind [563].

During an intense magnetic storm in 1989, the Hydro
Quebec power system had an outage for ∼9 hours [564], [565].
Another magnetic storm disrupted the power supply in south-
ern Sweden (Malmo) in 2003 [566] and initiated damage
to several large power station transformers in Africa [567].
Love [568] has reported that the “Railroad” storm of 1921 and
another event in 1909 were both more intense storms than
those in 1989 and 2003.

What feature(s) of magnetic storms are the causes of
potential damage and disruption? Many possibilities have been
discussed in the literature. One of the earliest reports of what
is now called GICs was presented by Barlow [5], who reported
that railroad telegraph magnetic needles were deflected coin-
cident with aurora sightings. More recently Campbell [569]
observed electric currents flowing in the Alaskan oil pipeline
and deduced that the source of these GICs was the AE. The AE
is a nighttime auroral zone ionospheric current with intensities
up to ∼106 A flowing at an altitude of ∼100 km above the
surface of the Earth. These strong currents can induce substan-
tial currents in ground conductors such as pipelines and power
lines (see a review of GICs by Lakhina et al. [570]). Tsurutani
and Hajra [191] have studied intense GICs (>10 A) in the
Mäntsälä, Finland gas pipeline with 21 years of data [571].
They have found that the most intense events were associated
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Fig. 16. Space weather schematic shows solar phenomena that cause interplanetary, magnetospheric, ionospheric, atmospheric, and ground-level effects.
Essentially all of these phenomena are discussed in this review but from a space physics point of view.

with intense substorms (super-substorms: [572]) that occurred
within magnetic storms, giving credence to the Campbell [569]
idea that intense GICs might be caused by the AE.

However, now the questions become what features of the
AE cause intense GICs? And are super-substorms simply more
intense “traditional” substorms as first discovered by Akasofu,
or are they fundamentally different [190]? The answers to
these questions are not known at this time, and research is
currently being done by the scientific community on these
topics.

B. Solar Energetic Particles

SEPs have origins at solar flare sites and at shocks in front
of ICMEs associated with the solar flares [573], [574], [575],
[576]. SEPs and solar flares are discussed more thoroughly in
Section XVI. The energy of the particles can range from MeV
to GeV energies and can cause damage to spacecraft solar
panels and electronics [577], [578]. For particularly intense
SEP events, there can be substantial danger to astronauts in
space [579]. At the present time, there is no known mechanism
to protect astronauts from such intense radiation.

C. Magnetospheric Relativistic Electrons

Earth’s magnetosphere contains highly variable relativistic
(∼MeV) electrons [217], [580] whose fluxes can increase and
decrease by three orders of magnitude during geomagnetic
activity. The electron fluxes are highest during the declining
phase of the solar cycle [237]. One possible mechanism to
explain the observations is that the electrons are accelerated
from ∼100-keV electrons (injected during substorms and con-
vection events) to higher, relativistic energies through the inter-
action of electromagnetic whistler mode chorus [221], [581].
Another possible mechanism is that ULF waves could cause
energetic electron energization by radial diffusion [470], [582].
However, Horne et al. [311] have demonstrated that radial
diffusion by ULF waves does not work for the Halloween

2003 event, so there are some doubts about the specific
mechanism for radiation belt relativistic energization.

Hajra et al. [237] and Tsurutani et al. [74] have shown
that relativistic electron acceleration occurs during
HILDCAAs [150], which, in turn, are caused by the
southward IMF components of Alfvén waves in the solar
wind. The Hajra et al. [237] work showed that HILDCAAs
lead to E > 0.6 MeV electrons within one day and
E > 4.0 MeV electrons in two days, indicating a “bootstrap”
acceleration process. Magnetospheric energetic particles,
chorus, and substorm ∼10–100-keV particles are discussed
in other sections of this article (see Sections V, VI, and VIII).

D. Low Altitude Orbiting Satellite Drag During Magnetic
Storms

Satellite orbits are selected to be compatible with multi-
year lifetimes. For low-altitude polar-orbiting satellites, the
minimum altitude chosen is typically ∼400 km or greater.
However, during magnetic storms, enhanced upwelling of
ionospheric ions and atmospheric atoms and molecules occur
associated with energetic particle precipitation and heating
caused by friction between the magnetospherically driven
plasma and the neutral atmosphere (see Section VIII). This
ionospheric/atmospheric heating leads to the increase in ions,
atoms, and molecules at heights above 400 km [583], [584].
Polar-orbiting satellites, therefore, experience additional atmo-
spheric “drag” and lose orbital speed [585]. Because of
the additional drag, the satellites do not appear at their
expected locations at the predicted times and are “lost” to
satellite tracking networks until they can be “relocated.” At
times this can take weeks to “reacquire” the satellites. Since
there are thousands of orbiting objects around the Earth,
this effect is a major one for satellite monitoring operations.
If the satellite drag is particularly severe, the satellite may
possibly lose enough altitude to have a shortened mission
lifetime.
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There is another recently found mechanism for increased
satellite drag during magnetic storms. The magnetic storm
convection electric field penetrates into the near-equatorial
ionosphere and causes E × B uplift of the dayside ionosphere
and downdraft of the nightside ionosphere [259], [586]. The
uplift of parts of the ionosphere to higher altitudes on the
dayside brings the ions and electrons to regions of lower
recombination rates and the continued photoionization of
lower altitude atoms and molecules by solar radiation leads to
an increase in the total electron content (TEC) of the dayside
near-equatorial ionosphere. Mannucci et al. [262] have shown
a ∼1200% TEC increase at altitudes above ∼400 km (the
CHAMP satellite orbit) at ∼25◦ MLAT during the main phase
of the October 30, 2003 “Halloween” magnetic storm. The
downdraft of the nightside near-equatorial ionosphere leads to
recombination and a reduction in TEC.

Simulations have shown that if a Carrington storm occurred
density peaks of oxygen ions would be ∼6 × 106 cm−3 at
700-km altitude, approximately a +600% increase over quiet
time values [264]. What is presently unknown is the degree
to which ion-neutral drag increases neutral oxygen densities
at high altitudes, which can lead to additional drag [587].
Satellite drag will be severe for polar orbiting satellites during
a Carrington-type magnetic storm. Unfortunately, we currently
do not know how severe it will be. Deng et al. [588] indicate
that for solar wind speeds of 1000 km s−1 and an IMF
Bz of −50 nT, at ∼400-km altitude, the neutral density will
increase by >10 times. We await further development of the
computer code so that full implementation of the Carrington
storm can be made.

E. Communication and Radio Blackouts

The X-ray component of solar flares causes enhanced ion-
ization to the dayside ionospheric D region [251], [589], [590],
an effect deleterious to radio wave communication and navi-
gation (see a brief review in [591]). These are called sudden
ionospheric disturbances or SIDs.

Solar flares also contain radio emissions in the frequency
range from 10 s of MHz to a few GHz that can interfere with
signals from the Global Navigation Satellite Systems (GNSS),
such as GPS, which operate in the 1–2-GHz frequency range.
One of the strongest flare events on record occurred in
2006 which was approximately ten times stronger than any
previously reported event [592]. For tens of minutes, dual-
frequency GPS receivers on the sunlit portion of the Earth
were degraded such that they could not track enough GPS
satellites to compute their locations [593]. See a review of
this topic in Yue et al. [594].

SEPs accelerated at either the flare site or at the ICME shock
can cause similar solar flare effects (SFEs). These energetic
particles can enter the polar regions of Earth’s magnetosphere
and penetrate deep into the polar ionospheres. Since solar
flares have durations of tens of minutes with ionospheric
D-region recombination time scales being much more rapid,
these SFEs are somewhat short-lived. However, solar flare
particle events can last days (as the ICME shock propagates
from the Sun to the Earth and beyond), and therefore, the polar
SFE can be a greater problem for humanity [595].

