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Abstract
The Antarctic ice sheet (AIS) is the Earth’s largest store of frozen water; understanding how it changed in the past 
allows us to improve projections of how it, and sea levels, may change. Here, we use previous AIS 
reconstructions, water isotope ratios from ice cores, and simulator predictions of the relationship between the 
ice-sheet shape and isotope ratios to create a model of the AIS at the Last Glacial Maximum. We develop a 
prior distribution that captures expert opinion about the AIS, generate a designed ensemble of potential 
shapes, run these through the climate model HadCM3, and train a Gaussian process emulator of the link 
between ice-sheet shape and isotope ratios. To make the analysis computationally tractable, we develop a 
preferential principal component method that allows us to reduce the dimension of the problem in a way that 
accounts for the differing importance we place in reconstructions, allowing us to create a basis that reflects 
prior uncertainty. We use Markov chain Monte Carlo to sample from the posterior distribution, finding shapes 
for which HadCM3 predicts isotope ratios closely matching observations from ice cores. The posterior 
distribution allows us to quantify the uncertainty in the reconstructed shape, a feature missing in other analyses.
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1 Introduction
Understanding the history and evolution of the Earth’s ice sheets is important for predicting the effects 
of future climate change. The Antarctic ice sheet (AIS) is the largest area of land ice globally, and looks 
set to contribute up to 42 cm of sea-level rise by 2,100 under current emission policies (Edwards et al., 
2019). Predicting what changes we might see in the AIS over the next century requires us to under-
stand what changes have occurred in the past. In this paper, we focus on inferring the AIS shape at 
the Last Glacial Maximum (LGM), the most recent time at which the ice sheets were at their greatest 
extent, which in the Antarctic continent occurred approximately 21 Ka BP (thousand years before 
present) (Clark et al., 2009). The LGM is of particular interest because of the uncertainty around 
the size of the AIS and its contribution to sea level change following the termination of the most recent 
glacial period (Blasco et al., 2021; Khan et al., 2019; Simms et al., 2019; Yokoyama & Purcell, 2021).

Whilst there are marine and terrestrial glacial geological datasets that can help determine the pos-
ition of the LGM ice-sheet grounding-line (the region where ice transitions from grounded ice sheet to 

Journal of the Royal Statistical Society Series C: 
Applied Statistics, 2023, 72, 1493–1511 
https://doi.org/10.1093/jrsssc/qlad078
Advance access publication 18 September 2023                                                                                       
Original Article

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/72/5/1493/7276400 by guest on 29 D

ecem
ber 2023

https://orcid.org/0000-0002-5919-153X
mailto:fiona.turner@kcl.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


freely floating ice shelf), the ice-sheet upper surface, and in some cases flow-directional features (e.g. 
Bentley et al., 2014), measurements from ice cores have rarely been used to attempt to ascertain the 
size and shape of the LGM ice sheet. It is therefore novel and of some interest to use proxy data on the 
isotopic ratio of oxygen-16 to oxygen-18, referred to as δ18O, in the precipitation that fell on 
Antarctica at the LGM, as part of a Bayesian analysis. This information can be collected from ice cores 
drilled to deep within the AIS. The ice in the core can be dated, enabling glaciologists to accurately 
reconstruct the history of the variation in the δ18O record over time (Jouzel et al., 2013). This data 
is complex to interpret and model, and does not by itself tell us the ice-sheet shape. However, climate 
modellers have built global circulation models (GCMs) that can simulate how the δ18O values in pre-
cipitation depends upon the height of the AIS as well as global climatic conditions (Werner et al., 
2018). Global conditions are important as the distribution and transport of water molecules contain-
ing the heavier δ18O molecules varies both spatially and temporally in the atmosphere depending on 
climatological conditions. Most notably, there is a clear linear relationship between δ18O values and 
mean temperature at high latitudes (Jouzel et al., 2013). The relationship between temperature and 
site elevation has then been used to attempt to determine the height of the ice sheet, allowing estima-
tion of the size and volume of the ice sheet (e.g. Sutter et al., 2020).

Previous approaches to estimating the AIS extent at the LGM (e.g. Briggs et al., 2014; Peltier, 2004; 
Whitehouse et al., 2012) have tended to rely primarily on either glaciological and/or geological data, 
or ice-sheet model simulations. There is no study that has attempted to combine both sources of in-
formation in a principled statistical manner for this time period, in large part because the climate sim-
ulators are necessarily complex and computationally expensive to run, as they need to resolve not just 
the climate, but also isotope transfer, sea ice area, air pressure at sea level and other variables. This 
computational expense makes estimation of the simulator parameters (such as the AIS shape) impos-
sible using standard statistical methods, as we are limited to only a few simulator evaluations. The 
methods of both Werner et al. (2018) and Domingo et al. (2020) are similar to our own, using pre-
vious reconstructions, GCMs and proxy data to reduce uncertainty around the AIS and Greenland ice 
sheets at two different time periods, the LGM and Last Interglacial (LIG), respectively. These papers 
highlight the importance of better understanding past changes in global ice sheets, and demonstrate 
the role that statisticians can play in this research area; we believe we can build on these methods by 
incorporating expert judgement, and taking a more detailed approach to building a prior model. 
Although both this paper and Domingo et al. (2020) are based on the methodologies described in 
Wilkinson (2010) and Higdon et al. (2008), and are reconstructing ice sheets during a palaeo time 
period, our method includes a careful incorporation of data using a new and novel principal compo-
nent analysis (PCA) technique, and a carefully constructed prior distribution.

In this paper, we take a Bayesian approach to the problem, and develop a methodology to com-
bine three primary sources of information: data collected from ice-core samples; complex com-
puter simulations of the climate that encode our scientific understanding of the interaction 
between climate and the ice-sheet shape; and the expert opinion of glaciologists at the British 
Antarctic Survey (BAS), which is the UK’s national Antarctic research centre. We use the previous 
reconstructions of the AIS at the LGM as the basis of a prior model, with parameter priors deter-
mined in an elicitation exercise with glaciologists, before using the proxy ice-core data to update 
this model. The climate simulator provides the link between our model of the ice-sheet shape, and 
the ice-core data. The statistical challenge is solving the associated statistical inverse problem in 
order to estimate our posterior distribution for the ice-sheet shape.

There are two main difficulties in doing this. Firstly, each simulation takes 24 hr to run approxi-
mately 20 years on the supercomputer facility: ARCHER (2016). This cost (and our computation-
al budget) means that we are limited in how many simulator evaluations we can perform. We 
develop a Gaussian process (GP) emulator of the simulator (Chang et al., 2014; Kennedy & 
O’Hagan, 2001; Wilkinson, 2010), a methodology that has become a widely used tool in the cli-
mate modelling community (Edwards et al., 2021; Holden et al. 2015, 2018; Lowry et al., 2021), 
which can be used as a cheap, fast approximation to the simulator.

The second challenge is the number of degrees of freedom in the complex computer simulations 
vs. the amount of data available. The latter is determined by the limited number of ice cores with 
δ18O which extend back to the LGM. A flexible uninformative prior structure would result in an 
uninformative analysis, as we cannot hope to constrain so many parameters with such limited 
data. Instead, we seek a carefully elicited prior model that constrains the space of shapes to be 
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considered. This process is challenging as conceptualising uncertainty in high-dimensional spaces 
is hard. We thus develop the use of the principal components of the 40 previously published AIS 
reconstructions as a starting point for a reduced-dimensional basis. Some of the reconstructions 
are of greater importance than others due to being data-based reconstructions rather than ice-sheet 
model output, and some of them are highly correlated as they are produced by the same team, e.g. 
de Boer et al. (2017). To deal with this, we develop a preferential PCA approach that allows us to 
ensure the important reconstructions are given the greatest importance, and we show how this can 
be computed efficiently in high-dimensional problems (Section 2.1). The development of the prior 
distribution is described in Section 2.1, and the emulator is described in Section 3. In Section 3.2, 
we describe how to perform inference for this model to solve the inverse problem given in equation 
(1). In Section 4, we present results using synthetic data to validate the inferential approach, and 
then analyse the real data. The results from this work represent an improvement on the current 
state-of-the art reconstructions of past Antarctic elevation through the use of ice-core data by 
Buizert et al. (2021) and Werner et al. (2018), who use data from 7 and 11 ice cores, respectively. 
We have particular confidence in our results on mean elevation changes that are ascertained for 
Antarctic regions far from the coast such as for the central West Antarctic ice sheet (WAIS) and 
East Antarctic ice sheet (EAIS). Section 5 contains our discussion.

2 Methods
We let x ∈ RD denote the AIS shape at the LGM. We aim to estimate x using observations of the 
isotope ratio of δ18O, in samples denoted as y ∈ Rn, collected from n different ice-core sites at 
depths corresponding to the LGM (WAIS Divide Project Members et al., 2013). Only a few ice- 
core sites containing δ18O data that extend to the LGM have been drilled in Antarctica, and so 
we have at most n = 10 data points available, as shown in online supplementary Figure 1.

