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Abstract. The El Niño–Southern Oscillation (ENSO) widely modulates the global carbon cycle. More specif-
ically, it alters the net uptake of carbon in the tropical ocean. Indeed, over the tropical Pacific less carbon is
released by oceans during El Niño, while the opposite is the case for La Niña. Here, the skill of Earth sys-
tem models (ESMs) from the latest Coupled Model Intercomparison Project (CMIP6) to simulate the observed
tropical Pacific CO2 flux variability in response to ENSO is assessed. The temporal amplitude and spatial ex-
tent of CO2 flux anomalies vary considerably among models, while the surface temperature signals of El Niño
and La Niña phases are generally well represented. Under historical conditions followed by the high-warming
Shared Socio-economic Pathway (SSP5-8.5) scenarios, about half the ESMs simulate a reversal in ENSO–CO2
flux relationship. This gradual shift, which occurs as early as the first half of the 21st century, is associated with
a high CO2-induced increase in the Revelle factor that leads to stronger sensitivity of partial pressure of CO2
(pCO2) to changes in surface temperature between ENSO phases. At the same time, uptake of anthropogenic
CO2 substantially increases upper-ocean dissolved inorganic carbon (DIC) concentrations (reducing its vertical
gradient in the thermocline) and weakens the ENSO-modulated surface DIC variability. The response of the
ENSO–CO2 flux relationship to future climate change is sensitive to the contemporary mean state of the car-
bonate ion concentration in the tropics. We present an emergent constraint between the simulated contemporary
carbonate concentration with the projected cumulated CO2 fluxes. Models that simulate shifts in the ENSO–CO2
flux relationship simulate positive bias in surface carbonate concentrations.
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1 Introduction

Since the beginning of the industrial era, human activities
such as fossil fuel combustion, land-use changes, and cement
production have released huge amounts of greenhouse gases
(predominantly CO2), leading to the ongoing planetary-scale
climate change. This excess CO2 in the atmosphere is partly
absorbed by the ocean and terrestrial biosphere, buffering
the rate of warming (Doney et al., 2014; Le Quéré et al.,
2016). Over 2010–2019, approximately 3.4± 0.9 and 2.5±
0.6 Pg C yr−1 are absorbed by the land and ocean, respec-
tively, with substantial interannual variability (Friedlingstein
et al., 2020). Due to its strong feedback on climate, improved
understanding of this variability, its governing mechanisms,
and how these mechanisms may evolve in the future are re-
quired to constrain future climate change projections.

Due to its vast area, the tropical Pacific is the most impor-
tant CO2 outgassing region in the world oceans today (Taka-
hashi et al., 2009), representing more than 17 % of the global
ocean CO2 uptake (0.44±0.41 Pg C per year for 1990–2009
and 18◦ S–18◦ N; Ishii et al., 2014), and it is projected to be
the region with the second highest amount (after the South-
ern Ocean) of area-integrated anthropogenic carbon uptake in
the 21st century under a high CO2 scenario (Tjiputra et al.,
2010; Roy et al., 2011). In terms of interannual variability,
the equatorial Pacific CO2 flux represents the dominant mode
of variability of the global oceanic CO2 flux variations (Wet-
zel et al., 2005; Resplandy et al., 2015; Landschützer et al.,
2016). Some Earth system models (ESMs) also show the
CO2 flux in the Southern Ocean as the dominant mode (Res-
plandy et al., 2015). In this region, the mechanistic driver is
associated with the El Niño–Southern Oscillation (ENSO),
which has been well established and thoroughly documented
in many previous observational and modelling studies. For
instance, Feely et al. (2006) showed strong negative corre-
lation between CO2 fluxes and ENSO over the equatorial
Pacific using observations from 1981 to 2004. Using ocean
biogeochemical general circulation models forced with at-
mospheric reanalysis, similar regional CO2 flux fluctuations
in response to ENSO have been simulated (Winguth et al.,
1994; Bousquet et al., 2000; Valsala et al., 2014; Wang et al.,
2015).

The biogeochemical processes constraining the CO2
fluxes in the equatorial Pacific are strongly influenced by the
ENSO-induced physical processes. These processes can be
formulated as follows: during El Niño events, warmer sea
surface temperature reduces the CO2 solubility, which in-
creases seawater partial pressure of CO2 (pCO2, Le Borgne
et al., 2002; Patra et al., 2005; Ishii et al., 2014). In parallel,
during those events, weaker upwelling of nutrient-rich and
dissolved-inorganic-carbon-rich subsurface water acts to re-
duce the surface seawater pCO2 (Feely et al., 2006; Long
et al., 2013; Wang et al., 2015). The opposite happens during
the La Niña phase. Among these competing processes, the
ENSO-driven interannual variability of CO2 flux is presum-

ably dominated by the modulation of dissolved inorganic car-
bon (DIC) concentrations by the upwelling process (McKin-
ley et al., 2004; Li and Xu, 2013; Jin et al., 2017). Therefore,
it is the change in thermocline depth and upwelling strength
during the ENSO phase that mainly governs the tropical Pa-
cific CO2 flux anomalies by constraining surface DIC con-
centration (e.g. Doney et al., 2009). In addition, CO2 flux
anomaly variability in the tropical Pacific is also related to
the poleward Ekman transport driven by the easterly trade
winds (Liao et al., 2020).

While models simulating only the ocean are able to simu-
late the relationship between CO2 and ENSO (e.g. McKinley
et al., 2004; Wetzel et al., 2005; Li and Xu, 2013), this is
not always the case for fully coupled Earth system models
(ESMs). Indeed, based on ESM simulations from the Cou-
pled Model Intercomparison Project 5 (CMIP5, Taylor et al.,
2012), Dong et al. (2017) showed that over the historical pe-
riod some models underestimate the observed surface DIC
variability and consequently the CO2 flux anomalies. They
attributed this to a weak relationship between the simulated
upwelling variations and the respective ENSO phases. Jin
et al. (2019) showed that some ESMs poorly simulate the
spatial pattern of the tropical Pacific CO2 fluxes in response
to ENSO over the historical period. They attributed this to
the weak surface DIC-induced CO2 flux variability during
ENSO; e.g. the anomalously low DIC signals associated with
ENSO are insufficient to counteract the solubility effects in-
duced by sea surface temperature (SST).

The main focus of this paper is to determine how the
ENSO-induced variability of sea–air CO2 fluxes may be al-
tered in the high-CO2 future in ESM projections. In this
study, the capability of the latest ESM collection from Cou-
pled Model Intercomparison Project 6 (CMIP6) (Eyring
et al., 2016) to reproduce the observed ENSO–CO2 flux re-
lationship over the contemporary period is first evaluated.
Next, we analyse how this relationship evolves in future pro-
jection run under a high-warming scenario. Given the impor-
tance of carbon cycle climate feedback on future projections
(e.g. Arora et al., 2020) and the large-scale impact of ENSO
on the global climate, such evaluation is timely and neces-
sary. In particular, the aim is to identify and elucidate emerg-
ing consistent patterns among the ESMs to better constrain
future changes in ENSO-induced variability in the equatorial
Pacific. Studying the future evolution of ENSO-related CO2
flux variations is also crucial because ENSO, the most dom-
inant mode of global climate variability, and its extremes are
projected to become more frequent, more intense, and more
extended in spatial impact (Cai et al., 2015).

