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Abstract
Volcanic ash transport and dispersion models (VATDMs) are necessary for forecasting tephra dispersal during volcanic 
eruptions and are a useful tool for estimating the eruption source parameters (ESPs) of prehistoric eruptions. Here we use 
Ash3D, an Eulerian VATDM, to simulate the tephra deposition from the ~ 7.7 ka climactic eruption of Mount Mazama. We 
investigate how best to apply a VATDM using the ESPs characteristic of a large magnitude eruption (M ≥ 7). We simplify the 
approach to focus on the distal deposit as if it were formed by a single phase of Plinian activity. Our results demonstrate that it 
is possible to use modern wind profiles to simulate the tephra dispersal from a prehistoric eruption; however, this introduces 
an inherent uncertainty to the subsequent simulations where we explore different ESPs. We show, using the well-documented 
distal Mazama tephra, that lateral umbrella cloud spreading, rather than advection–diffusion alone, must be included in 
the VATDM to reproduce the width of the isopachs. In addition, the Ash3D particle size distribution must be modified to 
simulate the transport and deposition of distal fine-grained (< 125 µm) Mazama ash. With these modifications, the Ash3D 
simulations reproduce the thickness and grain size of the Mazama tephra deposit. Based on our simulations, however, we 
conclude that the exact relationship between mass eruption rate and the scale of umbrella cloud spreading remains unresolved. 
Furthermore, for ground-based grain size distributions to be input directly into Ash3D, further research is required into the 
atmospheric and particle processes that control the settling behaviour of fine volcanic ash.
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Introduction

Predicting the transport and deposition of volcanic ash fol-
lowing a large magnitude explosive volcanic eruption poses 
an unprecedented challenge for hazard mitigation (Newhall 
et al. 2018). Whilst volcanic ash transport and dispersion 
models (VATDMs) have undergone increased testing and 

validation since the 2010 eruption of Eyjafjallajökull in Ice-
land (e.g. Bonadonna et al. 2012; Gudmundsson et al. 2012; 
Hort 2016; Beckett et al. 2020), these advances have been 
informed by observations associated with recent, relatively 
small magnitude eruptions (e.g. Dacre et al. 2011; Folch 
et al. 2012; Osores et al. 2013; Magill et al. 2015; Mastin 
et al. 2016; White et al. 2017). Large eruptions, in contrast, 
can have multiple phases of activity (e.g. Sigurdsson and 
Carey 1989; Rosi et al. 1999; Perrotta and Scarpati 2003; 
Marti et al. 2016; Madden-Nadeau et al. 2021) , a large fine-
ash fraction (Rose and Durant 2009; Engwell and Eychenne 
2016), extreme erupted volumes (Froggatt 1982; Matthews 
et al. 2012; Johnston et al. 2014; Buckland et al. 2020) and 
complex plume dynamics (Baines and Sparks 2005; Costa 
et al. 2014, 2018; Pouget et al. 2016; Barker et al. 2019), all 
of which pose a challenge for existing VATDMs. No mag-
nitude (M; on the scale of Pyle 2000) 7 or greater eruptions 
have occurred since volcanoes have been observed using 
satellite remote sensing (> 1970s). Therefore, unlike recent 
smaller eruptions where the eruption source parameters 
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(ESPs), such as plume height and mass eruption rate (MER), 
can be determined using remote sensing techniques (Holasek 
et al. 1996; Bonadonna et al. 2011; Osores et al. 2013), the 
ESPs for large prehistoric eruptions are based on the inter-
pretation of field deposits, which can introduce significant 
uncertainty (Biass and Bonadonna 2011; Engwell et al. 
2013; Klawonn et al. 2014; Bonadonna et al. 2015; Buck-
land et al. 2020).

Hazards associated with the dispersion and deposition of 
volcanic ash following a large magnitude eruption will be 
unlike anything experienced in modern times because of the 
high concentration of ash in the atmosphere (> > 4 mg/m3, 
the no-fly zone limit set by the European Commision; Stohl 
et al. 2011; Gouhier et al. 2019) and the very large areas 
impacted by ash fall (~ millions of  km2). Ash in the atmos-
phere disrupts aviation, impacts local meteorology and can 
interfere with telecommunication signals (e.g. Casadevall 
1994; Durant et al. 2009; Prata and Tupper 2009; Wilson 
et al. 2012; Lechner et al. 2017). Once ash is deposited, 
it can cause roof collapse and damage to agriculture and 
infrastructure, including electrical transmission networks 
and roads (e.g. Wilson et al. 2012; Waitt 2015; Blake et al. 
2016; Blong et al. 2017). Volcanic ash also poses a health 
hazard and can contaminate water supplies (e.g. Horwell 
and Baxter 2006; Stewart et al. 2006; Horwell 2007). Com-
plete ash removal following a large eruption is impossible 
so ash hazards will be long-lived, particularly as ash is con-
tinually remobilised by wind, water and hillslope processes 
(e.g. Hadley et al. 2004; Wilson et al. 2011; Liu et al. 2014; 
Pierson and Major 2014; Panebianco et al. 2017). The lon-
gevity of ash hazards will amplify the societal impacts of a 
large eruption. For example, increased demand for limited 
resources, food shortages following contamination and/
or disruption of supply chains can lead to civil unrest and 
even societal collapse (Nel and Righarts 2008; Wilson et al. 
2012; Newhall et al. 2018). Indeed, archaeological evidence 
suggests that the Mazama eruption, combined with climate 
change, caused the inhabitants of the northern Great Plains 
to abandon their homelands for 500–600 years following 
the eruption (Oetelaar and Beaudoin 2016). Therefore, it is 
paramount for hazard prediction and risk mitigation efforts 
to develop VATDMs that can produce meaningful forecasts 
of ash dispersal from magnitude 7 and greater scenarios. 
These simulations can then be combined with magnitude 
frequency distributions for volcanic eruptions to produce 
probabilistic hazard assessments at volcanoes that have the 
potential to produce large eruptions (Connor et al. 2001; 
Jenkins et al. 2012; Sheldrake 2014; Rougier et al. 2018).

Here, we simulate the climactic Mazama eruption with 
the Eulerian ash dispersion model Ash3D (Schwaiger et al. 
2012). VATDMs simplify the complex physical processes 
that disperse and deposit volcanic ash and therefore can-
not perfectly reconstruct the ash dispersion of the ~ 7.7-ka 

climactic Mazama eruption. However, the primary goal 
is to highlight areas where Ash3D can successfully repli-
cate features of the deposit and where the model simula-
tions cannot explain the observed tephra distribution. The 
well-documented Mazama tephra deposit offers an excellent 
opportunity for this endeavour because of the extensive field 
data available for model validation. Our results help to iden-
tify the features unique to large explosive eruptions that are 
not well captured by VATDM modelling approaches that 
have largely been tested using smaller eruptions. We then 
discuss reasons why Ash3D simulations differ from the field 
data from the perspectives of both implicit simplifications of 
VATDMs and uncertainties in the field data.

