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Integrated analysis of carbon dioxide and oxygen
concentrations as a quality control of ocean
float data
Yingxu Wu 1,2, Dorothee C. E. Bakker 3, Eric P. Achterberg4, Amavi N. Silva1, Daisy D. Pickup 1,7,

Xiang Li 5, Sue Hartman 6, David Stappard 1, Di Qi 2✉ & Toby Tyrrell 1✉

The distributions of dissolved O2 and CO2 have not previously been systematically compared

across the global surface ocean, despite their significance for life and climate. Here we

analyze carbon dioxide and oxygen concentrations relative to saturation (equilibrium with the

atmosphere) in surface waters, using two large datasets (ship-collected and float-collected

data). When applied to a high-quality global ship-collected dataset, CO2 and O2 con-

centrations relative to saturation exhibit large seasonal and geographic variations. However,

linear fits of CO2 and O2 deviations from saturation (ΔCO2 against ΔO2) yield y-intercepts

close to zero, which suggests a requirement for data validity. We utilize this finding to

investigate the accuracy of carbonate system data from biogeochemical-Argo floats. We find

significant discrepancies in ΔCO2-ΔO2 y-intercepts compared to the global reference,

implying overestimations of float-based CO2 release in the Southern Ocean. We conclude

that this technique can be applied to data from autonomous platforms for quality assessment.
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The dissolved gases carbon dioxide (CO2) and oxygen (O2)
in seawater are of much biogeochemical interest1. Carbon
dioxide is important because of its role as a greenhouse gas,

with about one quarter of the anthropogenic CO2 produced by
fossil fuel combustion and land use changes being absorbed by
the ocean2. The coupling of atmospheric CO2 and O2 is used to
derive land/ocean carbon sink partitioning3 and serves as a
reference to verify ocean model results used in the global carbon
budget2. Time-series observations at some specific locations
(mostly in the northern hemisphere4), as well as distributed
measurements of the partial pressure of CO2 (pCO2) at the global
scale5,6 show that surface seawater pCO2 is rising at a similar rate
to the mole fraction of CO2 in the atmosphere, which has
increased by more than 40% since pre-industrial times (from 280
to over 400 ppm or μmol mol−1). Global change is also affecting
oceanic O2 concentrations; warming decreases oxygen solubility
and enhances water column stratification, thereby reducing
ventilation of subsurface waters with atmospheric oxygen and
leading to a decline in oxygen in the global ocean7–9. Oxygen is
biologically linked to CO2, for instance during photosynthesis
which simultaneously uses CO2 and generates O2.

There have been some attempts to jointly investigate dissolved
O2 and CO2 in different ocean basins (e.g., refs. 1,10–15). However,
in these studies the two gases were usually treated differently, for
instance O2 as a concentration ([O2]) or percent saturation and
CO2 as a partial pressure (pCO2) (refs. 10,13,16,17); in addition,
oxygen values are sometimes reported relative to argon (Ar) (e.g.,
refs. 18–20). Analyses in which O2 and CO2 are calculated in
different units, or as percentages, cannot take straightforward
advantage of the stoichiometric relationships (i.e., Redfield ratios)
between carbon, oxygen, and nutrients21,22. An improved O2-
CO2 analysis method was proposed by Torgersen and Branco23

and Vachon et al.24 to compare deviations of O2 and CO2 con-
centrations away from saturation, or in other words disequilibria
(discrepancies compared to equilibrium with atmospheric values).
This approach was shown to provide insights into river and lake
ecosystems, and has the potential to be applied more broadly to
marine systems. Investigating co-variations of O2 and CO2 con-
centrations can help improve understanding of the drivers of
surface ocean carbon dynamics.

In this study we extend the application of the O2-CO2

approach to the global surface ocean and name the approach
CORS (Carbon and Oxygen Relative to Saturation). We treat O2

and CO2 identically and compare dissolved concentrations of O2

and CO2 ([CO2] and [O2]) in surface seawater to saturation
values (values at which the net air-sea gas exchange rate is zero).
The saturation values for O2 and CO2 are strongly temperature-
dependent, as was already shown by the first plot of [O2] against
temperature over much of the global surface ocean in the early
1980s using GEOSECS data25 (Supplementary Fig. 1). The global
database has been greatly expanded in recent decades, providing
wider spatial and temporal coverage, culminating in the Global
Ocean Data Analysis Project (GLODAPv2.202026–28; used
throughout this study, for simplicity, it is referred to as GLO-
DAPv2 hereafter), which is by far the largest high-quality
observational dataset of both carbon and oxygen. This expan-
ded dataset has not previously been used to compare [O2] and
[CO2] to each other and to saturating values.