The paper is organized as follows. Section 2 introduces
the observational and model datasets, the study area, and
the methods used to analyse the relationship between ENSO
and sea–air CO2 fluxes. Results of the contemporary ENSO-
related spatial patterns and ENSO–CO2 flux relationship re-
versal and variability drivers are presented in Sect. 3, while
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Sects. 4 and 5 provide the discussion and summary of this
study.

2 Data and methodologies

2.1 Observational and CMIP6 datasets

The ocean variables analysed in this study are listed in Ta-
ble 1. These variables are extracted from different observa-
tional and simulation products at monthly temporal resolu-
tion. For observation-based fgco2, the monthly reconstruc-
tion values from 1982 to 2015 based on a two-step neural
network data interpolation (MPI-SOM-FFN) is used (Land-
schützer et al., 2016). Gridded monthly SST observations
are taken from the Japanese 55-year reanalysis data (JRA-
55) from 1958 to 2019 (Kobayashi et al., 2015; Harada
et al., 2016). The subsurface temperature profiles over the
1985–2014 period are computed from the ORAS5 reanaly-
ses (Zuo et al., 2019). Total alkalinity average estimates, in-
cluding measurements between 1972 and 2013, have been
retrieved from the GLODAP version 2 data product (Lauvset
et al., 2016). Finally, the observed DIC climatology over the
2004–2017 period is extracted from the Keppler et al. (2020)
dataset. All variables are given at a regular 1×1◦ spatial hor-
izontal resolution.

For the Earth system model simulations, the monthly out-
put fields of surface fgco2; pCO2; SST; sea surface salin-
ity (SSS); alkalinity (ALK); integrated primary production
(intPP); and 3D temperature, DIC, and alkalinity concen-
trations are taken from the Coupled Model Intercomparison
Project phase 6 (CMIP6, Eyring et al., 2016) database. At
the time of study initiation, 16 ESMs provided the variables
required for the analysis (see Table 2). The simulation vari-
ant for each model is chosen according the availability of the
variables shown in Table 1. Given the variety of (irregular)
grids among the models, the model datasets are spatially re-
gridded into a regular 1◦×1◦ grid using bilinear interpolation
provided by climate data operators (CDOs). The vertical res-
olutions of 3D temperature and DIC are linearly interpolated
at 20 m resolution from the surface down to 1000 m depth.

In this study, analyses are conducted over the same con-
temporary reference period 1985–2014, the end of the cen-
tury future period (2071–2100) under the high CO2 Shared
Socio-economic Pathway scenario (SSP5-8.5, O’Neill et al.,
2016), and the whole 1850–2100 period, combining both his-
torical and SSP5-8.5 concentration-driven experiments. This
high-warming scenario has been chosen in order to use a
clear signal with a high signal to noise ratio. Indeed, us-
ing a high-emission end member scenario gives us the best
chance to actually see a change in the strong relationship be-
tween ENSO and CO2 fluxes. The model simulation outputs
are first evaluated against the observations for the reference
period, followed by analysis of future evolution and changes
with respect to the reference period.

2.2 Variable anomalies, Niño34 index, and thermocline
depth computation

The analysis focuses on the correlation between CO2 flux
anomalies and Niño34 index. First, the monthly anoma-
lies of sea–air CO2 fluxes at each grid point are com-
puted by detrending each calendar month separately us-
ing a cubic smoothing spline (implemented by the function
smooth.spline in R software; R Core Team, 2016) over the
period 1850–2100. For instance, the non-linear trend for Jan-
uary at a given grid point is removed from the respective time
series comprising all January values. The SST and pCO2
anomalies used in the analyses are also computed in the same
manner. The degree of freedom of the spline is set to get a
good compromise between the smoothness (smoothing pa-
rameter above 0.8) and the number of parameters (knots) of
the spline used to estimate the trend over to whole equatorial
Pacific (Hastie and Tibshirani, 1990, chap. 10). The degree of
freedom is set to 5 for SST and fgco2. A degree of freedom
of 12 is needed for pCO2 given its steeper increase.

The Niño34 index corresponds to the standardized area-
weighted mean SST anomalies over the Niño34 region: 5◦ S–
5◦ N, 190◦ E–240◦ E. These anomalies are computed rela-
tive to the 1981–2010 climatology. For the CMIP6 model
outputs, the SST values are first detrended over the 1850–
2100 period using a cubic spline. Following this, a model-
specific Niño34 index is computed relative to the 1981–2010
climatology. Hereafter, the regimes referred to as El Niño
(or La Niña) are defined from the respective Niño34 in-
dices (specific for observations and each model). Months
with a Niño34 index above 1 standard deviation (SD) of each
dataset are categorized as El Niño regimes; those that are be-
low −1 SD are classified as La Niña regimes.

The thermocline is a transition layer where the temper-
ature decreases rapidly with depth from the warm surface
mixed layer to the cold deep-water layer, where the temper-
ature is relatively uniform. A deeper thermocline (e.g. dur-
ing El Niño) limits the amount of interior DIC brought to
shallower depths by upwelling. This indicator is used in this
study to assess the changes in the mechanisms linking ENSO
and CO2 fluxes in the present day and in the future projec-
tions. The thermocline depth is typically defined as the depth
with the maximum vertical temperature gradient (Zhu et al.,
2021, and references therein). In this paper, the gradient is
computed every month as the vertical difference within each
20 m layer (after the vertical interpolation), and the thermo-
cline depth is the average depth of the layer with the highest
gradient.

2.3 Thermal and non-thermal contributions to surface
pCO2

In order to differentiate the thermal (th, driven by SST) and
non-thermal (nt, driven by other factors, such as DIC, alkalin-
ity, and salinity) contributions, the temporal variations of sur-
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Table 1. Ocean variables used in this study. The full name, the abbreviation, standardized CMIP6 name, and the unit of each variable are all
also given.

Variable Abbreviation Standardized name Unit

Surface sea–air CO2 fluxes fgco2 fgco2 mol C m−2 yr−1

Surface CO2 seawater partial pressure pCO2 spco2 µatm
Sea surface temperature SST tos ◦C
Sea surface salinity SSS sos psu
Vertically integrated primary production by phytoplankton intPP intpp mol C m−2 yr−1

Export production at 100 m epc100 epc100 mol C m−2 yr−1

3D fields of dissolved inorganic carbon Concentration DIC dissic µmol C L−1

3D fields of temperature – thetao ◦C
3D fields of salinity S so psu
3D fields of alkalinity ALK talk µmol eq L−1

3D fields of carbonate ion (estimated as ALK−DIC) CO2−
3 – µmol C L−1

Table 2. List of the 16 CMIP6 models used in this study with the horizontal resolution of the ocean component, variant label, model, and
data references all given. Note that most of the models have irregular grids and the resolutions quoted in the table are approximate.