Background

The Mazama climactic eruption and tephra deposit

Mount Mazama was a stratovolcano in the volcanic arc 
of the Cascade Range that underwent a climactic caldera-
forming eruption ~ 7.7 ka to create modern-day Crater Lake, 
Oregon, USA. Eruption of more than 60-km3 dense-rock 
equivalent (DRE) of rhyodacite magma deposited tephra 
across > 1 million  km2 of north-western North America 
(Williams 1942; Lidstrom 1971; Bacon 1983; Bacon and 
Druitt 1988; Druitt and Bacon 1989; Young 1990; Jensen 
et al. 2019; Buckland et al. 2020). Studies of the proximal 
(< 100 km from source) eruption sequence have substantially 
advanced our understanding of caldera collapse and the evo-
lution of complex magmatic systems (e.g. Williams 1942; 
Williams and Goles 1968; Bacon 1983; Bacon and Druitt 
1988; Druitt and Bacon 1989; Young 1990; Klug et al. 2002; 
Wright et al. 2012; Karlstrom et al. 2015). The dominant 
tephra dispersal direction towards the east and northeast of 
the vent (Fig. 1) means that the widespread distal Mazama 
tephra forms an important Holocene isochron across much 
of the northwestern conterminous USA and Canada, which 
has aided correlation and dating of countless sedimentary 
sequences, archaeological finds and paleoseismic events 
(e.g. Cressman et al. 1960; Abella 1988; Long et al. 1998; 
Oetelaar and Beaudoin 2016; Jensen et al. 2019; Buckland 
et al. 2020). The tephra is also an important cryptotephra 
(non-visible) isochron in northeastern Canada, the USA and 
the GISP2 ice core (Hammer et al. 1980; Zdanowicz et al. 
1999; Pyne-O’Donnell et al. 2012; Spano et al. 2017; Jensen 
et al. 2021). The widespread subaerial tephra deposit also 
provides an excellent opportunity to validate the outputs of 
VATDMs against field observations.

The climactic Mazama eruption had two main erup-
tive phases. A thick and well-sorted fall deposit records 
an initial Plinian phase (Williams and Goles 1968; Bacon 
1983; Young 1990) which was followed by an ignimbrite 
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forming phase and accompanying caldera collapse (Bacon 
1983; Druitt and Bacon 1986). The latter phase produced 
a proximal lithic lag breccia (Druitt and Bacon 1986) and 
large (~ 29  km3 DRE) pyroclastic density currents (PDC) 
that reached > 70 km from source. Both phases erupted 
magma of similar composition except for the final PDCs of 
the caldera collapse phase, which were more mafic (Bacon 
1983). For this reason, it is not possible to determine the 
relative proportion of original Plinian and later co-PDC 
contributions to the distal fine ash, which records the same 
rhyodacitic composition (Young 1990; Buckland 2022). For 
simplicity, we therefore treat the entire distal deposit as part 
of one Plinian eruptive phase and use continuous meteoro-
logical data for the simulation.

Modelling large volcanic eruptions

Modelling the dispersal of volcanic ash from an eruption of 
large magnitude (M ≥ 7) is considerably more complex than 
for smaller magnitude (M ≤ 5) events for multiple reasons. 
Firstly, the high MERs that occur during large eruptions 
mean that gravity currents are commonly formed as the 
plume reaches neutral buoyancy in the atmosphere, and the 

plume spreads by buoyancy forces close to source rather than 
solely by advection–diffusion (Bursik et al. 1992; Woods and 
Kienle 1994; Sparks et al. 1997; Costa et al. 2013). Gravita-
tional spreading in the umbrella cloud region affects tephra 
dispersion but is typically not accounted for in VATDMs 
or applied in the reproduction of past events (Woods and 
Wohletz 1991; Sparks et al. 1997; Suzuki and Koyaguchi 
2009; Costa et al. 2013; Pouget et al. 2016). Moreover, the 
distance from source over which gravitational spreading 
dominates tephra transport during large eruptions is poorly 
constrained and may be much greater than what has been 
witnessed during (smaller) historical eruptions (Houghton 
et al. 2004; Costa et al. 2018; Constantinescu et al. 2021).

Secondly, large explosive eruptions, especially those with 
significant co-PDC phases, are associated with large vol-
umes of fine ash. Analysis of trends of median grain size 
with distance (Engwell and Eychenne 2016; Cashman and 
Rust 2020; Buckland et al. 2021) show that the grain size 
of deposits initially decays with distance from source but 
then stabilises over large distances, a trend particularly well 
defined for large eruptions. The median grain size of these 
distal deposits is typically 30–60 µm (Engwell and Eychenne 
2016), which results in a low particle settling velocity that 
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Fig. 1  Locations where the Mazama tephra has been recorded. a 
Isopachs of the distal deposit, and sites in the USA and Canada where 
Mazama tephra has been recorded > 130 km from source (Buckland 
et al. 2020; see Supplementary Table S4). The symbol represents the 
deposit type with the larger coloured points corresponding to sites 
where the tephra thickness is measured and has experienced minimal 

remobilisation since deposition (Buckland et al. 2020). The numbered 
sites are key sites referenced in this study. b A map showing the loca-
tion of map a and seven ultra-distal sites (> 1500  km from source) 
containing Mazama cryptotephra. Each site is labelled with the rel-
evant reference
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rarely exceeds the vertical component of air velocity (atmos-
pheric turbulence). As a result, sedimentation of individual 
ash particles is suppressed and sedimentation requires other 
mechanisms, such as aggregation (Brown et al. 2012; Van 
Eaton et al. 2012; Rossi et al. 2021) or the formation of 
convective instabilities (Manzella et al. 2015; Scollo et al. 
2017; Freret-Lorgeril et al. 2020). Because it is not trivial 
to consider such processes in VATDMs, significant assump-
tions must be made to invoke the settling behaviour of these 
fine particles in numerical models.

Thirdly, as exemplified by the Mazama eruption, 
large eruptions typically have multiple phases (e.g. San-
torini ~ 3.6 ka, Sparks et al. 1983; Tambora 1815, Sigurdsson 
and Carey 1989; the Campanian Ignimbrite ~ 39 ka, Perrotta 
and Scarpati 2003; Engwell et al. 2014; Ilopango ~ 1.5 ka, 
Pedrazzi et al. 2019). This means that ESPs are highly vari-
able and likely time dependent, which is extremely challeng-
ing to reconstruct from field deposits: for example, shifting 
wind conditions, varying MERs and unsteady plume heights. 
Furthermore, during caldera-forming eruptions, the vent 
geometry and location change significantly throughout the 
eruption, again causing the ESPs to vary with time (Legros 
et al. 2000; Smith et al. 2016; Suzuki et al. 2020). ESPs for 
co-PDC plumes are also poorly constrained. For example, 
co-PDC plumes cannot be approximated as a point source 
and the relationship between MER and the mass entering 
the plume may be significantly different from the Plinian 
phase (Woods and Wohletz 1991; Baines and Sparks 2005; 
Engwell et al. 2016; Costa et al. 2018; Pedrazzi et al. 2019).