We use the Hadley Centre Coupled Model version 3 (HadCM3) (Met-Office, 2016), with water 
isotope code (Tindall et al., 2009), as the climate simulator which implements various physical 
laws on a discrete computational grid with longitude/latitude grid cells of 3.75◦ × 2.5◦ covering 
the entire globe, to which has been added a simulation of isotope transport. This allows us to in-
clude water isotope values as part of our simulations. The resolution of the computational grid 
used in the simulator is 96 × 73 due to the size of the longitude/latitude grid cells, meaning that 
the height of the AIS can be represented by a vector of length 7,008, i.e. x ∈ R7,008, with each elem-
ent recording the height of the AIS in a grid cell of the computational mesh used.

We let f (x) denote the climate simulator’s prediction of the observed oxygen isotope ratios at the 
n sites when the AIS shape at the LGM is x. We use a simple additive error model to link x to y via f:

y = f (x) + ϵ. (1) 

Here, ϵ is an error term representing all of the various sources of error (measurement error, model 
discrepancy, errors arising from discretisation, etc.).

Our aim is to use previous reconstructions of the AIS at the LGM, as well as expert judgement, 
to develop a prior distribution for the AIS shape, π(x), and then to compute the posterior distribu-
tion of x given the data and the simulator: π(x ∣ y).

2.1 Prior model
We use previous estimates of the shape of the AIS at the LGM, in combination with expert judge-
ment, to build a prior model for x. Our prior elicitation process began with an extensive literature 
review in which we sought and collected together previous estimates of the AIS at the LGM; this 
resulted in a collection of 40 different ice-sheet reconstructions created by a variety of authors 
(Argus et al., 2014; Bentley et al., 2014; Briggs et al., 2014; de Boer et al., 2017; Golledge et al. 
2012, 2013; Peltier, 2004; Pollard & DeConto, 2009; Whitehouse et al., 2012; detail of these re-
constructions can be found in online supplementary Tables 1 and 2). We vectorise these ice-sheet 
reconstructions and denote them as x1, . . . , x40 ∈ RD with D = 7,008.

Given the limited data and computational budget (typically n = 10 observations and m = 50 
GCM simulations), we cannot hope to directly estimate x ∈ R7,008 if our model of x is too flexible. 
We thus seek a prior model that is still sufficiently flexible to allow us to make useful inferences 
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that shed additional light on the AIS at the LGM, but whose complexity is commensurate with the 
information available to fit the model. Thus, we seek a model for x that only has a small number, d 
say, of parameters to be estimated. We wish to use this model to represent physically plausible 
variation in x, and it must be physically interpretable to enable expert elicitation. This led us to 
consider a linear basis expansion for x of the form

x =
􏽘d

i=1

θiλiai + μ, (2) 

where μ is the prior mean of the AIS shape, which we estimate using the mean of the library of 
previous reconstructions. The basis vectors ai ∈ RD define the directions in which the ice sheet 
shape may vary, and the scalars λi ∈ R specify the relative importance of each mode of variation 
and allow us to put the variation in θi on a similar scale for each i. The pairs {λi, ai}

d
i=1 need to be 

known before any simulation with HadCM3 is carried out, and so we estimate these using the pre-
vious reconstructions {xi}

40
i=1. The scalars θ1, . . . , θd are the parameters that we will estimate using 

the ice-core data and the simulator via equation (1). We describe the process for eliciting the prior 
distribution of θ using expert judgement in light of the choice of λi, ai in Section 3 below.

Ideally, we would seek an expansion that had parameters that are of active importance in the 
simulator response and are identifiable from the data. Whilst there are methods for determining 
such ai, for example active sub-space (Constantine, 2015), given the constraints on the computa-
tional budget, and lack of gradient information about the simulator, this makes these methods im-
practicable. Instead, we focus on finding an expansion of the form (2) that is interpretable and 
capable of describing the uncertainty about x, as understood by glaciologists at BAS.

Using the library of 40 previous AIS shape reconstructions, we restrict the space of plausible 
shapes we consider to S = span{x1, . . . , x40}, which is a 40-dimensional sub-space defined by 
the 40 previous reconstructions. However, this space still has too many degrees of freedom to es-
timate given the limited number of data points and computational budget. Thus, we seek a lower 
dimensional approximation to shapes in S, i.e. we seek S̃ = span{a1, . . . , ad}, where d < 40. If our 
aim was solely to ensure S̃ was close to S, then we could use the leading principal components of 
{xi}

40
i=1. However, the previous reconstructions are not all of equal importance to the glaciology 

community.
Four of the AIS reconstructions are data-based and are widely favoured by the palaeo- 

climatology community (e.g. when running climate models and in citations). These are ICE5G 
(Peltier, 2004), ICE6G (Argus et al., 2014), W12A (Whitehouse et al., 2012), and GLAC-1D 
(Briggs et al., 2014), which we denote as x1, x2, x3, x4, respectively. The remaining 36 ice-sheet 
reconstructions, x5, . . . , x40, are from Pollard and DeConto (2009), Golledge et al. (2012, 
2013), Bentley et al. (2014), and de Boer et al. (2017) and were constructed using ice-sheet simu-
lation models.  Principal component analysis of the collection of 40 reconstructions would give all 
previous reconstructions equal importance, and would find a low-dimensional representation that 
captures as much of the variance as possible. This leads to the information contained in the first 
four ice-sheet reconstructions, x1, . . . , x4 (ICE5G, ICE6G, W12A, and GLAC-1D), being over-
whelmed and x9, . . . , x40, the 32 shapes from de Boer et al. (2017), dominating the modes of vari-
ation ai in the prior model. These shapes came from the same ice-sheet model, with small 
adjustments made to the simulations. They are therefore all similar to each other, and if treated 
equally with the other eight shapes, may heavily influence our prior model. Instead, we develop 
an alternative form of PCA that allows us to stress the importance of the privileged shapes 
x1, . . . , x4 and then to complement this with information from x5, . . . , x40. We describe this ap-
proach generally in the next section, before specialising to this application case in Section 2.3. We 
have not found this problem or its solution discussed elsewhere, and believe it may prove to be a 
useful approach in other problems.

2.2 Preferential PCA
Suppose we are given two datasets consisting of n1 and n2 observations in RD, which we denote as 
X1 ∈ RD×n1 and X2 ∈ RD×n2 , where the data matrices have been jointly column centred. Principal 
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component analysis is performed on X1 to find the leading principal components a1, . . . , ak, 
which maximise Var(X⊤

1 a) subject to a⊤
i aj = δij. We then want to find orthonormal vectors 

ak+1, ak+2, . . . that are orthogonal to a1, . . . , ak, and which describe a maximal amount of vari-
ance in dataset 2. In other words, we wish to solve the following optimisation problem for 
i = k + 1, k + 2, . . .:

max Var(X⊤
2 a)

subject to a⊤a = 1

a⊤
j a = 0 for j = 1, . . . , i − 1.

(3) 

This is a quadratically constrained quadratic program, an optimisation problem where both the 
objective function and the constraints are quadratic functions. This is a non-convex problem, 
so many of the standard numerical optimisation approaches fail. We present a solution to equation 
(3) that first reparameterises the problem to the null space of A⊤, where A = (a1 a2 . . . ak), the 
matrix with columns formed from the principal components of X1.

If we form the Lagrangian of problem (3), then the Karush–Kuhn–Tucker optimality conditions 
(see, e.g. Boyd et al., 2004) give that if a is a solution to equation (3), then we must have

2X2X⊤
2 a + 2λa +

􏽘i−1

j=1

μjaj = 0

a⊤a = 1

a⊤
j a = 0 for j = 1, . . . , i − 1, 

where λ, μj ∈ R. Because a1, . . . , ak were derived independently of X2, and specifically because 

they are not eigenvectors of the empirical covariance matrix 1
n2

X2X⊤
2 , the usual optimisation ap-

proach used in PCA fails.
Instead, we can rewrite the problem. Note that the solution to equation (3) must lie in 

null(A⊤) = {x : A⊤x = 0}, the null space of A⊤. If {b1, . . . , bD−k} is an orthonormal basis for 
null(A⊤), we can write

a = Bw for some w ∈ RD−k.

Problem (3) then becomes, for i = k + 1, k + 2, . . .

max Var(X⊤
2 Bw)

subject to w⊤w = 1

w⊤wj = 0 for j = k + 1, . . . , i − 1.

(4) 

This is the standard principal component problem for B⊤X2, and thus the solution is to take wi to 
be the (i − k)th left singular vector of B⊤X2 (or equivalently, eigenvector of B⊤X2X⊤

2 B). We then set 
ai = Bwi. The problem of finding the null space of A⊤ and solving the eigenvalue problem can be 
solved efficiently by the QR or singular value decomposition, depending on speed and accuracy 
requirements (Van Loan & Golub, 1996).

To summarise, we take a1, . . . , ak as the first k principal components of the reference dataset 
X1, and then take ak+1 = Bw1, ak+2 = Bw2, . . . where w1, w2, . . . are the leading principal compo-
nents of B⊤X2.