F. Satellite Navigation and Ionospheric Storms

Satellite navigation using GNSS (e.g., GPS) may be affected
during geomagnetic storms by rapid and large changes in
ionospheric densities that occur on global scales. The unpre-
dictable additional signal delay caused by increased iono-
spheric densities can lead to 10 s of meters of positioning
error when user receivers acquire only a single-GPS fre-
quency, as is currently the case for civil aircraft navigation.
For this reason, GPS-based navigation is denied when large
ionospheric storms are detected by the system used to augment
GPS for aircraft [596]. Although ionospheric storms have
been studied for decades [597], [598], extreme space weather
events that could cause unusually large and rapid ionospheric
variations resulting from dayside E × B uplift to remain a
concern [263].

XII. PLANETARY MAGNETOSPHERES AND
SOLAR/STELLAR WIND INTERACTIONS

WITH COMETS, MOONS, AND ASTEROIDS

As first demonstrated by Gauss [16] (see [17] for an English
translation) planetary magnetic fields have two major sources,
one internal due to dynamo action in a fluid core, and another
external due to electric currents outside the planetary body.
While Gauss [16] argued that the external contribution is
negligible compared with the internal one, current knowledge
tells a different story. The interaction of a planetary body
with its plasma environment provides for a physically most
interesting new field of plasma and planetary physics.

At the dawn of the space age, Gold [599] coined the name
“magnetosphere” for the interaction region of the solar wind
and the Earth and its internally generated planetary magnetic
field. Gold [599] realized that the flow of the dilute ionized
solar wind plasma around the Earth is heavily impacted by
the Lorentz force F⃗ = u⃗ × B⃗ due to the presence of Earth’s
magnetic field. The Lorentz force significantly influences the
flow past any magnetized planetary object. Magnetospheric
physics opened up an entirely new field of fluid dynamics.
The novelty is also due to the extreme scale conditions in the
interaction region. The gyroradius of a solar wind proton is
of the order of a few thousand kilometers. This is comparable
with the scale of the object the flow has to pass, the planetary
radius. Such conditions cannot be realized in any terrestrial
laboratory. In situ measurements in space are required to
study plasma–planetary interaction regions. The new physical
understanding derived in this way is of paramount importance
for the understanding of plasma astrophysical processes in
general. Furthermore, space is more and more becoming part
of the human habitat, which triggers the need to understand
the detailed processes in space plasmas.

The past sixty years of space research demonstrated that
Earth’s magnetosphere is only a special case of the flow of
a magnetized plasma around an obstacle. The term magne-
tosphere is more and more in use to describe the flow past
objects like planets, their moons, asteroids, and comets. The
parameter space, in which the various types of magnetospheres
can be located, is at least 3-D. The Mach number of the
flow is another important control parameter. Our eight planets
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Fig. 17. Solar wind interaction with Earth’s magnetosphere. The red curved
line is the bow shock. The blue region is the magnetosheath where draped
magnetic fields (black lines) are convected downstream. The magnetosphere
and magnetotail are indicated in green.

are embedded in the solar wind, a super-sonic flow. The
Galilean moons are interacting with the subsonic plasma flow
of the Jovian magnetosphere. Mercury, Earth, Jupiter, Saturn,
Uranus, and Neptune are magnetized objects. They possess
classical magnetospheres. Asteroids and most moons do not
operate planetary dynamos in their interior. Interaction is
dominated by the direct interaction of the flow with the surface
of these objects. Comets, Venus, and Mars define another
regime in the parameter space, the regime of plasma–neutral
gas interaction. The various conditions define several different
modes of interaction. Three modes are dominant and discussed
in further detail: the classical mode, the cometary mode, and
the lunar mode.

The classical mode magnetosphere is dominated by the
interaction of the streaming plasma with the planetary mag-
netic field. An important property of the solar wind is its
almost infinite electrical conductivity, σ → ∞. Basic MHD
considerations show that for such a medium the magnetic flux
is frozen into the moving plasma and vice versa. If a fluid
parcel is moving around and changing its shape the magnetic
field is modified in such a way as to conserve magnetic
flux. This is reminiscent of the conservation of vorticity in
hydrodynamic rotating flows. The frozen-in flux condition
leads to an electric field E⃗ = −u⃗ × B⃗ in the streaming plasma.
And the induction equation is

∂ B⃗/∂t = ∇ × (u⃗ × B⃗) (2)

that is any curl of the motional electric field causes a local
temporal change in the magnetic field.

The solar wind is plasma with infinite conductivity.
Thus, if a planetary body is immersed in this plasma the
planet’s magnetic field cannot penetrate the solar wind (see
Fig. 17 for the solar wind interaction with Earth’s magneto-
sphere). This induces the build-up of an internal boundary,
the magnetopause. Electric currents, magnetopause currents,
or Chapman–Ferraro currents, flow in this boundary. They

ensure that the sunward of the magnetopause, the planetary
magnetic field is canceled. On the planetary side, the magnetic
field is enhanced. Once the dynamic pressure of the flow is
balanced by the magnetic pressure on the planetary side the
magnetopause reaches its equilibrium position. For a dipolar
planetary magnetic field, the magnetopause position RMP is
defined by

RMP =
6

√
B2

s

/
pd Rp (3)

where BS denotes the planetary magnetic field at the surface
of the obstacle, pd = 1/

2ρu2 the dynamic pressure of the
streaming plasma, and Rp the planetary radius. The terrestrial
dayside magnetopause is located at about 10 RE . This simple
expression for the magnetopause distance has been confirmed
many times, on Earth as well as on other planets. It is also
in use to estimate the existence and intensity of the planetary
magnetic field of extra-solar planets [600].

Magnetopause is a self-induced internal boundary in the
plasma flow. It defines the actual obstacle, the magnetosphere.
On its planetary side, the magnetic field is strongly com-
pressed, while on the nightside the magnetosphere is stretched
out into a long magnetotail with a diameter of about four times
the magnetopause distance. The magnetotail is divided into
northern and southern lopes, separated by an electric current
carrying a neutral sheet. Would this huge interaction region be
visible, it would appear like a comet with its tail.

Magnetic reconnection [601] is the new process identified
to explain tail formation. At the magnetopause magnetic shear
∇ × B⃗ causes the flow of strong electric currents in the
plasma, of the order of 106 A in total or a density of about
10−7 A m−2. Such an intense current represents a clear
deviation from local thermodynamic equilibrium. A multitude
of different plasma instabilities may emerge, acting to bring
the system back to equilibrium. In essence, these plasma
instabilities cause an anomalous electric resistivity in the
plasma with local break-down of the frozen-in condition. The
resistivity is anomalous as the plasma under consideration is a
collisionless plasma. Magnetic flux conservation is no longer
possible. This implies a change in magnetic field topology.
Magnetic field lines carried toward the magnetopause by the
plasma flow are reconnected with magnetic field lines of
planetary origin. Strongly bend magnetic field lines occurring
on the dayside magnetopause lead to an acceleration of the
plasma flow toward the night side. The underlying physics,
magnetic reconnection, is a process via which magnetic energy
is converted to kinetic energy. It can be viewed as an anti-
dynamo action. Details of this most complex process are
still under discussion with electron scale processes playing a
major role [177]. Reconnection at the dayside is the prime
mechanism to generate the magnetotail. The tail has been
observed up to distances ≥ 1600 RE [602], [603]. Its two-
lobe structure is well observed beyond 200 RE [156].

As the solar wind plasma is a super-sonic flowing plasma
stream there must be a region in front of the magnetosphere,
where the flow is decelerated to subsonic speed. This region
is the bow shock region. It is a collisionless shock wave
structure standing in the plasma flow. Here kinetic energy is
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converted into thermal energy via plasma wave turbulence.
In the bow shock region, flow deviation occurs, initiating the
flow around the magnetosphere [604]. The bow shock is a
regime where plasma particles are reflected and accelerated
back into the upstream plasma flow. This foreshock region is
a playground for a variety of plasma instabilities and intense
wave activity [394].