Fourth, ESPs are necessarily derived from field deposits 
for prehistoric eruptions and thus have significant uncertain-
ties because of data sparsity, post-eruptive remobilisation 
of deposits and deposit model approximations (Biass and 
Bonadonna 2011; Bonadonna et al. 2015; Buckland et al. 
2020). These issues are particularly pertinent for large erup-
tions that deposit tephra across variable environments (e.g. 
submarine versus subaerial). Additionally, although in proxi-
mal regions it may be possible to identify deposits from indi-
vidual phases of an eruption (e.g. Plinian versus co-PDC), in 
distal reaches (typically distances greater than several hun-
dreds of kilometres for large explosive eruptions), deposits 
merge and it becomes impossible to separate these contri-
butions (Engwell et al. 2014; Buckland 2022). This means 
that total grain size distributions (TGSDs and other field 
measurements such as deposit thickness) are integrated over 
multiple eruption phases.

Finally, simulation of volcanic plumes requires meteoro-
logical information. However, given the age of most large 
explosive eruptions, accurate meteorological data for the 
time of the eruptions are not available. Moreover, meteoro-
logical conditions can vary seasonally, and for most prehis-
toric eruptions, information on eruption seasonality is lim-
ited. We therefore use modern meteorological information 

under the assumption that conditions have not changed sig-
nificantly in the intervening time (Johnston et al. 2012).

Ash3D model description and umbrella spreading 
regimes

Ash3D is a Eulerian, finite volume dispersion model that 
computes tephra transport and deposition across a 3D grid 
using a time-dependent wind field (Schwaiger et al. 2012; 
Mastin et al. 2013). The model does not include the dynam-
ics of a rising plume. The standard model setup, which 
works well for weak plumes and sub-Plinian eruptions, 
approximates a volcanic plume by adding tephra above the 
vent as either a point source, vertical line source or (most 
commonly) some vertical distribution such as that of Suzuki 
(Suzuki 1983; Carey 1996; Fig. 2):

Here ( Ṁ ) is the mass flow rate into the column of cells 
that approximates the plume (Fig. 2a, b), HT is the height of 
the plume top, z is the elevation at a particular point in the 
column and ks is a constant that controls the mass distribu-
tion across cells (Fig. 2c).

For modelling large eruptions, several dispersal models 
now consider the dynamics of a growing umbrella cloud in 
spreading ash (Costa et al. 2013, 2017; Webster et al. 2020; 
Cao et al. 2021; Constantinescu et al. 2021). Ash3D calcu-
lates radial spreading at the neutral buoyancy elevation (Hu; 
Fig. 2b; Mastin et al. 2014), following the formula of Costa 
et al. (2013, 2017), which assumes that the volume growth 
rate of the umbrella cloud (q) is proportional to the mass 
eruption rate ( Ṁ):

where ke is the radial entrainment coefficient, C is a constant 
of proportionality and N is the Brunt-Väisälä, or buoyancy, 
frequency. In other words, the expansion of the umbrella 
cloud depends on the intensity of the volcanic input ( Ṁ ) 
and the atmospheric properties (ke, N and C). C has been 
determined empirically to be ~ 0.43 ×  103  m3kg−3/4  s−3/2 for 
tropical eruptions and 0.87 ×  103  m3kg−3/4  s−3/2 for polar and 
midlatitude eruptions (Suzuki and Koyaguchi 2009; Costa 
et al. 2013, 2017). We use C = 0.87 ×  103  m3kg−3/4   s−3/2, 
ke = 0.1 and N = 0.02  s−1 for the simulations (Table 1; Mas-
tin et al. 2014).

The velocity field within the spreading umbrella cloud 
is calculated using the volume growth rate (q) and the 
radial distance within the umbrella cloud (R; for details 
see Appendix 1). The appropriate formula for calculating 

(1)dṀ

dz
= Ṁ

k2
s
(1 − z∕HT )exp(ks(z∕HT − 1))

HT [1 − (1 + ks)exp(−ks)]
.

(2)q = C
√

ke
Ṁ

3

4

N
5

4
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radial velocity of the plume in the umbrella region is still 
the matter of some debate; in this study, we consider two 
options. First is the method of Costa et al. (2013; see their 
Eq. 11), implemented by Mastin et al. (2014) in Ash3D 
(Eq. 7 in Mastin et al. 2014) where the radial velocity 
within the umbrella cloud ur is governed by:

where uR is the velocity at the flow front and r is the position 
in the umbrella cloud (Appendix 1). Second is the formula-
tion of Webster et al. (2020; see their Eq. 7):

The difference between the two spreading regimes is 
shown in Fig. 3. Both regimes meet the boundary condi-
tion that, when r→R, ur→uR but Eq. 3 (Costa et al. 2013) 
gives higher radial spreading velocities when r <  < R 
(Fig. 2).

Once the mass is added to the cells, Ash3D computes 
mass concentration Q with time t using the formula:

(3)ur = uR

(

3R

4r
+

r

4R

)

,

(4)ur = uR

(

R

r

)

1

2

.

where ua is the 3D wind vector, vs is the particle settling 
velocity, K is the diffusivity and S is the source term, which 
is non-zero only in the nodes above the volcano. The second 
and third terms on the left-hand side of this equation rep-
resent (1) advection by wind and settling, and (2) turbulent 
diffusion, respectively.

Using the umbrella spreading scheme at the beginning 
of the simulation, the mass flow rate into the umbrella 
cloud (q) is calculated using Eq. 2. Ash is placed into the 
source nodes (grey nodes, Fig. 2b) and distributed verti-
cally using a Suzuki distribution (Eq. 1) with k = 12, which 
represents a top-heavy distribution of mass in the plume 
(Fig. 2c). Then, at each time step during the duration of 
the eruption, radial winds are calculated using Eqs. 3 or 
4, added to the ambient wind field ua, and the movement 
of ash across cell walls is calculated using Eq. 5. After 
the eruption ends, ash advection and diffusion continue 
to be calculated using Eq. 5, but no ash is added to the 
source nodes and radial winds are no longer added to the 
ambient winds.

(5)
𝜕Q
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+ ∇ ∙
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�⃗ua + �⃗vs
)

Q
]

− ∇ ∙ (K∇Q) = S.