CMIP6 model name Horizontal ocean resolution Variant Label ESM Reference Data
(long by lat in degree)

ACCESS-ESM1-5 1◦× 1◦ r1i1p1f1 Law et al. (2017) Ziehn et al. (2019)
CanESM5-CanOE 1◦× 1◦ r1i1p2f1 Swart et al. (2019c) Swart et al. (2019a)
CanESM5 1◦× 1◦ r1i1p2f1 Swart et al. (2019c) Swart et al. (2019b)
CESM2 1.125◦× 0.53◦ r10i1p1f1 Lauritzen et al. (2018) Danabasoglu (2019a)
CESM2-WACCM 1.125◦× 0.53◦ r1i1p1f1 Liu et al. (2019) Danabasoglu (2019b)
CNRM-ESM2-1 .3◦− 1◦ r1i1p1f2 Séférian et al. (2019) Seferian (2018)
GFDL-CM4 0.25◦× 0.25◦ r1i1p1f1 Held et al. (2019) Guo et al. (2018)
GFDL-ESM4 0.5◦× 0.5◦ r1i1p1f1 Dunne et al. (2020) Krasting et al. (2018)
IPSL-CM6A-LR .3◦− 1◦ r1i1p1f1 Boucher et al. (2020) Boucher et al. (2018)
MIROC-ES2L 1◦× 1◦ r1i1p1f2 Hajima et al. (2020) Hajima et al. (2019)
MPI-ESM1-2-HR 0.4◦× 0.4◦ r1i1p1f1 Müller et al. (2018) Jungclaus et al. (2019)
MPI-ESM1-2-LR 1.5◦× 1.5◦ r1i1p1f1 Mauritsen et al. (2019) Wieners et al. (2019)
MRI-ESM2-0 1◦× (0.3− 0.5)◦ r1i2p1f1 Yukimoto et al. (2019a) Yukimoto et al. (2019b)
NorESM2-LM 1◦× 1◦ r1i1p1f1 Tjiputra et al. (2020) Seland et al. (2019)
NorESM2-MM 1◦× 1◦ r1i1p1f1 Seland et al. (2020) Bentsen et al. (2019)
UKESM1-0-LL 1◦× 1◦ r1i1p1f2 Sellar et al. (2019) Tang et al. (2019)

face ocean pCO2 is decomposed into the two terms following
Takahashi et al. (1993; 2002). Seawater pCO2 is thermody-
namically dependent on temperature and is computed from
the temperature sensitivity of CO2 γT (4.23 % ◦C−1). This
sensitivity has experimentally been determined and is asso-
ciated with very little error (Takahashi et al., 1993), which is
not further considered. The thermal pCO2 component pCOth

2
is computed as follows:

pCOth
2 =< pCO2>annual exp(γT (dSST−< dSST>)) . (1)

In Eq. (1), the annual pCO2 average,< pCO2>annual, is per-
turbed with temperature anomalies computed as the differ-
ence between the detrended SST, dSST (done with a cubic
spline), and the long-term mean dSST, < dSST>. The non-
thermal component (pCOnt

2 ), which reflects the effect of bio-
physical processes, is computed by normalizing the pCO2 to

< dSST> (Takahashi et al., 2002):

pCOnt
2 = pCO2 exp(γT (< dSST>−dSST)) . (2)

In Eq. (2), the exponential term removes the SST-associated
pCO2 variation. This decomposition is well known and ex-
tensively used at regional and global scale (e.g. Landschützer
et al., 2018; Jiménez-López et al., 2019; Ko et al., 2021).

2.4 Biological contribution to surface pCO2

The buffering capacity of the ocean is a measure of the abil-
ity of the ocean to take up carbon and is quantified by the
Revelle factor, R = 1pCO2

pCO2
/1DIC

DIC (Revelle and Suess, 1957).
The Revelle factor R is the ratio of the relative change of
seawater pCO2 (or aqueous CO2 concentration, CO2(aq)) to
the relative change of dissolved inorganic carbon (DIC=
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CO2(aq)+HCO−3 +CO2−
3 , Egleston et al., 2010; Hauck and

Völker, 2015). The sensitivity of pCO2 to DIC perturbations
can be estimated using the buffer factor γDIC that is related
to the Revelle factor as γDIC =

DIC
R

and can be explicitly
retrieved from the carbonate system parameters (Egleston
et al., 2010). To summarize, the higher the Revelle factor,
the lower the buffer capacity (or the buffer factor γDIC) of
the ocean and its CO2 uptake capacity. The annual evolution
of surface Revelle factor and buffer factor γDIC for CMIP6
models over the 1850–2100 period in the equatorial Pacific
(defined below) are given in Fig. 1. Using this relationship,
the reduction in pCO2 can be quantified as a result of re-
duction in DIC concentration, e.g. associated with biological
carbon absorption:

1pCO2bio =
1DICbio

γDIC
pCO2, (3)

where 1DICbio is the mean reduction in surface DIC con-
centration due to biological production (estimated from the
monthly intPP in [mol C m−2 per month] divided by the eu-
photic layer depth, here assumed to be 100 m). A similar ap-
proach has been used in Hauck and Völker (2015) to deter-
mine the impact of biological activity on surface pCO2 in
the Southern Ocean. The 1pCO2bio is relevant to evaluate
the biological contributions during El Niño and La Niña to
pCO2 variations. This quantity non-linearly increases with
1DICbio; i.e. biological contributions to pCO2 variations in-
crease as the buffering capacity decreases.

2.5 Study area

For analysis of integrated surface properties, the focus on
evaluating the anomalies over the equatorial Pacific is given
within the 2◦ S–2◦ N and 180◦ E–260◦ E domain (hereafter
referred to as the equatorial Pacific or simply EP). The EP
area is indicated by the green box in the bottom-right SST
panel of Fig. 2. This region is identified as the common do-
main where the models and observation show the largest
change in SST between ENSO phases. The same domain
is also considered for subsurface analysis conducted in this
study, namely the changes in the vertical DIC, carbonate ion
concentration, and temperature profiles between the contem-
porary and future periods.

3 Results

3.1 Contemporary (1985–2014) ENSO-related patterns

Figure 2 depicts the average tropical Pacific SST and sea–air
CO2 flux anomalies for La Niña and El Niño regimes over
the contemporary period from observations and the CMIP6
multi-model mean. The corresponding values for each model
are given in Figs. S1 and S2 in the Supplement. For sur-
face temperature anomalies, some models clearly simulate
too strong and too broad SST anomalies (Fig. S1), but the

CMIP6 multi-model ensemble mean values show a strong
resemblance with the observations, albeit with slightly too
strong anomalies in the central equatorial Pacific. However,
the warm anomalies observed over the coast of Peru dur-
ing El Niño are slightly weaker in the model simulations.
In these two regions, the inter-model variability is also large
(contour lines in Fig. 2). For the sea–air CO2 flux anoma-
lies, the simulated spatial extent are less in agreement with
the observational estimates. The spatial distribution of CO2
flux anomalies is also different from one model to another,
and none of the models simulate a spatial correlation with
observations of more than 0.8 according the regime, with
negative correlation even present (see Fig. S3 in the Supple-
ment). The co-location of spatial distribution of the tempera-
ture and CO2 flux anomalies during the ENSO phase is quite
straightforward in the observations while it seems less obvi-
ous in the models. This suggests that some of the observed
mechanisms governing the ENSO-related variability of CO2
flux are not well reproduced by the models. Most models
simulate weaker CO2 flux anomalies compared to the obser-
vations, which is consistent with the CMIP5 model results
(Dong et al., 2017). Nevertheless, the multi-model mean re-
produces the observed outgassing anomaly signals over most
of the tropical Pacific during La Niña (and vice versa for
El Niño). The same results are obtained when looking for
more extreme El Niño and La Niña regimes (for months with
a Niño34 index above 1.5 and below −1.5 SD, respectively,
not shown).

