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Abstract
The unsaturated zone is a globally important, dynamic water store, which affects water resources, agriculture and pollut-
ant transport. Despite this, the magnitude of unsaturated zone water storage remains highly uncertain. This work provides 
the first global estimates of the magnitude of this store (1.0  x105  km3) in comparison to recent estimates of global modern 
groundwater (3.5x105  km3), before presenting a roadmap for improved representation of the unsaturated zone in global 
hydrological models.
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Introduction

Water stored in the unsaturated zone has been shown to 
influence pollutant transport, storage and fate (Koroša 
et al. 2020), surface vegetation (Querejeta et al. 2007) 
and biogeochemical cycling (Kim et al. 2017). The mag-
nitude of water storage in the unsaturated zone has been 
highlighted to be large and of regional importance. For 
example, Zhu et al. (2019) estimate a volume of water 
up to 3.1 x  1012 m3 stored in the unsaturated zone of the 
Chinese Loess Plateau, which accounts for 42.1% of the 
water resources in this region. However, understanding 
the magnitude of water storage in the unsaturated zone at 
the global scale is currently very limited. Here, an over-
view is provided of the current state of the science related 
to unsaturated zone water storage at the global scale. A 
first estimate of the possible magnitude of the store is 
made and a roadmap to improve the representation of the 
unsaturated zone in global hydrological models (GHMs) 
is presented.

Monitoring and modelling unsaturated zone 
water storage at the global scale: a brief 
synopsis of the state of the science

Current understanding of water storage in the unsaturated 
zone at the global-scale is primarily based on soil moisture 
estimates from in situ measurements (Vereecken et al. 2008) 
and remote sensing (Vereecken et al. 2016; Peng et al. 2017). 
The development of a global-scale soil moisture monitoring 
network (Dorigo et al. 2011) has allowed large-scale evalu-
ation of soil moisture data for incorporation into GHMs. 
However, a significant proportion of the globe has a depth to 
water table of over 10 m, with a modelled maximum depth to 
water of 236 m (Fan et al. 2013). In-situ and remotely sensed 
soil moisture data can only penetrate c. 1 m depth (Ahlmer 
et al. 2018), and consequently this leaves a large proportion 
of storage in unsaturated bedrock relatively unaccounted for 
(Dawson et al. 2020).

Very few studies have characterised moisture and 
storage in the deep unsaturated zone (taken here to be 
beneath the zero-f lux plane, the depth below which 
water movement is downward) (Ireson et al. 2006; Zhu 
et  al. 2019). Studies of the deeper unsaturated zone 
are principally carried out with the aim of quantify-
ing recharge to the saturated zone (Wang et al. 2009; 
Mattern and Vanclooster 2010; Min et al. 2015; Xiang 
et al. 2019). Such studies have used tracer experiments 
(Li et al. 2017) and solute profiling (Huang et al. 2016) 
alongside other conventional recharge estimation 
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techniques (Healy and Scanlon (2010)). The rate of 
recharge to groundwater has been estimated in global 
modelling by the rate of drainage through the soil 
zone (Lawrence et al. 2011; Min et al. 2015) with lit-
tle or no consideration of the underlying bedrock geol-
ogy, or depth to water table (Schlemmer et al. 2018). 
Whilst remote sensing and earth observation data (e.g. 
GRACE) have been used extensively to identify changes 
in groundwater storage at the global scale (e.g. Li et al. 
2019), such data cannot differentiate between water 
storage in the saturated and unsaturated zone without 
additional secondary data (e.g estimation of saturated 
zone water storage from in-situ measurements, see for 
example Brookfield et al. (2018)).

Where in situ measurements are not practical, pedo-
transfer functions have been used to derive hydraulic 
properties of the unsaturated zone from surface soil tex-
tural classes (Tóth et al. 2015). However, these are often 
confined to the top few metres of the unsaturated zone 
(Riebe et al. 2017). Pedo-transfer functions based on soil 
textural classes cannot be extrapolated accurately through 
the unsaturated zone, due to differences in the hydraulic 
properties and flow mechanisms between the bedrock and 
overlying soils (Katsura et al. 2006). Rempe and Dietrich 
(2018) differentiate between soil water and water stored 
in fractured bedrock, describing water storage in the bed-
rock as ‘rock moisture’; they further highlight its impor-
tance and lack of definition and inclusion in GHMs. In 
the context of the global water budget, no estimate of the 
magnitude of global unsaturated zone water storage has 
been made to date.