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3

R
el

at
ive

 h
ei

gh
t i

n 
pl

um
e 

(z
/H

T)

ks

12
8

Mass Distribution (dM/dz)

ca

b

Fig. 2  Model setups for different plume regimes using the Suzuki 
mass distribution in Ash3D. a Weak plume; b major umbrella cloud. 
Grey cells are source nodes that show where ash (mass) is added at 
each model time step. Plume a is approximated by a vertical col-
umn of model cells. Plume b includes a radial wind field shown by 

nodes with blue arrows. The boxes on the right-hand side represent 
the Suzuki mass distribution in the plume shown in detail in panel 
c. c Suzuki probability density function used to distribute mass in 
the plume with different values of the constant ks (Eq. 1). Panels a–b 
from Mastin and Van Eaton (2020)
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Ash3D model inputs

Volcanic inputs—erupted volume, particle 
characteristics, eruption duration and plume height

The aim of this study is to model the dispersion of dis-
tal tephra; therefore, we exclude the volume contained in 
deposits < 130 km from source. In this way, we also avoid 
poor constraints on the volume of the proximal deposits 
because of overlapping eruptive units and the unknown 
volume contained within the caldera collapse deposits 
(Bacon 1983; Young 1990; Bacon and Lanphere 2006; 
Buckland et al. 2020). At the same time, by excluding the 
proximal deposit, we reduce uncertainty in Ash3D simu-
lations caused by complex proximal deposition processes 
related to plume and edifice instabilities.

To estimate the bulk volume of the distal Mazama 
deposit, we use isopachs constructed using distal ash 
thicknesses and fit by a single exponential function to 
the square root of the isopach area against log of tephra 
thickness (Table S5; Pyle 1989; Fierstein and Nathenson 
1992; Daggitt et al. 2014; Buckland et al. 2020). The bulk 
volume estimates range from 129 to 134  km2 depending 
on whether distal isopachs are extrapolated back to the 
source (Fig. 4a) or include only the volume beyond the 
proximal isopachs (Fig. 4b). The DRE volume of the distal 
deposit is determined using the average deposit density 
(700  kgm−3) and magma density (2200  kgm−3) to give 
a minimum value of 40  km3 DRE (Buckland et al. 2020; 
Buckland 2022).

The default GSD used by Ash3D is a simplified ver-
sion of the TGSD of the May 1980 eruption of Mount St. 
Helens (Durant et al. 2009; Mastin et al. 2016). The TGSD 
is simplified by assigning all mass < 125 µm to separate 
size classes in the Ash3D input file with lower density and 
more spherical shape factors than the coarser size frac-
tions (Fig. 5a; Supplementary S3). In previous studies, this 
simplification is referred to as ‘aggregation’ (Mastin et al. 
2014; 2016). Here we use the simplification to account for 
the range of processes that allow ‘premature’ (non-Stokes) 
fine ash sedimentation. Without this TGSD simplification, 
slow-settling particles (< 125 µm) do not deposit within 
the model domain (see Supplementary S2).

For comparison, we use the Ash3D default (GSD_M16; 
Fig. 5a) in our simulations as well as three additional 
GSDs: (1) the GSD used by Mastin et al. (2014) when 
simulating a super-eruption from Yellowstone (GSD_M14; 
Fig. 5b); (2) a bimodal TGSD based on the grain size of 
Mazama tephra deposits > 130 km from source (GSD_
B21_B; Fig. 5c); and (3) a unimodal TGSD that reflects 
the grain size of the Mazama tephra > 400 km from source 
(GSD_B21_U; Fig. 5d; Buckland 2022). For GSD_B21_B 

Table 1  Model parameters used for all simulations after resolving 
the best-fit wind profile. The parameters first used to resolve the wind 
profile are highlighted with an asterisk (*)

Parameter Value(s)

Eruption start time 2010 11 06 11:36 UTC 
Duration 24 h
Erupted volume DRE 40  km3

Height of the top of umbrella 
cloud (Hu)

15, 25, 30* and 40 km

Inferred vent location 122.12°W longitude
42.93°N latitude

Model domain 90–135°W longitude
32.5–57.5°N latitude

Model resolution 0.5° horizontally
2 km vertically

GSD GSD_M16*, GSD_M14, 
GSD_B21_B, GSD_B21_U 
(see Fig. 5)

Diffusion constant (K) 0*, 1000, 3000 and 10 000  m2s−1

Umbrella spreading regime None, Webster et al. (2020) 
and Costa et al. (2013)* (see 
Fig. 3)

Deposit density (ρd) 700 and 1000*  kgm−3

ke 0.1
N 0.02  s−1

C 0.87 ×  103  m3kg−3/4  s−3/2

λ 0.2

1

10

100

0.00 0.25 0.50 0.75 1.00

r / R

u r
 / 

u R

Umbrella Spreading
Costa et al. (2013)
Webster et al. (2020)

(r = R)(r << R)

Fig. 3  Different umbrella cloud radial wind formulations used in 
Ash3D. Ratio of position in umbrella cloud r to the radius of the 
umbrella cloud R plotted against the ratio of the radial wind velocity 
at position r (ur) to the velocity at the cloud front (uR). Formulations 
used are from Costa et al. (2013) and Webster et al. (2020)
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and GSD_B21_U, we treat the mass < 125  µm in the 
same way as the Ash3D default by assigning the mass 
into coarser size fractions which we refer to as simulated 
aggregates.

The particle densities for GSD_M16 and GSD_M14 
have been taken from the literature (Mastin et al. 2014, 
2016). For the simulations using GSD_B21, we use the 
densities measured for Mazama samples in individual 
sieve fractions > 250 µm (Buckland et al. 2021). For par-
ticles ≤ 250 µm, the particle density is equal to the glass 
density of the Mazama rhyodacite, which is ~ 2200  kgm−3 
(Bacon 1983; Druitt and Bacon 1989). The simulated aggre-
gate density is kept constant at 600  kgm−3, following Mastin 
et al. (2016).

We use a particle shape factor (F) value of 0.65 for 
individual particles based on measurements made using 
Dynamic Image Analysis (DIA; Buckland et al. 2021). 
DIA measures the aspect ratio of particles (xcmin/xFemax) 
which we equate to the 3D shape factor F used by Ash3D 
to calculate the particle drag coefficient according to the 

formulation of Wilson and Huang (1979). The shape factor 
is determined by F = (b + c)/2a, where a, b and c are the 
maximum, intermediate and minimum diameters of the 
particle. All simulated aggregates are assigned F = 1 (Van 
Eaton et al. 2015; Mastin et al. 2016).

We use an eruption duration of 24 h in the Ash3D simu-
lations. The actual duration of the climactic Mazama erup-
tion is difficult to constrain without real-time observations 
using modern monitoring methods. Therefore, our estimate 
is based on the absence of evidence for an extended erup-
tion duration. For example, there is no apparent erosion 
or soil development between the individual fall units or 
eruptive phases (Young 1990; Bacon and Lanphere 2006). 
The inferred duration of 24 h and erupted volume of 40 
 km3 DRE gives a MER of 1.46 ×  108  kgs−1, which is within 
the range of ~  108–1010  kgs−1 inferred and reconstructed 
for other large eruptions (e.g. Novarupta 1912, Fierstein 
and Hildreth 1992; Pinatubo 1991, Koyaguchi and Ohno 
2001; Tambora 1815, Kandlbauer and Sparks 2014). It 
is lower than MER estimates from maximum lithic isop-
leths of the Mazama deposit (1 ×  108–3 ×  109  kgs−1; Young 
1990); however, MER estimates from isopleths have not 
been validated for large magnitude eruptions because of a 
lack of observations. Furthermore, we note that our MER 
estimate is not representative of the actual MER because 
we only use the mass contained in the distal deposit rather 
than the total erupted mass.