The region downstream of the bow shock is termed the
magnetosheath. It is the actual regime where the plasma flow
streams around the obstacle. The magnetosheath is a very
dynamic regime. Toward the magnetopause flow, deceleration
occurs. Under stationary conditions, the induction (2) along
the stagnation streamline transforms into

1/B∂x B = −1/u∂x u. (4)

During the flow deceleration toward the magnetopause stagna-
tion point, magnetic flux piles up in the magnetosheath. Flow
kinetic energy is converted to magnetic energy by dynamo
action. The whole process requires a spatial extent. The bow
shock typically is a detached bow shock with the stagnation
streamline distance RBS related to the magnetopause distance
via RBS ≈ 1.3 RMP. It should be noted that for the classic
magnetospheric mode described here the formation of the
magnetopause and magnetosphere proper is the primary pro-
cess. The bow shock is a secondary process, required to enable
a subsonic flow around the magnetospheric obstacle.

The classical mode magnetosphere is changing in time
depending on solar wind conditions. External events, such as
solar wind HSSs, CMEs, or strong fluctuations, in the south-
ward component of IMF, are usually driving magnetospheric
activity [150]. It also exhibits a variety of internal instabil-
ities. Magnetospheric storms and substorms are witnesses of
these processes, causing magnetospheric space weather events.
Space weather has an increasing impact on technical terrestrial
systems [605].

The classical mode of interaction is also observed at planets
Mercury, Jupiter, Saturn, Uranus, and Neptune. Of sources,
modifications are observed depending on plasma sources,
planetary rotation, and so on.

The cometary mode magnetosphere is very different from
this classical mode [606]. The obstacle does not have or
generate any intrinsic magnetic field. Neutral gas emanates
from the cometary nucleus surface as the comet nears the Sun.
Due to solar ultraviolet radiation as well as energetic electrons
in the developing interaction region, neutral particles, mainly
OH- and CO-group molecules, are ionized. The region where
this happens is a vast region around the cometary nucleus.
The physical obstacle to the plasma flow is a spatially much-
distributed region.

In cases where the solar wind flow velocity is perpendicular
to the IMF, the newly created ions immediately sense the
electric field of the streaming plasma, E⃗ = −u⃗ × B⃗, and are
accelerated to the speed of the stream. Under more general
conditions, the new-born ions form beam or ring distributions
in the streaming plasma. This constitutes another extreme
deviation from local thermodynamic conditions. A plethora
of plasma instabilities gives rise to very strong plasma wave
activity [607], [608], [609], [610]. In the low-frequency

Fig. 18. Time sequence [from (a)–(d)] of draping of interplanetary magnetic
fields around an outgassing cometary nucleus. The figure is taken from [615].

range, wave amplitudes are largest with δB/B ≈ 1. Non-
linear evolution of the waves causes strong turbulence to
develop [611]. The fluctuating electromagnetic fields act as
quasi-particles causing strong scattering of the new-born ions
and isotropization of the particle distribution. Finally, the new-
born ions are picked-up by the solar wind. Momentum and
energy are transferred from the streaming plasma to the ions
of cometary origin. On the macroscopic scale, this pick-up
process causes mass loading and deceleration of the streaming
plasma. As both momentum and energy must be conserved,
mass loading is limited and controlled by the polytropic
index γ . Once the mean molecular mass ⟨m⟩ of the pick-up
ion enriched plasma exceeds the value γ 2/(γ 2

−1)m∞, where
m∞ is the molecular mass far away from the comet and γ the
polytropic index, a stationary solution for the mass-loaded flow
no longer exists. A bow shock forms at some position along
the stagnation streamline [612], [613]. Thus, a bow shock
is the primary internal boundary build-up in the cometary
mode interaction region. This is different from the classical
mode, where the magnetopause is the primary boundary, the
bow shock being secondary. The cometary mode interaction is
shown in Fig. 18.

Mass loading is strongest along the stagnation stream line.
Thus, flow deceleration is most prominent close to this region,
with deceleration decreasing with increasing distance from the
stagnation line. Flow deceleration is accompanied by a pile-up
of magnetic flux in front of the cometary obstacle. It also
causes draping of the frozen-in IMF around the cometary
nucleus. A cometary tail forms as first suggested by Bier-
mann [15]. This conjecture was later confirmed by spacecraft
observations [613], [614]. Eventually, cometary tail formation
may also be viewed as a large-scale confirmation of the frozen-
in theorem.

Often the cometary mode interaction region is called an
induced magnetosphere. Planets Venus and Mars exhibit
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typically induced magnetospheres. Here the interaction with
pick-up ions emanating from the planetary atmosphere and
direct interaction with the ionosphere determines the physics
of the interaction regime [616].

A third mode, the lunar mode deserves attention. The
interaction of the Moon represents a case where the streaming
plasma impinges onto the surface of the planetary body,
without any planetary magnetic field or emanating neutral gas
modifying the plasma. The solar wind particles are absorbed
by the obstacle. A wake region forms downstream of the
object [617], [618]. Upstream of the obstacle no bow shock
wave exists, different from the other two modes of interaction
discussed previously. Due to particle absorption, there is no
need for the build-up of such a bow shock. This was first
observed by magnetic field measurements with the Explorer
35 spacecraft on Earth’s moon [619].

A streaming magnetized plasma may actually be viewed
as a kind of two-fluid medium interacting with an obstacle.
There is the mechanical part represented by the mass flow.
And there is the electromagnetic part, represented by the
magnetic field. Although the particles may be absorbed by the
surface, this is not necessarily possible for the electromagnetic
part. The interaction of the magnetic field transported by the
flow toward the obstacle depends very much on the electrical
conductive of the obstacle. Nonconducting planetary bodies
just allow the magnetic flux to be transported through the body.
The obstacle actually does not exist for the magnetic field.
If the conductivity is large, however, flux transport through
the obstacle induces electric currents in the body interior or
any surrounding ionosphere inhibiting the flux flow. Pile-up
of the magnetic flux in front of the object and draping around
the object may occur. Observed details about the interaction
region can thus be used to infer information on the electric
properties of the obstacles.

The interaction of the solar wind with asteroids is of the
lunar type. Asteroids do not exhibit any atmosphere and usu-
ally do not have an internally generated magnetic field. Nev-
ertheless, the interaction is special particularly when the scale
of the obstacle is comparable to typical plasma scales [620].
Observational evidence of this type of interaction has been
presented by Kivelson et al. [621] and Auster et al. [622].

The three modes discussed earlier provide a kind of coordi-
nate system of a model space where the interaction of a stream-
ing plasma with a specific obstacle may be located. A planet
with a weak magnetic field like Mercury usually interacts in
the classical mode. But occasionally, if the dynamic pressure
is very strong, the plasma reaches the surface and the lunar
mode applies. Strong magnetic anomalies have been detected
on the Moon. Associated with such anomalies are the mini-
magnetospheres and small-scale collisionless shocks upstream
of these anomalies [623]. Thus, locally, the interaction of the
solar wind with the Moon occurs in the classical mode.

The three modes also differ in another aspect: temporal
variations of the obstacle’s properties. The Moon or asteroids
are rather stable objects with which the streaming plasma is
interacting. Lunar mode interactions, thus, do not exhibit any
major temporal variations. This is different from the classical
mode. Planetary magnetic fields change on secular time scales.

Mode modifications are possible and led to intensive studies
on paleomagnetospheres [624], [625]. The cometary mode
is susceptible to changes in the obstacle properties, such as
temporal development of the cometary activity [626] or sudden
outbursts [627].

The above classification of interaction regions is based on
the properties of the planetary bodies, assuming a super-
sonic plasma flow. If the flow is subsonic, modifications are
necessary. Planetary satellites within magnetospheric plasma
environments need to be considered here. Alfvén wings
instead of bow shock structures are usually generated in such
cases [628], [629], [630], [631]. Entirely new aspects of the
diversity of the interaction regions emerge [632].