Figure 3 shows the zonal average of temperature and
DIC vertical sections over the contemporary period and its
anomalies during the La Niña and El Niño regimes from the
observations and the CMIP6 ensemble mean (for DIC, only
the mean values is shown for observations). During El Niño
events, the observations depict a clear warming signal in the
eastern part of the tropical Pacific extending throughout the
upper ocean with a maximum warming around 70 m depth.
A cool anomaly can be seen in the western part of the do-
main at approximately 150 m depth. The opposite anomaly
patterns can be seen during La Niña. The observed and sim-
ulated long-term mean temperature patterns are quite sim-
ilar, whereas the magnitude of the anomalies is weaker in
the CMIP6 multi-model mean. The contemporary DIC aver-
age concentration is generally higher in the models than in
the observations. Note that the observed average is the result
of the climatology over the 2004–2017 period, whereas the
average for CMIP6 is computed over 30 years (1985–2014).
The subsurface DIC signals of anomalies contrasting La Niña
and El Niño regimes are pronounced in the upper layer and
to the east of 240◦ E down to 300 m, with positive (nega-
tive) anomalies during La Niña and El Niño associated with
changes in the upwelling dynamics. This area also presents
the largest inter-model variability. Consequently, this DIC
anomaly determines the CO2 flux anomaly at the surface.
An opposite DIC anomaly signal is simulated in the west-
ern part of the section below 100 m depth. The zonal average
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Figure 1. Annual Revelle factor and γDIC (in µmol kg−1) for CMIP6 models. Average Revelle factor for each ESM over the early historical
(1851–1880), contemporary (1985–2014), and future (2071–2100) periods are given on the right-hand side of the figure..

Figure 2. Observed JRA-55 and mean CMIP6 SST (in ◦C, top) and observed MPI-SOM-FFN and mean CMIP6 sea–air CO2 fluxes (in
mol C m−2 yr−1, bottom), shown as average anomalies over the 1985–2014 contemporary period for the La Niña (left) and El Niño (right)
regimes. The number of months in each regime for the observations and the mean number with 1 standard deviation for the CMIP6 ensemble
are both given in square brackets. Black contours represent the CMIP6 inter-model ensemble anomaly standard deviation during each ENSO
phase. The green box in the lower-right SST panel illustrates the EP (equatorial Pacific) area.

Earth Syst. Dynam., 13, 1097–1118, 2022 https://doi.org/10.5194/esd-13-1097-2022
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Figure 3. Observed and mean CMIP6 vertical sections of temperature (in ◦C, top) and DIC (in µmol C L−1, bottom) as a zonal (between 2◦ N
and 2◦ S) average over the 1985–2014 contemporary period (middle column). The average anomalies (differences) relative to contemporary
mean are given for the La Niña (left) and El Niño (right) regimes. Note that the observed DIC average represents the climatology over the
2004–2017 period. Dotted lines indicate the average thermocline depth. In square brackets, the number of months in each regime is given for
the observations and the mean number (with 1 SD) is given for the CMIP6 ensemble. Black contours represent the standard deviation of the
CMIP6 inter-model ensemble anomalies during each ENSO phase.

of temperature and DIC along the vertical sections and their
anomalies in each individual model are given in Figs. S4 and
S5 in the Supplement.

3.2 Transient changes in ENSO–CO2 flux relationship

In this section, the characteristics of sea–air CO2 flux vari-
ability associated with ENSO are investigated over the EP
area. Figure 4 represents the annual Niño34 index and the
annual average CO2 flux anomalies from observations and
16 CMIP6 models. A correlation analysis between CO2 flux
anomaly and ENSO index is performed to study the strength

and direction of the linear relationship between these two
variables. The statistical significance of these correlations is
assessed by testing if the correlation follows a Student’s t dis-
tribution (with N -2 degrees of freedom, N being the number
of years) at the 95 % significance level. The correlation be-
tween the annual CO2 flux anomaly and annual ENSO index
is given for the models for each 30-year sliding window (30
years is a typical climatological window used in numerous
studies) over the 1850–2100 period. The observed correla-
tion over 1985–2014 is significantly negative (r =−0.79),
which is also the case for all the models at the beginning
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Figure 4. CMIP6 model ensemble annual time series of the Niño34 index (in ◦C, red lines), the average CO2 flux anomalies over the EP
area (in Tg C yr−1, blue lines), and the correlation for each 30-year moving window (significant correlations are indicated by black dots, and
the non-significant ones are shown in grey). The vertical bars indicate the centre 30-year period with the first positive correlation. The first
row shows the observed time series of the Niño34 index and average CO2 fluxes anomalies over the 1985–2014. The green asterisks indicate
the correlation of the models over the observed and 2071–2100 periods. Model names are given in green for the models with a shifting
correlation sign, those maintaining the negative correlation are shown in orange, and those simulating positive correlation already in 1850
are shown in black.

of the 1850–2100 period (except for the two MPI models).
Among these models, seven maintain a negative correlation
throughout the future period, while seven display a shift to-
ward a positive correlation that occurs as early as 2025. The
CMIP6 model correlations over the observational period and
the 2071–2100 period are indicated by the green asterisks in
Fig. 4 and reported in Table 3. Figure S9 in the Supplement is
the same as Fig. 4 but zoomed over the contemporary period.

Figure 4 also shows that the amplitude of CO2 flux anoma-
lies and their covariance with the Niño34 index are not uni-
form across the models. The correlation between sea–air
CO2 flux anomalies and Niño34 are given in Table 3 along
with their respective standard deviations σCO2 and σNiño34.
The contemporary variability of CO2 flux anomaly is under-
estimated by most of the models (see Table 3) and increases
or decreases in the future according the models. Six models,

Earth Syst. Dynam., 13, 1097–1118, 2022 https://doi.org/10.5194/esd-13-1097-2022



P. Vaittinada Ayar et al.: Contrasting projections of the ENSO-driven CO2 flux variability 1105

Table 3. Standard deviations of sea–air CO2 fluxes (σCO2 ); in Tg C m−2 yr−1) and the Niño34 index (σNiño34); in ◦C and their annual
correlation coefficients ρ over the 1985–2014 period. In brackets are the standard deviation and correlation over the 2071–2100 period. The
average Revelle factors for each model and both periods are also given. Models in bold have significant correlation for both periods and are
the ones selected for the “reversed” and “preserved” groups.