In Ash3D simulations, the plume height used as model 
input is the top of the umbrella cloud rather than the top 
of the overshooting plume, under the assumption that 
the overshooting plume collapses gravitationally into the 
umbrella rather than being advected laterally with the 
ambient winds. The 15 June 1991 Pinatubo eruption, the 
closest historical analogue to a Mazama event, produced 
a plume with an overshooting top of 35–40 km and an 
umbrella top at about 25 km asl (Koyaguchi and Ohno 
2001). Most of our simulations use an umbrella-top height 
of 30 km, but we also experimented with values of 15 and 
40 km asl. The lower value of 15 km tests the impact of 
strong stratospheric winds above the tropopause on the 
dispersion (as seen at Mount St. Helens; Eychenne et al. 
2015). Plume heights between 30 and 40 km were resolved 
by inversion modelling of the proximal Mazama deposits 
using Tephra2 (Suzuki 1983; Armienti et al. 1988; Bona-
donna et al. 2005; Connor and Connor 2006; Biass 2018), 
as reported in Supplementary S1. Young (1990) estimated 
plume heights > 55 km from isopleths using the Carey and 
Sparks (1986) model. However, as with the MER esti-
mates, these extreme heights reflect the limitations of the 
Carey and Sparks (1986) model that has not been validated 
with observations of the plumes from M > 7 eruptions.
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Meteorological data and model parameters

The meteorological data used for the simulations are from 
the NOAA NCEP/NCAR Reanalysis 1 (RE1) model (Kalnay 

et al. 1996), a global meteorological model extending from 
1948 to the present with a horizontal resolution of 2.5 
degrees latitude/longitude, temporal resolution of 6 h and 17 
pressure levels from 1000 (sea level) to 10 millibars (~ 30 km 
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asl). Ash3D uses wind vectors, geopotential height and tem-
perature from these models to calculate advection and par-
ticle fall velocities. For elevations above ~ 30 km, Ash3D 
replicates the wind vectors at the highest RE1 model node. 
It then extrapolates temperature from the highest thermal 
lapse rate and pressure by integrating ρgdz, where ρ is cal-
culated from the ideal gas law. Average wind data for Mount 
Mazama (Crater Lake) over the period from 1990–2010 are 
shown in Fig. 6. Although winds below 5 km elevation are 
slow and variable in direction, at 6–14 km they are domi-
nantly towards the east and are fastest (28 ± 16  ms−1) around 
the tropopause at 10–11 km (Fig. 6a). At higher elevation, 
velocities decrease and directions become bimodal towards 
both the east and west (Fig. 6b).

Using the fixed ESPs listed in Table 1, we ran the Ash3D 
simulation 800 times under different wind conditions and 
output the tephra thicknesses at each sampling site (Fig. 7). 
The simulation with a start time of 06 November 2010, 
11:35 UTC, had the best visual agreement in the direc-
tion of the dispersal axis and thinning rate with distance 
(Fig. 7d). Interestingly, the wind profile relating to Novem-
ber supports evidence from pollen records that the Mazama 
eruption occurred during the northern hemisphere autumn 
(Mehringer et al. 1977). More generally, this also shows 
that for eruptions from the mid-Holocene (~ 8 ka) in North 
America, modern reanalysis meteorological data can be 
appropriate for simulating ash dispersal. A comparison of 
this run with three others, randomly chosen from the 800, is 
shown in Fig. 7. We stress that Fig. 7 shows the simulated 
deposit using a fixed set of ESPs and should be viewed as 
separate to subsequent figures where we examine the sensi-
tivity of the simulation to changing ESPs.

Turbulent diffusion is treated as a constant in Ash3D (K 
in Eq. 5) and is calculated using an implicit Crank-Nicolson 
method (Schwaiger et al. 2012). The amount of turbulent 
diffusion reflects complex and competing atmospheric 
processes, meaning that the value of K cannot be directly 
related to a single physical process (Schwaiger et al. 2012). 
When diffusivity is set to zero, Ash3D simulations run about 
three times faster and can produce realistic-looking results 
(Schwaiger et al. 2012). For this reason, diffusivity is set 
to zero in operational simulations (https:// vsc- ash. wr. usgs. 
gov) when speed is important. In systematic comparisons, 
however, we see that diffusion-free simulations can pro-
duce deposits that are slightly narrower than mapped ones 
and may underestimate thickness in distal areas, even when 
adjusted for finer grain sizes (Mastin et al. 2016, 2020). 
Therefore, we run the Mazama simulations using different 
values of K (0–10,000  m2s−1; Table 1) to account for the 
fact that K reflects multiple physical processes, including 
entrainment into the plume, and that for large eruptions, 
these processes are likely spatially varied and complex. The 
range of K explored is informed by the range of diffusion 

coefficients for multiple advection–diffusion models from 
previous studies (e.g. Macedonio et al. 1988; Folch et al. 
2008; Costa et al. 2008; Bonasia et al. 2011; Poulidis et al. 
2018; Constantinescu et al. 2022).

Results

We ran 57 simulations of the climactic Mazama erup-
tion using the best-fit wind profile to explore the sensitiv-
ity of Ash3D to critical ESPs: the diffusivity constant (K; 
Fig. 8), the deposit density (ρd: Fig S5), the umbrella cloud 
spreading regime (Fig. 9), the height of the umbrella top 
(Hu; Fig. S6) and the GSD (Fig. 10). The range of model 
parameters is reported in Table 1 and run specific inputs 
used in benchmark simulations are listed in Table 2. The 
results of changing the ρd, Hu and GSD simplification are 
presented in Supplementary S2 for brevity. A full inventory 
of the simulations can be found in Supplementary Table S7. 
Here we describe the impact of changing the individual input 
parameters (the “Sensitivity to model inputs” section) and 
comment on the ability of the model to replicate the deposit 
thickness and GSD at specific localities (the “Comparing 
Ash3D outputs to the Mazama tephra deposit” section).

Sensitivity to model inputs

To visualise the Ash3D outputs in this section, we plot a 
map of primary Mazama tephra localities (Buckland et al. 
2020) with an opaque isopach map of the simulated deposit 
(Figs. 8, 9 and 10). The colour of each locality indicates the 
observed thickness; the same colour scheme is used for the 
shaded isopachs of the simulated deposit. In Figs. 8 and 9, 
we also plot the square root of the isopach area against the 
isopach thickness and fit an exponential function to the data 
(Pyle 1989). We refer to these as ‘Pyle plots’ in the figure 
captions for brevity.