Furthermore, a potential application is to compare patterns in
CORS plots from GLODAPv2 with those from float data from the
Southern Ocean Carbon and Climate Observations and Modeling
(SOCCOM) project. Equipped with biogeochemical sensors (e.g.,
oxygen, nitrate, pH, and bio-optical sensors), ~200 autonomous
biogeochemical Argo floats were deployed by the SOCCOM
project29 and have enabled a better understanding of carbon and
oxygen cycles in the Southern Ocean30,31. They strikingly found

that the high-latitude Southern Ocean (i.e., Antarctic-Southern
Zone, ASZ) has released much more CO2 to the atmosphere than
previously estimated31–33, which attracted community concerns
on the sensor bias and data quality control (QC) of pH and
associated carbonate parameters34. Funding has recently been
announced (Global Ocean Biogeochemistry GO-BGC Array
project) for the construction and deployment of 500 floats (as a
contribution towards an anticipated eventual fleet of 1000 floats)
to provide float coverage similar to that provided by the SOC-
COM project but across the global ocean. A consensus is urgently
required on how to calibrate and validate float carbonate data to
ensure the highest accuracy and comparability among different
studies and datasets34. Given that the float O2 data is likely to be
more accurate than pH and the calculated carbonate system data
(refs. 29,31,35; see also descriptions in Methods), O2 in the context
of CORS plots could provide a strong constraint for detecting
questionable float CO2 data, if compared to GLODAPv2.

To advance knowledge of oceanic oxygen and carbon cycling
and address the above concerns, our study had two main objec-
tives: (1) to construct CORS plots from the GLODAPv2 database,
to be used later as a reference to compare against. These plots
show the CORS analysis to be capable of identifying regions and
periods where processes have driven both O2 and CO2 away from
their equilibrium with the atmosphere. (2) to apply this method
to the SOCCOM dataset and compare the resulting plots to the
GLODAP reference, in order to investigate the potential of CORS
as a tool for interpreting and validating data collected by
autonomous platforms.

Results
Overall patterns in CORS plots from GLODAPv2 data. To first
order, both [CO2] and [O2] from GLODAPv2 follow the solu-
bility relationship with temperature (decreasing values with
increasing temperature) (Fig. 1), as found previously for [O2] in
GEOSECS data (Supplementary Fig. 1). However, deviations
occur in certain regions and seasons (Supplementary Figs. 2–6).
Deviations of O2 from its equilibrium with the atmosphere are
usually of the opposite sign to the corresponding CO2 deviations
(Supplementary Fig. 2).

In both hemispheres, the distributions of [CO2] and [O2] show
strong seasonal variations: [CO2] and [O2] deviate furthest from
their temperature-dependent saturation values in spring and
summer while staying close to saturation in autumn and winter
(Fig. 1). We do not discuss further the Indian Ocean because
deviations of [CO2] and [O2] from saturation are less pronounced
there than in other ocean basins. Individual CORS plots for each
basin are presented as supporting information (Supplementary
Figs. 3–6).

In spring, supersaturation of O2 usually accompanies CO2

undersaturation. Strong supersaturation of CO2 (together with
undersaturation of O2) is observed in parts of the northeast and
eastern equatorial Pacific for water temperatures close to 10 and
18 °C (Supplementary Fig. 2a). However, other Pacific data
exhibit CO2 undersaturation and accompanying O2 supersatura-
tion (Fig. 2a). In the Atlantic Ocean, 73% of all spring data are
undersaturated in CO2 while supersaturated in O2 (Fig. 2a).

In summer, the undersaturation of CO2 is less pronounced in
the Atlantic Ocean (Figs. 1c and 2b), whereas in the Pacific Ocean
it is more or less similar to that in spring. In summer, some
simultaneous CO2 and O2 undersaturations are observed in the
Southern Ocean at latitudes polewards of 60°S where ice melt
occurs in coastal regions (Fig. 1c, d): 20% of the summer
Southern Ocean data show undersaturation in both CO2 and O2.

In autumn and winter, there is less data across the global
oceans but it appears that both gases stay closer to saturation as
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biological activity weakens and air-sea gas exchange strengthens.
There are striking opposite changes to CO2 and O2 in the
Southern Ocean (Figs. 1 and 2), where [CO2] is elevated (on
occasion to as high as 30 µmol kg−1) and [O2] is depleted
(sometimes to as low as 260 µmol kg−1) (Fig. 1). Overall, both
gases deviate more strongly from saturation in winter than in
autumn in the Southern Ocean.

Processes causing deviations in CORS plots from GLODAPv2
data. Figures 1 and 2 show, for the global surface ocean, the
coupling of CO2 deviations and O2 deviations from saturation
across geographic and seasonal scales, with four specific features
(F1–F4 in Fig. 2) warranting further investigation: (F1) CO2

undersaturation in conjunction with O2 supersaturation in the
high-latitude Atlantic and Pacific Oceans in spring; (F2) CO2

supersaturation paired with O2 undersaturation in the eastern
equatorial Pacific and California coast in spring and summer; and
(F3–F4) supersaturation of CO2 together with undersaturation of

O2 in the Southern Ocean in winter and to a lesser extent in
spring and autumn. Processes known to simultaneously affect
ΔCO2 and ΔO2 include warming/cooling, ice melting, respiration
and photosynthesis, and upwelling. The impacts of these pro-
cesses on ΔCO2 and ΔO2 are shown in the inset to Fig. 2d (see
Methods—Predicted effects of different processes—for the
explanation of the inset figure).