ρ σCO2 σNiño34 Revelle factor

OBS −0.79 17.55 0.69 –

ACCESS-ESM1-5a
−0.78(0.14) 10.24 (7.86) 0.72 (0.84) 9.69 (12.56)

CanESM5a
−0.55(0.52) 5.58 (10.78) 0.89(0.76) 9.67 (12.35)

CanESM5-CanOEa
−0.52 (0.19) 4.04 (9.55) 0.89 (0.76) 9.64 (12.28)

GFDL-CM4a
−0.4(0.73) 6.66 (13.2) 0.7 (0.71) 9.49 (12.56)

GFDL-ESM4 a
−0.65(0.19) 10.33 (17.01) 0.83 (0.86) 9.66 (12.51)

MIROC-ES2La
−0.94(0.22) 21.4 (9.41) 0.86 (0.86) 9.53 (12.60)

MRI-ESM2-0a
−0.77(0.89) 4.25 (17.82) .66 (0.95) 9.21 (11.97)

CESM2b
−0.86(0) 22.64 (15.09) 0.86 (0.46) 9.77 (12.42)

CESM2-WACCMb
−0.84 (−0.35) 13.3 (15.17) 0.68 (0.53) 9.92 (12.41)

CNRM-ESM2-1b
−0.65 (−0.2) 7.99 (12.75) 0.63 (0.77) 10.07 (12.95)

IPSL-CM6A-LRb
−0.97(−0.44) 8.55 (8.2) 0.79 (0.64) 9.82 (12.62)

NorESM2-LMb
−0.74 (−0.41) 8.31 (9.92) 0.83 (1.03) 9.71 (12.63)

NorESM2-MMb
−0.89(−0.46) 17.72 (10.28) 0.91 (0.73) 9.69 (12.56)

UKESM1-0-LLb
−0.78(−0.42) 7.28 (8.18) 0.64 (0.77) 10.04 (12.54)

MPI-ESM1-2-HRc 0.87 (0.92) 7.95 (11.72) 0.91 (0.93) 9.55 (12.68)
MPI-ESM1-2-LRc 0.89 (0.93) 7.43 (17.84) 0.87 (1.00) 9.58 (12.66)

a The models with shifting towards a positive correlation. b The models maintaining negative correlation. c The
models starting with positive correlation. Non-significant correlations are given in italic.

given in bold in Table 3, are selected to illustrate the shifting
and non-shifting CO2 flux anomaly responses to ENSO vari-
ability in their future projections. These are the models that
are selected because they best reproduce the observed Niño
index and CO2 flux anomaly correlations in the contempo-
rary period while the correlation is significant over contem-
porary and future periods.

The monthly Niño34 index of the six selected models is
presented against the CO2 fluxes anomalies in Fig. 5 for
both the contemporary (1985–2014) and future (2071–2100)
periods. Values from present-day observations are also de-
picted. The models in the first row (CanESM5, GFDL-CM4,
MRI-ESM2-0) show a change in the Niño34-CO2 flux cor-
relation, while the models in the second row (IPSL-CM6A-
LR, NorESM2-MM, UKESM1-0-LL) maintain the sign of
the correlation between 1850 and 2100. This reversal is thus
independent of the model’s ability to reproduce the observed
correlation over the contemporary period, though the models
in the first row tend to simulate lower than observed CO2
flux anomaly variability. Hereafter, these first row models
that simulate a reversal in ENSO–CO2 flux relationship are
referred to as “reversed” ESMs, while the other three ESMs
that maintain the contemporary relationship are referred to
as “preserved” ESMs. These two groups of models are con-
fronted in further analysis.

3.3 Drivers of ENSO–CO2 flux variability

In order to elucidate the drivers of the modified relationship
in the reversed ESMs, the thermal and non-thermal contri-
butions to pCO2 are investigated. Figure 6 represents the
average El Niño and La Niña of the pCO2 anomaly means
for the reversed and preserved ESMs over the early his-
torical (1851–1880), contemporary, and future periods. As
expected, the pCO2 thermal (non-thermal) component al-
ways induces positive (negative) anomalies during El Niño,
while the opposite is true during La Niña. The non-thermal
component is rather dominant (non-thermal/thermal ratios
> 100 %) during the early historical period (1851–1880) and
even more dominant during La Niña (bigger ratios). This
explains the total pCO2 positive anomalies during La Niña
(consistent with enhanced CO2 outgassing; Fig. 2) and the
negative anomalies during El Niño (consistent with weak-
ened CO2 outgassing) for both groups of ESMs over the
early historical and contemporary periods. Over the future
period, the dominance of the non-thermal component is even
enhanced for preserved ESMs, which maintain the same CO2
flux–ENSO relationship. However, for the reversed ESMs
the thermal component becomes dominant by the end of
the 21st century (ratio < 100 %), inducing total pCO2 nega-
tive anomalies during La Niña and positive anomalies during
El Niño. The dominance of the thermal component explains
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Figure 5. Scatter plots for the six selected models of the monthly Niño34 index (in ◦C) against the monthly CO2 flux anomalies (in
Tg C yr−1) averaged over the EP domain in the 1985–2014 contemporary period (in yellow) and the 2071–2100 period (in blue). The
observed scatter plot is given in black. The top panels show CanESM5, GFDL-CM4, MRI-ESM2-0, and all reversed ESMs. The bottom
panels are for IPSL-CM6A-LR, NorESM2-MM, UKESM1-0-LL, and all preserved ESMs.

the reversal in the ENSO–CO2 flux relationship highlighted
in Figs. 4 and 5.

In a high CO2 future, it is expected that the pCO2 will
be more sensitive to SST and surface DIC modulations due
to lower buffering capacity (Fig. 1; see also Gallego et al.,
2020). It is therefore useful to determine whether or not
the reversal in the ENSO–pCO2 response can solely be at-
tributed to the background atmospheric CO2 increase. In-
deed, the non-thermal component is already dominant and
will become more dominant as CO2 rises. In order to test this
hypothesis, the anomaly estimates of the thermal and non-
thermal components of early historical ENSO pCO2 signals
are scaled to higher background pCO2, namely the contem-
porary and future periods. This enables us to evaluate how the
non-thermal/thermal ratio varies into the future assuming no
change in the biological and physical forcing (i.e. amplitude
of ENSO-induced changes in SST and DIC are unchanged).
This is done by keeping the dSST variable in Eqs. (1) and
(2) at the values of the early historical period, while scaling
up the pCO2 elements to contemporary and future values. A
similar figure to Fig. 6 showing these scaled components is
given in Fig. S7 in the Supplement. Following this scaling,
the non-thermal component remains dominant for the three
periods in both groups of models. This means that the pCO2
increase alone cannot explain the reversal behaviour in the
reversed ESMs. It suggests changes in biological and phys-
ical forcing are also responsible for the thermal component
becoming more dominant in this group of ESMs.

In addition to surface ocean pCO2, CO2 flux is estimated
using atmospheric pCO2 and wind solubility coefficient k ·

K0 as follows:

fgco2= k ·K0 · (pCO2o−pCO2a), (4)

where k represents the gas transfer velocity and K0 the sol-
ubility coefficient (cf. Wanninkhof, 2014). The anomalies of
surface wind and product of k ·K0 for each period, group of
models and ENSO phase are depicted in Fig. S8 in the Sup-
plement. The amplitude of both anomalies between ENSO
phases is larger for the preserved models than the reversed
ones, which partly explains the higher amplitude of CO2
flux variability variation between ENSO phases for the pre-
served models than the reversed models (see Table 3 and
Fig. 5). However, for the respective groups the amplitudes
between ENSO phases do not change between given the anal-
ysed periods. This means that the wind variability can only
have a marginal contribution to CO2 flux variability and can-
not explain the behaviour of the reversed models. In addi-
tion, we also note that the relatively low contemporary CO2
flux variation in the reversed models is also partly attributed
to the simulated high alkalinity bias in these models (see
Supplement Fig. S9), as high background alkalinity would
dampen the DIC-induced pCO2 variability during the differ-
ent ENSO phases.