Our solar system is the immediate environment where
we can study solar wind-planetary body interactions. Stellar
winds are known to exist for most stars. Also, planetary
companions are most likely present. One can only hypothesize
what type of interaction is taking place. Vernisse et al. [633],
for example, presented numerical studies on the lunar type
of interaction. Whether exoplanets exhibit planetary mag-
netic fields is as yet unknown. Scaling laws can be used
to estimate global magnetic field strengths [634]. The most
promising means to prove the existence and determine the
strength of exoplanetary magnetic fields is via the electron
maser instability [635], [636] driven radio emissions from
exoplanets [637]. However, detection sensitivity is still too low
to allow any inferences to be made on any exoplanetary radio
emissions [638]. Thus, the classical mode of interaction is
currently a subject of model studies [639].

XIII. INTERPLANETARY DISCONTINUITIES,
SHOCKS, AND WAVES

A. Discontinuities

In the 1960s and 1970s, there were great debates in the
literature [640], [641], [642] about whether the interplanetary
discontinuities were rotational (RD) or tangential (TDs) in
nature [643]. The analyses were performed primarily using
magnetic field data because the plasma data’s temporal res-
olution was slow in comparison. Applying computer codes
to identify “directional discontinuities” (DDs: either rotational
or tangential), Tsurutani and Smith [289] and Lepping and
Behannon [644] indicated that DDs occurred at a rate of
one or two per hour in the solar wind. Neugebauer and
Giacalone [645] gave a review of the current status of DD
discontinuity research.

B. Shocks

In 1984, there was an American Geophysical Union (AGU)
Chapman Conference held in Napa, CA, USA, on the topic of
“Collisionless Shocks.” The invited reviews were published
in two volumes of AGU monographs and two volumes of
Journal of Geophysical Research (JGR) special issues. In “Col-
lisionless Shocks in the Heliosphere: A Tutorial” (1985) [646],
we recommend Kennel et al. [454] and Papadopoulos [647] as
two particularly excellent theoretical articles. “Collisionless
Shocks in the Heliosphere: Reviews of Current Research”
(1985) [648] is devoted to writeups of invited reviews of the
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then-recent research. The JGR special issues (January and
June 1985) were devoted to writeups of contributed talks
at the conference. A more recent article, dealing with the
geomagnetic effects of shocks and discontinuities can be found
in Tsurutani et al. [649].

C. Fast Shocks

Fast-forward shocks have been identified at the regions
upstream of fast ICMEs [574]. By “fast” it meant that the
speed of the ICME relative to the upstream solar wind is
faster than the upstream magnetosonic speed. By “forward,”
we mean the direction of propagation is the same direction
as the driver, antisunward. The magnetosonic Mach number is
typically between ∼1 and 3 [574]. Much higher Mach number
shocks have been occasionally detected (∼28 for the July 23,
2012 event: [650]), but not near the theoretically possible value
of ∼45 postulated by Tsurutani and Lakhina [265].

For CIRs, at 1 AU, there are typically no fast-forward
shocks bounding the antisolar side of the CIR. For about 20%
of cases, there are fast reverse shocks on the solar side of
the CIR [245]. There are both fast forward and fast reverse
shocks bounding the CIRs at distances > 2.5 AU from the
Sun [72], [651]. The magnetosonic Mach number of these
shocks is also relatively weak.

Planetary “bow” shocks are high Mach number fast reverse
shocks. They have been detected at Earth [652], [653],
Jupiter [272], Saturn [654], Uranus [655], Mars [656], [657],
[658], Venus [659], and at comets [613], [660]. Since planets
are relatively stationary with regard to radial motion relative
to the Sun, these Mach numbers are quite high, ranging
from ∼9 to ∼21. The Mach number of bow shocks at comets
is low [404], [661] (see more details in Section XII).

Charged particles can be accelerated to MeV and even
GeV energies at ICME fast-forward shocks [662]. See
review by Reames [575]. The proposed mechanisms are
gradient drift along the shock surface for perpendicular
shocks [573], [663] and second-order Fermi acceleration for
parallel shocks [664], [665]. Shocks that are neither perpen-
dicular nor parallel (everything in between) can accelerate
charged particles by both mechanisms. One exceptional case
of quasi-parallel shock energetic particle acceleration was
reported by Kennel et al. [666], [667]. See Section XVI for
more detail.

Fig. 19 shows Earth’s foreshock region. Note that Earth’s
bow shock is parallel/quasi-parallel in nature in the morning
hours and perpendicular/quasi-perpendicular in the early after-
noon hours. ULF waves do not have high enough speeds to
propagate into the upstream foreshock region. The waves are
generated locally by the escaping energetic ion beams through
anomalous cyclotron resonanant instabilities [668].

Particle acceleration at fast forward and fast reverse shocks
also occurs at CIR shocks [41], [669]. However, because CIR
shocks are low in Mach number, the energy and flux of the
accelerated particles are less than at ICME shocks.

The enhanced plasma densities sunward of fast-forward
quasi-perpendicular shocks (or simply interplanetary plasma
pressure pulses) can cause compression of dayside mag-
netospheric preexisting energetic electrons and protons.

Fig. 19. Earth’s bow shock and upstream energetic particles and waves (the
foreshock region). The Sun is at the top out of view. At 1 AU, the Parker
interplanetary magnetic field is nominally at an angle of 45◦ relative to the
Earth–Sun line. Energetic electrons are indicated by yellow dots and energetic
ions by red dots. Energetic electrons and ions accelerated at the shock or in
the sheath can escape into interplanetary space and form the foreshock region.
Upstream energetic electrons and ions can generate plasma waves by electron
and ion beam instabilities. The figure is taken from [394].

Compression (conservation of the first adiabatic invariant)
causes the perpendicular temperatures to become greater than
the parallel temperatures. This can lead to plasma insta-
bilities and both electromagnetic chorus and EMIC wave
growth ([308]; see also Section VIII]. Such shocks cause
dayside auroras which propagate from the nose of the mag-
netosphere tailward, in the same antisunward direction as
the shock propagation [670], [671]. Shock compression of
Earth’s magnetosphere/magnetotail can also trigger nightside
substorms [188], [189].

D. Slow Shocks

Slow shocks have been identified in Earth’s magne-
totail located between the plasma sheet and the tail
lobes [672], [673]. They have also been detected in interplan-
etary space [674], [675]. In one case where an interplane-
tary pair of forward and reverse slow shocks were detected,
energetic particles were noted to have been accelerated at the
shocks [676].

E. Intermediate Shocks

To date, there has been only one clear case of an inter-
planetary intermediate shock observation reported in the lit-
erature [677]. If the Tsurutani et al. [678] speculation that
interplanetary nonlinear Alfvén waves phase steepen into
intermediate shocks is correct, then it is possible that many of
the “DDs” in the solar wind discussed earlier are intermediate
shocks. Although strong plasma heating has been noted to
occur, the actual measurements involved in determining the
potential shock properties have not been made to date. See
also arguments in Lee et al. [679] that intermediate shocks
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are intrinsically unstable. More will be stated on the topic of
interplanetary Alfvén waves in the following.

F. Alfvén Waves, “Switchback” Magnetic Fields, Magnetic
Decreases, and Magnetic Reconnection

Alfvén waves [133], [680] are the dominant plasma wave
mode present in the solar wind [681]. The wave amplitudes
are essentially equal to the ambient magnetic field strength
and are highly nonlinear. Because of the nonlinear nature
of these waves and the high β of the solar wind, existing
kinetic theory [682], [683] of smaller wave amplitudes are not
applicable to understanding the properties of these waves.