With additional plots, we explore the possible causes of these
features. Figure 3a shows a CORS plot of Atlantic and Pacific
spring data, colored by in-situ nitrate concentration. The data
falling in the fourth quadrant (negative ΔCO2 and positive ΔO2)
are associated with depleted nitrate concentrations and are
located primarily in the Irminger Basin in the North Atlantic and
the Oyashio region in the western subarctic Pacific Ocean
(Supplementary Fig. 2a, b), regions where intense spring blooms
are observed36–39. The data patterns are generally consistent with
phytoplankton blooms (photosynthesis) as the driver of the F1
deviations (although the lack of correlation (Supplementary

Fig. 1 Sea surface dissolved CO2 and O2 against sea surface temperature in the global dataset GLODAPv2. Each row is a different season; [CO2] data
are shown in (a, c, e, g) and [O2] data in (b, d, f, h). The black dashed curves indicate the saturation values of [CO2] or [O2] (i.e., concentrations that
would be in equilibrium with the atmosphere). The saturation curves for [CO2] were calculated with respect to the atmospheric pCO2 of 380 µatm in year
2005 and fitted. For this figure only, [CO2] values measured in other years were adjusted to year 2005 following Wu et al.67 to be consistent with the
saturation values calculated. Colors indicate different ocean basins: Atlantic (magenta), Pacific (dark yellow), Indian (green) and Southern Ocean (blue).
Dotted ovals with labels F1–F4 highlight major features, discussed in the “Results” section.
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Table 1) between CORS and NO3 is surprising). Data in quadrant
two of Fig. 3a (F2) are mainly from off the northern California
coast, a region where seasonal coastal upwelling is known to bring
subsurface waters (depleted in O2 and enriched in CO2 and
nutrients from decomposition of organic matter) to the surface
ocean40. CORS and NO3 are strongly correlated in these data
(Supplementary Table 1).

Figure 3b shows the relationship between ΔCO2, ΔO2, and the
NO3 anomaly in the Southern Ocean in winter, where the NO3

anomaly is the difference of surface in situ nitrate concentration
from its annual mean value in the surface Southern Ocean based
on GLODAPv2. The nitrate anomaly is strongly correlated with
ΔCO2 and ΔO2 (Supplementary Table 1). The winter data in the
Southern Ocean (Fig. 2d) imply that respiration or, more likely,
upwelling of ‘old’ water into which organic matter has been
respired, is responsible for F3 and F4. The calculation of ΔCO2

(Eq. 2) is made relative to atmospheric CO2 at the time of
measurement, even for water that has recently upwelled and
never previously had contact with anthropogenic ΔCO2. For this
reason, data from recently upwelled water will tend to plot lower
on CORS plots than it would if its [CO2] value was compared to
the [CO2] value in equilibrium with pre-industrial atmospheric
CO2. In addition, decreases in [CO2] because of CaCO3

dissolution41,42 (which does not affect [O2]) are likely to
contribute to the lower-than-expected slope. Figure 3c (and
Supplementary Fig. 7) shows that Southern Ocean surface waters
with the largest deviations (those furthest from the origin of the
CORS plots) in winter are those which have recently upwelled
(neutral density > 27.8 kg m−3, refs. 43–46). We, therefore, con-
clude that the large excursions in the Southern Ocean in autumn
and winter are driven by the upwelling of deep waters that have
previously been altered by the decomposition of sinking organic
matter.

Near-zero y-intercepts in CORS plots from GLODAPv2 data.
We investigated CORS plots to look for common features in them,
when generated from the high-quality data in GLODAPv2. For
quiescent regions not experiencing intense biogeochemical

activity, gas exchange is the dominant control for both dissolved
gases, keeping them close to equilibrium with the atmosphere. In
such regions, we would expect the centroid of the data in the
CORS plots to then be close to the origin (i.e. 4O2 and4CO2 � 0
μmol kg−1), and this is what is seen when CORS plots are con-
structed from the HOT and BATS time-series data (Supplemen-
tary Fig. 8; 4O2 ¼ 1.9 μmol kg−1 and 4CO2 ¼ �0.2 μmol kg−1

at HOT; 4O2 ¼ 3.2 μmol kg−1 and 4CO2 ¼ �0.3 μmol kg−1 at
BATS) from sub-tropical gyres. However, in less quiescent regions,
the centroid can be shifted away from the origin (as seen for
instance in the Southern Ocean in winter—Fig. 3b—where
upwelling leads to a displaced centroid: 4O2 ¼ �26:9 μmol kg−1

and 4CO2 ¼ 1:4 μmol kg−1). The distance of the centroid from
the origin cannot, therefore, be considered a reliable indicator of
data quality.

Several other statistical properties can be calculated (see for
instance Vachon et al.24), of which we found the y-intercept value
(i.e., the value of ΔCO2 when ΔO2 is zero) to be the most useful.
The application of CORS to the GLODAPv2 dataset shows that,
when strongly influenced by a dominant biogeochemical process,
the departures of O2 and CO2 from atmospheric equilibrium are
coupled and the best-fit lines of ΔO2 and ΔCO2 still tend to
intersect close to the coordinate origin (Fig. 4). Across the global
oceans, we found y-intercepts close to zero (range −1.10 to
−0.16 µmol kg−1 in different basins (Fig. 4), with a value for the
global dataset of −0.18 µmol kg−1). Due presumably to the effect
of ice melt in the summer Southern Ocean, the Southern Ocean
y-intercept is significantly lowered compared to other ocean
basins (Fig. 4e). The relative uniformity of y-intercept values
suggests their usefulness as indicators of data quality.