Next, we quantify the pCO2 sensitivity to ENSO-induced
temperature and DIC changes across different time periods.
Figure 7 shows the mean states of SST against surface DICs
(salinity-normalized DIC; DICs=DIC×SSS0

SSS
, with SSS0 rep-

resenting the 30-year surface salinity average in a given pe-
riod) for reversed and preserved ESMs over the early histor-
ical, contemporary, and future periods. The pCO2 isolevels
for varying SST and DIC are computed using the carbonate
system parameter codes from the R-package “seacarb” (Gat-
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Figure 6. El Niño and La Niña average of total (in red), thermal (in blue), and non-thermal (in green) pCO2 mean anomalies (in µatm) for
the reversed (a) and preserved (b) ESMs over the early historical (1851–1880), contemporary (1985–2014), and future (2071–2100) periods
in the EP domain. The absolute ratio between the non-thermal and thermal components is given (in %) for each period, group, and ENSO
phase.

Figure 7. Mean SST (in ◦C) versus mean salinity-normalized DIC (DICs, in µmol C L−1) over the early historical (1851–1880), contem-
porary (1985–2014), and future (2071–2100) periods in the EP domain simulated by all reversed and preserved ESMs (a, circle markers).
The multi-model mean values of SST and DICs (asterisk markers) from each ESM group, together with their respective mean values during
La Niña (square markers) and El Niño (diamond markers), are also depicted for the three periods. Isolevels of pCO2 for varying SST and
DICs are given in the background. Panel (b) shows the multi-model range and mean of surface carbonate concentration (in µmol C L−1) for
both groups and three periods.

tuso et al., 2020). These values have been computed using
ALKs (salinity-normalized surface alkalinity) and SSS from
multi-model mean state (over the 1850–2100 period) from
reversed and preserved groups separately. The average has
been taken over the whole simulation period and shows the
small changes in ALKs and SSS from the early historical pe-
riod to the future period (see Fig. S10 in the Supplement).

The multi-model range and mean of average surface carbon-
ate ion concentration is also given for both groups over the
three periods.

All models show higher sensitivity of pCO2 to temper-
ature and DICs perturbations in the future; i.e. the same
variations of DIC or temperature in the future will induce
a stronger change in surface pCO2. Indeed, pCO2 isolevels
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are getting closer as SST and DICs increase (see Fig. 7). The
main difference between the two groups is that the reversed
models simulate (i) a higher surface DICs increase from the
early historical or contemporary period to the future period
and (ii) a lower range of DICs changes during ENSO phases
(from the early historical period to the future period, the ab-
solute change of surface DICs between both ENSO phases
evolves from 30.26 to 19.45 µmol C L−1 for reversed mod-
els and from 44.87 to 34.00 µmol C L−1 for preserved ones).
The pCO2 level and its increase across different time peri-
ods are both very similar between the two ESM groups. The
simulated temperature changes are also similar between both
groups. The higher surface DIC increase in the reversed mod-
els can be explained by the higher CO2−

3 ion concentration at
the beginning of the transient simulation, which translates to
higher carbon buffer capacity and allows these models to take
up more excess carbon from the atmosphere. The lower sur-
face DIC range (between in La Niña and El Niño regimes)
in the reversed models could be associated with changes in
biology- and/or upwelling-induced surface DIC fluctuations.

Takahashi et al. (1993) also mention pCO2 sensitivity to
alkalinity and salinity. A similar figure as Fig. 7 but for the
mean states of SSS against ALKs is given in supplemen-
tary Fig. S10. Given the important increase in temperature
and DIC from the early historical to the future period (cf.
Fig. 7) one panel per model group and period is produced.
This figure shows higher SSS and ALKs for reversed models
than the preserved ones. For both groups, the ALKs and SSS
changes are very small from one period to another, indicat-
ing a limited sensitivity of pCO2 to future changes in salinity
and alkalinity. Besides, the amplitude between ENSO phases
is small for salinity and alkalinity (< .2 psu for SSS and
< 6.5µmol eq L−1 for ALKs). Therefore, the relative con-
tribution of ENSO-induced salinity and alkalinity changes to
pCO2 is smaller than temperature and DIC changes.

Even without climate change, the influence of biological
production on perturbing surface pCO2 is expected to in-
crease with a higher Revelle factor in the future. Here, we
quantify the contribution of biological production in reduc-
ing the surface pCO2 (i.e. 1pCO2 bio) during both La Niña
and El Niño phases according to Eq. (3). In the contempo-
rary period, stronger primary productivity during La Niña
attenuates the upwelling-induced pCO2 increase (and vice
versa during El Niño). In addition, this anomaly pattern ob-
served in the contemporary period is maintained into the
future (see Fig. S12 in the Supplement depicting time se-
ries of the average intPP computed over the EP area). Fig-
ure 8 shows that these biological contributions significantly
increase in the future, while higher 1pCO2 bio persists dur-
ing the La Niña phase. This stronger contrast in the biolog-
ically induced 1pCO2 bio difference between La Niña and
El Niño regimes is also enhanced by the increased future pri-
mary production variability simulated in the respective ESMs
(Fig. S12). The projected variability in primary production
between La Niña and El Niño is even bigger for the reversed

Figure 8. Multi-model mean average biological contribution to the
oceanic pCO2 (in µatm) deficit during La Niña and El Niño regimes
for the 1985–2014 and 2071–2100 period for all reversed (a) and
preserved (b) models in the EP domain.

ESMs than for preserved ESMs (i.e. larger by up to a factor of
5; see Fig. S12). Note that the majority of the chosen ESMs
simulate a declining trend in the primary production toward
the end of the 21st century. The export production at 100 m
also shows similar ENSO-induced variability and evolution
to the intPP (not shown).

As stated above, the primary reason for the enhanced bio-
logical contribution of1pCO2 bio is driven by the increasing
Revelle factor with higher atmospheric CO2 concentrations
in the future (see Fig. 1 and Hauck and Völker, 2015). As-
suming that the upwelling-induced DIC variation stays con-
stant in the reversed ESMs, an enhanced primary production
fluctuation (higher during La Niña, lower during El Niño) in
the future would decrease the ratio between non-thermal and
thermal pCO2 components and could therefore contribute to
the simulated reversed relationship (Fig. 6). Fig. S12 also
shows that the preserved ESMs also simulate enhanced pri-
mary production variability but with a lesser magnitude than
the reversed ESMs. However, the contemporary ENSO–CO2
flux relationships in this ESM group are maintained in the
future, suggesting that biological contribution is too low or
that other additional processes are at play.

In addition to surface biological activities, the reduction
of the non-thermal contribution to the total pCO2 in the re-
versed ESMs can also be attributed to changes in upwelling-
induced surface DIC modulation. Here, we examine the
mean vertical profiles of DIC and temperature and carbonate
ion in the EP domain across the two ESM groups. Figure 9
shows the average vertical profiles of DIC and temperature
for the two groups of ESMs over the EP domain from the
surface down to 300 m depth. Both groups consistently show
DIC and temperature increase in the future, but the change
varies in magnitude and vertical distribution.