Some Alfvén waves have been shown to be “arc
polarized” [684], [685], [686]. Tsurutani et al. [687] and
Tsurutani and Lakhina [668] showed that the waves were
“phase steepened” where the waves were split into two
sections, a slowly rotating arc (∼180◦ rotation in phase)
and a fast rotation reverse arc (∼180◦ in phase). See Swift
and Lee [688] and Vasquez and Hollweg [689] for numeri-
cal calculations and simulations illustrating these properties,
respectively. The fast rotation, phase-steepened end of the
Alfvén wave is a rotational discontinuity. Because Alfvén
waves are by nature noncompressive, nonlinear Alfvén wave
magnetic perturbations must rotate on the surface of a sphere
and are thus spherical waves [681], [690]. Balogh et al. [244]
identified events where the radial component of the IMF
reversed sign. Changes in the plasma flows were noted during
the magnetic field reversals [691]. All of these features are
part of arc-polarized, spherical Alfvén waves called “magnetic
switchback events.” Some recent works on this topic are
Mozer et al. [692], Larosa et al. [693], Akhavan-Tafti et al.
[694], and Neugebauer and Sterling [695].

Interplanetary magnetic holes (MHs) were first reported by
Turner et al. [697]. It was later shown that larger-scale MDs
were the same thing [696]. We will use the latter name in this
article. MDs are simply defined as short-duration decreases
in the IMF magnitude. MDs are pressure balance structures
where plasma thermal pressure supplants the decreased mag-
netic field pressure [698], [699], [700].

Fränz et al. [701] and Neugebauer et al. [699] have shown
that inside MDs, the proton perpendicular temperature is typi-
cally higher than its parallel temperature. Tsurutani et al. [702]
argued that the proton perpendicular heating inside MDs
was a local process by demonstrating that the temperature
anisotropies led to the instabilities where proton cyclotron
waves and mirror mode structures were generated. The authors
argued that the increased pressure from the locally heated
plasma displaced magnetic pressure, leading to the formation
of the MDs. Earlier Lin et al. [703], [704] showed that elec-
tron heating was also occurring inside MDs, indicated by the
presence of both electron whistler mode waves and Langmuir
waves. What is the source of plasma heating inside MDs?
Tsurutani et al. [702] and Dasgupta et al. [705] argue that
the ponderomotive force associated with the phase-steepened
edges of Alfvén waves is doing the heating. It is also possible
that slow mode shocks or fast shocks from parametric insta-
bilities are causing the local heating [689], [706]. All of these

Fig. 20. Series of three interplanetary Alfvén waves detected by Ulysses. The
waves are phase steepened with MDs/MHs formed at the steepened edges. The
dissipation of the steepened waves is believed to be due to the ponderomotive
force associated with the sharp edges (RDs). The heated plasmas expelling
magnetic flux forms the MDs. The lower panel shows that the wave is arc
polarized, consistent with a spherical wave. The figure is taken from [696].

mechanisms are forms of Alfvén wave energy dissipation,
which may lead to solar wind acceleration.

Fig. 20 shows three cycles of interplanetary Alfvén waves
observed by the Ulysses magnetometer. The waves are phase-
steepened, arc-polarized spherical waves. The steepened edges
consist of ∼180◦ of phase rotations and are RDs. The
Tsurutani et al. [702] scenario is that the ponderomotive force
associated with the RDs causes heating of ambient solar wind
plasma which then displaces the solar wind magnetic field,
creating the MDs.

MDs are typically bounded by sharp edges or tangential dis-
continuities, TDs [681]. Fränz et al. [701] examined 115 thick
MDs and found that ∼78% of them were bounded by TDs.
What are these TDs? Farrugia et al. [707] examined one TD at
the boundary of an MD and showed that it was a slow shock.

A recent review [71] has attempted to link all of these
interplanetary features together. First, nonlinear Alfvén waves
phase-steepen to form rotational discontinuities at their leading
edges. These RDs continue to steepen forming intermediate
shocks ([678]; however, see Lee et al. [679] who believe inter-
mediate shocks are unstable). The ponderomotive force asso-
ciated with the rotational discontinuities heats the upstream
plasma forming the MDs. The heated plasma dissipates energy
in the generation of plasma waves. The folded magnetic fields
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(switchback events) lead to magnetic reconnection [708] of
the Petschek [709] type, with further Alfvén wave dissipation.

What are the causes of MDs without TD boundaries,
the ∼22% noted in Franz et al. [701]? One possibility is
that the Alfvén wave amplitude was not sufficient to have
folded-back into itself such that opposite field directionalities
are adjacent to each other. Another possibility is that recon-
nection had already taken place and the TD is a “fossil” of a
previous slow shock. Research on this topic is currently taking
place with Parker Solar Probe and Solar Orbiter data.

G. Formation of Interplanetary and Interstellar Turbulence

Space plasma researchers ([710] and references therein)
have noted that the IMF often takes an f −5/3 power law
shape, indicating that Kolmogorov fluid-like processes [711]
may be occurring in the solar wind. Matthaeus et al. [712]
and references therein have explained this spectral shape
by inverse cascade and quasi-inverse cascade processes. Lee
and Lee [713] have examined the local interstellar medium
data (Voyager 1) and have found that although the magnetic
field has a Kolmogorov-like shape, the transverse magnetic
field power is higher than the parallel power. They conclude
that transverse Alfvén waves or arc-polarizations must be
present. Tsurutani et al. [71] have taken a different viewpoint
concerning solar wind turbulence. They have noted that Alfvén
waves phase-steepen with the leading edge forming a ∼180◦

rotational discontinuity leaving an elongated trailing portion of
the wave consisting of the remainder of 180◦ phase rotation.
The former is a form of “wave breaking” and the latter that of
a wave “period doubling.” This process occurring over many
single Alfvén waves can form magnetic turbulence.

XIV. INTERPLANETARY DUST

Signs of interplanetary dust were present well before the
space age. A faint white glow is visible in the night sky before
sunrise along the zodiac, in the ecliptic plane. This is called
the “zodiacal light” or “false dawn.” The zodiacal light is due
to sunlight scattered by interplanetary dust. There is also a
glow visible in the portion of the sky directly opposite the
direction of the Sun. This is called “gegenschein.” It is caused
by the backscatter of sunlight by interplanetary dust [714].
The zodiacal cloud of dust is a pancake-shaped phenomenon
in our solar system that straddles the ecliptic plane [715].
Hanner et al. [716] using the Pioneer 10 spacecraft imaging
polarimeter instrument first directly connected the zodiacal
light to interplanetary dust in our solar system.

Interplanetary dust particles (IDPs) in the solar system have
been studied in situ with dust detectors on-board spacecraft
in the space age [717]. It was motivated by the desire to
understand the interplanetary dust size distribution. The pri-
mary instruments used for in situ dust detection are impacted
ionization type of detectors, which measure the plasma elec-
trical pulse created when dust grains impact the interior walls
of the instrument box and then vaporize and ionize into ions
and electrons. The zodiacal light, the interplanetary and the
in situ interstellar dust have been extensively reviewed in
recent papers [715], [718], [719] as well as in older, but very

useful resources [720], [721], [722]. This section introduces
the topic of interplanetary dust and describes recent advances
in our knowledge of the dust between and around the planets
through studies and missions of the last few years. A NASA
review/white paper for interplanetary dust is contained in
Mann et al. [723], which was written to examine the potential
for dust damage to the initial Solar Probe mission design,
which was intended to reach a close-approach distance of
4 RS from the Sun. With high spacecraft velocities near
the Sun, a sizeable dust impact could torque the spacecraft
and the instruments and spacecraft components would then
be exposed to intense solar radiation. The instruments and
spacecraft would then become seriously damaged.