Increasing the diffusivity constant K promotes turbu-
lent diffusion and as a result the tephra is spread out over a 
larger area when K > 0  m2s−1 (Fig. 8). This supports assess-
ments from simulations of other eruptions, where higher 
K increases spreading perpendicular to the main dispersal 
axis (Schwaiger et al. 2012; Mastin et al. 2016). Increasing 
K, however (Fig. 8b, c), does not produce the width of the 
deposit perpendicular to the main dispersal axis (off-axis) 
that we observe in isopachs constructed from Mazama field 
data (Fig. 1; Buckland et al. 2020). The pronounced area of 
secondary thickening seen in Fig. 8a reflects the bimodal-
ity of the default GSD (Fig. 5a). GSD_M16 has a coarse 
mode at 250 µm (2 φ) made up of individual particles and a 
second mode that corresponds to the simulated aggregates 
which are the size class concentrated in the zone of second-
ary thickening.

https://vsc-ash.wr.usgs.gov
https://vsc-ash.wr.usgs.gov
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Fig. 6  Summary wind data for 20 years at Crater Lake. (a) Wind speed  (ms−1) versus elevation above sea level at Crater Lake based on NCEP 
Reanalysis 1 data for 1990–2010. Error bars are plus and minus one standard deviation. (b–d) Wind rose plots for the elevation ranges indicated, 
based on the same dataset. Pie segments depict the direction towards which the wind is blowing
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Simulating umbrella spreading disperses tephra over a 
larger area compared to simulations where the ash is trans-
ported purely by advection diffusion coupled to the mete-
orological winds (Fig. 9). Simulations with no horizontal 
umbrella spreading produce an elongated deposit (Fig. 9a) 
with minimal off-axis spreading whereas wider isopachs 
are produced when umbrella winds are added to the ambi-
ent wind field. The amount of off-axis spreading depends 
on the formulation used to calculate the radial wind speeds 
(Eq. 4; Fig. 9b and Eq. 3; Fig. 9c). The area enclosed by 
the 10-mm isopach is greater when using the formula from 
Costa et al. (2013) at 1.3 ×  106  km2 compared to the Webster 
et al. (2020) formula where the same isopach encompasses 
1 ×  106  km2.

The GSD used significantly impacts the Ash3D 
simulations (Fig. 10). The Ash3D default GSD (GSD_
M16; Fig.  5a) produces isopachs that closely match 
those mapped from field deposits (Figs.  1a and 10a). 
Simulations using the coarsest GSD (GSD_M14 from 
Mastin et al. 2014; Fig. 5b) produce the smallest area 
of tephra deposition due to rapid deposition of coarse 
particles close to source (Fig. 10b). Simulations using 
GSD_B21_B (Fig. 5c) produce similar 10-mm isopachs 
to runs using the default GSD, but the 200-mm isopach 
(orange) extends farther out to the northeast of the vent 
(Fig. 10c). However, sites where the observed thickness 
is > 200  mm (red- and orange-filled circles) still lie 
outside of the simulated 200-mm isopach. GSD_B21_U 
(Fig.  5d) is a unimodal distribution that has been 
artificially ‘aggregated’ and is therefore effectively 
modelling the fallout of a single size class that does not 
deposit close to the vent. Interestingly, the thickness 
maximum for deposition of GSD_B21_U corresponds 
to sites where the observed distal thicknesses exceed 
200 mm (Fig. 10d).

Comparing Ash3D outputs to the Mazama tephra 
deposit

To visualise the differences between the thickness of the 
modelled deposit and field measurements of tephra 
thickness (Buckland et al. 2020), we plot the modelled 
and observed thickness at 30 localities on log–log plots. 
This ensures that differences in the thickness of distal, 
thinner deposits are evident (Fig. 11). We also include the 
equivalent plot using linear axes (Fig. 12), which helps 
visualise the differences in thicker, more proximal deposits 
as well as the differences between different simulations. 
For each simulation, we calculate the coefficient of 
determination (R2) and root mean square error (RMSE; 
see Supplementary Table S7). Comparing R2 and RMSE 

values across the whole suite of simulations, however, is 
challenging because measures of goodness of fit can be 
biased by the proximal data where the absolute thickness 
values are greatest. For example, Run001 has the highest R2 
value of all the simulations which indicates good agreement 
between the simulated and field deposit. However, we see 
from the high RMSE value and visual inspection of the 
simulated versus field-derived isopachs that this combination 
of ESPs in fact only matches the thickest field sites and 
the fit to the distal sites is relatively poor. Therefore, we 
use a qualitative assessment of the R2, RMSE and visual 
comparison of simulated deposit to determine whether 
individual simulations fit the field data well.

The simulated thicknesses are within 4 and 0.25 times the 
observed thickness at 35 of the 36 primary localities for all 
the simulations that use the best-fit wind profile, excluding 
those that use GSD_M14 (Figs. 11b and 12b). This suggests 
that the Ash3D simulations are reproducing the Mazama 
deposit reasonably well. For example, we know from lake 
core records that at least 0.1-cm ash was deposited at Lofty 
Lake, Alberta, Canada, > 1500 km from source (site 291, 
Fig. 1a; Lichti-Federovich 1970; Lidstrom 1971; Young 
1990; Buckland et al. 2020). All the Ash3D simulations 
disperse at least 1 mm of ash to Lofty Lake evidencing that 
the simulations can reproduce the long-range transport of 
ash that is inferred from field deposits.

Simulations that use the GSDs reconstructed from field 
data best replicate the thickness of deposits along the main 
dispersal axis when compared to runs where all other ESPs 
are the same except the GSD as indicated by the lower 
RMSE values (e.g. Figures 11 and 12). For example, at site 
73, we measured 30 cm of primary Mazama tephra (Buck-
land et al. 2020). Using GSD_B21_U, Ash3D forecasts 
26–37 cm of ash deposition at site 73 depending on the 
deposit density (ρd) used (Run030; Figs. 11d and 12d). In 
contrast, all the simulations using GSD_M14 and GSD_M16 
predict < 30 cm at site 73 irrespective of assumed ρd. This 
suggests that the fine ash that is recorded at these sites has 
settling properties similar to the simulated aggregates.

Ash3D outputs the GSD at specified locations, which 
we compare to the GSD measured at that locality (Fig. 13). 
Excluding the simulations using GSD_B21_U, which con-
tains no coarse material, all simulations predict coarser par-
ticles reaching further from source than observed in the field 
deposits. For example, using DIA and laser diffraction, we 
know that at site 73 particles > 250 μm account for < 1% of 
the sample volume. However, simulations using the default 
GSD_M16 (Run006; Fig.  13a), the coarse GSD_M14 
(Run014; Fig. 13b) and GSD_B21_B (Run022; Fig. 13c) 
predict that particles > 250 μm are being deposited at that 
distance from source. This is shown in Fig. 13 where the 
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black bars (simulated coarse particles) are higher than the 
GSD measured from field deposits (light grey).