2.3 Prior distribution for the AIS at the LGM
The number of basis vectors in our prior model [equation (2)], and hence the effective dimension of 
the parameter we wish to learn, has to be decided in advance of running any climate simulations. 
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The decision needs to take into account the computational budget (which limits us to approxi-
mately 50 simulations of HadCM3), the amount of data available, and how we intend to estimate 
the posterior distribution. Incorporating additional basis vectors into the model increases its flexi-
bility and expressive power, but results in more parameters to estimate, i.e. the usual bias-variance 
trade-off. To compute the posterior, we will use a Gaussian process emulator of the simulator that 
approximates the simulator mapping from ice-sheet shapes to observations. The general 
rule-of-thumb advocated in Loeppky et al. (2009) and elsewhere suggests that to train a GP on 
d-dimensional inputs requires at least 10d training points, which suggests we should allow at 
most 5 degrees of freedom in our prior model.

PCA of the important ice-sheet reconstructions X1 = (x1 . . . x4) (the reconstructions we wish 
to give preference to) shows that we can represent 94.2% of the variation in these shapes with the 
first three principal components, a1, a2, a3, which we collect in matrix A = [a1, a2, a3]. We then 
use the second set of AIS reconstructions X2 = (x5 . . . x40) to add additional information about 
the likely ice-sheet variation. Applying the preferential PCA approach to X2 gives candidate values 
a4, a5, . . . . Table 1 gives the root mean square reconstruction errors when using either four, five, 
or six basis vectors to represent the 40 previous AIS reconstructions. As expected, using standard 
PCA results in a slightly lower root mean square error (RMSE) than the preferential PCA method 
but higher accuracy on the preferential shapes: we sacrifice accuracy in the overall reconstruction 
in order to prioritise the preservation of information contained in the preferential shapes 
x1, . . . , x4. Given the budgetary constraints and the errors in Table 1, we decide to use five basis 
vectors.

Now we have selected which basis vectors to use in the prior model [equation (2)], we can com-
plete the specification of the prior. The free parameters are μ ∈ R7,008, the prior mean ice-sheet 
shape, which we take to be the mean of the 40 prior ice-sheet reconstructions μ = 1

40

􏽐40
i=1 xi, 

and θ ∈ R5. We can think of θ as the coordinates with respect to the basis {λiai}
5
i=1, controlling 

the contribution of each basis vector to the synthetic ice-sheet shapes. To project an ice-sheet shape 
x onto the basis vectors we set θ = (x − μ)⊤AΛ−1 where Λ = diag(λ1, . . . , λ5).

Finally, we need to specify a prior distribution for θ, which we did by conducting an informal 
two-stage expert elicitation process (O’Hagan et al., 2006) with five glaciologists from the British 

Table 1. The average RMSE for the 40 collected ice-sheet shapes when using four, five, and six basis vectors

Number of Ice-sheet PCA Preferential PCA

basis vectors shape

4 ICE5-G 13.07 1.42

ICE6-G 12.85 6.07

W12A 55.98 35.63

GLAC-1D 43.23 44.21

All 13.52 14.05

5 ICE5-G 12.87 1.38

ICE6-G 9.44 5.89

W12A 2.07 34.53

GLAC-1D 38.75 42.85

All 11.34 11.93

6 ICE5-G 10.85 1.38

ICE6-G 4.02 5.89

W12A 2.04 34.53

GLAC-1D 10.73 42.85

All 9.89 10.22

Note. Although our method does not reduce the average RMSE, it does reduce the RMSE for the orographies in X1 in 
most cases. PCA = principal component analysis; RMSE = root mean square error.
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Antarctic Survey. To aid the elicitation exercise, we created an interactive version of our prior 
model, which displayed the ice-sheet orography as an interactive map (a snapshot of this inter-
active model can be seen in online supplementary Figure 2). The method of empirical orthogonal 
functions (EOFs) (Hannachi et al., 2007) is widely used in geophysics, and so the form of our prior 
model was understood well by the glaciologists we consulted. We assumed a prior distribution for 
θ of the form θ ∼ N 5(0, Σθ), with Σθ = diag(σθ,1, . . . , σθ,5) remaining to be chosen. In the first stage 
of the elicitation exercise, we adjusted the values of σθ,i (starting from σθ,i = 3) until the glaciolo-
gists were satisfied the random samples from the prior model were plausible AIS shapes. We even-
tually settled on σ2

θ,1 = σ2
θ,2 = σ2

θ,4 = 0.5, σ2
θ,3 = 0.6, and σ2

θ,5 = 1.
To train the GP emulator, we need a design of θ samples to generate ice-sheet shapes to run 

through HadCM3. We used a space-filling maxi-min Latin Hypercube design (Joseph & Hung, 
2008) generated in [0, 1]5, which we then pushed through the inverse cumulative distribution 
function of the respective normal distributions to generate a space-filling design specific to our pri-
or distribution. Given the tight constraints on computational budget, there was a strong desire not 
to simulate using any ice-sheet shapes that were felt to be implausible representations of the AIS at 
the LGM. So we conducted a second elicitation exercises, where we shared the shapes in our initial 
design with the glaciologists at BAS, who independently ruled out or accepted each ice-sheet shape 
as plausible or implausible on a sample-by-sample basis. This resulted in a design of 47 synthetic 
orographies to include in simulations to run through HadCM3, which were hopefully collectively 
representative of the space of plausible AIS shapes.

2.4 HadCM3 simulations
We created 47 orography files describing plausible AIS shapes at the LGM. We built 47 simulation 
files with control LGM atmospheric greenhouse gas concentrations and orbital forcing. These 
were then input into HadCM3 and run for 60 model years each on ARCHER, including 10 years 
of spin-up time. For more detail on HadCM3, see Valdes et al. (2017).

3 Emulation and inference
The prior model allows us to create synthetic ice-sheet shapes, and to simulate [via equation 1)] 
what isotope data we might have expected to observe given a particular AIS geometry. Our aim 
is to use the observed data yobs to infer the posterior distribution of the basis parameters

π(θ ∣ yobs), (5) 

which then induces a posterior distribution for the AIS shape π(x ∣ yobs).
We have data from 10 different sites in Antarctica: four located in the WAIS at Byrd (Blunier & 

Brook, 2001), Mount Moulton (Popp, 2008), Siple Dome (Brook et al., 2005; WAIS Divide 
Project Members et al., 2013), and WDC (Steig et al., 2013; WAIS Divide Project Members 
et al., 2013), and six in the EAIS at EDC (Jouzel et al., 2013), EDML (EPICA Community 
Members et al., 2006), Fuji Dome (Kawamura et al., 2007), Talos Dome (Stenni et al., 2011), 
Taylor Dome (Grootes et al., 2001; Steig et al., 2000), and Vostok (Petit et al., 1999). A map show-
ing the location of these sites is given in online supplementary Figure 6. At each site (i = 1, . . . , 10), 
we have a single record of the δ18O value, yi

obs, which we collate in the vector yobs ∈ R10.
One approach to estimate the posterior distribution [equation (5)] is to use Markov chain 

Monte Carlo (MCMC). However, this would require tens of thousands of simulations of the for-
ward model. The computational cost of running HadCM3 limits the number of simulator evalua-
tions we can perform. Instead, we build an approximation to f (x), which we refer to as the 
emulator (or surrogate model) of f (O’Hagan, 2006). We used the agreed design of 47 ice-sheet 
shapes described in the previous section and ran HadCM3 using each of them as inputs. This pro-
vided us with a set of δ18O values paired with the synthetic orographies. Let D denote this set of 
simulator evaluations D = {(xi, f (xi)}

47
i=1. We use D to build an emulator of HadCM3 which ap-

proximates the HadCM3 relationship between ice-sheet shape and δ18O observations with min-
imal computational cost. In Section 3.1, we describe this process, and in Section 3.2 the subsequent 
process for computing the posterior distribution using the emulator.
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3.1 Emulation of HadCM3
Given an ice-sheet orography, x, HadCM3 outputs a number of spatial fields predicting various 
aspects of the climate. Our interest lies solely in the predictions of the δ18O value at each of the 
10 ice-core sites, which we will denote as f1(θ), . . . , f10(θ). We build independent GP emulators 
for each of the 10 outputs.

Gaussian processes can be thought of as infinite-dimensional prior distributions for the un-
known function f (θ). The distribution is fully specified by a prior mean function m(θ) = E[f (θ)], 
and prior covariance function k(·, ·) where k(θ, θ′) = Cov[f (θ), f (θ′)]. Then, the finite-dimensional 
distributions of f have a multivariate normal distribution so that given any finite set of input loca-
tions, θ1, . . . , θm, the vector

f =
f (θ1)

..

.

f (θm)

⎛

⎜
⎝

⎞

⎟
⎠ ∼ Nm( m, K), 

where Nm(m, K) denotes the m-dimensional multivariate Gaussian distribution with mean vector 
m ∈ Rm, and covariance matrix K ∈ Rm×m with

m =
m(θ1)

..

.

m(θm)

⎛

⎜
⎝

⎞

⎟
⎠ and Kij = k(θi, θj).