Indeed, the vertical DIC gradient is a key factor driving
ENSO-related CO2 flux variability throughout the vertical
column. The reversed ESMs simulate higher historical DIC
(yellow lines in the first row of Fig. 9) making them more
biased than the preserved ones, but both groups have a sim-
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Figure 9. Multi-model mean of vertical DIC (in µmol C L−1, a and b), temperature (in ◦C, c and d), and carbonate ion concentration (in
µmol C L−1, e and f) profiles over the 1985–2014 (in yellow lines) and 2071–2100 (in blue lines) periods for reversed (a, c, e) and preserved
(b, d, f) models. The profile difference between both period profiles (1) is given as purple dashed–dotted lines. The black lines with dots
are the observed profile for the three variables. The dashed horizontal lines indicate the average thermocline depth for each groups and time
periods. A value of 1 standard deviation is given in shaded colours.

ilar vertical profile. Bias in the interior DIC may be associ-
ated with the simulated mean alkalinity state (Figs. S9 and
S11 in the Supplement), which is likely associated with vari-
ation in particulate inorganic carbon formulation in ESMs.
The simulated future DIC increase is similar at 100 m and
deeper for both groups (dashed purple lines). However, the

increase from the surface to 100 m is larger for the reversed
ESMs. This leads to a stronger reduction in vertical DIC gra-
dient, which would also contribute to less ENSO-induced
surface DIC variability in the reversed ESMs. This is also
consistent with the projected more dominant thermal contri-
bution relative to the total pCO2. The future increase in the
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upper-ocean DIC concentration is associated with the uptake
of anthropogenic carbon from the atmosphere. We note that
the increase in DIC concentration at depth can also be asso-
ciated with the shallow water overturning circulation, which
advects southern DIC-rich (and carbonate-poor) waters into
the region (Toyama et al., 2017; Rodgers et al., 2020) and can
also affect the buffering capacity of upwelled water mass.

The higher surface DIC increase is also illustrated in the
right panel of Fig. 10, depicting that the reversed ESMs simu-
late more carbon uptake (or less cumulated DIC loss because
the tropical Pacific is a mean outgassing system) than the
preserved models over the transient simulation period. This
is attributed to the higher surface and subsurface alkalinity
and CO2−

3 (see Figs. S10 and S11 for ALK and the bottom
row of Fig. 9 and the left panel of Fig. 10 for CO2−

3 ) con-
centration simulated by the reversed ESMs at the beginning
of the transient simulation from the surface to 300 m depth.
The considerably higher alkalinity (and carbonate ion) con-
centration in the reversed models yield a water mass with
higher buffer capacity, which allows them to uptake more
atmospheric carbon in the future. This is the first-order ex-
planation for the projected higher surface CO2−

3 reduction
(see the bottom row of Fig. 9 and the left panel of Fig. 10).
This higher buffer capacity also dampens the DIC-induced
pCO2 variability during ENSO phases, which partly explains
the smaller magnitude of CO2 flux variability in the reversed
models that was previously mentioned.

The relationship between historical surface carbonate con-
centration and CO2 uptake can be generalized for all mod-
els, providing a new emergent constraint. Figure 11 shows
contemporary surface carbonate concentrations against the
cumulated sea–air CO2 flux over the 1985–2014 and 1850–
2100 periods over the EP for all the models except the MPI
models. Correlation at 0.65 and 0.67 indicates that the car-
bonate concentration is a good indicator of the buffering ca-
pacity of the model: the higher the carbonate, the lower the
cumulated CO2 outgassing (i.e. more carbon uptakes). The
preserved ESMs are less biased in terms of carbonate con-
centration and cumulated CO2 flux over the contemporary
period, which tends to indicate that their behaviour should
be more reliable.

The preserved ESMs simulate stronger warming at the sur-
face (see the middle row of Fig. 9), suggesting stronger future
stratification, which is consistent with the higher increase in
the subsurface DIC (e.g. associated with the biological rem-
ineralization) with less upwelling. Consequently, the weaker
future stratification in the reversed ESMs is also consistent
with the more uniform DIC vertical profile.

ENSO-induced upwelling variability alters the surface
DIC anomalies. Figure S13 in the Supplement depicts time
series of the average stratification index (SI) computed over
the EP domain (see the Supplement for the definition and
formulation). There is no significant difference in the SI evo-
lution between the reversed and preserved ESM groups. The

SI is expected to increase toward the end of the 21st cen-
tury, consistent with future warmer upper layer and weaker
upwelling. In all ESMs, the stratification variation due to
ENSO, i.e. higher stratification during El Niño events (in-
dicating weaker upwelling state) and vice versa during
La Niña, is maintained in the future. Despite increasing fu-
ture stratification and shallowing of thermocline depth (see
Fig. 9), the ENSO-driven surface DIC variation in all ESMs
(anomalously lower DIC during El Niño and higher DIC dur-
ing La Niña) is also maintained in the future (see Fig. S14).

4 Discussion, limitations and perspectives

In the tropical Pacific, the dominant mode of sea–air CO2
flux variability over the interannual timescale has been es-
tablished to be associated with ENSO. Here, by evaluating
the capacity of 16 CMIP6 ESMs to reproduce this relation-
ship over the historical period provides a valuable means to
validate their performance. As shown in Table 3, while most
ESMs are able to reproduce the observed contemporary re-
lationships (i.e. negative correlation or outgassing anomaly
during La Niña and vice versa during El Niño), there are
two ESMs that simulate the complete opposite relationship.
Furthermore, the amplitude of the Niño34 (CO2 flux) vari-
ability also varies considerably among models over the con-
temporary period, from 0.91 (0.23) to 1.32 (1.29) times, as
compared to the observations (Table 3). As with the previ-
ous generation of ESMs (Jin et al., 2019), considerable dif-
ferences in the spatial extent of CO2 flux anomaly patterns
associated with ENSO variability are also simulated in the
current CMIP6 ESMs.

Model projections suggest an enhanced ENSO variabil-
ity in the future associated with the intensification of upper-
ocean stratification (Cai et al., 2018). Due to the climate–
carbon cycle feedback, analysing how the ENSO-induced
CO2 fluxes will be altered by future climate change could
provide a valuable insight into the projections of long-term
anthropogenic climate change (Betts et al., 2020). Among
the analysed ESMs, half of models show a reversal in their
ENSO–CO2 flux relationship in the equatorial Pacific (i.e.
from an anomalous CO2 uptake to outgassing during El Niño
and vice versa during La Niña events) under the strongest
future climate change scenario SSP5-8.5. This reversed rela-
tionship, superimposed on the projected ENSO–CO2 fluxes
by the land biosphere (Kim et al., 2016), suggests an even
stronger increase in atmospheric CO2 growth rate during fu-
ture El Niño events. Nevertheless, our assessment indicates
that ESMs that simulate this reversed pattern also simulate
considerable bias in the contemporary surface CO2−

3 concen-
tration; therefore, the projections from these ESMs should be
considered with caution.

Readers must keep two things in mind while interpreting
the results of this study. First, only the high-emission SSP5-
8.5 scenario has been considered. Results may be scenario
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Figure 10. Maps of average surface CO2−
3 concentration (µmol C L−1) for the reversed and preserved ESMs for the 1851–1880 period are

given in the left panel. The middle panel shows the carbonate ion concentration difference between the 2071–2100 and 1851–1880 periods.
The right panel shows the surface DIC concentration difference between the 2071–2100 and 1851–1880 periods. The green boxes outline
the EP region.