Discussion

Here we use the results of the Ash3D simulations of ~ 7.7 ka 
Mazama tephra deposit to consider the application of 
VATDMs to tephra deposits produced by large magnitude 
eruptions. We also discuss reasons that the application of 
VATDMs is unable to reproduce all the features of complex 
deposits such as the Mazama tephra, including both uncer-
tainty in ESPs and inherent model simplifications.

Considering the Mazama tephra case study

Before we could investigate the sensitivity of the Ash3D 
simulations, we first had to source appropriate meteorologi-
cal reanalysis data that would reproduce the overall dispersal 
direction of the Mazama tephra towards the northeast of 
Crater Lake as we found that the wind data used strongly 
affected the overall dispersal (Fig. 7). We also simplified the 
Ash3D simulations by modelling only one explosive phase 
and thus using a relatively short period of wind data. Sim-
plifying the meteorological data used is an inherent source 
of uncertainty throughout this study and could explain why 
the modelled deposit does not correspond perfectly to the 
field data in some locations. For example, lake core records 
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Fig. 7  Illustration of the effect of different wind conditions on the 
deposit distribution. Simulations in (a–d) use the same source param-
eters but different eruption start times, indicated on each plot. The 
wind field in (d) was used for further sensitivity tests. The coloured 

polygons in a–d represent the model isopachs and coloured dots rep-
resent measured sample thicknesses. All runs use source parameters 
in Table 1. Profiles of wind speed and direction with height for each 
simulation can be found in the supplementary material (Table S8)
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from Jenny Lake, Wyoming, USA (site 42 in Fig. 1a), sug-
gest deposition of ~ 1 cm of primary Mazama tephra (Larsen 
et al. 2016), whereas a maximum 0.2 cm of tephra was esti-
mated by the Ash3D simulations. This mismatch may be 
caused, in part, by ash dispersion towards the east and south-
east during earlier stages of the Mazama eruption (Young 
1990). We note, however, that a thickness mismatch at a 
single distal point does not detract from the overall success 
of simulating the main dispersal direction of the deposit. 
More generally, using modern wind data to simulate the pre-
historic eruptions requires the assumption that seasonal wind 
patterns and other atmospheric properties, such as tropo-
pause height and vertical variations in average wind veloc-
ity, have not changed since the time of the eruption. These 
assumptions may be a significant obstacle to using VATDMs 
to reconstruct prehistoric tephra deposits, particularly pre-
Holocene and for regions that have undergone pronounced 
climate variability.

Simulating umbrella spreading (Fig. 9) and increasing 
the diffusion coefficient (Fig. 8) in the Ash3D simulations 
were required to recreate the wide isopachs and significant 

off-axis spreading of the Mazama tephra observed in the 
field (Fig. 1, Buckland et al. 2020). This demonstrates that 
simply modelling the advection–diffusion of ash follow-
ing a large magnitude eruption, with no consideration of 
umbrella cloud spreading, could significantly underesti-
mate the area impacted by ash deposition (Costa et al. 2013; 
Mastin et al. 2014; Barker et al. 2019; Webster et al. 2020). 
Currently, most VATDMs used operationally by Volcanic 
Ash Advisory Centres models ignore umbrella cloud spread-
ing because most eruptions do not produce large umbrella 
clouds. Yet aircraft encounters within the umbrella area of 
eruptions at Pinatubo in 1991 (Casadevall et al. 1996) and 
Kelut in 2014 (Kristiansen et al. 2015), and the significant 
umbrella cloud produced by the January 2022 eruption at 
Hunga Tonga-Hunga Ha ‘apai (HTHH; Global Volcanism 
Program 2022), demonstrate the importance of this process 
to hazard mitigation.

The Ash3D simulations of the Mazama tephra that use 
the GSDs based on field data produce the simulations with 
the smallest divergence between the observed and modelled 
thickness (Figs. 11 and 12). For example, at site 73 (30 cm 
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measured), only the simulations that use the GSDs based 
on field data from the Mazama tephra predict > 21 cm of 
tephra (Fig. 13d, e). This is because generic GSDs over-rep-
resent the portion of the total eruption mass that is > 250 µm 
(Fig. 5), which means more mass is deposited close to source 
and less mass is transported to the distal region (> 130 km 
from source). Acquiring GSDs from extensive distal tephra 
deposits may prove challenging for large magnitude erup-
tions other than the Mazama tephra, particularly if the 
distal deposit has been deposited offshore. In this regard, 
the observation that the GSD of distal tephra remains con-
stant beyond a critical distance from source (Engwell and 
Eychenne 2016; Cashman and Rust, 2020; Buckland et al. 
2021) means that even sparsely distributed data from the 
distal region can inform GSDs for modelling distal tephra 
deposits.

Site 73 is a key locality for comparisons against the 
Ash3D simulations as it records the primary thickness and 
the GSD has been measured using both laser diffraction 
(Buckland et al. 2020) and DIA (Buckland et al. 2021). 
The discrepancy between the simulated and observed 
GSDs at site 73 (Fig. 13e) indicates that the Ash3D model 

is dispersing coarser grains farther than observed in the 
field. This discrepancy is surprising given that most pro-
cesses not modelled, such as particle aggregation or gravi-
tational instabilities, tend to accelerate rather than retard 
ash removal. The over-representation of coarse ash could 
be caused by poor characterisation of the drag coefficient 
acting on the ash particles. For example, we assume that 
the 2D aspect ratio (b/l) measured using DIA (Buckland 
et  al. 2021) is equivalent to the 3D shape factor from 
Wilson and Huang (1979). But, as with size parameters 
(Buckland et al. 2021), converting from 2 to 3D can poorly 
characterise the irregularity of the particles and mean that 
higher drag coefficients and lower terminal velocities are 
calculated (Saxby et al. 2018). Another explanation for 
coarse particles reaching farther than observed could be 
that the umbrella spreading regimes overestimate the abso-
lute velocity and distance over which the umbrella winds 
influence ash dispersion. For instance, the Costa et al. 
(2013) spreading regime predicts a higher proportion of 
particles > 250 μm at site 73 than the Webster et al. (2020) 
formulation because it models higher radial wind-speeds 
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close to source (Fig. 3). These findings suggest that further 
testing of umbrella cloud spreading regimes is required. 
Future and recent modern eruptions that produce an 
umbrella cloud could provide an opportunity for such stud-
ies if the wind data, umbrella cloud spreading rate and 
deposit characteristics are well documented both during 
and immediately after the eruption using field and remote 
sensing techniques.

Considering the impact of VATDM simplifications

A significant simplification required to simulate the Mazama 
tephra deposit using Ash3D is that all ash < 125-μm aggre-
gates. This assumption is necessary because if the fine ash is 
not aggregated, the terminal velocity of the individual parti-
cles is so low that it cannot overcome the vertical component 
of atmospheric velocity (turbulence) and ash < 125 μm is 

not deposited within the model domain. There is very little 
evidence, however, of aggregation being the main driver for 
the sedimentation of the distal Mazama tephra. For example, 
there are no records of accretionary lapilli across the expan-
sive deposit and little to no fine ash is contained in the fall 
deposits close to source (< 130 km; Young 1990). This sug-
gests that in addition to aggregation by electrostatic forces 
(which will not be preserved in the tephra record), other 
mechanisms resulted in the deposition of the fine-grained 
distal tephra, such as convective instabilities (Manzella et al. 
2015; Scollo et al. 2017; Freret-Lorgeril et al. 2020) and the 
entrainment of fine material in the wake of coarser particles 
(Rose et al. 2008; Eychenne et al. 2015).