The number of simulator evaluations available to train the GP is the primary determinant of pre-
dictive accuracy of the resulting emulator. The choice of prior mean and covariance function also 
affect predictive performance, but with so few simulations available, there is limited opportunity 
to optimise these choices. After experimentation with a variety of choices, we used a linear prior 
mean function of the form

m(θ) = β0 + θ⊤β, (6) 

where (β0, β⊤)⊤ ∈ R6. We tried a variety of kernels, including members of the Matérn family and 
the rational quadratic kernel (Rasmussen & Williams, 2006), as well as sums and products of 
standard kernels. We found the best performance was obtained using a radial basis function 
(RBF) kernel (also known as the exponentiated quadratic or squared exponential kernel) plus a 
white noise or nugget kernel, i.e. using

k(θ, θ′) = α2 exp −
1
2

(θ − θ′)TP−2(θ − θ′)
􏼚 􏼛

+ σ2δ(θ − θ′) where δ(y) = 1 if y = 0
0 otherwise.

􏼚

(7) 

Here, α2 and σ2 are variance hyperparameters, and P = diag(ρ1, . . . , ρ5) is a 5 × 5 diagonal matrix 
giving the length scale for each of the input coordinates. The length scale controls the decay in cor-
relation when the distance between the input points increases. The nugget parameter, σ2, describes 
the at a point variance. The RBF kernel results in a GP that has infinitely differentiable samples, 
whereas the nugget kernel produces a nowhere continuous white-noise process. We can think 
of the sum as producing a smoothly varying function of θ plus a discontinuous white-noise 
term. To summarise the GP distribution for f, we write f (·) ∣ ψ ∼ GP(m(·), k(·, ·)), emphasising 
in the notation that the prior specification is dependent upon unknown hyper parameters 
ψ = {α, P, β, σ2}.

We train the emulator using a set of simulator evaluations, D = {θj, f (θj)}
m
j=1. Given a value of ψ, 

conditioning our prior GP specification on D results in another GP distribution for f, but with up-
dated mean and covariance functions

f ∣ D, ψ ∼ GP(m∗(·), k∗(·, ·)).

See, for example, Rasmussen and Williams (2006) for details of m∗ and k∗. The hyperparameters 
in GPs are often estimated by maximum likelihood (Myung, 2003), but we take a Bayesian 
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approach and give them prior distributions and marginalise them out of the analysis. We model 
each of the 10 outputs f1(θ), . . . , f10(θ) as independent GPs, allowing different hyperparameter 
values for each output, i.e. using ψi = {αi, Pi, βi, σ2

i } for i = 1, . . . , 10, all of which need to be mar-
ginalised. We considered using a multi-output GP to take account of the correlations between the 
10 different outputs, but decided against, as doing so would significantly complicate the analysis, 
likely for little benefit given we only have 47 simulations runs with which to fit the GO. A standard 
multi-output GP (Alvarez et al., 2012) would require us to estimate a 10 × 10 covariance matrix, 
and would likely cause difficulties in developing a well-mixing MCMC scheme. We give the hyper-
parameters the following prior distributions:

βij ∼ N (0, 100) σ2
i ∼ Γ−1(1, 1), (8) 

αi ∼ N (0, 1) ρij ∼ Γ−1(5, 5), (9) 

where i = 1, . . . , 10 indexes across the different GP emulators for each site, and j = 1, . . . , 5 in-
dexes across the input dimensions. Here, Γ−1(a, b) denotes an inverse gamma prior distribution 
with shape parameter a and scale parameter b.

We fit the GP and infer the hyperparameters and posterior ice-sheet shape jointly using MCMC 
as described in the next section. First, we assess the predictive skill of the GP emulator using 
leave-one-out cross-validation (Vehtari et al., 2017). We fit the GP to 46 of the 47 simulations 
from HadCM3 and predict the mean and variance of the left out simulation. We repeat this leaving 
out each input in turn, and for all 10 ice-core sites at which we have measurements. The results are 
shown in Figure 1 along with the RMSE and the observed coverage of the 95% prediction inter-
vals. We can see that the GP emulators perform well. The prediction intervals are relatively wide 
compared to the signal, but appear to be well calibrated. The nugget variance dominates the pre-
dictive uncertainty, and gives an effective minimum width to the prediction intervals. We tried 
constraining the nugget variance to be smaller, but this degraded the overall performance of the 
GP predictions. With a larger simulation budget it may be possible to reduce the predictive 
uncertainty.

3.2 Inference
We have demonstrated that we can successfully approximate the relationship between ice-sheet 
orography and the δ18O anomalies that HadCM3 simulates. In this section we describe how to 
use the GP emulator and the prior model to infer the posterior distribution of the shape of the 
AIS at the LGM, which we denote by x. Let θ be the corresponding coordinates of x when pro-
jected onto the basis used by the prior model [equation (2)]. Our aim is to infer the posterior dis-
tribution for x, π(x ∣ yobs, D), which we do by computing π(θ ∣ yobs, D). We have

π(θ ∣ yobs, D) ∝ π(θ)π(yobs ∣ θ, D)

= π(θ) ∫ π(yobs ∣ ψ, θ, D)π(ψ ∣ θ, D)dψ

= π(θ) ∫ π(yobs ∣ ψ, θ, D)π(D ∣ ψ)π(ψ)dψ.

(10) 

Our prior distribution for θ, π(θ), is

θobs ∼ N (0, diag(0.5, 0.5, 0.6, 0.5, 1)) 

as described in Section 2.1. The prior distribution for the GP hyperparameters, π(ψ) is given by 
equation (9). The GP likelihood is given by equation (10) after using the kernel in equation (7) 
and the prior mean in equation (6). The remaining term is π(yobs ∣ ψ, θ∗, D) which is the GP pre-
diction for the observed data given θ. To complete our prior specification for the data, we need 
to choose a distribution for the error term, ϵ, in equation (1). This error represents the differ-
ence between the HadCM3 prediction when run with the true AIS shape, and the observations. 
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It thus must account for observation error (caused by natural variation, as well as the spatial 
and temporal averaging in the ice deposition and model discretisation), as well as simulator 
discrepancy. Given the limited data available, we cannot hope to resolve these individual er-
rors, and so we simply assume ϵ ∼ N(0, σ2

1) with the variance σ2
1 to be estimated with the other 

parameters.
We add in a fixed standard deviation term for ypred that represents the measurement error of 

the ice cores, τ1, and the spatial variance between modelling a latitude/longitude grid cell from 
HadCM3 and the location of the ice-core site, τ2. We considered also including an error term 
on the dating process, as the measurements are at different dates in each ice core. However, as 
the LGM was a very broad period, with most global ice sheets in equilibrium for several thousand 
years (Clark et al., 2009), we decided that this was unnecessary. If modelling time periods with 
more rapid changes, such as the deglaciation period up to 10 Ka BP, then a dating error would 
be necessary. We give a value of τ1 = 0.5‰ for the measurement error from the results of Keller 
et al. (2018), and a value of τ2 = 2.5‰ for the spatial error from looking at the standard deviation 
between HadCM3 model grid cells surrounding the cell containing the ice-core site. Our model is 

(a) (b) (c)

(d) (e) (f)

(g)

(j)

(h) (i)

Figure 1. Leave-one-out cross-validation results. Each plots shows the HadCM3 simulated δ18O anomalies (circular 
points) with the corresponding GP prediction (square points) as well as 95% prediction intervals (line segments). The 
GP used anistropic RBF kernel plus white noise, with a linear mean function, with hyperparameter prior distributions 
as given in equation (9). A 5D representation of the orographies was used for all 10 ice-core sites. The RMSE and 
95% empirical coverage values are also reported. (a) Byrd. Coverage: 94%. (b) Mount Moulton. Coverage: 96%. (c) 
Siple. Coverage: 96%. (d) WDC. Coverage: 94%. (e) EDC. Coverage: 94%. (f) EDML. Coverage: 96%. (g) Fuji. 
Coverage: 98%. (h) Talos. Coverage: 94%. (i) Taylor. Coverage: 98%. (j) Vostok. Coverage: 100%.
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therefore

yi ∣ · ∼ N (Θ′βi + f , σ2
1,i + τ21 + τ22) i = 1, . . . , 10. (11) 

To compute the posterior distribution, we use Hamiltonian MCMC (Betancourt, 2017), which is a 
method of sampling from a probability distribution by drawing a series of correlated samples that 
converge to the target distribution (Geyer, 1992). We implement this in the probabilistic program-
ming language Stan (Carpenter et al., 2017), which uses No-U-Turn sampling (NUTS) to efficient-
ly explore the posterior distribution. We finally generate

ypred,i
=N (θobsβi + f , σ2

1,i + τ21 + τ22), (12) 

using the posterior sample Θobs to create distributions of δ18O anomalies. We can then compare 
the distribution of ypred to the value yobs, which would show if our model is simulating accurate 

values of δ18O anomalies.

4 Results
We present results in two sections; Section 4.1 contains a description of the analysis of our model 
and a discussion of the model’s ability to reconstruct ice-sheet shapes. Section 4.2 discusses the 
difference between the posterior ice-sheet shapes our model estimates, and the previously pub-
lished reconstructions.