Figure 11. Average contemporary surface CO2−
3 concentration (in µmol C L−1) plotted against the cumulated sea–air CO2 fluxes (in Pg C)

in the EP region from 1985 to 2014 (a) and 1850 to 2100 (b). ρ is the correlation, and reversed ESMs are marked in yellow, while preserved
ESMs are marked in blue. The observations are given as brown lines, with dashed lines being the carbonate observation error.

dependent, especially with respect to the future atmospheric
CO2 level. Second, the models have been grouped (and aver-
aged) into two categories to identify patterns or consistencies
and to simplify the analyses. In addition, we have focused
our analysis on contrasting El Niño and La Niña for a con-
fined region in the equatorial Pacific (i.e. 2◦ S–2◦ N, 180◦ E–
260◦ E). We have also applied our analysis on a slightly
larger domain (5◦ N–5◦ S, 150◦W–240◦W), and the overall
conclusions remain consistent (not shown).

Accurate representations of the tropical Pacific mean cli-
mate state and ENSO-related changes in models are funda-
mental for ENSO impact studies. For instance, ESM projec-
tions of future ENSO mode and all related statistics (e.g.
Niño 3.4) depend on the mean state biases (Battisti et al.,
2019). Simulating the contemporary tropical Pacific climate
accurately has been a great challenge for the modelling com-
munity over the past few decades, but evidence of continu-

ous improvements over the preceding generation of ESMs is
a promising sign (e.g. IPCC, 2021; Bellenger et al., 2014).

We show that the simulated amplitude and spatial extent
of physical and biogeochemical properties induced by ENSO
vary considerably across ESMs. Future model development
should therefore focus on capturing the observed mean state
and the regional anomalies pattern during dominant climate
modes, such as La Niña versus El Niño phases. To achieve
these developments, long-term interior carbon chemistry ob-
servations are needed. In particular, vertical distribution of
DIC, ALK, and CO3 concentrations during El Niño and
La Niña would be extremely helpful for constraining the con-
trasting ESM projections.

The important roles of the vertical DIC gradient and bio-
logical production in the reversal of the ENSO–CO2 flux re-
lationship are also highlighted in this study. For example, the
increased primary production variability that contributes to
the reversed ENSO–CO2 flux relationship can be associated

https://doi.org/10.5194/esd-13-1097-2022 Earth Syst. Dynam., 13, 1097–1118, 2022



1112 P. Vaittinada Ayar et al.: Contrasting projections of the ENSO-driven CO2 flux variability

with model-dependent primary production formulation (e.g.
sensitivity of phytoplankton growth rate to temperature) and
circulation-driven nutrient upwelling patterns (among oth-
ers). We note that elucidating the drivers of enhanced primary
production in each ESM is beyond the scope of this paper.

Future model developments are also necessary to ensure
that ESMs are able to reliably capture multiple layers of non-
linear processes that connect ENSO variability and sea–air
CO2 fluxes in the equatorial Pacific. The latest generation
of ESMs have progressed considerably in reproducing key
climatological properties of surface ocean biogeochemistry
(Séférian et al., 2020). Future advancements could focus on
improving the biogeochemical representation in the interior
and better understanding of the physical and biogeochemical
interactions across various timescales and different regions.
For instance, outside the tropical Pacific, the ocean carbon
cycle is modulated by different climate modes, such as the
North Atlantic Oscillation (Keller et al., 2012; Tjiputra et al.,
2012) and the Southern Annular Mode (Lenton and Matear,
2007; Keppler and Landschützer, 2019). Future studies that
advance our understanding of how the ocean carbon cycle in
these regions might be affected by future anthropogenic cli-
mate change could be valuable to further reduce uncertainties
in future climate projections.

5 Summary

In this paper, the ENSO-induced response of sea–air CO2
fluxes under a high CO2 future climate scenario is presented
using observed data and model simulations from CMIP6
ESMs. The heart of the work was to examine the roles of two
concurrent physical and biogeochemical processes driving
the sea–air CO2 flux variability: (i) anomalously high (low)
surface temperature that leads to low (high) CO2 solubility,
which enhances (reduces) outgassing, and (ii) anomalously
strong (weak) upwelling that brings more (less) DIC-rich wa-
ter to the surface and enhances (reduces) outgassing. The op-
posing effects of these two processes is enhanced by ENSO:
high sea surface temperature is associated with weaker up-
welling and stronger stratification during El Niño, and the
opposite occurs during La Niña.

The findings can be summarized as follows.

– During the historical period, observational data show
that sea–air CO2 flux anomalies are negatively corre-
lated with ENSO-associated warming, and this is repro-
duced in the vast majority of the models (14 of 16).

– Under the high-emission future projection (SSP5-8.5),
this correlation persists in half of the examined models
(7 of 14) but is projected to reverse across the other half.

– Depending on the model, the future variability of the
CO2 flux anomaly in the equatorial Pacific domain
could either increase or decrease. This is consistent with

the projected pCO2 variability over the same area (Gal-
lego et al., 2020). However, using models selected based
on their contemporary period performance, Liao et al.
(2021) found weaker future CO2 flux anomalies during
ENSO phases.

– All the models shows a higher Revelle factor in the fu-
ture, leading to a stronger pCO2 sensitivity to changes
in surface temperature between ENSO phases. This re-
sult is consistent and reaffirms findings from previous
studies (e.g. Liao et al., 2021; Gallego et al., 2020;
Hauck and Völker, 2015);

– In this study, the mechanisms leading to the rever-
sal of this ENSO–CO2 flux relationship are explained
by the thermal contribution to pCO2 becoming more
dominant relative to the non-thermal component. This
is explained by (i) the increase in the pCO2, (ii) the
enhanced primary production fluctuation, and (iii) the
upper-ocean DIC concentration increase (due to in-
creasing anthropogenic CO2 uptake), which decreases
the vertical gradient in the thermocline and eventually
attenuates the ENSO-modulated surface DIC variabil-
ity.

– A reversing ENSO–CO2 flux relationship over the 21st
century projected in some ESMs seems unlikely since
it is a direct consequence of a strong bias in the mean
state of carbonate ion concentration over the historical
period.

Data availability. The neural-network-based interpolated
CO2 product used in this study is freely accessible at
the National Centers for Environmental Information via
https://www.ncei.noaa.gov/access/ocean-carbon-data-system/
oceans/SPCO2_1982_2015_ETH_SOM_FFN.html (Land-
schützer et al., 2016). The Japanese 55-year reanalysis
SST product used in this study is accessible from their
website at https://search.diasjp.net/en/dataset/JRA55 or
https://doi.org/10.5065/D60G3H5B (Japan Meteorological
Agency/Japan, 2013). The vertical temperature, DIC (climatology),
and ALK data are available at https://www.cen.uni-hamburg.
de/icdc/data/ocean/easy-init-ocean/ecmwf-oras5.html
(Zuo et al., 2019), https://www.ncei.noaa.gov/access/
ocean-carbon-data-system/oceans/ndp_104/ndp104.html, and
https://www.glodap.info/index.php/mapped-data-product/ (Kep-
pler et al., 2020), respectively. The CMIP6 data used in the analysis
were obtained from https://esgf-node.llnl.gov/search/cmip6 (27
July 2022; WCRP, 20xx).
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