CORS plots from all float data, regardless of QC flag. Below we
show that CORS plots are capable of distinguishing ‘questionable’
or ‘bad’ float data from QCed ‘good’ data. As an illustration, we
examined data from floats F9096 and F9099 deployed in the high-
latitude Southern Ocean, using which Williams et al.33 found
significantly higher sea surface pCO2 and air-sea CO2 efflux in

Fig. 2 CORS plots: Carbon dioxide and oxygen concentrations relative to saturation in the global surface ocean in four seasons. a Spring, b summer,
c autumn, and d winter. Note the different axis scales for CO2 and O2. The inset in (d) shows the predicted effects of different processes (see “Methods”)
on ΔCO2 and ΔO2: warming (W), cooling (C), ice melt (M), photosynthesis (P) and respiration (R), calcium carbonate precipitation (CP) and dissolution
(CD). Gray shading shows the range of the P and R slopes for temperatures between 5 °C and 15 °C. The inset is proportional to the four subplots for
directly comparing the slope of the processes in the inset with those in the subplots.
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Fig. 3 Color-coded CORS plots for specific regions and seasons. a Data from the Atlantic and Pacific Oceans in spring, colored by the concentration of
in situ nitrate; b data from the Southern Ocean in winter, colored by the nitrate anomaly (see text); and c data from the Southern Ocean in winter, colored
by neutral density. Circles with solid black edges in (c) denote surface waters whereas circles without edges denote subsurface water (deeper than 30m).
Panel c uniquely contains subsurface as well as surface data. The black dashed lines in (a, b) are the best-fit straight-line regressions of all Pacific data (all
four quadrants) and Southern Ocean data, respectively. The black solid line in (a) is the best-fit straight-line regression of data from the Atlantic, in the
fourth quadrant. r is the associated Pearson correlation coefficient; n is the number of data points. The red dashed lines in (a, b) are the expected slopes
due to respiration in the Pacific and the Southern Ocean respectively, and the red solid line in (a) is the expected slope due to photosynthesis in the
Atlantic. The Subantarctic Mode Water and Antarctic Intermediate Water (SAMW/AAIW) in (c) are defined as water masses with neutral density ranging
from 26.8 to 27.5 kg m−3; Circumpolar Deep Water (CDW) is defined as neutral density ranging from 27.5 to 28.2 kg m−3; and Antarctic Bottom Water
(AABW) as neutral density >28.2 kg m−3.
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wintertime. Unlike Williams et al.33 in Fig. 5 we have plotted both
data flagged as ‘questionable’ or ‘bad’ and data flagged as ‘good’.
The figure shows some abnormally high (up to 20 µmol kg−1)
and low (down to −20 µmol kg−1) ΔCO2 values, neither
of which are coupled with equivalent ΔO2 values. The
resulting CORS plots are significantly different from the general
CORS pattern across the global ocean (Fig. 4). All of these
abnormal data have been flagged ‘questionable’ or ‘bad’ by
SOCCOM’s QC procedure but CORS plots also reveal the data to
be problematic.

CORS plots using only float data flagged as ‘good’. Below we
show that CORS plots are also useful for analyzing and examining
‘good’ float data. In order to be comparable with the GLODAPv2
database, we first selected 12 biogeochemical Argo floats (Sup-
plementary Fig. 9) around the Drake Passage or south of Tas-
mania to get as many overlaps as possible with the shipboard
dataset28. When CORS plots were produced for the float data, we
found (Fig. 6) a pattern that is overall rather similar to that from
GLODAP data in the Southern Ocean (Figs. 3b and 4f), con-
sistent with upwelling of CO2-rich deep waters. However, a

Fig. 4 Relationships between ΔCO2 and ΔO2 in the global ocean basins. a Atlantic Ocean, b Indian Ocean, c Pacific Ocean, d global oceans, e Southern
Ocean with all seasons included, and f Southern Ocean with summer excluded. The black dashed lines are the least-squares best-fit lines of data; unc
denotes the uncertainty in y-intercept with 95% confidence level; r is the associated Pearson correlation coefficient; n is the number of data points.

Fig. 5 CORS plots from data collected by SOCCOM float F9096 and F9099 in the high-latitude Southern Ocean. a Float F9096, b float F9099. Circle
with solid edge denotes ‘good’ flagged data, whereas cross denotes ‘questionable’ flagged data.
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discrepancy was found with regards to the y-axis intercepts of the
best-fit regressions of ΔCO2 and ΔO2: in contrast to the global
GLODAP y-intercepts, which are all similar to each other (range
of less than 1.0 between the minimum and maximum), the float-
derived y-intercepts are highly variable (range of −3.81 to

+0.99 µmol kg−1; Figs. 4 and 6, Table 1). We adopted a sub-
sampling strategy (see Methods) to treat the GLODAP and float
datasets identically, with the result showing that half of the
selected floats have y-intercepts greater than the GLODAP-
derived value of −1.10 µmol kg−1 (Fig. 6, Table 1). Among these

Fig. 6 CORS plots from data collected by 12 floats in the Southern Ocean. a–l F9646, F9666, F0569, F12545, F9652, F9275, F9096, F9099, F12575,
F9650, F0690, and F12727, respectively. The blue lines are the least-squares best-fit lines of data, green lines are the 95% confidence bounds for the fitted
coefficients (Table 1); unc denotes the uncertainty in y-intercept with 95% confidence level; r is the associated Pearson correlation coefficient; n is the
number of data points. The label on the top right of each subplot denotes the UW float ID number.