4.1 Sensitivity testing
We performed a sensitivity analysis of our model to explore the source of various uncertainties. We 
inflated and shrank the variance of the θobs, as well as the fixed variance term τ2 = τ21 + τ22, to check 
how they influence the model. Our posterior distributions were not affected much by changing the 
fixed variance, although the posterior variance of θobs was altered by changes in the prior 
variances.

Figure 2 shows the generated predictions, ypred, at each of the ice-core sites, with the observa-
tion as a red vertical line. The predictions all peak close to the true value, suggesting our model is 
successfully predicting the isotope values.

We carried out two sensitivity tests to check the robustness of our model. We removed one of the 
HadCM3 climate simulations, and set this simulation as our yobs to generate values of θobs and 
compare them to the known prior values. The posterior distributions of θobs and generated dis-
tributions of ypred can be seen in Figure 3a and b. We can see that our model is recovering the 
δ18O simulations and prior variable values well; the histograms of the prior variables in 
Figure 3a are all different from the prior distributions and are peaking around the θ values used 
to create the orography adopted for the missing HadCM3 simulation. Similarly, Figure 3b shows 
that the δ18O are all peaking around the values from the missing HadCM3 simulation.

We further test the model by trying to recover a δ18O anomaly from an ice core. We wish to see 
if, by modelling only nine of the cores, we can create δ18O anomalies close to the missing ice-core 
observation. We do this by removing the observation from equation 11, so that we are not learning 
anything about it from the input and output data. We then use equation 12 to generate δ18O 
anomalies for the missing ice core and compare it to the observed value. The distribution of 
ypred for the missing ice-core observation peaks close to the true value, as can be seen in online 
supplementary Figure 3. However, the range of values is extremely large; as the βi’s were given 
vague priors with standard deviation of 100, the model is not able to update much from these. 
Further tests using other ice cores showed that this applied to cores in both the East and West 
Antarctic ice sheets; the model struggled to recover an unknown core based on the sampling of 
the other nine. We were limited by the number of ice cores available dating back to the LGM; 
more ice-core data for the LGM, sampled evenly across both ice sheets, would lead to a more ro-
bust model. We test this by creating a psuedo-ice-core value to see how this affected distributions 
of ypred; results can be seen in online supplementary Figure 4. We can see the distributions 
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are peaking closer to observations in many cases, demonstrating the improvement additional data 
would have on our analysis.

4.2 Posterior shapes
We use the samples of the posterior distributions of θobs to create posterior ice sheet shapes and 
consider how plausible the shapes are. Figure 4c shows the standard deviation of the posterior re-
constructions. One of our aims with this method was to reduce uncertainty around the AIS at the 
LGM; comparing the standard deviation of the posterior ice-sheet shapes from our prior model in 
Figure 4b, we can see there is a lot less variance in our posterior shapes compared to the prior mod-
el, with Figure 4d showing the same standard deviation on a smaller scale to show the values in 
more detail.

We ran the mean posterior ice-sheet shape through HadCM3 to test the validity of our analysis. 
The resulting simulation produced δ18O anomalies far closer to the observations than any of our 
training simulations. The smallest RMSE of our original simulations was 4.46; in contrast, the 
posterior orography resulted in a RMSE for the δ18O output of 1.96. Even in the situation where 
the model is perfect, we would not expect the posterior mean RMSE to be zero, due to measure-
ment errors and the remaining uncertainty in the ice-sheet shape. In addition, there are almost cer-
tainly biases in HadCM3 (as well as errors in the hundreds of other climate parameters we had to 
specify in order to do LGM simulations), which will cause the posterior mean RMSE to differ sig-
nificantly from zero. But the fact we have a much reduced RMSE shows the value of analysis in 
extracting information from our three sources.

4.2.1 Comparing our orographies to previous reconstructions
We compare our posterior shapes to four of the ice-sheet reconstructions used to build our prior 
model, ICE-5G (Peltier, 2004), ICE-6G (Argus et al., 2014), W12A (Whitehouse et al., 2012), and 

Figure 2. Comparing the generated densities of ypred against the ice-core values. The black lines are the densities of 
ypred. The vertical red lines are the observed δ18O anomalies. The densities all peak close to the true observation from 

the ice cores, suggesting we have successfully predicted the isotope values.
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GLAC-1D (Briggs et al., 2014). These are the four reconstructions in the dataset X1, used in the 
first round of PCA. This allows us to see where the posterior reconstructions differ from the ori-
ginal ice-sheet reconstructions. We compare our results to the four reconstructions we originally 
started with to give some examples of how our method differs to previous work.

Figure 5 shows the difference between the posterior mean of our reconstruction and the previous 
reconstructions. We can see that aside from the coastal regions, our reconstructions suggest a 
higher elevation for the AIS at the LGM, particularly in the Eastern ice-sheet (EAIS). ICE-5G 
has a higher elevation than our posterior mean in the Western ice-sheet (WAIS), but ICE-5G 
is known to have a thicker AIS than the more recent reconstructions (ICE-6G, GLAC-1D, 
W12A) due to methodological updates as described in Argus et al. (2014). Our model also 
has a lower elevation around much of the Antarctic coastline than ICE-6G. Despite this, samples 
from our posterior distribution are ice-sheet orographies which have consistently higher eleva-
tion over the EAIS than the reconstructions used in our prior model, suggesting this is where 
some of the ‘missing ice’ (Gowan et al., 2021; Simms et al., 2019), previously unaccounted 

(a)

(b)

Figure 3. (a) Histograms of the posterior distributions of θobs, with density curves of the prior distributions 
superimposed, when trying to recover a HadCM3 simulation. The true values of the synthetic θi ’s are added on as 
red vertical lines. We can see the posterior distributions are very different to the priors, and are peaking close to the 
observations. (b) The distributions of ypred when recovering a HadCM3 simulation, with the synthetic observations 
added on as red vertical lines. The densities all peak close to the synthetic observations, demonstrating that our 
model has successfully recovered the HadCM3 simulation removed from our input data matrix.
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for in other ice-sheet reconstructions, may be found. Although smaller than ICE-5G, the poster-
ior mean shape from our model is considerably larger than in the other three reconstructions. 
Simms et al. (2019) states that the post-LGM sea-level rise is not balanced by the amount of 
ice melted, with the ‘missing ice’ corresponding to approximately 15 m of global sea-level 
rise. They conclude that ‘either a large reservoir of water (e.g. a missing LGM ice sheet) has 
yet to be discovered or current estimates of one or more of the known LGM ice sheets are too 
small. Our work corroborates the hypothesis that some of this missing ice may have been present 
in the AIS.

Table 2 shows the difference between the elevation of our posterior mean reconstruction and 
four of the original ice-sheet reconstructions over the AIS, below 60◦. We estimate the AIS height 
to be significantly higher than three of the four (the most recent three) most highly cited recon-
structions. Calculating the additional ice volume present in our reconstructions, and converting 
this to an equivalent sea-level rise, requires knowledge of bed elevation through time, and due 
to the viscoelastic nature of the Earth’s mantle this depends on past ice-sheet change. The ice vol-
ume associated with each reconstructed ice-sheet surface must therefore be determined using mod-
els that calculates solid Earth deformation in response to time-integrated surface load change (e.g. 
Whitehouse, 2018). This detailed calculation requires significant additional work, and is beyond 
the scope of this paper. But a crude back-of-the-envelope calculation suggests that our best esti-
mate of the AIS contains approximately 1.1 million km3 of additional ice than is represented in 
ICE-6G, and that this difference is approximately equivalent to a 3 m difference in global sea levels 
at the LGM. However, we stress that this is likely to be an underestimate of the sea level contri-
bution of our revised AIS. To be more precise will require a more careful analysis using a glacial 
isostatic adjustment model.

(a) (b)

(c) (d)

Figure 4. (a) Mean posterior shape from our model. (b) Standard deviation of our prior model. (c) Standard deviation 
of our posterior ice-sheet shapes, with (d) showing the same values on a finer scale. Comparing (b) to (c) shows our 
method has greatly reduced the uncertainty around the AIS at the LGM.
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5 Discussion
We have demonstrated the success our method has at modelling the relationship between the AIS 
orography at the LGM and δ18O anomalies from ice cores, and considered the geographical inter-
pretations of these results including the posterior ice-sheet shapes that our methods have pro-
duced. Here, we discuss our findings, and consider some issues and further work.

We have created a novel approach to weighted PCA. This allows the use of data when there is an 
obvious split in the relevance or importance of sources or variables. It also allows for the incorp-
oration of more data at a later date, and can assist in ranking data by prior beliefs about its influ-
ence on the subject of interest, and the use of related but unequal data sets. Situations such as ours 

Table 2. The mean height difference in metres between the posterior mean posterior reconstruction from our 
analysis and prior AIS reconstructions

AIS reconstruction Mean height difference from mean posterior shape (in metres)

ICE-5G −80.22

ICE-6G 77.13

W12A 126.72

GLAC-1D 122.04

Note. A positive value denotes our posterior reconstruction being larger than the prior reconstructions. This calculation is 
performed without taking into account any glacial isostatic adjustment response. AIS = Antarctic ice sheet.