For the Ash3D simulations, we assumed a single Plinian 
eruption to avoid uncertainty in the mass attributed to dif-
ferent phases of the eruption (Buckland et al. 2021; Buck-
land 2022). Further insight could be gained by separately 
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Table 2  Significant Ash3D simulations for model sensitivity testing

* With no umbrella spreading this height is the top of the plume (HT)

Height umbrella 
cloud (Hu, km)

Umbrella spreading regime GSD Diffusion  (m2s−1) Deposit density 
 (kgm−3)

Figure

Run001 40* None GSD_M16 0 1000 8
Run002 40* None GSD_M16 1000 1000 8, 9
Run004 40* None GSD_M16 10,000 1000 8
Run006 30 Costa et al. (2013) GSD_M16 1000 1000 9, 10–13
Run010 30 Webster et al. (2020) GSD_M16 1000 1000 9
Run014 30 Costa et al. (2013) GSD_M14 1000 1000 10–13
Run022 30 Costa et al. (2013) GSD_B21_B 1000 1000 10–13
Run030 30 Costa et al. (2013) GSD_B21_U 1000 1000 10–13

RMSE = 18.5
R2 =  0.80

Run006
0.01

0.1

1

10

100

Si
m

ul
at

ed
 th

ic
kn

es
s 

(m
m

)

a
RMSE = 24.8
R2 =  0.78

Run014

b

RMSE = 16.8
R2 =  0.79

Run022
0.01

0.1

1

10

100

Si
m

ul
at

ed
 th

ic
kn

es
s 

(m
m

)

0.01 0.1 1 10 100
Measured thickness (mm)

c
RMSE = 13.2
R2 =  0.81

Run030

0.01 0.1 1 10 100
Measured thickness (mm)

d

Measured
 thickness (mm)

<10
10−49
50−99
100−199
200−299
>300

Default GSD GSD_M14

GSD_B21_B GSD_B21_U
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modelling the Plinian and co-PDC eruption phases (Marti 
et al. 2016). Co-PDC ash tends to be finer than that erupted 
during Plinian eruptions and can therefore be dispersed 
over large areas. This could be another explanation for the 
mismatch between the simulated and observed grain size of 
distal deposits and provides another reason for using TGSDs 
derived from distal deposits to approximate distal ash char-
acteristics (Buckland et al. 2021; Buckland 2022). In prac-
tice, however, separating and modelling the two eruptive 
phases present substantial difficulties. For example, there is 
no chemical variation in the Mazama Plinian and co-PDC 
products (Young 1990; Buckland et al. 2021; Buckland 
2022), which makes the relative deposit proportions from 
these phases impossible to determine. In addition, source 
conditions and plume rise processes for Plinian plumes are 

considerably different to those from co-PDC plumes, which 
can loft from the top of entire PDCs resulting in significant 
mass flow rates (Baines and Sparks 2005; Engwell et al. 
2016).

Conclusions

Using the Ash3D dispersion model, we simulated ash dis-
persal following the climactic eruption of Mount Mazama 
using reanalysis meteorological data. We conclude first 
that using appropriate wind data is crucial to dispersing the 
Mazama tephra towards the east and northeast of the vent. 
Notably, we found that modern reanalysis data from northern 
hemisphere autumn reproduces the main dispersal direction. 
Though not definitive, this supports a previous assessment of 
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the eruption seasonality (Mehringer et al. 1997). Secondly, 
it is necessary to simulate horizontal plume spreading with 
an umbrella cloud (Costa et al. 2013; Mastin et al. 2014; 
Webster et al. 2020) to reproduce the significant off-axis 
spreading of the Mazama tephra deposit. Third, discrepan-
cies between the simulated and observed thicknesses were 
minimised by using grain size distributions (GSDs) based 
on the stable grain size distribution of the distal Mazama 
tephra. Problems remain, however, in the significant simpli-
fication that particles < 125 μm behave like aggregates, for 
which there is little evidence in the field deposits. Finally, 
the assumption of a single eruptive phase has likely reduced 
the accuracy of simulations of the Mazama eruption as an 
unknown proportion of the distal deposit was probably 
derived from a co-PDC source.

Future work to improve the accuracy of Volcanic Ash 
Transport and Dispersion Models (VATDM) for simulating 

the ash dispersion from large magnitude eruptions should 
include additional testing of the equations used to simu-
late the radial spreading of the umbrella cloud region. Our 
results conclusively showed that, although it is necessary 
to include the computation of the radial velocity within the 
umbrella cloud region of the plume, the question of which 
formulation of gravitational spreading (Costa et al. 2013; 
Webster et al. 2020) is the most appropriate remains unclear. 
Another direction of research required to improve VATDMs 
is to better understand how fine ash (< 125 μm) is deposited. 
Currently, the simulated aggregation of fines in Ash3D, as 
in simulations from other VATDM, simplifies the compu-
tational complexities of modelling wet and dry aggregation 
or convective instabilities. However, future advancements 
in understanding the physics of how fine particles are dis-
persed and deposited may coincide with increased compu-
tational capacity; meaning these physical processes will be 
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integrated into VATDMs which will improve forecasts of ash 
transport and deposition for eruptions of any scale.

Appendix 1. Umbrella spreading regimes

This section contains the formulas used to derive the differ-
ent spreading regimes used in Ash3D. For the full deriva-
tions, see Sparks (1997), Costa et al. (2013) and Webster 
et al. (2020). The conservation equation of volume for an 
expanding cylindrical umbrella cloud with time varying 
radius R and average cloud thickness h is given by:

where q is the volume flow rate into the umbrella cloud. It is 
assumed that the velocity of the cloud front uR scales linearly 
with the cloud average thickness:

where N is the Brunt-Väisälä frequency and λ is an empirical 
constant reflecting cloud shape.

The spreading of the umbrella cloud is driven by a hori-
zontal pressure gradient between the plume and the ambient 
atmosphere (Sparks 1997), which is given by:

where ρc is the density of the umbrella cloud, ρa is the ambi-
ent density at the neutral buoyancy level and g is the gravi-
tational acceleration.

By accounting for the conservation of mass and momen-
tum using Eqs. 6 and 8, Sparks (1997) then derived the fol-
lowing formula for the radius of the umbrella cloud (R) fed 
by a steady column with respect to time (t):

Finally, by taking the derivative of Eq. 9 with respect to 
time (Costa et al. 2013; Mastin et al. 2014), the velocity of 
the cloud’s outer margin (uR) with respect to time is given 
by:
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