Table 1 Statistical analysis of best-fit lines to the CORS plots produced using data collected by 12 floats in the Southern Ocean.

Float ID number Region Fitted line: y=m× x+ c (with 95% confidence bounds) y_diffa pCO2 difference (µatm) corresponding
to y_diff

m c

F9646 SAZ −0.040 (−0.051, −0.029) −1.99 (−2.09, −1.89) 0.74 12
F9666 SAZ −0.097 (−0.108, −0.085) −1.73 (−1.80, −1.65) 0.40 6
F0569 ASZ 0.003 (−0.004, 0.009) −0.77 (−0.85, −0.70) −0.50 −8
F12545 PFZ −0.127 (−0.134, −0.120) 0.06 (−0.03, 0.14) −1.30 −21
F9652 PFZ/ASZ −0.144 (−0.152, −0.136) −0.73 (−0.84, −0.61) −0.54 −9
F9275 ASZ −0.104 (−0.112, −0.095) −3.81 (−4.22, −3.40) 2.47 40
F9096 ASZ −0.106 (−0.118, −0.095) 0.99 (0.92, 1.07) −2.27 −36
F9099 ASZ −0.101 (−0.105, −0.097) −1.37 (−1.52, −1.22) 0.12 2
F12575 SAZ −0.044 (−0.051, −0.037) −1.73 (−1.77, −1.70) 0.51 8
F9650 SAZ −0.044 (−0.057, −0.032) −0.73 (−0.79, −0.66) −0.56 −9
F0690 SAZ −0.070 (−0.075, −0.065) −1.32 (−1.35, −1.29) 0.04 1
F12727 ASZ −0.050 (−0.055, −0.046) −0.73 (−0.85, −0.61) −0.58 −9

The regions are defined by ocean fronts (Supplementary Fig. 9) following Gray et al.31: Subantarctic Zone (SAZ), Polar-Frontal Zone (PFZ), and Antarctic-Southern Zone (ASZ). The fifth column (y_diff)
is the difference in y-intercepts between GLODAP and float data. The sixth column converts the offsets in y-intercept (µmol kg−1) to differences in pCO2 (µatm) for an average sea surface temperature
of 1 °C.
aGLODAP-derived y-intercepts minus float-derived y-intercepts; negative (positive) values mean that the float y-intercept is greater (lower) than the GLODAP y-intercept.
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floats, F9096 and F12545 deviate more strongly from the GLO-
DAP pattern along the positive y-axis direction, whereas some
other floats, e.g., F9275 and F9646 deviate along the opposite
direction (Fig. 6). The average difference in y-intercepts (calcu-
lated as GLODAPv2 minus float values) is −0.12 µmol kg−1,
implying that, overall, float y-intercepts are more positive (or less
negative) than GLODAP ones (Table 1).

Applying CORS to the whole SOCCOM dataset south of 55°S
(48 floats with QCed O2 and CO2 data, Supplementary Table 2),
we also found that y-intercepts were on average greater than the
GLODAP-derived ones, with an average difference (GLODAPv2
minus float) of −0.36 µmol kg−1 (Supplementary Table 2). Given
that oxygen sensors are accepted as more established, reliable, and
accurate than pH sensors from which the CO2 values were
calculated29, the anomalous float y-intercepts suggest offsets most
likely due to pH-related biases, such as the uniform crossover
correction assuming a fixed offset of pH from 1500 m depth to
surface29,33,34. While unusual y-intercept values are suggestive of
data quality issues, they are not necessarily definitive proof. It is
also possible, we believe, that, in some locations, local processes
produce real CORS patterns that differ from those normally seen.
For instance, surface water near to where rivers enter the sea, or in
regions of strong mixing with deeper waters, could potentially
exhibit persistent unusual CORS patterns. Data displaying unusual
behavior on CORS plots should therefore not be immediately
discounted but should instead be flagged as requiring further
investigation before it can be accepted as valid. Detailed
investigation of this issue is beyond the scope of this manuscript,
but we note that a correction of −0.36 µmol kg−1 to [CO2]
corresponds to a correction to pCO2 of −5.8 µatm under typical
Southern Ocean conditions. Our finding is in line with some
recent studies47–49 based on different approaches (airborne
observations of atmospheric CO2 gradients, uncrewed surface
vehicle observations during circumnavigation of Antarctica, and
reconstructed estimates of winter observations and CO2 fluxes)
that indicate the possible overestimation of CO2 outgassing from
SOCCOM float data.

Discussion and conclusions
An improved analysis technique (CORS) for paired O2-CO2 data
has been presented here, treating both gases identically and
accounting for the atmospheric pressure effect on both gas
saturation concentrations. The CORS technique was applied to
the large, high-quality, global dataset GLODAPv2, as well as to
the SOCCOM float dataset. CORS plots provide a detailed insight
into the identity and intensity of processes impacting CO2 and
O2. Although both gas concentrations were seen to be often close
to the temperature-determined equilibrium value in GLODAP2
data, several noteworthy deviations from equilibrium with the
atmosphere and the possible processes driving them were dis-
cussed: in spring, phytoplankton blooms (most notably in the
Irminger Basin of the North Atlantic and in the Oyashio region of
the western subarctic Pacific Ocean) drive undersaturation of
CO2 and coincident supersaturation of O2, whereas upwelling in
the California coast and equatorial Pacific drives the opposite; in
autumn and winter, upwelling in the Southern Ocean produces
supersaturation of CO2 and undersaturation of O2. CORS plots
can serve as a useful tool for the detection of processes (e.g.,
blooms and upwelling) that simultaneously affect both oxygen
and carbon.