Figure 5. The difference between the posterior mean height our model creates and the four ice-sheet 
reconstructions in X1. Clockwise from the top left they are ICE-5G (Peltier, 2004), ICE-6G (Argus et al., 2014), 
GLAC-1D (Briggs et al., 2014), and W12A (Whitehouse et al., 2012). We can see that our average ice-sheet shape 
has a higher elevation in the EAIS and lower elevation in the coastal regions than three of the reconstructions; the 
exception is ICE-5G, that has much higher elevation in the WAIS than our model output.
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are not exclusive to the climate science community, and this weighted PCA method is applicable to 
many other areas, including research areas using data sets of varying levels of favourable quality 
such as other environmental sciences, medicine or epidemiology.

We have demonstrated a way of combining prior knowledge, expert elicitation, GP emulation 
and Bayesian inference to model the uncertainty around aspects of the palaeo-climate. Building on 
the previous work of Domingo et al. (2020), who used a similar emulation technique to recon-
struct the Greenland ice sheet at the LIG, we have refined how the prior model was built and 
the process of selecting a set of orographies to input into HadCM3. We have shown the success 
of building an emulator of a climate model, which gives the possibility of future uses in other as-
pects of statistical analysis of climatology. We chose a relatively stable and recent time period—the 
LGM was chronologically a very broad event; conditions changed very slowly, allowing us to dis-
regard any dating errors in the isotopes. The stable nature of the time period meant we could mod-
el it statistically. If applying this method to a less stable period, when ice sheets were more in flux 
and the climate changing more quickly, then further uncertainties would have to be incorporated 
in to the calibration model.

Our estimate of the posterior distribution uses a probabilistic approximation to the simulator 
and a reduced-dimensional representation of the prior reconstructions. As a result, although the 
analysis is based on physically constrained quantities, these constraints are only embedded ap-
proximately. Consequently it is theoretically possible for our model to output implausible ice sheet 
shapes, but this was not observed during our analysis.

In particular, the edges of the ice sheets that our model creates require smoothing. The coarse-
ness of the HadCM3 latitude/longitude grid and the lack of physics in our model means it is hard to 
control where the ice sheet cuts off in our output, resulting in shapes that are jagged and unreal-
istic, with occasional holes where the ice sheet thins. Our posterior shapes are on the same coarse 
latitude/longitude grid; this means our posterior ice-sheet shapes can therefore only be viewed as 
guides for the location of ice, rather than a precise map of the AIS at the LGM.

Our posterior shapes show a clear difference from the reconstructions in our prior model; they 
are larger than most of the past reconstructions, with lower elevation around the coast of the con-
tinent and higher elevation in the central part of the ice sheet, particular in the EAIS. The plausi-
bility of these shapes, and their potential contribution to sea level rise up to the present day, is a 
topic for further collaboration. Simms et al. (2019) emphasise the missing ice problem around the 
LGM, and the possiblity of that ice being present in the AIS. Our work corroborates this hypoth-
esis, providing some guidance on where that ice may have been. Giving a more precise and careful 
estimate would take some additional work and will be done elsewhere.

In summary, the methods proposed in this paper could be applied to any time period or climate 
variable given that there is adequate proxy data and prior knowledge. Indeed they could be used 
for any application that has expert beliefs, a complex simulator that is too computationally expensive 
to run numerous times, and a set of observations with which to compare emulator output. 
Furthermore, in developing our suite of models and methods we have tackled some problems, and 
provided tools, that are likely to be relevant to others working within and beyond climate science.

Acknowledgments
The authors thank Dr Robert Arthern, Dr Richard Hindmarsh (deceased), Dr Dominic Hodgson, 
Dr Robert Mulvaney, and Dr James Smith at the British Antarctic Survey for taking part in the 
expert elicitation process.

Funding
This work was completed as part of a PhD funded by the Grantham Centre for Sustainable 
Futures.

Data availability
Data and code are available at https://doi.org/10.5281/zenodo.8246227

Conflict of interests: None declared.

1508                                                                                                                                               Turner et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/72/5/1493/7276400 by guest on 29 D
ecem

ber 2023

https://doi.org/10.5281/zenodo.8246227


Supplementary material
Supplementary material is available online at Journal of the Royal Statistical Society: Series C.

References
Alvarez M. A., Rosasco L., & Lawrence N. D. (2012). Kernels for vector-valued functions: A review. Foundations 

and Trends in Machine Learning, 4(3), 195–266. https://doi.org/10.1561/2200000036
ARCHER (2016). ARCHER supercomputer. http://www.archer.ac.uk
Argus D. F., Peltier W. R., Drummond R., & Moore A. W. (2014). The Antarctica component of postglacial re-

bound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and rela-
tive sea level histories. Geophysical Journal International, 198(1), 537–563. https://doi.org/10.1093/gji/ 
ggu140

EPICA Community Members, Barbante C., Barnola J. M., Becagli S., Beer J., Bigler M., Boutron C., Blunier T., 
Castellano E., Cattani O., Chappellaz J., Dahl-Jensen D., Debret M., Delmonte B., Dick D., Falourd S., Faria 
S., Federer U., Fischer H., Freitag J., … Wolff E. (2006). One-to-one coupling of glacial climate variability in 
Greenland and Antarctica. Nature, 444(7116), 195–198. https://doi.org/10.1038/nature05301

Bentley M. J., Cofaigh C. Ã., Anderson J. B., Conway H., Davies B., Graham A. G., Hillenbrand C. -D., Hodgson 
D. A., Jamieson S. S., Larter R. D., Mackintosh A., Smith J. A., Verleyen E., Ackert R. P., Bart P. J., Berg S., 
Brunstein D., Canals M., Colhoun E. A., … Zwartz D. (2014). A community-based geological reconstruction 
of Antarctic ice sheet deglaciation since the Last Glacial Maximum. Quaternary Science Reviews, 
100(Supplement C), 1–9. https://doi.org/10.1016/j.quascirev.2014.06.025

Betancourt M. (2017). ‘A conceptual introduction to Hamiltonian Monte Carlo’, arXiv, arXiv:1701.02434, pre-
print: not peer reviewed.

Blasco J., Alvarez-Solas J., Robinson A., & Montoya M. (2021). Exploring the impact of atmospheric forcing and 
basal boundary conditions on the simulation of the Antarctic ice sheet at the Last Glacial Maximum. The 
Cryosphere, 15, 215–231.

Blunier T., & Brook E. J. (2001). Timing of millennial-scale climate change in Antarctica and greenland during 
the last glacial period. Science, 291(5501), 109–112. https://doi.org/10.1126/science.291.5501.109

Boyd S., Boyd S. P., & Vandenberghe L. (2004). Convex optimization. Cambridge University Press.
Briggs R. D., Pollard D., & Tarasov L. (2014). A data-constrained large ensemble analysis of Antarctic evolution 

since the Eemian. Quaternary Science Reviews, 103, 91–115. https://doi.org/10.1016/j.quascirev.2014.09. 
003

Brook E. J., White J. W., Schilla A. S., Bender M. L., Barnett B., Severinghaus J. P., Taylor K. C., Alley R. B., & 
Steig E. J. (2005). Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last 
glacial period. Quaternary Science Reviews, 24(12–13), 1333–1343. https://doi.org/10.1016/j.quascirev. 
2005.02.002

Buizert C., Fudge T., Roberts W. H., Steig E. J., Sherriff-Tadano S., Ritz C., Lefebvre E., Edwards J., Kawamura 
K., Oyabu I., Motoyama H., Kahle E. C., Jones T. R., Abe-Ouchi A., Obase T., Martin C., Corr H., 
Severinghaus J. P., Beaudette R., … Schwander J. (2021). Antarctic surface temperature and elevation during 
the Last Glacial Maximum. Science, 372(6546), 1097–1101. https://doi.org/10.1126/science.abd2897

Carpenter B., Gelman A., Hoffman M. D., Lee D., Goodrich B., Betancourt M., Brubaker M., Guo J., Li P., & 
Riddell A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 
1–32. https://doi.org/10.18637/jss.v076.i01

Chang W., Haran M., Olson R., & Keller K. (2014). Fast dimension-reduced climate model calibration and the 
effect of data aggregation. The Annals of Applied Statistics, 8(2), 649–673. https://doi.org/10.1214/14- 
AOAS733

Clark P. U., Dyke A. S., Shakun J. D., Carlson A. E., Clark J., Wohlfarth B., Mitrovica J. X., Hostetler S. W., & 
McCabe A. M. (2009). The Last Glacial Maximum. Science, 325(5941), 710–714. https://doi.org/10.1126/ 
science.1172873

Constantine P. G. (2015). Active subspaces: Emerging ideas for dimension reduction in parameter studies. SIAM.
de Boer B., Haywood A. M., Dolan A. M., Hunter S. J., & Prescott C. L. (2017). The transient response 

of ice volume to orbital forcing during the warm late Pliocene. Geophysical Research Letters, 44(20), 
10,486–10,494. 2017GL073535. https://doi.org/10.1002/2017GL073535