A. Interplanetary Dust Cloud

Interplanetary dust spans the size range from submi-
crometer to millimeter sizes and originates mostly from
comets [724] along with asteroids, and Edgeworth–Kuiper
Belt (EKB) objects. When asteroids collide, they produce dust
and micrometeoroids. Comets sublimate gas when they get
close to the Sun. Small cometary dust particles are dispersed
and pushed away by the solar radiation pressure force, while
larger (micrometer-sized) particles remain closer to the comet
and form a trail along the comet’s orbit [725]: these are
the meteoroid streams that can produce meteor showers on
Earth when Earth’s orbit crosses the cometary tails’ orbits.
Small dust is dispersed from the meteoroid streams by various
mechanisms. Losses processes for interplanetary dust include
collisions, sputtering, and, especially in the inner solar system,
sublimation. The IDC or zodiacal dust cloud dust density
distribution generally has an exponential slope of −1.3 with
increasing distance to the Sun. The distribution (out of the
ecliptic plane) is typically described as a “fan”-like struc-
ture [726], [727]. Rowan-Robinson and May [728] give a
review of the structure of the zodiacal cloud and fits inter-
planetary dust models (including an interstellar component) to
space-borne infrared observations [728].

Within the solar system, dust grain motion is deter-
mined by a combination of gravity, Poynting–Robertson drag
[729], [730], solar radiation pressure, and electromagnetic
interaction with the solar wind. All of these forces act on
every dust grain, but the dominant force depends upon each
dust grain’s mass and surface charge (see [718] and references
therein). The motion of dust grains larger than ∼100 µm
is determined primarily by gravitational interaction with the
Sun (as well as gravitational perturbations from the planets
and other solar system bodies). These grains are subject
to Poynting–Robertson drag, which causes them to slowly
lose angular momentum, reducing the semimajor axis of
their orbits, such that they ultimately spiral inward toward
the Sun on nearly circular orbits. The motion of grains
with radii between ∼1 and ∼100 µm is strongly influ-
enced by solar radiation pressure [731]. When radiation
pressure dominates gravity, dust grain orbits can become
hyperbolic, and grains can be ejected from the solar system as
β-meteoroids [731]. Grains with nanometer radii (<1 µm)
are often called nanograins. Like all objects immersed in
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plasma [732], nanograins experience surface charging. The
electromagnetic forces imposed by the flow of the solar
wind magnetic field over charged nanograins can dominate
gravitation and solar radiation pressure, causing nanograins
to exhibit dynamics similar to exceptionally massive pickup
ions [733].

Other than IDPs and meteoroids, more types of dust “in
between or around the planets” exist [734]: airless bodies
develop dust clouds created by impacting particles [735], [736]
that thankfully can be used for probing surface compositions
using spacecraft with dust mass spectrometers [737], [738].
Contemporary interstellar dust moves from interstellar space
through the solar system and can also be probed in situ
[719], [739], [740], [741]. Nanodust from Io’s volcanoes or
dust originating from the depths of Enceladus’ oceans can
escape the systems of Jupiter [742] and Saturn [743], [744].
Their compositions can be measured by in situ time-of-flight
mass spectrometry [745].

B. Recent Developments

Over the last decade, significant progress has been made
in predicting the motions of interplanetary dust grains whose
motion is dominated by electromagnetic forces [746]. These
“nanograin” particles have been suggested to play a role in the
creation of inner source pickup ions [747], [748], cometary
evolution [749], and solar wind mass loading [750], [751].
Observations of nanograins were reported in association with
dust streams from Jupiter [752], between 1 and 5 AU on the
Cassini spacecraft [753], [754] and at 1 AU by the STEREO
spacecraft [755], [756]. However, some authors debate
whether the STEREO observations were due to nanodust or
not [757], [758].

Recently, data from the Parker Solar Probe mission [759]
have enabled new progress in understanding the near-Sun
evolution of the zodiacal cloud. The Parker Solar Probe
spacecraft has traveled closer to the Sun than any previous
spacecraft, eventually reaching 9.8 RS over 24 orbits of the
Sun. From this unique vantage point, data from the WISPR
white light imager [760] was used to confirm a previously
unverified prediction from 1929 that a dust-free region exists
close to the Sun where dust grains are destroyed by interaction
with solar photons [723], [761]. The near-Sun dust density
was found to increase with decreasing radial distance until
19 RS . It remains approximately constant until 10 RS , then
exponentially decreases closer to the Sun, reaching ∼0 density
at 3 RS [762], [763]. WISPR data were also used to observe
the full longitudinal extension of the circumsolar dust ring in
the orbit of Venus [763], adding to our current understanding
of terrestrial planet circumsolar dust rings [764], [765], [766],
[767], [768].

A new technique for not only detecting dust impacts on
spacecraft but also determining their composition was devel-
oped using the electric sensor data on the DS1 spacecraft
encounter with comet Borrelly [769]. The technique uses the
space charge effects of the electron, proton, and ion clouds
created by the dust impacts. A schematic for a future space
dust detector is shown in Fig. 21. The advantage is that

Fig. 21. Schematic for a future dust detector for space missions. The detector
is a flat circular plate with short electric dipole sensors at the edges. The figure
was taken from [769].

the detector has a very large cross-sectional area and the
plate portion of the detection device can also serve as a
spacecraft heat shield. More recently, the FIELDS electric
sensors on Parker Solar Probe [770] studied dust in situ
via impact ionization [771], [772], [773]. Using this dataset,
it was determined that most of the dust observed in the
inner heliosphere is a combination of α- and β-meteoroids
(bound versus unbound), where the relative proportion of
the two populations observed is determined by variability
in the spacecraft orbital velocity [771], [773]. Data-model
comparisons [748] were used to constrain the zodiacal mass
loss rate (100–200 kg s−1), the source region for β-meteoroids
(10–20 RS), and the maximum size of dust (∼50 nm) that
contributes to the inner source pickup ion population [747].
A persistently observed two-peak dust structure (one inbound,
one outbound) was observed from Parker Solar Probe [774].
Existing zodiacal cloud models that include only α- and
β-meteoroids cannot reproduce this feature [748], indicating a
third unknown source of dust in the inner solar system. Data
analysis and modeling of this feature suggest that it may be a β

shower, created by a collisional grinding rate enhancement that
occurs when a meteoroid debris stream encounters the dense
portion of the zodiacal cloud [748], [774]. If fully verified,
this interaction represents a new process capable of significant
modification to both meteoroid debris streams and the near-
Sun dust populations.

New Horizons was launched in 2006 with the main goal to
study the Pluto system during its fly-by. Indeed, it has taken
unprecedented images and measurements of the Pluto and
Charon surfaces and environments [775]. It is now further on
its way out of the solar system, in the Kuiper belt, and moving
more or less toward the “nose” of the heliosphere, at an ecliptic
longitude [776] of 293◦ (similar to Voyager 2 but more or less
in the ecliptic plane. At the time of writing, the spacecraft
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was at ca. 50 AU from the Sun [776]. New horizons carry the
student dust counter instrument, designed to measure IDPs of
sizes above about 0.6 µm or interstellar dust particles of about
0.3 µm and above. The instrument consists of 14 permanently
polarized polyvinylidene fluoride (PVDF) impact sensors of
which two are not exposed to space but serve as a reference
to help distinguish noise from dust impact events. The total
surface of exposed panels is 1.292 m2. Dust flux observations
to date seem to follow the currently available models for the
EKB dust. The interstellar dust component will be increasingly
important as the distance from the Sun increases [776].

The Juno spacecraft, launched in 2011 for investigations
in the Jovian system, carries four-star cameras for attitude
determination of the magnetometer system. One of these has
been used to search for asteroids. This camera also detected
impact ejecta from dust particles hitting the Juno solar pan-
els [777]. The panels are large (60 m2) and the spallation
products are estimated to be in the order of 1–100 µm, making
this method interesting for the monitoring of bigger IDPs
impacting at speeds of 5–15 km s−1. A new model of the
IDP cloud origin and structure was proposed, based on these
data [778], but was refuted by Pokorný et al. [779]. Juno also
carried a plasma wave instrument that detected dust impacts
on the spacecraft [780], sensitive to slightly smaller particles
than the camera.