Recent developments in sensors mounted on gliders, floats, and
moorings have become increasingly important because they provide
opportunities for sampling in remote regions and in inclement
weather where traditional shipboard measurements are difficult and
expensive to obtain31,32,50–54. Along with the basic hydrological

parameters (i.e., temperature and salinity), biogeochemical variables
such as nutrients, oxygen, and CO2 (or pH, from which CO2 can be
estimated) are now being measured30–33,55. ΔCO2 and ΔO2 can
therefore be obtained from measurements made autonomously, and
CORS plots generated from them. Even though oxygen returns to
gas exchange equilibrium more rapidly than does carbon
dioxide56,57, ΔCO2 and ΔO2 have been shown here to exhibit
coupled (simultaneous and proportional) changes in CORS plots
from GLODAPv2 data. Moreover, oxygen data from sensors is
generally more accurate and reliable than CO2 derived from pH
measured on Argo floats29,35. Because of this, it makes sense to
exploit the O2 data to improve the CO2 data. Here we have shown
that CORS plots can often identify questionable data (data shown to
be questionable by other QC methods) immediately. In addition,
our results suggest that CORS plots can also reveal issues with
supposed ‘good’ data (i.e., quality issues not picked up by other QC
methods). This is because systematic errors in either [CO2] or [O2]
tend to stand out in CORS plots, and to lead to anomalous
y-intercept values relative to the GLODAPv2 reference (Table 1).
Our approach provides a more straightforward way to assess and
potentially improve CO2 data quality by comparison to other float
measurements. CORS plots allow a check on sensor performance,
which is important for instruments on these unmanned platforms
which operate without servicing or recalibration.

As the oceanographic community becomes increasingly reliant
on data collected from autonomous platforms50,58, techniques
such as CORS will be beneficial for diagnosing data quality, and
for immediate detection of questionable data.

Methods
The surface ocean is defined41,59 as shallower than 30 m at latitudes greater than
30°, and shallower than 20 m at latitudes less than 30°. The Southern Ocean is
defined as south of 50°S. Boreal spring is taken as from April to June, and austral
spring from October to December, and so on for the other seasons (following
global scale studies60).

Dataset descriptions
GLODAP dataset. Data for this study were obtained from GLODAPv2.202026–28

(denoted ‘GLODAPv2’ in this manuscript), which includes data from 946 cruises
conducted during the period 1972–2019. Only open ocean data (seafloor depth >
200 m) were included. We excluded data from the Arctic Ocean (>65°N) because
of data scarcity and strong perturbations from river inputs61. The observed CO2

concentration was calculated using the MATLAB version62 of CO2SYS, from in-
situ temperature, salinity, DIC, TA, phosphate, and silicate in the GLODAPv2
database. In this study, the dissociation constants for carbonic acid and sulfate were
taken from Lueker et al.63 and Dickson64, respectively, and the total borate-salinity
relationship from Lee et al.65. We used data only when both O2 and carbonate
system measurements are available and when the quality control of data is flagged
as ‘good’.

The accuracies of measured O2, DIC, and TA from GLODAPv2 are stated as 1%
(≈3 μmol kg−1), 4 μmol kg−1, and 4 μmol kg−1, respectively28. The uncertainty of
calculated CO2 concentration is dominated by the uncertainties from DIC and TA66,
and is assessed using an add-on to the CO2SYS program that calculates uncertainty
propagation66. The propagated uncertainty of CO2, taking into account the uncertainties
in the input variables as well as in the equilibrium constants, is 0.4 µmol kg−1. We also
evaluated the uncertainty ourselves using a Monte Carlo analysis (following Wu et al.67),
which produced a similar uncertainty of 0.5 µmol kg−1.

SOCCOM float dataset. The SOCCOM project (https://soccom.princeton.edu/) has
deployed ~200 biogeochemical profiling floats in the Southern Ocean since 2014.
The floats are mounted with a combination of biogeochemical sensors including
ones for measuring water column pH, oxygen, and nitrate29. Carbonate system
parameters including pCO2 and others are first calculated from sensor-measured
temperature, salinity, pH, LIAR algorithm-estimated TA, and silicate and phosphate
concentrations33,68,69. The nutrient data are derived from a matched GLODAP
database as a function of potential density (see details in Williams et al.33); ignoring
silicate and phosphate concentrations has anyway only a negligible effect on car-
bonate system calculation33. The CO2 concentration [CO2] is then calculated from
pCO2 and CO2 solubility using Henry’s Law ([CO2]=KH × pCO2). The pH-
dependent bias correction and quality control29,33 has been applied to the accessible
data from https://soccompu.princeton.edu/www/index.html. The quality control of
pH data is based on the crossover analysis for deep waters between float and
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shipboard (including available Southern Ocean dataset and SOCCOM deployment
cruises) measurements (see also ref. 33,69). The empirical algorithm for estimating in-
situ pH as a function of temperature, salinity, pressure, and O2 is determined for
shipboard bottle measurements at 1000–2000 m depth, which is then applied to
float-measured temperature, salinity, pressure, and O2. By comparing the two pH
values at 1500m depth, an offset in pH is applied to the entire float profile. The
measured oxygen and pH have reported uncertainties of 1% and 0.01 respectively,
and the estimated TA and pCO2 have reported uncertainties of 5.6 µmol kg−1 and
2.7% respectively33. Only data with a quality-control flag of ‘good’ were used.