Domingo D., Malmierca-Vallet I., Sime L., Voss J., & Capron E. (2020). Using ice cores and Gaussian process 
emulation to recover changes in the Greenland ice sheet during the last interglacial. Journal of Geophysical 
Research: Earth Surface, 125(5), e2019JF005237. http://doi.org/10.1029/2019JF005237

Edwards T. L., Brandon M. A., Durand G., Edwards N. R., Golledge N. R., Holden P. B., Nias I. J., Payne A. J., 
Ritz C., & Wernecke A. (2019). Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature, 
566(7742), 58–64. https://doi.org/10.1038/s41586-019-0901-4

Edwards T. L., Nowicki S., Marzeion B., Hock R., Goelzer H., Seroussi H., Jourdain N. C., Slater D. A., Turner 
F. E., Smith C. J., McKenna C. M., Simon E., Abe-Ouchi A., Gregory J. M., Larour E., Lipscomb W. H., Payne 

J R Stat Soc Series C: Applied Statistics, 2023, Vol. 72, No. 5                                                             1509
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/72/5/1493/7276400 by guest on 29 D
ecem

ber 2023

http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad078#supplementary-data
https://doi.org/10.1561/2200000036
http://www.archer.ac.uk
https://doi.org/10.1093/gji/ggu140
https://doi.org/10.1093/gji/ggu140
https://doi.org/10.1038/nature05301
https://doi.org/10.1016/j.quascirev.2014.06.025
https://doi.org/10.1126/science.291.5501.109
https://doi.org/10.1016/j.quascirev.2014.09.003
https://doi.org/10.1016/j.quascirev.2014.09.003
https://doi.org/10.1016/j.quascirev.2005.02.002
https://doi.org/10.1016/j.quascirev.2005.02.002
https://doi.org/10.1126/science.abd2897
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1214/14-AOAS733
https://doi.org/10.1214/14-AOAS733
https://doi.org/10.1126/science.1172873
https://doi.org/10.1126/science.1172873
https://doi.org/10.1002/2017GL073535
http://doi.org/10.1029/2019JF005237
https://doi.org/10.1038/s41586-019-0901-4


A. J., Shepherd A., Agosta C., … Zwinger T. (2021). Projected land ice contributions to twenty-first-century 
sea level rise. Nature, 593(7857), 74–82. https://doi.org/10.1038/s41586-021-03302-y

WAIS Divide Project Members, Fudge T. J., Steig E. J., Markle B. R., Schoenemann S. W., Ding Q., Taylor K. C., 
McConnell J. R., Brook E. J., Sowers T., White J. W. C., Alley R. B., Cheng H., Clow G. D., Cole-Dai J., 
Conway H., Cuffey K. M., Edwards J. S., Lawrence Edwards R., Edwards R., … Wong G. J. (2013). Onset 
of deglacial warming in West Antarctica driven by local orbital forcing. Nature, 500(7463), 440–444. 
https://doi.org/10.1038/nature12376

Geyer C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science, 7(4), 473–483. http://doi.org/10. 
1214/ss/1177011137

Golledge N. R., Fogwill C. J., Mackintosh A. N., & Buckley K. M. (2012). Dynamics of the Last Glacial 
Maximum Antarctic ice-sheet and its response to ocean forcing. Proceedings of the National Academy of 
Sciences, 109(40), 16052–16056. https://doi.org/10.1073/pnas.1205385109

Golledge N. R., Levy R. H., McKay R. M., Fogwill C. J., White D. A., Graham A. G., Smith J. A., Hillenbrand 
C. -D., Licht K. J., Denton G. H., Ackert R. P., Maas S. M., & Hall B. L. (2013). Glaciology and geological 
signature of the Last Glacial Maximum Antarctic ice sheet. Quaternary Science Reviews, 78(Supplement C), 
225–247. https://doi.org/10.1016/j.quascirev.2013.08.011

Gowan E. J., Zhang X., Khosravi S., Rovere A., Stocchi P., Hughes A. L., Gyllencreutz R., Mangerud J., Svendsen 
J. -I., & Lohmann G. (2021). A new global ice sheet reconstruction for the past 80 000 years. Nature 
Communications, 12(1), 1199. https://doi.org/10.1038/s41467-021-21469-w

Grootes P., Steig E., Stuiver M., Waddington E., Morse D., & Nadeau M. J. (2001). The Taylor Dome Antarctic 
18O record and globally synchronous changes in climate. Quaternary Research, 53(3), 289–298. https://doi. 
org/10.1006/qres.2001.2276

Hannachi A., Jolliffe I. T., & Stephenson D. B. (2007). Empirical orthogonal functions and related techniques in 
atmospheric science: A review. International Journal of Climatology: A Journal of the Royal Meteorological 
Society, 27(9), 1119–1152. https://doi.org/10.1002/(ISSN)1097-0088

Higdon D. M., Gattiker J. R., Williams B. J., & Rightley M. L. J. (2008). Computer model calibration using high- 
dimensional output. Journal of the American Statistical Association, 103(482), 570–583. https://doi.org/10. 
1198/016214507000000888

Holden P. B., Edwards N., Ridgwell A., Wilkinson R., Fraedrich K., Lunkeit F., Pollitt H., Mercure J.-F., 
Salas P., Lam A., Knobloch F., Chewpreecha U., & Vinuales J. (2018). Climate-carbon cycle uncertainties 
and the Paris Agreement. Nature Climate Change, 8(7), 609–613. http://doi.org/10.1038/s41558-018- 
0197-7

Holden P. B., Edwards N. R., Garthwaite P. H., & Wilkinson R. D. (2015). Emulation and interpretation of high- 
dimensional climate model outputs. Journal of Applied Statistics, 42(9), 2038–2055. https://doi.org/10.1080/ 
02664763.2015.1016412

Joseph V. R., & Hung Y. (2008). Orthonormal-MAXIMIN Latin hypercube designs. Statistica Sinica, 18(1), 171–186. 
http://www.jstor.org/stable/24308251

Jouzel J., Delaygue G., Landais A., Masson-Delmotte V., Risi C., & Vimeux F. (2013). Water isotopes as tools to 
document oceanic sources of precipitation. Water Resources Research, 49(11), 7469–7486. https://doi.org/ 
10.1002/2013WR013508

Kawamura K., Parrenin F., Lisiecki L., Uemura R., Vimeux F., Severinghaus J. P., Hutterli M. A., Nakazawa T., 
Aoki S., Jouzel J., Raymo M. E., Matsumoto K., Nakata H., Motoyama H., Fujita S., Goto-Azuma K., Fujii 
Y., & Watanabe O. (2007). Northern Hemisphere forcing of climatic cycles in Antarctica over the past 
360,000 years. Nature, 448(7156), 912–916. https://doi.org/10.1038/nature06015

Keller E. D., Baisden W. T., Bertler N. A., Emanuelsson B. D., Canessa S., & Phillips A. (2018). Calculating un-
certainty for the RICE ice core continuous flow analysis water isotope record. Atmospheric Measurement 
Techniques, 11(8), 4725–4736. https://doi.org/10.5194/amt-11-4725-2018

Kennedy M. C., & O’Hagan A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical 
Society: Series B (Statistical Methodology), 63(3), 425–464. https://doi.org/10.1111/1467-9868.00294

Khan N. S., Horton B. P., Engelhart S., Rovere A., Vacchi M., Ashe E. L., Törnqvist T. E., Dutton A., Hijma M. P., 
& Shennan I. (2019). Inception of a global atlas of sea levels since the Last Glacial Maximum. Quaternary 
Science Reviews, 220, 359–371. https://doi.org/10.1016/j.quascirev.2019.07.016

Loeppky J. L., Sacks J., & Welch W. J. (2009). Choosing the sample size of a computer experiment: A practical 
guide. Technometrics, 51(4), 366–376. https://doi.org/10.1198/TECH.2009.08040

Lowry D. P., Krapp M., Golledge N. R., & Alevropoulos-Borrill A. (2021). The influence of emissions scenarios 
on future Antarctic ice loss is unlikely to emerge this century. Communications Earth & Environment, 2(1), 
1–14. https://doi.org/10.1038/s43247-021-00289-2

Met-Office (2016). Met Office climate prediction model: HadCM3. http://www.metoffice.gov.uk/research/ 
modelling-systems/unified-model/climate-models/hadcm3

Myung I. J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47(1), 
90–100. https://doi.org/10.1016/S0022-2496(02)00028-7