XV. SPACE DUSTY PLASMAS

Dusty plasmas are plasmas consisting of electrons, ions, and
charged dust grains. Dusty plasmas are observed in astrophys-
ical and space environments, for example nebulas, interstel-
lar clouds, cometary environments, planetary rings, planetary
Moons, ionospheres and magnetospheres [781], [782], [783],
[784], [785], [786], [787], [788]. Dusty plasmas encoun-
tered in laboratories are also called “complex plasmas.”
The electrostatic energy between the charged dust grains is
very high as the dust grains can become heavily charged,
e.g., a micrometer-size particle can have ∼1000s of elemental
charges. This leads to strong electrostatic coupling in dusty
plasmas as compared with usual electron–ion plasmas. There-
fore, it is possible to observe transitions in dusty plasmas from
a disordered gaseous-like phase to a liquid-like phase. The for-
mation of ordered structures of dust particles forming plasma
crystals is also possible. An excellent review of experimental
dusty plasmas is given by Fortov et al. [789].

The dust grains in the dusty plasmas are generally
highly charged due to the liberation and capture of addi-
tional electrons and ions from the ambient plasma, pho-
toemission, secondary emission, field emission, and so
on [790], [791], [792], [793], [794]. The presence of these
massive, highly charged dust particles may significantly influ-
ence various physical processes in dusty plasmas. Usually, the
acquired charges on a dust grain fluctuate and it does not
remain constant. This property makes dusty plasmas different
from conventional electron–ion plasmas. Collisions and charge
fluctuations in dusty plasmas can lead to momentum loss of
electrons, protons, and dust grains. Furthermore, the charge-
to-mass ratio of dust particles may significantly vary due to
the accumulation or loss of electrons or protons from the dust

grains. As the sizes of the dust grains are not the same, the
dusty plasmas commonly have a dust mass distribution. Since
the charge-to-mass ratio of a dust particle is much smaller
than that of a singly charged ion or electron, the dynamics
of massively charged dust occur on much longer time scales
than those associated with ion or electron dynamics. Therefore,
a dusty plasma can support plasma wave modes with much
smaller frequencies than the usual electron–ion plasma, the
most notable are the dust-acoustic (DA) wave [795] and dust
ion-acoustic (DIA) wave [796]. It is interesting to note that
the DA wave is supported by the pressures of both electrons
and ions providing the restoring force, whereas the inertia is
provided by the charged dust grains.

Electrostatic waves in dusty plasmas having constant dust
charge have been investigated by several workers [795], [797],
[798], [799], [800], [801], [802], [803], [804], [805], [806],
[807], [808]. Arshad et al. [809] haves studied the DA mode
instability driven by solar wind streaming through a dusty
cometary plasma. The effect of dust charge variations on the
DA wave has been studied by several authors [810], [811],
[812], [813], [814], [815], [816]. It is found that dust charge
fluctuations lead to damping of the DA wave because of phase
differences between the electrostatic wave potential and the
dust charge.

It has been shown that dust grain charge fluctuations as
well as collisions can give rise to the dissipative term which
can lead to the formation of DIA shock waves in a dusty
plasma [817], [818]. Popel and Gisko [787] have given an
excellent review of the shock phenomena in dusty plasmas
encountered in our solar system. Recently, there has been
great interest in the study of dust and dusty plasma on the
Moon [819], [820]. Popel et al. [788] have reviewed the results
of theoretical investigations on lunar dusty plasmas performed
by Russian scientists in preparation for future Russian moon
missions.

The Study of DA solitary waves and double layers has
been an active area of research for the past few decades.
Mamun et al. [821] showed that in a plasma system hav-
ing negatively charged dust grains and nonthermal ions,
DA solitary waves of negative and positive potential can
coexistence. In an unmagnetized dusty plasma consisting of
negatively charged warm dust grains, nonthermal ions, and
Boltzmann electrons, positive potential double layers were
found to limit the existence of the domain of positive DA
solitary structures from the high-Mach-number region [822],
[823], [824]. The existence domain of DA solitary waves
in a two-dust system consisting of positively and negatively
charged dust grains, nonthermal electrons, and nonthermal ions
has been considered by several workers [825], [826], [827].
The charge-to-mass ratios of the positive and negative dust
grains are found to control the possible existence domains.
Maharaj et al. [828] have shown the existence of positive
potential DA solitons and supersolitons (having Mach numbers
greater than that of the double layer) in a plasma system
consisting of cold negative dust, adiabatic positive dust, Boltz-
mann electrons, and nonthermal ions.

It is interesting to note that, because of a large mass range
of the charged dust grains, dusty plasmas allow situations
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where gravitational and electromagnetic forces can become
comparable. Under such situations, Jeans and Buneman insta-
bilities can arise which can have a profound effect on the
formation of spokes in the planetary rings, stars, and galaxies
[829], [830], [831], [832].

Dusty plasmas have been found to support nonlinear DIA
freak or rogue waves which are the rational solution of the
nonlinear Schrödinger equation (NLSE) [833]. Singh and
Saini [834] have shown that modulational instability of DA
waves can give rise to different kinds of DA breathers and
rogue waves in a dusty plasma system comprising negatively
charged dust, Maxwellian electrons, and nonthermal ions.
On the other hand, the presence of dust is shown to have
a damping effect on stellar wind-driven instability [835].

In the presence of charged dust grains, the Alfvén speed
is substantially reduced leading to important changes in the
propagation characteristics of electromagnetic modes in a
dusty plasma [836], [837]. This fact has generated a lot of
interest in the study of linear and nonlinear evolution of var-
ious low-frequency electromagnetic modes, e.g., namely, dust
Alfvén waves, dust magnetosonic waves, mixed modes, and so
on, in dusty plasmas encountered in space and astrophysical
plasmas [838], [839], [840], [841], [842], [843].

To summarize, charged dust grains are ubiquitous in most
space, astrophysical, and laboratory plasmas. The dusty plas-
mas give rise to a variety of new low-frequency dust plasma
waves and instabilities. The presence of these new modes can
lead to the occurrence of new phenomena in interplanetary
space, the interstellar medium, interstellar or molecular clouds,
comets, planetary rings, and Earth’s environment.

XVI. SOLAR ENERGETIC PARTICLES, SHOCKS, AND THE
HELIOSPHERIC TERMINATION SHOCK

The properties of space plasma and energetic particles
and the interactions between both depend on where in the
heliosphere they are detected. Energetic particles observed in
Earth’s orbit are mostly messengers from remote locations and
bear the imprints of these interactions. Within this mix of
particles, different sources and prevalent interaction mecha-
nisms can be identified in them. Scientists are well aware that
acceleration and propagation mechanisms are not exclusive but
can, albeit with different contributions, coexist.

High fluxes of ∼1 MeV to ∼5 GeV energetic particles
are created during solar flares [844], [845], [846], [847],
[848], [849], [850], [851]. Energetic protons, helium, carbon,
nitrogen, oxygen, high Z ions, and relativistic electrons are
created by several different processes. Ion acceleration at
the flare/CME release magnetic reconnection site has been
proposed by Freier and Webber [852] and Kallenrode [853].
Various mechanisms for relativistic electron acceleration have
been proposed, including stochastic acceleration by cascading
magnetosonic waves ([854]; see review by Vilmer [855])
and reconnection-related stochastic acceleration [856], [857],
[858], [859], [860].

There are two different intensity-time profiles of the ener-
getic ion fluxes. Those with relatively sharp rises are called
“prompt” or “impulsive” events [863], [864]. Those energetic

Fig. 22. Event-integrated proton spectrum for the December 13, 2006, SEP
event. Here, the particle acceleration throughout the heliosphere (PATH: [861])
code results are shown by the solid line. Fluences obtained from ACE,
STEREO, GOES-11, and SAMPEX observations are shown by triangles. The
figure is taken from [862].

ion events with slower rises are called “gradual” events.
Prompt events typically correspond to ions accelerated near the
Sun at the flare site, whereas gradual events are larger, exhibit
different compositional properties than impulsive events, and
are associated with ICME events [851]. An example of an
observed spectrum of solar energetic protons is illustrated in
Fig. 22 showing both the observed and theoretically predicted
event-integrated spectrum for the December 13, 2006, SEP
event. The distinction between the two classes is not always
clear-cut [865] and shape alone is inconclusive: a series of
four impulsive events at 0.3 AU appears as one gradual event
at 1 AU [866]. These are often described as “mixed events”
and exhibit characteristics of both impulsive and gradual
events [867], [868]. The upcoming observations by Parker
Solar Probe and Solar Orbiter certainly will add important
new aspects to the distinctions.