The propagated uncertainty of float [CO2] calculated following Orr et al.66 is
0.8 µmol kg−1, which is twice the uncertainty of [CO2] from GLODAPv2. The float
oxygen sensors have been shown to perform robustly and with good stability (100%
good data return29). The oxygen data can be calibrated every time a float surfaces
because it can measure oxygen above the sea surface; this calibration is then used to
adjust the entire profile29. From the crossover comparison to GLODAPv2, the
float-measured oxygen data was seen to be closely correlated with GLODAPv2 data
and to follow a 1:1 relationship. In contrast, the float-measured pH data exhibited
large offsets from adjacent GLODAPv2 data and there was a significant departure
from a 1:1 relationship (e.g., fitted line deviated from 1:1 line by 0.03 at pH= 8.05;
ref. 29).

Converting pCO2 to [CO2] is obtained by multiplying pCO2 by the Henry’s
constant for CO2 (KH), based on an average sea surface temperature of 1 °C in the
Southern Ocean (i.e., KH ≈ 0.06).

Calculation of saturation values for O2 and CO2 and their uncertainties.

ΔO2 ¼ O2;obs

h i
� O2;sat

h i
ð1Þ

ΔCO2 ¼ CO2;obs

h i
� CO2;sat

h i
ð2Þ

where the subscript ‘obs’ indicates the observed concentration, and ‘sat’ indicates
the saturation concentration (in equilibrium with the atmosphere).

The saturation concentration for O2 was calculated using the equation
introduced by Garcia & Gordon70,71 for the solubility of O2. It is noteworthy that
Garcia & Gordon70,71 determined the O2 saturation value at an assumed
atmospheric pressure of 1 atm, which means that their approach (Eq. 3) needs to be
modified to account for local in-situ sea level pressure (SLP) using a parallel
equation (Eq. 4):

O1atm
2;sat ¼ K´ pO1atm

2 ¼ K ´ xO2;air ´ ðP1atm � PswÞ; ð3Þ

OSLP
2;sat ¼ K ´ pOSLP

2 ¼ K ´ xO2;air ´ ðPSLP � PswÞ; ð4Þ
where ‘1atm’ and ‘SLP’ denotes two different pressures, K is the solubility of O2,
O1atm

2;sat is the result of the calculation based on Garcia & Gordon70,71 methodology,
Psw is the water vapor pressure calculated from surface ocean temperature and
salinity72.

Substituting (3) into (4):

OSLP
2;sat ¼ O1atm

2;sat ´ ðPSLP � PswÞ=ðP1atm � PswÞ ð5Þ
where OSLP

2;sat is the O2 saturation value corrected for local sea level pressure and Psw.
PSLP is from National Center for Environmental Prediction/National Center for
Atmospheric Research (NCRP/NCAR) reanalysis data at the time of the
measurement (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.surface.html).

In order to account for the impacts of bubble injection on O2 saturation in the
surface ocean, we applied a saturation anomaly of 0.75%56 to O2 saturation (i.e., the
saturation of O2 in the surface ocean is here calculated as 100.75% of the value
from the saturation equations). The bubble injection effect on the more soluble
CO2 is negligible (<0.1%, ref. 73) and therefore it is not applied to the CO2

calculations.
The saturation concentration for CO2 was calculated using Henry’s Law

([CO2,sat]= KH × pCO2,eq), where pCO2,eq refers to the partial pressure of CO2 in
seawater when it is in equilibrium with atmospheric CO2. This was calculated as:
pCO2,eq= xCO2,air × (PSLP−Psw), where xCO2,air is the mole fraction (ppm) of CO2

in dry air. The values of xCO2,air are subject to spatiotemporal variabilities; we used
the monthly mean atmospheric xCO2 values for each ocean basin for each year
from the NOAA/ESRL/Global Monitoring Division (ftp://aftp.cmdl.noaa.gov/data/
trace_gases/co2/flask/). We used data from the following monitoring sites: BMW
(Tudor Hill, Bermuda) and ASC (Ascension Island) in the north and the south
Atlantic Ocean, respectively; SEY (Mahe Island) in the Indian Ocean; MLO
(Mauna Loa, Hawaii) and SMO (Tutuila) in the north and the south Pacific Ocean,
respectively; and PSA (Palmer Station, Antarctica) in the Southern Ocean (>50°S).
PSLP and Psw are described in Eqs. 3–5. The solubility (KH) of CO2 was calculated
following Weiss74.