A first estimate of the magnitude 
of unsaturated zone water storage 
at the global scale

Using a global map of depth to water table (Fan et al. 2013) 
and a global porosity dataset (Gleeson et al. 2014) at a 
0.25-degree global resolution, the potential magnitude of 
water storage in the unsaturated zone globally is calculated. 
Assuming a global average water saturation of 25% +/- 10%, 
total global water storage in the unsaturated zone is esti-
mated to be 1.0  x105km3 +/- 4.0 x  104km3. A best estimate 
of the modern groundwater volume in the saturated zone 
is 3.5x105km3 (2.4x105km3 - 3.8x106km3 accounting for 
uncertainty in model permeability, Gleeson et al. (2016)), 
with the majority of this volume thought to be stored in the 
upper 150 m below the ground surface (Gleeson et al. 2016). 
This is the same order of magnitude as the first unsaturated 
zone water estimate above.

A roadmap to improving representation 
of the unsaturated zone in GHMs

Significant uncertainties in water saturation at depth 
means that the estimate of global unsaturated zone water 
storage made above can only be used for the purpose of 
highlighting the possible magnitude of the store. Given 
the potentially significant water storage volume and its 
implications for water supply to surface vegetation (Beyer 
et al. 2016), groundwater protection (Saâdi et al. 2018) 
and aquifer recharge (Mattern and Vanclooster 2010), 
improved representation of unsaturated zone water stor-
age in GHMs is essential.

Figure 1 outlines a roadmap to achieve this. A sig-
nificant challenge at present is the lack of standardised 
terminology across different research communities (soil 
scientists, hydrogeologists, global hydrological model-
lers, scientists working with remote sensing earth obser-
vation datasets, e.g. GRACE) related to the unsaturated 
zone, particularly the distinction between shallow soil 
moisture and deeper unsaturated water storage. Con-
sequently, a concerted effort to build consensus across 
these research communities to agree common termi-
nology and meaning (e.g. providing definitions of the 
“deep” unsaturated zone) as well as data and reporting 
standards for future work is required. This initial task in 
itself is a long term investment and could be achieved 
through a new commission of the International Associa-
tion of Hydrogeologists (IAH) and a number of commu-
nity workshops. Common data and reporting standards 
should build on existing work to develop data models for 
the geosciences (e.g the Open Geospatial Commission 
Geoscience Markup Language). Such agreed terminol-
ogy and standards should be published for reference for 
future research. Subsequently, a collation and synthesis 
of data from existing peer-reviewed and grey literature 
should be undertaken. Although a considerable task, this 
could consist of extraction of data related to the unsat-
urated zone (e.g. unsaturated zone water content) and 
how this varies with depth, time and hydrogeological 
setting. Data mining techniques could be exploited to 
achieve this, and the resulting data should be made pub-
licly available (including through dissemination through 
data-focussed journals) and evaluated to develop a con-
ceptualisation of unsaturated zone water movement at the 
global scale as a function of the variables above. Both the 
collated data and conceptualisation would then be used 
to re-evaluate structure and parameterisation of unsatu-
rated zone processes in GHMs. The differences in scale, 
measurement and modelling approaches between field 
studies and regional to global observational datasets and 
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models makes this challenging, and so the development 
and use of upscaling techniques should be central to this 
task. Where the data and conceptualisation show GHMs 
to have structural and parametric deficiencies (e.g. direct 
connection between the soil zone and saturated zone), 
further work could be undertaken to refine these GHMs. 
It is anticipated that such refined GHMs could (1) lead 
to improved predictions of the impacts of global change 
on the hydrological cycle and (2) help identify regional 
scale evidence gaps where further observational studies 
would be of benefit to better constrain the significance 
of unsaturated zone water storage.

The roadmap outlined here is intended to stimulate dis-
cussion amongst the hydrogeological research commu-
nity as to how to engage with the soil science and global 
scale hydrological modelling communities to improve 
representation of the unsaturated zone in GHMs. The 
broad activities required are outlined above and in Fig. 1. 
However, this essay avoids being overly prescriptive on 
the required tasks, as such efforts need to be driven by 
the wider hydrogeological research community from the 
bottom-up. Whilst developed at the global scale, many of 
the principles (agreement of terminology, data synthesis 
and evaluation, existing model evaluation and refinement) 
of Fig. 1 also apply at the scale of large river basins, and 
could be adapted here accordingly.
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