1510                                                                                                                                               Turner et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/72/5/1493/7276400 by guest on 29 D
ecem

ber 2023

https://doi.org/10.1038/s41586-021-03302-y
https://doi.org/10.1038/nature12376
http://doi.org/10.1214/ss/1177011137
http://doi.org/10.1214/ss/1177011137
https://doi.org/10.1073/pnas.1205385109
https://doi.org/10.1016/j.quascirev.2013.08.011
https://doi.org/10.1038/s41467-021-21469-w
https://doi.org/10.1006/qres.2001.2276
https://doi.org/10.1006/qres.2001.2276
https://doi.org/10.1002/(ISSN)1097-0088
https://doi.org/10.1198/016214507000000888
https://doi.org/10.1198/016214507000000888
http://doi.org/10.1038/s41558-018-0197-7
http://doi.org/10.1038/s41558-018-0197-7
https://doi.org/10.1080/02664763.2015.1016412
https://doi.org/10.1080/02664763.2015.1016412
https://doi.org/10.1002/2013WR013508
https://doi.org/10.1002/2013WR013508
https://doi.org/10.1038/nature06015
https://doi.org/10.5194/amt-11-4725-2018
https://doi.org/10.1111/1467-9868.00294
https://doi.org/10.1016/j.quascirev.2019.07.016
https://doi.org/10.1198/TECH.2009.08040
https://doi.org/10.1038/s43247-021-00289-2
http://www.metoffice.gov.uk/research/modelling-systems/unified-model/climate-models/hadcm3
http://www.metoffice.gov.uk/research/modelling-systems/unified-model/climate-models/hadcm3
https://doi.org/10.1016/S0022-2496(02)00028-7


O’Hagan A. (2006). Bayesian analysis of computer code outputs: A tutorial. Reliability Engineering & System 
Safety, 91(10–11), 1290–1300. https://doi.org/10.1016/j.ress.2005.11.025

O’Hagan A., Buck C. E., Daneshkhah A., Eiser J. R., Garthwaite P. H., Jenkinson D. J., Oakley J. E., & Rakow T. 
(2006). Uncertain judgements: Eliciting experts’ probabilities. Wiley.

Peltier W. R. (2004). Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) model and GRACE. 
Annual Review of Earth and Planetary Sciences, 32(1), 111–149. https://doi.org/10.1146/earth.2004.32.issue-1

Petit J. R., Jouzel J., Raynaud D., Barkov N. I., Barnola J. M., Basile I., Bender M., Chappellaz J., Davis M., 
Delaygue G., Delmotte M., Kotlyakov V. M., Legrand M., Lipenkov V. Y., Lorius C., Pépin L., Ritz C., 
Saltzman E., & Stievenard M. (1999). Climate and atmospheric history of the past 420,000 years from the 
Vostok ice core, Antarctica. Nature, 399(6735), 429–436. https://doi.org/10.1038/20859

Pollard D., & DeConto R. M. (2009). Modelling West Antarctic ice sheet growth and collapse through the past 
five million years. Nature, 458(7236), 329–332. https://doi.org/10.1038/nature07809

Popp T. J. (2008). The speed and timing of climate change: Detailed ice core stable isotope records from 
NorthGRIP, Greenland and Mt. Moulton, West Antarctica [PhD thesis]. University of Colorado.

Rasmussen C. E., & Williams C. K. I. (2006). Gaussian processes for machine learning. MIT Press.
Simms A. R., Lisiecki L., Gebbie G., Whitehouse P. L., & Clark J. F. (2019). Balancing the Last Glacial Maximum 

(LGM) sea-level budget. Quaternary Science Reviews, 205, 143–153. https://doi.org/10.1016/j.quascirev. 
2018.12.018

Steig E. J., Ding Q., White J. W. C., Küttel M., Rupper S. B., Neumann T. A., Neff P. D., Gallant A. J. E., 
Mayewski P. A., Taylor K. C., Hoffmann G., Dixon D. A., Schoenemann S. W., Markle B. R., Fudge T. J., 
Schneider D. P., Schauer A. J., Teel R. P., Vaughn B. H., … Korotkikh E. (2013). Recent climate and ice-sheet 
changes in West Antarctica compared with the past 2,000 years. Nature Geoscience, 6(5), 372–375. https:// 
doi.org/10.1038/ngeo1778

Steig E. J., Morse D. L., Waddington E. D., Stuiver M., Grootes P. M., Mayewski P. A., Twickler M. S., & 
Whitlow S. I. (2000). Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western 
Ross Embayment, Antarctica. Geografiska Annaler: Series A, Physical Geography, 82(2–3), 213–235. 
https://doi.org/10.1111/j.0435-3676.2000.00122.x

Stenni B., Buiron D., Frezzotti M., Albani S., Barbante C., Bard E., Barnola J. M., Baroni M., Baumgartner M., 
Bonazza M., Capron E., Castellano E., Chappellaz J., Delmonte B., Falourd S., Genoni L., Iacumin P., 
Jouzel J., Kipfstuhl S., … Udisti R. (2011). Expression of the bipolar see-saw in Antarctic climate records dur-
ing the last deglaciation. Nature Geoscience, 4(1), 46–49. https://doi.org/10.1038/ngeo1026

Sutter J., Eisen O., Werner M., Grosfeld K., Kleiner T., & Fischer H. (2020). Limited retreat of the Wilkes Basin 
ice sheet during the last interglacial. Geophysical Research Letters, 47(13), e2020GL088131. https://doi.org/ 
10.1029/2020GL088131

Tindall J. C., Valdes P. J., & Sime L. C. (2009). Stable water isotopes in HadCM3: Isotopic signature of El Niño 
Southern Oscillation and the tropical amount effect. Journal of Geophysical Research: Atmospheres, 
114(D4). https://doi.org/10.1029/2008JD010825

Valdes P. J., Armstrong E., Badger M. P. S., Bradshaw C. D., Bragg F., Crucifix M., Davies-Barnard T., Day J. J., 
Farnsworth A., Gordon C., Hopcroft P. O., Kennedy A. T., Lord N. S., Lunt D. J., Marzocchi A., Parry L. M., 
Pope V., Roberts W. H. G., Stone E. J., … Williams J. H. T. (2017). The BRIDGE HadCM3 family of climate 
models: HadCM3@Bristol v1.0. Geoscientific Model Development, 10(10), 3715–3743. https://doi.org/10. 
5194/gmd-10-3715-2017

Van Loan C. F., & Golub G. (1996). Matrix computations. Johns Hopkins Studies in Mathematical Sciences. The 
Johns Hopkins University Press.

Vehtari A., Gelman A., & Gabry J. (2017). Practical Bayesian model evaluation using leave-one-out cross- 
validation and WAIC. Statistics and Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016- 
9696-4

Werner M., Jouzel J., Masson-Delmotte V., & Lohmann G. (2018). Reconciling glacial Antarctic water stable 
isotopes with ice sheet topography and the isotopic paleothermometer. Nature Communications, 9(1), 
1–10. https://doi.org/10.1038/s41467-018-05430-y

Whitehouse P. L. (2018). Glacial isostatic adjustment modelling: Historical perspectives, recent advances, and 
future directions. Earth Surface Dynamics, 6(2), 401–429. https://doi.org/10.5194/esurf-6-401-2018

Whitehouse P. L., Bentley M. J., Milne G. A., King M. A., & Thomas I. D. (2012). A new glacial isostatic adjust-
ment model for Antarctica: Calibrated and tested using observations of relative sea-level change and present- 
day uplift rates. Geophysical Journal International, 190(3), 1464–1482. https://doi.org/10.1111/gji.2012. 
190.issue-3

Wilkinson R. D. (2010). Bayesian calibration of expensive multivariate computer experiments. In L. T. Biegler, G. Biros, 
O. Ghattas, M. Heinkenschloss, D. Keyes, B. K. Mallick, L. Tenorio, B. V. B. Waanders, K. Wilcox, & Y. Marzouk 
(Eds.), Large-scale inverse problems and quantification of uncertainty (pp. 195–215). John Wiley and Sons.

Yokoyama Y., & Purcell A. (2021). On the geophysical processes impacting palaeo-sea-level observations. 
Geoscience Letters, 8(1), 1–19. http://doi.org/10.1186/s40562-021-00184-w

J R Stat Soc Series C: Applied Statistics, 2023, Vol. 72, No. 5                                                             1511
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/72/5/1493/7276400 by guest on 29 D
ecem

ber 2023

https://doi.org/10.1016/j.ress.2005.11.025
https://doi.org/10.1146/earth.2004.32.issue-1
https://doi.org/10.1038/20859
https://doi.org/10.1038/nature07809
https://doi.org/10.1016/j.quascirev.2018.12.018
https://doi.org/10.1016/j.quascirev.2018.12.018
https://doi.org/10.1038/ngeo1778
https://doi.org/10.1038/ngeo1778
https://doi.org/10.1111/j.0435-3676.2000.00122.x
https://doi.org/10.1038/ngeo1026
https://doi.org/10.1029/2020GL088131
https://doi.org/10.1029/2020GL088131
https://doi.org/10.1029/2008JD010825
https://doi.org/10.5194/gmd-10-3715-2017
https://doi.org/10.5194/gmd-10-3715-2017
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1038/s41467-018-05430-y
https://doi.org/10.5194/esurf-6-401-2018
https://doi.org/10.1111/gji.2012.190.issue-3
https://doi.org/10.1111/gji.2012.190.issue-3
http://doi.org/10.1186/s40562-021-00184-w

	Reconstructing the Antarctic ice-sheet shape at the Last Glacial Maximum using ice-core data
	Acknowledgments
	Conflict of interests
	References