Predicted effects of different processes. ΔCO2 and ΔO2 exhibit some co-
variation (Figs. 1 and 2) and so predicted joint effects of different processes were
calculated (inset to Fig. 2d), based on global average sea surface conditions (unless
specified otherwise) calculated from GLODAPv2 data: salinity of 34.6, temperature
of 15 °C, TA of 2300 µmol kg−1, and atmospheric pCO2 of 380 µatm (for the year

2005), which yields saturation concentrations of CO2 and O2 of 14.3 µmol kg−1

and 248.5 µmol kg−1 respectively, and DIC of 2072 µmol kg−1.
To predict the effects of warming and cooling, we calculated saturation gas

concentrations along a temperature gradient, and then compared the saturation
value at 15 °C (T0) to that at another temperature (T1) using Eq. 1:

4Gas ¼ ½Gassat�T0 � ½Gassat�T1 ð6Þ
Instantaneous warming and cooling would have an immediate impact on the

CORS values (ΔCO2 and ΔO2) because changes in temperature alter gas solubility.
Warming decreases the gas solubility (equilibrium value), so warming increases
both ΔCO2 and ΔO2, whereas cooling decreases them. The calculated molar ratio
between changes in [CO2,sat] and changes in [O2,sat] for warming is 0.086 and for
cooling is 0.091.

To predict the effect of ice melt, we assumed that ice contains so little dissolved
CO2 and O2 that melting adds insignificant amounts75,76, so [DIC] and [O2] are
subjected to the same degree of dilution during ice melting. A degree of dilution
gradient (e.g., diluted by 5, 10, 20, and 30%) was then assumed for salinity, TA,
DIC, and O2 at a temperature of −1.8 °C, which is the average value for regions
subject to ice melt. Each dilution step yielded a new carbonate system, for each of
which [CO2] was recalculated using CO2SYS. By comparing each of [CO2] and
[O2] to their original values, the ratio between the changes induced by ice melt was
calculated as 0.125.

To predict the effects of photosynthesis and respiration, DIC changes were made
proportional to changes in O2 of ±25, ±50, ±75, and ±100 µmol kg−1. The
corresponding DIC changes were calculated by multiplying the O2 changes by the
Redfield ratio21 of DIC/O2=−117/170. So, for instance, DIC changed by
−17.2 µmol kg−1 when O2 changed by +25 µmol kg−1 due to photosynthesis. Using
CO2SYS62, [CO2] was then calculated to change by −1.28 µmol kg−1 for this
example. The same logic was applied to changes in [CO2] and [O2] due to
respiration. The ratio of [CO2] change to [O2] change is not perfectly linear; the
ratio (slope) of a line fitted to the results is −0.044 for photosynthesis and −0.067
for respiration. Since temperature dominates solubility and carbonate system
dissociation constants, and because spring blooms at high latitudes occur in cold
water, we also made the same calculation at a temperature of 5 °C, resulting in
−0.070 for photosynthesis and −0.116 for respiration (shown by the gray shading
in the inset to Fig. 2d). Although the Redfield ratio refers to changes in DIC and
[O2], our choice of plotting [CO2] rather than DIC versus [O2] has advantages: (1)
the y-axis value on the CORS plot relates directly to the tendency for air-sea CO2

exchange to occur; (2) assessing [CO2] relative to saturation is quite straightforward
whereas assessing [DIC] relative to its saturation value requires an additional step
involving alkalinity.

Since there is spatial variation in the parameters (i.e., salinity, temperature, TA,
and DIC) used to calculate the slopes for photosynthesis and respiration in
different ocean basins, the theoretical slopes in Fig. 3a, b were calculated based on
the average condition in each specific ocean basin.

The formation and dissolution of CaCO3 affects [CO2] but not [O2] and is
therefore only inducing changes along the ΔCO2 axis. It is also noteworthy that in
addition to the processes above, upwelling and entrainment of subsurface waters
(characterized by CO2-rich and O2-depleted due to remineralization) also account
for the departures from equilibrium of both gases, where these effects tend to drive
CORS towards the second quadrant.

Subsampling treatment of GLODAP dataset. Because the GLODAP and SOC-
COM float datasets have different amounts of data, we adopted a subsampling
approach in order to treat the two datasets equally. The procedure is described
using the following scenario as an imagined example:

GLODAP Southern Ocean data from all seasons: N= 2500, y-intercept=−1.5;
Float dataset from all seasons: N= 300, y-intercept=−3.0;
To test statistically whether the second y-intercept is significantly lower than the

first, we set up a null hypothesis (H0) that the float-derived y-intercept is greater
than or equal to the GLODAP-derived y-intercept. We repeatedly (10,000 times)
took random subsamples (size N= 300) from the GLODAP Southern Ocean data,
calculated the y-intercepts of the fitted lines, and then calculated the frequency with
which y_float ≥ y_GLODAP (subsample). If frequency < 5% then y_float is
significantly lower than y_GLODAP. Furthermore, we calculated the value of a
term (y_diff) for the difference in y-intercepts by subtracting y_float from
y_GLODAP.

Data availability
GLODAPv2020 dataset was downloaded from the Ocean Carbon Data System (OCADS,
https://www.nodc.noaa.gov/ocads/oceans/). The time-series data in BATS and HOT
stations were downloaded from https://www.ncei.noaa.gov/access/ocean-carbon-data-
system/oceans/time_series_moorings.html. The SOCCOM float data (Matlab formatted
version, accessed on 10 November 2020) was obtained from https://soccom.princeton.edu/.
The monthly mean atmospheric xCO2 values for each observing site were obtained from
ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/.

Code availability
Matlab code for the analyses is available upon request to Y. Wu.
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