SEPs stream through interplanetary space along IMF lines
and can enter the polar regions of Earth’s atmosphere [869],
[870], [871], [872]. Energetic protons lose their kinetic energy
by ionization of upper atmospheric atoms and molecules at
heights of ∼80 km down to ∼50 km above the surface of the
Earth. The atmospheric ionization absorbs radio waves and
thus transpolar ionospheric radio communications are blocked.
These communications outages are called polar cap absorption
events, or PCAs. In addition, ionization affects atmospheric
chemistry, in particular, the depletion of ozone [873].

When the flare protons reach energies > 100 MeV, through
a nuclear cascade process, neutrons and other charged daughter
particles can reach ground level creating “ground level events”
or GLEs [844], [874], [875], [876], [877] with even larger
consequences for atmospheric ionization [878].

Pioneers 10 and 11 were the first spacecraft to fly to
the outer heliosphere. McDonald et al. [669] noted that the
∼0.1–10 MeV/nucleon particle fluxes were increasing by an
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Fig. 23. Structure of the heliospheric termination shock as observed by Voyager 2. (a) (i) Magnetic field strength B measured using 48-s averages, (ii) its
direction λ, (iii) elevation angle δ, and (iv) 192-s averages of the solar wind speed V across the third of the heliospheric termination shock crossings TS-3 by
Voyager 2. Clearly visible are an extended foot, a ramp, the magnetic field overshoot, and trailing oscillations. (b) (i) Internal structure of the ramp of TS-3,
based on observations of the magnetic field strength B; (ii) azimuthal angle λ; and (iii) elevation angle δ at 0.48-s intervals. The figure is taken from [899].

order of magnitude as the spacecraft traveled from 1 to 4 AU
from the Sun. See also Van Hollebeke et al. [879], Barnes
and Simpson [880], Tsurutani et al. [881], and Pesses et al.
[573], [882]. These particles must have been accelerated
locally in interplanetary space! The obvious idea was that
interplanetary shocks at the edges of CIRs were somehow
involved with the acceleration process. Smith and Wolfe [72]
showed that CIR fast forward and fast reverse shocks could
form from ∼1.5 to ∼2.5 AU from the Sun and then persist
to 4 AU and beyond. These shocks would continuously accel-
erate energetic particles as the CIRs and their attached shocks
slowly propagated toward the outer heliosphere. Sometimes
the particle peaks were located at the shocks and sometimes
they were not. Tsurutani et al. [41] developed a statistical
test and applied it to ∼0.5–1.8-MeV ion fluxes at 123 CIRs
detected between 1 and 6 AU, finding that indeed particle
peaks were statistically correlated with the shocks. Ulysses’
observations showed that CIRs and particles accelerated at
CIRs extend to even higher solar latitudes [883].

International Sun–Earth Explorer 3 (ISEE-3) experimenters
(E. J. Smith, R. D. Zwickl, J. T. Gosling, and B. T. Tsurutani)
were tasked by the NASA/ESA ISEE Project to try to deter-
mine the properties of shocks (Mach numbers and shock
normal angles) upstream of fast ICMEs from in situ IMF
and plasma measurements (shock determination is discussed
in Section XIII of this article). This two-year list of shocks
was used by the full ISEE science team for their data
analyses. Tsurutani and Lin [574] used the list to iden-
tify shock acceleration of >2 keV electrons and >47 keV
ions. Kennel et al. [666], [667] presented a comprehensive
examination of shock acceleration of 1–6-keV protons and
electrons and >30-keV/Q ions at a supercritical quasi-parallel
interplanetary shock.

Reames [575], [851] argued convincingly that the prepon-
derance of SEPs observed at 1 AU are due to diffusive

shock acceleration associated with fast CMEs/ICMEs and the
subsequent upstream escape into the interplanetary medium
of energetic ions. Shocks first form at 2 to 5 RS from
the Sun upstream of fast CMEs [101] and continue to
accelerate energetic particles as the shock/ICME propagates
to 1 AU and beyond. The accepted mechanism for energetic
ion acceleration at parallel shocks is first-order Fermi accelera-
tion [664], [665], [884], [885], [886], [887]. For perpendicular
shocks, particle gradient drift along the shock surface can
energize ions [662], [888], [889]. For quasi-perpendicular and
quasi-parallel shocks (>95% of all cases), both gradient drift
and diffusive shock acceleration [890], [891], [892] have been
identified as acceleration mechanisms. Models examining the
shock acceleration of energetic ions contain both mechanisms.

Modeling energetic ion acceleration is an extremely dif-
ficult task. The shock Mach number, shock normal angle,
and upstream (seed) environment vary with distance from
the Sun. Additionally, the upstream and downstream waves
vary as a consequence of the evolving shock and seed
properties. Progress on this difficult task has been given
by Zank et al. [861], Rice et al. [893], and Li et al. [894].
An excellent textbook summarizing interplanetary energetic
particles can be found in [853].

A. Heliospheric Termination Shock

The HTS is the largest shock wave in the heliosphere, decel-
erating abruptly the unimpeded expanding super-magnetosonic
solar wind to a subsonic flow that is heated and compressed,
which forms the heliosheath. Voyager 1 crossed the HTS in
December 2004 in the northern hemisphere when the space-
craft was at 94 AU from the Sun [895], [896], [897], [898].
Voyager 1 did not directly observe the HTS since the crossing
occurred during a data gap. Voyager 2, following a southern
trajectory, crossed and observed the termination shock in
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August 2007 at a distance of 84 AU [899],[900], [901], [902],
[903], providing the first magnetic and plasma measurements
of the HTS itself, and the first plasma measurements of the
heliosheath. The observed HTS was observed to be compara-
tively weak (compression ratio ∼1.7 in one case) and highly
perpendicular with as many as five crossings observed. The
multiple crossings of the HTS by Voyager 2 suggest that the
HTS was in continual motion, possibly moving back and forth
across Voyager 2. Alternatively, or as well, the HTS may
have ripples sweeping along the shock front. As illustrated
in Fig. 23, at least one crossing resembled the structure of
a prototypical perpendicular shock with a well-defined foot,
ramp, and overshoot, the difference being that the reflected
ions were almost exclusively reflected pickup ions, as was
predicted already in 1996 [904], and the downstream thermal
plasma was only ∼180 000 K [902]. Most of the shock
dissipation energy went into the heating of pickup ions, mak-
ing the HTS quite different compared with inner heliospheric
shocks. Both the Voyager 1 and 2 HTS crossing revealed the
presence of an extended foreshock and instabilities, due to both
backstreaming MeV protons and energized pickup ions. This
situation is quite different than the easily identified sudden
transitions at ICME or CIR shocks at 1 AU. The HTS crossing
and related results are summarized extensively in Zank [905].

Finally, the different distances at which Voyagers 1 and 2
crossed the HTS suggest an asymmetric 3-D termination
shock and heliosphere, and indeed the inferred orientation
of the local interstellar magnetic field is consistent with
such an inference. The 3-D configuration of the shock and
heliosphere is believed to have a blunt (nonspherical) front-
side shape [906], [907]. Energetic particle observations are
consistent with this picture. A recent review of the termination
shock can be found in Jokipii [908].

XVII. CONCLUSION

Each section of this review was written by two and some-
times three or more different experts so that a balance point-
of-view could be obtained. We hope we have been able to
present the readership with a reasonable objective and accu-
rate accounting of space plasma physics/space physics/space
weather.
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